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ABSTRACT OF THE DISSERTATION

A New Network Architecture for Future Optical Networks:

Coarse Optical Circuit Switching By Default,

Rerouting Over Circuits for Adaptation

by

Jerry Chou

Doctor of Philosophy in Computer Science and Engineering

University of California San Diego, 2009

Professor Bill Lin, Chair

Professor Geoffrey M. Voelker, Co-Chair

As Internet traffic continues to grow unabated at an exponential rate, it is

unclear whether or not the existing packet routing network architecture based on

electronic routers will continue to scale at the necessary pace. On the other hand,

optical fiber and switching elements have demonstrated an abundance of capacity

that appears to be unmatched by electronic routers. In particular, the simplicity of

circuit switching makes it well-suited for optical implementations. Therefore, given

the rapidly increasing traffic and optical transport capabilities, and the growing

disparity between optical capabilities and Moore’s Law, we would like to bridge

this gap for future optical networks.

In this thesis, we present a new approach to optical networking based on a

paradigm of “coarse optical circuit switching by default” and “adaptive rerouting

over circuits with spare capacity”. We consider the provisioning of long-duration

quasi-static optical circuits between edge routers at the boundary of the network

to carry the traffic by default. When the provisioned circuit is inadequate, excess

traffic demand is rerouted through circuits with spare capacity. In particular, by

adaptively load-balancing across circuits with spare capacity, excess traffic is routed

to their final destinations without the need to create circuits “on-the-fly”. We

xiv



call this new network architecture coplar, which stands for “[c]oarse [op]tica[l]

circuit switching with [a]daptive [r]erouting”.

Specifically, we first formulate the problem of circuit provisioning as a mul-

tipath utility max-min bandwidth allocation problem, which considers routing as

an optimization parameter rather than input. The optimal and local algorithms

proposed in the thesis are the first solutions to this problem. For traffic that cannot

be handled by the default provisioned circuits, we apply an adaptive routing algo-

rithm based on game theory to adaptively reroute the excess traffic over circuits

with spare capacities. To evaluate coplar, we conducted extensive experiments

using two separate real large-ISP PoP (point of presence)-level topologies, Abi-

lene [2] and GEANT [44]. The results show that coplar has the ability to improve

network throughput while significantly reducing electronic router overhead and the

number of O/E/O conversions in the network.

Finally, we show that our utility max-min bandwidth allocation algorithm

can be extended to other network problems. In particular, we present a network se-

curity application called PSP (Proactive Surge Protection) that provides a defense

against bandwidth-based distributed denial-of-service attacks.
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Chapter 1

Introduction

1.1 Motivation

The Internet has become the main conduit for virtually all wide-area data

communications as it continues its phenomenal growth in traffic volumes and reach,

extending into telephony and television broadcast services that were once only

transported in the domain of dedicated networks. For the past decade, Internet

traffic has been doubling nearly every year, and there is no indication that this

rate of growth will decelerate in the near future. While the packet switching

approach used in the Internet backbone networks has thus far been able to keep

up, it is unclear whether electronic routers that have been used at the core of

backbone networks will continue to scale to match future traffic growth or optical

link rates [25].

On the other hand, optical fiber and switching elements have demonstrated

an abundance of capacity that appears to be unmatched by electronic routers.

The rate of increase in optical transport capacity has been keeping pace with

traffic growth (with 100 Gb/s per wavelength in the next generation). Thus,

one possible way of keeping pace with future traffic demands is to build an all-

optical backbone network. However, packet switching requires the buffering and

processing of packets, of which optical switches are not capable today, and it is

unclear if these functions can be practically realized in optics. In contrast, circuit

switching has much a simpler data transport, making it well-suited to optics and

1
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WDM links

Optical circuit-switched
long-haul backbone cloud

Boundary
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Figure 1.1: Optical circuit-switched cloud with boundary routers.

its vast capacity potential.

To harness the huge capacity of optical circuit switching in an evolution-

ary way that is compatible with packet switching at the edge of the network,

transparent to the user, a number of candidate optical network data transport

architectures have been proposed [70, 97, 65, 64, 101, 54, 53, 91, 17, 98, 21]. From

a bird’s-eye view, these architectures all share a similar conceptual starting point

in which the core of the network is an all-optical circuit-switched cloud, as de-

picted in Figure 1.1. The optical circuit-switched cloud is comprised of long-haul

DWDM links that are interconnected by optical cross-connects (OXC). Traffic tra-

verses the circuit-switched cloud through pre-established circuits (lightpaths) at

optical speeds. Boundary routers at the edge of the circuit-switched cloud provide

a compatible packet switching interface to the rest of the Internet. The different

proposed optical network data transport architectures differ in how they adapt to

changing traffic conditions and the corresponding requirements on the granularity

of circuits and the frequency of changes to the circuit configurations.

Several approaches are based on frequent changes to circuit configura-

tions [70, 97, 65, 91, 64]. For example, in optical burst switching (OBS) [70, 97],
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Figure 1.2: Aggregate traffic on a tier-1 US backbone link [77].

bursts of data are aggregated at the network edge by the boundary routers, and

an out-of-band signaling process is used for establishing temporary circuits across

the optical circuit-switched cloud for each burst. OBS adapts to changing traffic

conditions by changing the circuit configurations on a frequent time-scale (i.e., at

each data burst). In TCP switching [65], the detection of a new application (TCP)

flow triggers the creation of its own new circuit. TCP switching adapts to chang-

ing traffic conditions by frequent creations of new fine-grained circuits. A dynamic

coarse circuit switching scheme has also been proposed (Ch. 5 of [64]) in which

a coarse circuit is established between each pair of boundary routers for carrying

traffic with the same pair of ingress-egress (IE) nodes. This dynamic coarse circuit

switching approach adapts to changing traffic conditions by frequently adjusting

the circuit configurations on relatively short time-scales based on an online traffic

estimation mechanism. Although the frequency of dynamic circuit reconfigurations

imposed by the above approaches, on the order of tens of microseconds to a sec-

ond, is well within the capabilities of available optical switching technologies, the

coordination of such frequent network-wide reconfigurations is not easy. Moreover,

new signaling mechanisms and (electronic) control planes are required to facilitate

the coordination.
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1.2 Approach Overview

In this thesis, we introduce coplar, a novel optical networking design

based on a new paradigm of “coarse optical circuit switching by default”, and

“adaptive rerouting of excess traffic over circuits with spare capacity” when nec-

essary. coplar stands for “[c]oarse [op]tica[l] circuit switching with [a]daptive

[r]erouting”1. coplar exploits in part the observation that future traffic condi-

tions can be predicted offline using past observations. Previous studies [77, 61]

have shown that the aggregate traffic at the core of the network tends to be very

smooth and that it follows strong diurnal patterns that are easy to characterize.

Figure 1.2 shows the total aggregate traffic on a backbone link in a tier-1 US ISP

backbone network [77]. As can be observed in the figure, the aggregate traffic varies

over time in a regular and predictable way. Such diurnal traffic observations over

repeated data sets suggest that coarse circuits could be provisioned to handle the

expected traffic. Indeed, we make use of past traffic measurements to pre-compute

offline such coarse circuit configurations. As we shall see in our extensive evalua-

tions in Chapter 4, careful offline selection of coarse circuit configurations that take

into account the statistical daily traffic variations over different hours observed in

past measurements can produce coarse circuits that can accommodate the actual

traffic most of the time. Therefore, in our approach, traffic is sent “by default”

directly over the coarse optical circuit provisioned between the corresponding pair

of boundary routers.

However, our approach also provides a mechanism for adapting to scenar-

ios in which the actual traffic differs from prediction or when there are sudden

unexpected changes in traffic (e.g., due to external events). In particular, our

solution uses an adaptive routing algorithm based on game theory for rerouting

(hopefully small amounts of) excess traffic over circuits that have spare capacity

when the provisioned circuit provides insufficient capacity. By adaptively routing

across circuits with spare capacity, excess traffic is routed to their final destinations

without the need to create new circuits “on-the-fly” – additional capacity needs

1coplar is pronounced the same as the word “copular”, which is the adjective form of the
noun “copula”, meaning “something that connects or links together”.
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are met through rerouting rather than fast dynamic circuit establishment. This

is in notable contrast to dynamic circuit provisioning approaches discussed above

that rely on frequent circuit reconfigurations on relatively short time-scales for

adapting to changing traffic conditions. Intuitively, the approach works because

the provisioned circuits form a “logical” topology over the boundary routers with

many “non-direct” paths that can carry the excess traffic from a source to its final

destination. Our adaptive load-balancing approach exploits the significant amount

of path diversity available for traffic rerouting.

While our proposed solution draws upon the pseudo-periodic behavior ob-

served in real traffic to pre-compute offline circuit configurations, our approach

differs from previous offline circuit configuration solutions in two important ways.

First, previous offline circuit configuration approaches did not consider ways for

adapting to unexpected traffic changes, which poses a legitimate concern for their

deployment. For our adaptive rerouting mechanism, we apply a known adaptive

routing algorithm based on game theory to utilize the available circuit capacities.

The convergence and performance properties of the routing algorithm have been

proved in [36]. But previous works on the adaptive routing are limited to the dis-

cussion of optimization techniques, and they generally assumed that the routing

paths are given. In contrast, our work focuses on finding a set of loop-free paths

with maximum path diversity and the setting of cost function for the optimization

technique to achieve our expected network performance objectives. Section 1.5

describes our rerouting problem in more details.

Second, previous offline configuration approaches were designed to handle

a specific traffic matrix or an entire set of traffic matrices [18, 73, 85, 74, 13]. Our

work is different in that our formulation takes into consideration the statistical

daily traffic variations observed in past measurements and the probability of traf-

fic demands given their statistical distribution of occurrence in past measurements.

In particular, we propose a new offline circuit configuration formulation that explic-

itly considers the statistical properties of past observations. In our formulation, the

pre-computed coarse circuit configurations do not necessarily provide sufficient cir-

cuit capacities for supporting all the traffic matrices captured in the historical data
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sets. Instead, our problem is formulated as a utility max-min fair bandwidth allo-

cation problem that aims to maximize the acceptance probability of the expected

traffic demand by using the cumulative distribution function over the historical

data sets as the objective function. Our solution allocates all available network

resources across multiple paths to provide as much “headroom” as possible. Since

our solution does not rely on an online dynamic circuit creation mechanism, there

is no need to leave behind network resources for establishing new circuits. To

the best of our knowledge, the general multi-path utility max-min fair bandwidth

allocation problem has not been solved previously. Previous utility max-min fair

allocation formulations only considered the single-path case [22, 24, 79, 71], and

previous multi-path max-min fair allocation formulations did not consider general

(non-linear) utility functions [12]. Thus, an important contribution of this work is

a first solution to this open general problem.

1.3 Approach Illustration

Here we use an example to illustrate our idea. As shown in Figure 1.3,

the traditional packet routing approach relies on intermediate electronic routers

to performance routing decisions. With Internet traffic rapidly increasing , it is

unclear whether electronic routers that have been used at the core of backbone net-

works will continue to scale to match future traffic growth or optical link rates [25].

Furthermore, network traffic could suffer long latencies because of queueing and

O/E/O (Optic-Electronic-Optic) conversion delays at each intermediate router.

The motivation for using circuit switching is to achieve an all-optical net-

work where traffic is forwarded through a network without involving electronic

routers. In contrast to previous approaches [97, 64, 91] that aim to dynamically

create circuits upon traffic arrivals, coplar avoids the need for frequent switch

reconfiguration and coordination by pre-configuring a circuit between each pair of

boundary routers (Ingress and Egress routers) at a coarse time scale, such as on

an hourly basis, based on historical traffic measurements. For example, as shown

in Figure 1.4, if the average traffic from Seattle and Denver to New York are both
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Figure 1.3: Network routing under traditional packet switching.
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Figure 1.4: Network routing under circuit switching.

4 Gb/s between 1-2pm in the past month, we would configure a 4 Gb/s circuit for

each of the two IE-pairs between 1-2pm, and the network traffic would be routed

by default on these provisioned circuits during this period of time. To further han-

dle traffic variation, we provide more bandwidth headroom by allowing a circuit to

be setup across multiple physical circuits and by fully allocating network capacity

to all IE-pairs. As shown in Figure 1.5, if the maximum traffic from Seattle to

New York is 6 Gb/s, we could allocate a 6 Gb/s virtual circuit with 4 Gb/s going

through Denver and the other 2 Gb/s going through Atlanta. Since there is lim-

ited bandwidth, and circuit capacity is not supposed to be shared among different

IE-pairs, it is crucial to find a circuit provisioning algorithm that can maximize
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Figure 1.5: Achieve higher throughput by provisioning circuits over multiple paths.
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Figure 1.6: The 2 Gb/s exceeding traffic is rerouted on the residual capacity of
other circuits.

the likelihood of having sufficient capacity for each of the circuits. Without going

into the details of the algorithm, as we mentioned, it is formulated as a multi-path

utility max-min bandwidth allocation where the utility function of each IE-pair is

based on its historical traffic measurements.

Although our study results showed majority of the network traffic could be

carried by our provisioned circuits, there still could be some excess demand caused

by unexpected traffic changes. Thus the idea of our second concept, adaptive

rerouting, is to utilize the residual capacity of circuits without having to dynami-

cally reconfigure circuits on-the-fly. For example, assume the circuit configuration

from the circuit provisioning algorithm is the one shown in Figure 1.6. The cir-

cuit capacities for IE-pairs (Seattle, New York) and (Denver, New York) are both
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Figure 1.7: Abstract of rerouting over circuits in coplar
.

4 Gb/s, and the circuit capacities for IE-pair (Seattle, Atlanta) and (Atlanta, New

York) are both 2 Gb/s. Suppose on rare occasions, the actual traffic from Seat-

tle to New York becomes 6 Gb/s, which exceeds its circuit capacity of 4 Gb/s.

Suppose there is no traffic for the IE-pairs (Seattle, Atlanta) and (Atlanta, New

York). Therefore, the additional 2 Gb/s traffic from Seattle to New York could

be rerouted through the residual capacity of the circuit from Seattle to Atlanta,

then through the residual capacity of the circuit from Atlanta to New York. How-

ever, comparing to Figure 1.5, we do not need to allocate a full 6 Gb/s circuit for

handling such rare occasions when rerouting is employed. Thus, the utilization of

circuits and network throughput could be improved when rerouting is considered.

Furthermore, since no circuit configuration needs to be changed during rerouting,

no new signal protocol is required. Overall, Figure 1.7 (a) illustrates the our rerout-

ing strategy at a high level. First, the circuit provisioning algorithm converts the

network topology into a fully connected mesh by setting up a circuit between each

IE-pair. Then an adaptive rerouting algorithm dynamically adjusts routing paths

to handle excess traffic on top of the provisioned circuit network. Although the

adaptive rerouting scheme would require the participation of electronic routers,

majority of the traffic is expected to be carried by its direct default circuit. As a

result, each electronic router only needs to forward a small amount of excess traffic

during the rerouting process as shown in Figure 1.7 (b). Therefore, the overhead
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Figure 1.8: Rerouting mechanism design.

of electronic routers could be minimize while the network throughput could be

maintained or even improved as shown in our evaluations in Chapter 4.

In terms of the implementation, as shown in Figure 1.8, after we provision a

circuit between an IE-pair, it has a corresponding circuit queue and standby queue.

Both queues act as buffer of a circuit at the network boundary. The circuit queue

handles the direct traffic while the standby queue handles the reroute traffic. A

circuit queue has a higher priority than the standby queue, so that rerouting traffic

would only be handled by the spare circuit capacity. We always send traffic to its

direct circuit if possible until the circuit queue is full. Regardless the queuing

policy, when a packet cannot be inserted into its circuit queue, it is sent to a

standby queue of the circuit to a next hops of a rerouting path. Then the packet

becomes reroute traffic and is handled by standby queues at each intermediate

nodes afterwards. More specifically, for each IE-pair, we maintain the separate

set of split ratios to all possible next hops of rerouting paths. So, reroute traffic

is sent to the standby queue of a next hop with a probability proportional to

its corresponding split ratios. These split ratios are dynamically adjusted by an

adaptive routing algorithm, so that the traffic can be load balanced among all

rerouting paths.
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1.4 Problem Formulation of Circuit Provisioning

Our circuit provisioning problem is to find a bandwidth allocation vector

B(t) and its corresponding circuits P (t) for each time interval t, such that for

any flow i, we can set up a circuit with capacity Bi(t) by reserving bandwidth

along a set of paths Pi(t) at time t. Flow i refers to the aggregate traffic between

the corresponding pair of ingress-egress (IE) router pair (si, di). Unless otherwise

noted, we will use the terms a flow and an IE (ingress-egress) flow interchangeably.

Also, for the remainder of the thesis, unless otherwise noted, we will simply refer

to a “coarse circuit” as a circuit. The formal definition of a circuit configuration is

given in Definition 1 where the index t is omitted for simplicity. Notice that in our

problem definition, the paths are not given. Rather, path choices are variables in

our problem. A feasible circuit configuration is one in which the circuit provisioning

does not exceed any link capacity, as defined in Definition 2.

Definition 1 (Circuit configuration (B,P )). B is a bandwidth allocation vector

whose element Bi is the rate assigned to the flow i. Each rate Bi can be routed

through a set of paths Pi. For each P ∈ Pi, f(P ) represents the portion of Bi that

has been split to P .
∑

∀P∈Pi

f(P ) = Bi,∀ flow i. (1.1)

Definition 2 (Feasible circuit configuration). Given a (physical) network

topology (V,E) with link capacities C, where C(e) is the capacity of link e, a circuit

configuration (B,P ) is said to be feasible if and only the total bandwidth allocated

to circuits passing each link e do not exceed the link’s

∑

∀P3e

f(P ) ≤ C(e),∀e ∈ E. (1.2)

While there exists many possible feasible circuit configurations, we formu-

late the problem as a multi-path utility max-min fair allocation problem in which

we derive our circuit configurations to capture the traffic variance observed in his-

torical traffic measurements by using a Cumulative Distribution Function (CDF)

model as the utility function. In particular, the use of CDFs [22] captures the
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acceptance probability of a particular bandwidth allocation as follows. Let Xi(t)

be a random variable that represents the actual traffic for flow i at time t, and

let xi(t) be the bandwidth allocation. Then the CDF of Xi(t) or the acceptance

probability of flow i is denoted as

Pr[Xi(t) ≤ xi(t)] = Φi,t(xi(t)).

Therefore, the intuition of maximizing acceptance probability is to have a circuit

provisioning that can carry the traffic of each IE pair at the maximum probability

by considering the traffic variance and distribution of individual IE pairs.

In general, the expected traffic can be modeled using different probability

density functions with the corresponding CDFs. One probability density function

is to use the empirical distribution that directly corresponds to the historical traffic

measurements taken. Let (ri,t(1), ri,t(2), . . . , ri,t(M)) beM measurements taken for

a flow i at a particular time of day t over some historical data set. Then for a

flow i at time t, its acceptance probability or utility, Φi,t, with a respect to a given

bandwidth allocation xi,t is defined as

Φi,t(xi(t)) =
# measurements ≤ xi(t)

M
=

1

M

(

M
∑

k=1

I(ri,k(t) ≤ xi(t))

)

,

where I(ri,k(t) ≤ xi(t)) is the indicator that the measurement rij,k(t) is less than

or equal to xi(t).

Once our circuit provisioning is formulated as a multi-path utility max-min

bandwidth allocation, we could solve a more general bandwidth allocation problem

and apply to other network application as well.

1.5 Problem Description of Adaptive Rerouting

The main objective of our rerouting scheme is to increase network through-

put by handling bursty or unexpected traffic changes through the residual capacity

of circuits. Since the residual capacity of circuits is dynamically changing depend-
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ing on the network traffic, an adaptive rerouting algorithm is needed to adjust

routing paths on-the-fly. Several adaptive routing algorithms [33, 49, 35] have

been proposed, and the majority of these works are focused on the optimization

of network cost and the convergence time of the algorithm. These algorithms

are well-developed. Therefore, it is not our intention to propose a fundamentally

new adaptive routing algorithm. Instead, our goal is to apply an adaptive rout-

ing algorithm on coplar and evaluate the performance improvement on coplar.

However, it is not trivial to apply an existing adaptive routing algorithm to our

coplar framework because the challenges and objectives in our setting are differ-

ent.

The first challenge is to explore routing path diversity without routing in-

formation explosion and routing loops. In previous adaptive routing studies, they

focused on the selection of routing paths for traffic where routing paths are assumed

to be known or given in the problem. In contrast, the selection of routing paths

is considered as an optimization parameter in our problem setting. With more

paths provided to our adaptive rerouting algorithm, potentially better network

throughput could be achieved. However, considering all possible routing paths in

our coplar routing framework is infeasible because the underlying topology is a

fully connected mesh. The number of possible routing paths simply explodes. For

each IE-pair, the number of possible paths is N !, where N is the network size. For

example, if N is merely 50, the number of possible paths explodes to already more

than 1064. As a result, the paths used for adaptive rerouting in coplar must be

implemented using a set of distributed routing tables, similar to IP routing tables.

However, unlike traditional IP routing [66, 8], which only has one or few routing

paths for each IE-pair, we would like to consider as many paths as possible to

exploit greater path diversity for our rerouting scheme. Furthermore, routing loop

has to be avoided because routing loops can cause unnecessary router overhead and

capacity usage. In our evaluations, to be presented later in subsequent chapters,

our evaluations show that the amount of resource wasted by routing loops can

grow significantly as the network gets more congested. Moreover, routing loops

can lead to live-locks where a packet may never arrive to its destination. There-
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fore, in Chapter 3, we propose a loop-free routing table structure to ensure that

the routing paths considered are without loops.

In addition to proposing a new loop-free routing table structure, we must

compute the corresponding paths for our adaptive rerouting algorithm. We propose

a propagation protocol that can compute path costs online by aggregating the costs

along paths without the full-knowledge of routing information from every node.

Last but not least, we expect our adaptive rerouting algorithm for coplar

can maximize network throughput while minimizing O/E/O conversions. Notice

that the number of O/E/O conversion is the same as the number of rerouting hops

over the provisioned circuits. Although maximizing network throughput is the

primary objective of our rerouting scheme, reducing router workload or O/E/O

conversion is also a critical requirement in our coplar routing paradigm. Other-

wise, our routing strategy would be the same as packet routing. Inevitably, there

is a tradeoff between network throughput and O/E/O conversion because adap-

tive routing algorithms often use longer paths to load balance traffic and achieve

higher network throughput. Thus, it is not trivial as to how hop count should

be considered in an adaptive routing algorithm. In particular, we don’t want to

simply limit the available path options to be within a certain length because that

would only guarantee the worst case hop count.

1.6 Additional Related Work

A number of related work has already been introduced in Section 1.1. As

such, we restrict discussion in this section to related work not yet described to

minimize redundancy. To implement the actual circuit configurations, a number

of signaling protocols have been proposed. For example, the Generalized Multi-

Protocol Label Switching (GMPLS) [17, 98] has been proposed as a way to extend

MPLS [76] to incorporate circuit switching in the domains of time, frequency and

space. GMPLS defines the signaling mechanisms for various management aspects

of constructing coarse label-switched paths that are circuit-switched. The scope of

GMPLS is complementary to ours in that it does not specify a control algorithm to



15

decide when to create circuits and with what capacity. Rather, GMPLS provides

us with one way to implement our pre-computed coarse circuit configurations.

Besides the dynamic circuit configuration approaches mentioned in Sec-

tion 1.1, another interesting transport architecture proposal is optical flow switch-

ing (OFS) [91]. The approach is different than the high-level design depicted in

Figure 1.1 in that the user-initiated data circuits are established between end-

users rather than boundary routers. Nonetheless, it provides another represen-

tative transport architecture for creating circuits “on-the-fly”, which can adapt

to changing traffic conditions along with the necessary signaling mechanism and

control plane to change circuit configurations on relatively short time-scales.

Approaches based on fast optical packet switching have also been proposed

(e.g. [92, 95, 99]). For example, in the work of [99], the core of the optical comprises

of high-performance optical packet routers with intelligent edge routers at the

boundary of the optical network to perform intelligent traffic shaping.

Another approach based on long-duration coarse circuits is based on two-

phase routing [101, 54, 53]. Rather than configuring circuits to support a specific

set of traffic matrices, researchers have suggested the configuration of long-duration

circuits that are optimized for the worst-case throughput under all possible traf-

fic patterns permissible within the network’s natural ingress-egress capacity con-

straints. These approaches work by setting up static coarse circuits and sending

traffic across the optical circuit-switched cloud twice in a load-balanced manner

in two phases. However, optimizing for the worst-case commonly leads to rather

pessimistic performance.

Finally, motivated by the desire to adapt to changing traffic conditions,

possibly corresponding to sudden traffic shifts, a number of online adaptive routing

policies have been developed. TeXCP [49], MATE [33], and REPLEX [35] are

representative examples. These approaches take advantage of alternative routing

paths in the network. These adaptive routing approaches are complementary to

our work in that we can incorporate them into our coplar architecture for routing

over non-direct paths via traversal through multiple circuits.
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1.7 Outline of the Thesis

Given the rapidly increasing traffic and optical transport capabilities, and

growing disparity between optical capabilities and Moore’s Law, we need a new

approach to bridge these gaps in the design of future optical networks. This thesis

proposes a novel optical network architecture design based on a new paradigm

of “coarse optical circuit switching by default” and “adaptive rerouting of excess

traffic over circuits with spare capacity” when necessary. The outline of this thesis

is as follows:

Chapter 2 defines and solves the multi-path utility max-min bandwidth

allocation problem for the circuit provisioning part of our approach. The majority

of work on max-min fairness has been limited to the case where the routing of flows

has already been defined and this routing is usually based on a single fixed routing

path for each flow. But in this chapter, we consider the more general problem in

which the routing of flows, possibly over multiple paths per flow, is an optimization

parameter in the bandwidth allocation problem. Our goal is to determine a routing

assignment for each flow so that the bandwidth allocation achieves optimal utility

max-min fairness with respect to all feasible routings of flows. Both optimal and

local algorithms for the problem are proposed for the first time to the problem.

Chapter 3 describes how we apply an adaptive routing algorithm based on

game theory for our rerouting mechanism. Specifically, we propose a loop-free

routing table structure to explore path diversity without forming routing loops

and a propagation protocol for computing path costs. In addition, we design a

cost function to achieve our network performance objectives.

Chapter 4 uses a well-known realistic network simulator NS2 to extensively

evaluate our coplar approach on two real large PoP-level backbone networks,

namely Abilene [2] and GEANT [44], with real traffic trace data over two months.

Our evaluation results show a number of interesting results. First, the majority

of the traffic was able to be carried by the circuits computed from our circuit

provisioning algorithm even during peak traffic hours. In addition, when the actual

traffic matrices were scaled up, coplar was surprisingly able to handle a higher

traffic load than conventional packet routing [66, 8]. The effectiveness of coplar
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can be attributed to the path diversity available for the adaptive rerouting of

traffic. Finally, coplar achieved higher network throughput with significantly

less overhead on electronic routers and O/E/O conversions for traffic.

To show our bandwidth allocation algorithm and framework can be ex-

tended on other common network applications and problems, we apply our band-

width allocation framework on a network security problem and propose a novel

defense mechanism called PSP (Proactive and Surge Protection) in Chapter 5.

The objective of PSP is to avoid network congestion collapse at a core network

caused by bandwidth based DDoS (Distributed Denial-of-Services) attacks. PSP

uses a similar bandwidth allocation framework as coplar to deploy soft admission

control at the ingress routers of a core network and to prioritize the dropping of

potential attack traffic at congested routers. The PSP application was evaluated

on two large tier-1 commercial backbone networks, and the results show that we

can significantly reduce the packet drop rate caused by DDoS attacks.

Finally, Chapter 6 concludes this thesis by addressing some limitations and

future works.

Chapter 1, in part, is a reprint of the material as it appears Journal of

Optical Communications and Networking, 2009. Chou, Jerry; Lin, Bill, IEEE OSA

Press, 2009. The dissertation author was the primary investigator and author of

this paper.



Chapter 2

Multi-path Utility Max-Min

Bandwidth Allocation

2.1 Introduction

Bandwidth allocation is a fundamental problem in various areas of network-

ing. In this chapter, we consider a general allocation problem in which a network

consisting of links with fixed capacity is given along with a set of flows between

source and destination pairs. The problem is to allocate a rate or bandwidth to

each flow without exceeding link capacity. On one hand, we would like to im-

prove the overall network utilization by maximizing the total throughput from all

flows. On the other hand, fairness among flows must be maintained to guarantee

the performance of individual flows. Therefore, an important goal of bandwidth

allocation is to maximize the utilization of network resources while sharing the

resources in a fair manner among network flows.

To strike a balance between fairness and throughput, a widely studied cri-

terion in the network community is the notion of max-min fairness [22]. An al-

location of bandwidths or rates is said to be max-min fair if it is not possible

to increase the bandwidth of a flow without decreasing another already smaller

flow. While max-min fair allocation treats all flows evenly and tends to allocate

them with similar bandwidths, many variants [51, 24, 71] of max-min fair allocation

18
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have been proposed to differentiate the bandwidth requirements among flows. One

such max-min fair variant is weighted max-min fair allocation [22], which assigns

a weight to each flow. According to the weights, a flow would receive a bandwidth

allocation proportional to its weight to gain the same fairness as others. There-

fore, by giving varied weights to flows, the bandwidth requirement of flows can be

differentiated. However, as shown in [24], those traditional max-min bandwidth

allocations will often result in significant disparity in the actual throughput or

performance of a flow, despite a ”fair” allocation of bandwidth. Therefore, to fur-

ther capture the general and possibly non-linear relationship between bandwidth

allocation and the throughput of a flow, utility functions [81] were introduced

as a general performance measure, and utility max-min fair allocation [24] was

formulated to optimize for the max-min fairness of flows in terms of their utilities.

Nevertheless, the majority of work on max-min fairness has been limited

to the case where the routing of flows has already been defined and this routing

is usually based on a single fixed routing path for each flow. Although this setup

simplifies the problem by decoupling the complicated flow routing problem from

bandwidth allocation, the utilities that can be achieved by flows are unnecessarily

hamstrung by routing decisions that have been fixed, ignoring potentially better

allocations that could be achieved if optimal routing and bandwidth allocation

were solved together simultaneously, and if the path diversity can be exploited by

splitting traffic over multiple paths (e.g. by using MPLS tunnels). Therefore, in

this chapter, we consider the more general problem in which the routing of flows,

possibly over multiple paths per flow, is an optimization parameter in the band-

width allocation problem. Our goal is to determine a routing assignment for each

flow so that the bandwidth allocation achieves optimal utility max-min fairness

with respect to all feasible routings of flows. We call the resulting bandwidth

allocation and optimal routing as a multi-path utility max-min fair allocation.

As we know, most max-min fair allocation formulations are based on some

iterative water-filling algorithm [22]. In each iteration, the algorithm aims to max-

imize the allocation of all flows. The flows whose bandwidth cannot be further

increased are then identified as saturated and are fixed for the remaining itera-
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tions. However, we face several new challenges when we consider the multi-path

routing of flows as a part of the optimization problem. In particular, max-min fair

allocation algorithms for the fixed single-path case generally rely on some notion

of bottleneck link that determines the maximum common utility. However, under

simultaneous multi-path routing optimization, the bandwidth allocation of a flow

is not necessarily throttled by a certain link because it may be possible to reroute

flows over different combinations of multiple paths to achieve higher utilities. To

achieve global optimality, flows may need to be rerouted along different paths at

each iteration. Such additional degrees of freedom make our more general problem

significantly harder.

To the best of our knowledge, our combined optimal multi-path routing and

bandwidth allocation problem under utility max-min fairness has not been solved

previously. Specifically, the main contributions of our work are as follows: First,

we present a global optimization algorithm that is guaranteed to find an optimal

routing and bandwidth allocation that can achieve optimal utility max-min fairness

with respect to all feasible routings of flows, including multi-path routings. Second,

we propose a fast fully polynomial iterative ε-approximation algorithm that can be

efficiently implemented using a linear program solver. Third, we propose two local

algorithms to achieve a local utility max-min allocation with less computational

cost and complexity. Finally, evaluate these algorithms by using historical traffic

distributions as utility functions to model expected future traffic demands. Our

evaluations show that significantly higher minimum utility and lower excess de-

mand can be achieved when multi-path routing is considered simultaneously with

bandwidth allocation. Also, our local solution is able to achieve the similar results

as optimal solution with much faster computational time.

The remainder of this chapter is organized as follows. First, Section 2.2

reviews related work. We next briefly provide in Section 2.3 background material

on max-min allocation, utility functions, and multi-path routing. After we give

the formal definition of our multi-path utility max-min fair allocation problem in

Section 2.4, we present the optimal and local algorithms for solving this problem

in Section 2.5 and Section 2.6, respectively. Then Section 2.7 evaluates our multi-
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path utility max-min allocation algorithms with results demonstrating significant

improvements in utilities that can be achieved. Finally, Section 2.8 concludes the

chapter.

2.2 Related Work

Max-min fairness has been a widely-studied measure of fairness in the net-

work community. However, the vast majority of work on max-min fairness has

focused on the problem where routing decisions have already been fixed, often

based on a single fixed routing path per flow. Several centralized solutions based

on global knowledge of the network have been developed [10, 22, 46]. Distributed

algorithms [11, 15, 19, 42] have also been proposed to achieve max-min fairness

by adjusting flow rates based on limited link states and local flow information. In

addition, several max-min fair variants have been studied, such as proportional

max-min fairness [51] and utility max-min fairness [24]. In particular, utility max-

min has been applied to several application-oriented allocation problems, such as

flow control [58], link resource [63], etc.

As discussed in Section 2.1, the simultaneous optimal multi-path routing

and bandwidth allocation problem under the general setting of utility max-min

fairness has not been solved before. Even the routing problem in the context

of traditional (weighted) max-min fair bandwidth allocation is rarely discussed

in the previous literature. The fair bandwidth allocation for single source flows

was first studied by [62]. [52] and [30] proposed approximation algorithms to find

unsplittable flow routings. The fair bandwidth allocation problem has also been

studied in the online setting where a route is assigned to each flow when it arrives.

[26] proposed a heuristic routing algorithm which selects the best single route for

a new flow based on link congestions, such that the max-min bandwidth allocation

is maximized after the flow is added. [37] developed an approximation algorithm

that could achieve a max-min fair allocation with O(log2 n log1+ε U/ε)-competitive

ratio. This bound was further improved in [23]. Finally, multi-path routing under

fair bandwidth allocation has been studied [12, 41, 48, 60] as well. But majority
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of works [48, 60] consider routing as input rather than an optimization parameter.

While we consider [12] and [41] have the closest problem formulation to us, both

works only considered the weighted max-min case instead of the more general

utility max-min problem with arbitrary utility functions. As shown in [24] and

Figure 2.1, utility functions simply cannot be capture as a linear line, and it is

non-trivial to extend the solution from weights to nonlinear functions.

2.3 Background

We consider a network consists of N nodes connected by M links ` =

(`0, `1, . . . , `M−1) with link capacity c(`i) for any link `i. Given n commodities

Γ = (C0, C1, . . . , Cn−1) where Ci represents the flow from node si to ti, our objective

is to decide an allocation vector r whose component ri is the rate for commodity

Ci. Notice, the terms of flow and commodity are used interchangeably.

2.3.1 Max-Min Fair Bandwidth Allocation

Max-min fair is one of the most widely-used fairness criteria in bandwidth

allocation. Its general definition is as follows:

Definition 3 (Max-min fair bandwidth allocation). An allocation vector r =

(r0, r1, . . . , rn−1) is max-min fair when any component ri of r cannot be increased

without decreasing some already smaller or equal component rk (rk ≤ ri).

In previous works, commodities were restricted to use a given routing path.

Thus, the set of feasible bandwidth allocations is defined as follows:

Definition 4 (Feasible bandwidth allocation). A feasible bandwidth allocation

r = (r0, r1, . . . , rn−1) assigns rate ri to commodity Ci such that no link in the

network is congested:
∑

∀Ci uses `j

ri ≤ c(`j),∀`j ∈ ` (2.1)

Section 2.3.3 provides the definition of feasible allocation under the more

general setting where the routing of flows is not known and a flow can be routed

over multiple paths.
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Figure 2.1: Utility functions for different application classes.

2.3.2 Utility Functions

Utility functions were first introduced into the bandwidth allocation prob-

lem by [81] to capture the performance of application flows. For example, elastic

applications, including traditional data applications like emails and file transfers,

are best described by a convex utility function. In contrast, a real-time applica-

tion could be modeled by a nearly single-step function because of its sensitivity

to bandwidth requirement. As shown in Figure 2.1, from those application flows,

their performance simply cannot be capture by a weight or linear function.

Therefore, utility max-min fairness based on a set of utility functions φ =

{φ0, φ1, . . . , φn−1} was introduced as an alternative performance measure. Each

function φi ∈ φ computes the utility for commodity Ci delivered under its allocated

bandwidth ri as

µi = φi(ri),∀i ∈ n (2.2)

We assume utility functions are strictly increasing function over the domain

range [0, 1]; that is, φi(k) < φi(k
′),∀k′ > k and 0 < µi < 1,∀i. Thus, the inverse

of a utility function is also well-defined as

ri = φ−1i (µi),∀i ∈ n (2.3)

Accordingly, a utility max-min allocation corresponding to a given set of

utility functions is defined as follows:
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Definition 5 (Utility max-min bandwidth allocation). A utility max-min

allocation is a feasible bandwidth allocation vector r = (r0, r1, . . . , rn−1) where any

component ri of r cannot be increased without decreasing some component rk with

equal or smaller utility (φk(rk) ≤ φi(ri)).

2.3.3 Multi-Path Routing

We consider the bandwidth allocation problem under multi-path routing

where a commodity can use an arbitrary routing, and its traffic can be split over

multiple paths. A general formulation for an arbitrary routing assignment is R

where Rij is the fraction of traffic from commodity Ci routed on link `j, and we

say a routing assignment Rij is feasible if and only if it satisfies the following

constraint.

Definition 6 (Feasible multi-path allocation). A feasible multi-path band-

width allocation vector r = (r0, r1, . . . , rn−1) assigns rate ri to commodity Ci where

r can be realized by a feasible routing assignment R without violating the flow

conservation and/or overloading the network, such that

∑

`j∈E+(k)

riRij −
∑

`j∈E−(k)

riRij =















ri if k = si

−ri if k = ti

0 otherwise

∀i ∈ n and k ∈ N (2.4)
∑

∀Ci

Rij · ri ≤ c(`j) ∀j ∈M (2.5)

Rij ≥ 0 ∀i ∈ n and j ∈M (2.6)

where E+(k) and E−(k) represent the set of incoming and outgoing links at node

k.
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2.4 Problem Definition

2.4.1 Motivation

We start with an example to illustrate the difference in bandwidth al-

location when considering utility functions and multi-path routing. Figure 2.2

shows a network with four nodes interconnected by 10-units bandwidth links.

The network has three commodities, (A,D), (B,D) and (C,D), and their util-

ity functions corresponding to a given bandwidth allocation r are φ1(r) = r2/100,

φ2(r) = (r2 + 12r)/100 and φ3(r) = (3r + 40)/100, respectively. Notice that some

of the utility functions given are non-linear. In this example, both commodities

(B,D) and (C,D) have only one possible routing path each. However, commodity

(A,D) has two possible routing paths, A→ B → D and A→ C → D.

First, we consider the traditional max-min allocation problem where com-

modities are routed over a single path, and we assume the path specified for com-

modity (A,D) is A→ B → D. Under the single-path max-min allocation defined

by Definition 3 and Definition 4, the max-min fair allocation vector is (5, 5, 10).

This arises by assigning a common 5-units of bandwidth to all three commodi-

ties in the first iteration, which would saturate both commodities, (A,D) and

(B,D), respectively. The third commodity (C,D) is increased to a full 10-units

of bandwidth in the second iteration. Corresponding to this max-min allocation,

the resulting utilities for commodities (A,D), (B,D), and (C,D) are φ1(5) = 0.25,

φ2(5) = 0.84, and φ3(10) = 0.70, respectively.

On the other hand, under the single-path utility max-min allocation de-

fined by Definition 5, the utility max-min fair allocation vector is (6.8, 3.2, 10),

and the corresponding utilities achieved are φ1(6.8) = 0.47, φ2(3.2) = 0.47, and

φ3(10) = 0.70, respectively. This arises by allocating bandwidth to achieve the

maximum common utility for all three commodities in the first iteration, which

in this example is 0.47. However, to achieve this maximum common utility, more

bandwidth for example needs to be allocated to the first commodity (A,D) than to

the second commodity (B,D). Again, the bandwidth allocation can be further in-

creased for the third commodity (C,D) to achieve a higher utility. Comparing with
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Figure 2.2: Multi-path utility max-min example.

the traditional max-min allocation, clearly the utility max-min allocation achieves

better fairness with respect to the given utility functions since utility max-min al-

location specifically aims to do so. In particular, the minimum utility is increased

from φ1(5) = 0.25 to φ1(6.8) = 0.47.

When we further consider utility max-min allocation under multi-path rout-

ing, there could be three possible allocation results, depending on the choice of

routing paths available to commodity (A,D). If we choose the path A→ B → D

to route commodity (A,D), then the allocation would be the same as the previous

utility max-min allocation. However, if we choose the path A→ C → D to route

commodity (A,D), then the utility max-min fair allocation would be (7, 5.7, 3),

and the corresponding utilities would be (0.49, 1.00, 0.48). Finally, if we choose to

use both paths to route commodity (A,D), then the utility max-min allocation

would be (8, 4, 8), where commodity (A,D) would be allocated 6 units of band-

width along the path A → B → D and 2 units of bandwidth along the path

A → C → D. As a result, the corresponding utilities to the allocation would be

(0.64, 0.64, 0.64).
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Comparing the three utility allocation results, not only does the last alloca-

tion fully utilize available capacities along all links, it also achieves better fairness

than the allocation results using a single routing path because no one commodity

can increase its utility by decreasing another one. In fact, by considering multi-

path routing, it guarantees to achieve equal or better fairness than the traditional

single-path bandwidth allocation because the solution space with single-path rout-

ing is only a subset of the solution space with multi-path routing. Therefore,

utility max-min allocation under multi-path routing provides a more powerful and

general fair allocation framework, but it is also a much more complicated problem

because it couples flow routing and bandwidth allocation together.

2.4.2 Definitions

As shown by the example in Figure 2.2, a utility max-min allocation exists

for each given routing assignment. We define a local multi-path utility max-min

allocation as the utility max-min allocation with respect to a given routing as-

signment R in Definition 7. Then according to the utility order defined in Defini-

tion 9, we define the optimal multi-path utility max-min allocation as the largest

one among all local allocations in Definition 10. Finally, we say an allocation is

an ε-approximation to the optimal solution if it satisfies the requirement defined

in Definition 11.

Definition 7 (Local multi-path utility max-min allocation). A local multi-

path utility max-min allocation is a feasible multi-path allocation vector r = (r0, r1,

. . . , rn−1) where any component ri of r cannot be increased without decreasing some

component rk with equal or smaller utility (φk(rk) ≤ φi(ri)) under some routing

assignment R.

Definition 8 (Utility-ordered allocation vector). Given a allocation r =

(r0, r1, . . . rn−1), we define a corresponding utility-ordered allocation vector r =

(ri0 , ri1 , . . . , rin−1
), such that φik(rik) ≤ φik+1

(rik+1
) for k = 0 . . . n− 2, where fi is

the utility function of commodity Ci.
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Definition 9 (Utility order (>u)). Given allocation vectors a, b and their utility-

ordered allocation a = (ai0 , ai1 , . . . , ain−1
) and b = (bj0 , bj1 , . . . , bjn−1

), we say a >u b

if only if there is some m such that φik(aik) = φjk(bjk) for 0 ≤ k < m and

φim(aim) > φjm(bjm).

Definition 10 (Optimal multi-path utility max-min allocation). The op-

timal multi-path utility max-min fair allocation is a feasible multi-path allocation

vector that is the largest among all local multi-path utility max-min allocations un-

der the ordering defined by >u. In other words, r = (r0, r1, . . . , rn−1) is an optimal

multi-path utility max-min vector if any commodity Ci cannot be increased with-

out decreasing the rate of another Cj, such that µj ≤ µi where µj = φj(rj) and

µi = φi(ri) under any routing assignment.

Definition 11 (ε-approximation to the optimal allocation). Let r = (r0, r1,

. . . , rn−1) be the optimal multi-path allocation vector, and r = (ri0 , ri1 , . . . , rin−1
)

is its utility-ordered vector. We say another utility max-min allocation vector

r′ = (r′0, r
′
1, . . . , r

′
n−1) with its utility-ordered vector r

′ = (r′j0 , r
′
j1
, . . . , r′jn−1

) is

ε-approximation to the optimal multi-path utility max-min allocation r if there is

some m such that φjk(r
′
jk
)(1+ε) ≥ φik(rik) for 0 ≤ k < m and φjm(r

′
jm
) > φim(rim).

2.5 Optimal Algorithms

In this section, we first provide a general problem formulation to achieve

the optimal multi-path utility max-min allocation. We then provide a linear pro-

gramming (LP) formulation solution to achieve an approximate optimal solution.

Table 2.5 summarizes all the variables used in these algorithms.

2.5.1 OPT MP UMMF

The basic idea to solving a utility max-min allocation problem is to itera-

tively increase the utility of all commodities and determine the maximum common

utility that can be achieved in each iteration. Commodities that reached their max-

imum utilities are tagged as saturated and removed from the water-filling process

by fixing their corresponding utility.
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Table 2.1: Variables used in multi-path utility max-min algorithms.

` a set of links `0, `1, . . . , `M−1 with capacity c(`)
Γ set of commodities C0, C1, . . . , Cn−1 where Ci from si to ti
φi utility function for commodity Ci

ri bandwidth allocated to commodity Ci

R a feasible routing assignment where Rij is the fraction of
traffic from commodity Ci routes on link `j

µi utility achieved by commodity Ci

di a temporary rate assignment for Ci

π a iteration counter starts from 1
ΓπSAT set of commodities identified as saturated at iteration π

ΓπUNSAT ΓπUNSAT = Γ\⋃π−1
k=0 Γ

k
SAT

µπmax the maximum common utility achieved at iteration π

To formulate our problem into an iterative form, we have an iterative opti-

mization algorithm, OPT MP UMMF, which consists of the following steps. The

algorithm starts with initializing π = 1, Γ0
SAT = ∅, and stops when all commodities

are identified as saturated (i.e., ΓπUNSAT = ∅).
Step 1: Find the maximum common utility µπmax that can be achieved by

all unsaturated commodities.

maximize µπmax (2.7)

subject to (2.8)

di = φ−1i (µi),∀Ci ∈
π−1
⋃

k=0

ΓkSAT (2.9)

di = φ−1i (µπmax),∀Ci ∈ ΓkUNSAT (2.10)
∑

∀Ci

Rij · di ≤ c(`j),∀`j ∈ ` (2.11)

In the formulation, the first two constraints give the bandwidth requirement

of each commodity. In particular, Equation 2.9 sets the bandwidth for the sat-

urated commodities as their previously assigned utility, while Equation 2.10 sets

the bandwidth of the unsaturated commodities to the current maximum common

utility. Finally, there must be a feasible routing assignment R that can carry the

bandwidth requirement d by satisfying the constraint in Equation 2.11.
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Step 2: Identify newly saturated commodities, Γπ
SAT , by testing each un-

saturated commodity Ci ∈ ΓπUNSAT with the following optimization problem such

that commodity Ci is saturated if its utility cannot be increased by any routing.

maximize τ (2.12)

subject to (2.13)

dj = φ−1j (µj),∀Cj ∈
π−1
⋃

k=0

ΓkSAT (2.14)

dj = φ−1j (µπmax),∀Cj ∈ ΓπUNSAT\Ci (2.15)

di = φ−1i (µπmax + τ) (2.16)
∑

∀Ci

Rij · di ≤ c(`j),∀`j ∈ ` (2.17)

The above optimization problem fixes the rates of all commodities in Equa-

tions 2.14 and 2.15, except the commodity Ci being tested. It then finds the

maximum utility that can be increased for commodity Ci in Equation 2.16 while

there still exists some feasible routing R to carry all commodities. Therefore,

if τ < 0, we cannot increase the utility of commodity Ci by any routing and

ΓπSAT = ΓπSAT
⋃

Ci.

Step 3: Assign the utility and bandwidth for each newly saturated com-

modity Ci ∈ ΓπSAT .

µi = µπmax, ri = φ−1i (µπmax)

The last step is to assign the bandwidth allocation for the newly saturated

commodities and move them into the saturated set Γπ
SAT . Once commodities are

in the saturated set, their bandwidth allocations and utilities will not be changed,

but their routing paths still could be altered to better utilize residual capacities

and achieve higher utilities for the remaining unsaturated commodities in later

iterations.

Next, we prove the correctness of the above optimal algorithm.
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Theorem 1. The allocation vector r returned by OPT MP UMMF is optimal

multi-path utility max-min.

Proof. According to Definition 10, we have to prove that the rate of any commodity

Ci cannot be increased without decreasing the rate of another Cj, such that µj ≤ µi

where µj = φj(rj) and µi = φi(ri) under any routing R.

To prove by contradiction, we assume commodity Ci ∈ ΓπSAT is identified

as saturated at iteration π and its bandwidth can be increased without decreasing

the bandwidth of any commodity Cj which has less or equal utility than Ci.

First of all, according to the OPT MP UMMF algorithm, if the utility of

some commodity Cj ∈ Γπ
′

SAT is less than or equal to the utility of commodity

Ci, then Cj ∈
⋃π

k=0 Γ
k
SAT . This is because their utilities are assigned to be the

maximum common utility of the iteration when they are identified as a saturated

commodity, and µmax is a non-decreasing vector. Thus, if µj ≤ µi, then π′ ≤ π

and Cj ∈
⋃π

k=0 Γ
k
SAT .

Then in Step 2 of the OPT MP UMMF algorithm, at iteration π, when

we test for commodity Ci, we set the rate of any commodity Cj ∈
⋃π

k=0 Γ
k
SAT to

be their final allocation rj and the rate of any commodity Cj /∈
⋃π

k=0 Γ
k
SAT to be

the maximum common utility at iteration π, µπmax, which is also the same as ri

because ri = µπmax. However, we still cannot increase the bandwidth of commodity

Ci by any feasible routing. Therefore, we cannot increase the utility of commodity

Ci by decreasing the bandwidth of any commodity Cj with greater utility Ci. In

other words, we have to increase the utility of commodity Ci by decreasing the

bandwidth of some commodity Cj with less or equal utility than Ci, and that is in

contradiction to our assumption.

2.5.2 ε-OPT MP UMMF

The OPT MP UMMF algorithm is a non-linear optimization problem be-

cause the utility functions used in Step 1 can be non-linear. Therefore, we propose

a fast fully polynomial approximation algorithm, ε-OPT MP UMMF, which uses a

binary search formulated as linear programming to find the maximum common util-

ity. In addition, we re-formulate the optimization problems in ε-OPT MP UMMF
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such that they can all be solved as a well-defined Maximum Concurrent Flow

(MCF) [50] routing problem. Given set of commodity C with its demand function,

d(C), and a set of links ` with capacities, c(`), a MCF solver finds a routing R

to maximize λ, which is the common fraction of demand for each commodity that

can be routed with the given link capacities.

The modified Step 1 of the ε-OPT MP UMMF algorithm is as follows.

Step 1: Binary search the utility domain to achieve the maximum common

utility µπmax for unsaturated commodities. The initial values of variables are µhigh =

1, µlow = 0, λ = 0.

while µhigh − µlow ≥ δ and λ < 1

µπmax = (µhigh + µlow)/2

di = φ−1i (µi),∀Ci ∈
⋃π−1

k=0 Γ
k
SAT

di = φ−1i (µπmax),∀Ci ∈ ΓπUNSAT

(λ,R) = MCF (C, d, `, c)

if λ < 1

µhigh = µπmax

else

µlow = µπmax

endif

endwhile

The binary search procedure starts with guessing the maximum common

utility as a value in the utility domain range 0 to 1. Then with a given common

utility µ, we verify if µ can be achieved by finding a feasible routing to carry the cor-

responding bandwidth allocation; that is, the required bandwidth to reach common

utility µ for unsaturated commodities and to satisfy previously assigned utilities

for saturated commodities. According to the Maximum Concurrent Flow (MCF)

problem, by assigning the demand of commodities as the required bandwidth for

the common utility µ, there exists a feasible routing to achieve the common utility

µ if the λ returned by the MCF solver is ≥ 1.0. Because utility functions are

strictly increasing, we find µ as the maximum common utility when there is no
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feasible routing to achieve an even greater common utility µ + δ, where δ can be

an arbitrarily small value depending on the ε selected by the algorithm.

Since the maximum common utility in found Step 1 is approximated, the

utility of a saturated commodity could be further increased. Thus, we must change

Step 2 accordingly to guarantee the utility of a saturated commodity can only be

increased by at most a fraction of ε to its current utility.

Step 2: Identify newly saturated commodities Γπ
SAT by verifying if each

unsaturated commodity Ci meets the following saturation test where Ci ∈ ΓπSAT if

and only if the utility of Ci cannot be further increased by ε of its current utility.

dj = φ−1j (µj),∀Cj ∈
⋃π−1

k=0 Γ
k
SAT

dj = φ−1j (µπmax),∀Cj ∈ ΓπSAT\Ci

di = φ−1i (µπmax · (1 + ε))

(λ,R) = MCF (C, d, `, c)

if λ < 1

ΓπSAT = ΓπSAT
⋃

Ci

endif

In the above Step 2, we determine a commodity as saturated if its utility

cannot be increased by a fraction of ε to the current utility under any feasible

routing assignment. Again, we use a MCF solver to verify if there exists a feasible

routing to increase the utility of a commodity by assigning its demand to the

required bandwidth for achieving an additional ε fraction of its current utility. If

the λ returned from a MCF solver is less than 1, then we know that the utility of

the commodity cannot be increased by more than ε with any feasible routing, and

therefore the commodity should be identified as saturated.

Notice, the difference between δ and ε is that δ means increasing limit for

common utility of unsaturated commodities, while ε represents the increasing limit

of the utility of individual unsaturated commodities. Thus, if we can increase the

common utility by δ, it does not mean the utility of each unsaturated commodity

cannot be increased by δ. Therefore, δ has to be chosen carefully with respect

to ε to guarantee that there is at least one commodity whose utility cannot be
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increased by ε when the common utility cannot be increased by δ. We construct

such δ based on ε in Lemma 1.

Lemma 1. For a given ε, there exists some δ such that there is at least one

commodity identified as saturated at every iteration in the ε-OPT MP UMMF al-

gorithm.

Proof. The basic idea is to construct δ based on ε. If we can find a routing to in-

crease the utility for each previous unsaturated commodity by ε, there must exist

a routing which can increase the utility of all previous unsaturated commodities

by δ. Thus, we prove the lemma by contradiction because if all previous unsat-

urated commodities in Step 2 can increase its utility by more than ε and remain

as unsaturated, then there must exist a routing to increase the utility of all pre-

vious unsaturated commodities by more then δ, which clearly contradicts to the

termination condition of the binary search in Step 1.

Now we construct such a δ as the following. At any iteration π, we know the

current maximum common utility is µπmax. For each commodity Ck ∈ ΓπUNSAT , if

it is identified as unsaturated, there must exist a routing Rk to carry the addition

bandwidth 4di for commodity Ci where

4dk = φ−1k (µπmax(1 + ε))− φ−1i (µπmax)

Therefore, if all Ck ∈ ΓπUNSAT are identified as unsaturated commodities,

we can construct a feasible routing R′ to carry an additional bandwidth 4d′k for

each commodity Ck ∈ ΓπUNSAT by combining all routings Rk where

4d′k =
4dk

| ΓπUNSAT |
and R′ij =

∑

∀k∈Γπ
UNSAT

Rk
ij

| ΓπUNSAT |

Accordingly, let 4δk be the utility can be increased corresponding to the

additional bandwidth 4d′k ∀Ck ∈ ΓπUNSAT .

4δk = φk(φ
−1
k (µπmax) +4d′k)− µπmax.
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Then we choose δ as the minimum value of all 4δk, so

δ = min(4δk,∀Ck ∈ ΓπUNSAT ).

As a result, if we can increase the utility of each Ci ∈ ΓπUNSAT by ε, there

must exist a feasible routing to increase the utility of all Ci ∈ ΓπUNSAT by δ.

Therefore, at least one commodity is identified as saturated by the δ we found.

Finally, we show that the ε-OPT MP UMMF algorithm achieves an ε-

approximation allocation to the optimal solution, and the algorithm eventually

terminates as following.

Theorem 2. ε-OPT MP UMMF achieves ε-approximation to the optimal multi-

path utility max-min allocation.

Proof. Let µ∗πmax and µπmax be the maximum common utility achieved by the op-

timal and ε-OPT MP UMMF algorithm,respectively. We say ε-OPT MP UMMF

algorithm achieves ε approximation to the optimal if there exist some m such that

µπmax · (1 + ε) ≥ µ∗πmax,∀π < m and µmmax > µ∗mmax.

We prove by induction. After first iteration, clearly µ1
max · (1 + ε) ≥ µ∗1max,

because otherwise it would contradict the condition of saturation test. After second

iteration, let µ′2max be the optimal maximum common utility can be achieved when

the utility of commodity Ci ∈ Γ1
SAT is assigned to be µ1

max. Then µ′2max > µ∗2max

because µ1
max < µ∗1max. Since µ

2
max ·(1+ε) > µ′2max and µ′2max > µ∗2max, µ

2
max ·(1+ε) >

µ∗2max.

After π iterations, if µπ−1max > µ∗π−1max , we find m = π. Otherwise, we know

µkmax < µ∗kmax,∀k < π. Let µ′πmax be the optimal maximum common utility can be

achieved when the utility of commodity Ci ∈ ΓkSAT is assigned to be µkmax,∀k < π.

Then µ′πmax > µ∗πmax, because the utility assignment for any saturated commodity

Ci ∈
⋃π

k=1 Γ
k
SAT is less than its optimal utility µ∗kmax. Again, since the saturation

test guarantees µπmax · (1 + ε) > µ′πmax and we already know µ′πmax > µ∗πmax, µ
π
max ·

(1 + ε) > µ∗πmax holds for at any iteration π as long as µkmax < µ∗kmax,∀k < π.

Theorem 3. ε-OPT MP UMMF algorithm terminates after at most n iterations,

where n is the number of commodities.



36

Proof. According to Lemma 1, at least one commodity is identified as saturated

after each iteration. Since the algorithm terminates after all commodities are

saturated, it has at most n iterations, where n is the number of commodities.

Conclude all, the overall ε-OPT MP UMMF algorithm is also polynomial

time solvable with respect to the size of network because (1) there can be at most

n iterations, (2) the number of binary searchers at each iteration is a constant with

respect to ε, and (3) each binary search step involves a MCF problem that can be

solved in polynomial time.

2.6 Local Algorithms

To further reduce computational cost and algorithm complexity, in this

section we consider local utility max-min solutions which fix routing after each

allocation iteration. However, local solutions could result smaller utility max-min

allocation under the utility order as we will explain it in Section 2.6.1 followed

by the description of our two local algorithms ε-LOCAL MP UMMF and PWL-

LOCAL MP UMMF.

2.6.1 Example

We use Figure 2.3 to illustrate why fixing routing after each iteration could

cause small utility max-min bandwidth allocation. In the example, we have two

commodities, (A,E) and (A,F ), and their utility functions are φ1(r) = r2/100,

φ2(r) = (r2/5 + 6r)/100, respectively. For commodity (A,E), there are two paths

A → B → D → E and A → C → D → E, while commodity (A,F ) has only one

path A→ C → F . All links in the network has 10 unit bandwidth, except the link

(D → F ) is 5. Therefore, in the first iteration, the maximum common utility can

be achieved for both commodities is only 25% and commodity (A,E) is saturated.

Since in the first iteration we only need to route 5 unit for commodity (A,E), it can

use either of its two paths. If commodity (A,E) choose path A→ C → D → E in

the first iteration and the routing is fixed after the iteration, there is only 5 unit

bandwidth left for commodity (A,F ). As a result, the final utility allocation is
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Figure 2.3: Local multi-path utility max-min example.

only (0.25, 0.35). On the other hand, if we could reroute traffic after each iteration,

we will reroute commodity (A,E) on path A → B → D → E instead, and the

utility of commodity (A,F ) can be greatly increased to 80%.

As we can see from the example, the reason fixing routing could produce

smaller utility is because we saturate certain link in the early iteration and limit

the path options for other unsaturated commodities in the future iteration. There-

fore, it is important to use a load balance routing algorithm like MCF to allocate

bandwidth, so that a link would not be saturated unless necessary. As we shown

by our experimental results in Section 2.7.3, even a local algorithm could achieve

similar results to the optimal solution. In the following, we will describe our local

algorithm in more detailed.

2.6.2 ε-LOCAL MP UMMF

Our first local algorithm, ε-LOCAL MP UMMF, is the same as ε-OPT MP

UMMF except we fix the routing and disallow traffic rerouting by removing allo-

cated link capacity after each iteration. Accordingly, we simplify the steps of our

ε-OPT MP UMMF algorithm as the following.
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Step 1 Find maximum common utility by a binary search with the following rate

assignment in each search iteration instead.

di = 0,∀Ci ∈
⋃π−1

k=0 Γ
k
SAT

di = φ−1i (µπmax)− φ−1i (µπ−1max),∀Ci ∈ ΓπUNSAT

Step 2 Identify saturated commodities by residual capacity.

c(`) = c(`)−∑
∀Ci∈ΓπSAT ,Pj3`

Rij · di
for each Ci ∈ ΓπUNSAT

4di = φ−1i (µπmax · (1 + ε))− φ−1i (µπmax)

if
∑

∀Pj3Ci
c(Pj) < 4di

ΓπSAT = ΓπSAT
⋃

Ci

endif

endfor

Step 3: Assign the utility and bandwidth for each newly saturated commodity

Ci ∈ ΓπSAT and remove link capacity from later iterations.

µi = µπmax, ri = φ−1i (µπmax)

c(`) = c(`)−∑
∀Ci∈ΓπSAT ,Pj3`

Rij · di

Comparing to the optimal algorithm, because the local algorithm is able

to remove link and commodities from the network after each iteration, the prob-

lem space keep decreasing. More important, the expensive saturation test is re-

placed with a simple capacity check. Therefore, the above ε-LOCAL MP UMMF

has much lower algorithm complexity than the previous optimal algorithm ε-

OPT MP UMMF.

2.6.3 PWL-LOCAL MP UMMF

Next, considering the utility functions could be formulated or approxi-

mated by piecewise linear functions, we propose another local algorithm PWL-

LOCAL MP UMMF that replaces the binary search in Step 1 of ε-LOCAL MP UM



39

MF by a single step scaling problem. Under the definition of piecewise linear func-

tion, a utility function for commodity Ci is defined by s+1 points (xi[0], yi[0]),

(xi[1], yi[1]), · · · , (xi[s], yi[s]). For example, Figure 2.4(a) are three piecewise util-

ity functions, and the utility function in solid line is defined by points (10, 0.2),

(15, 0.5), (20, 0.7) and (100, 1.0).

The main idea of PWL-LOCAL MP UMMF algorithm is to divide the util-

ity space into s number of horizontal segments, then iteratively increase utility by

segments. Since, in each segment, all commodities have linear utility functions, the

algorithm is able to find the maximum common utility by a simple scaling equa-

tion. For simplicity, let ∆xi[κ] = xi[κ]−xi[κ−1] and ∆yi[κ] = yi[κ]−yi[κ−1]. The

PWL-LOCAL MP UMMF algorithm finds the maximum common utility at seg-

ment κ and iteration π by using the following modified Step 1 with initial values,

λ = 1, π = 0, and κ = 1.

Step 1 Find the maximum common utility in segment κ

di = 0,∀Ci ∈
⋃π−1

k=0 Γ
k
SAT

if λ ≥ 1

di = ∆xi[κ],∀Ci ∈ ΓπUNSAT

else

di = di · (1− λ),∀Ci ∈ ΓπUNSAT

endif

λ = MCF (d, c)

if λ < 1

µπmax = µπ−1max + di · λ · ∆yi[κ]∆xi[κ]
, any Ci ∈ ΓπUNSAT

else

µπmax = µπ−1max + di · ∆yi[κ]∆xi[κ]
, any Ci ∈ ΓπUNSAT

κ++

endif

Figure 2.4 and Table 2.2 illustrate the PWL-LOCAL MP UMMF algorithm

in a network with four nodes and three commodities. For simplicity, all links in the

network is single direction from left to right, and their link capacities are varied
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Table 2.2: Illustration of the PWL-LOCAL MP UMMF algorithm.

Iter. Segment Routed demand λ Saturated
(utility) (A,D) (B,D) (C,D) commodities

1 1(20) 10/10 20/20 50/50 2.0
2 2(50) 4/5 40/50 24/30 0.8 (B,D)
3 2(50) 1/1 0 6/6 1.0 (A,D)
4 3(70) 0 0 5/10 0.5 (C,D)

Allocated BW 15 60 85

Allocated Utility 50 44 60
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Figure 2.4: Illustration of PWL-LOCAL MP UMMF algorithm.

from 10 to 80 as indicated in the figure. The utility functions are formulated by

piecewise linear functions and divided into 4 segments between 0%, 20%, 50%, 70%

and 100% as shown in Figure 2.4 (a). We illustrate the algorithm by iterations

and list out the allocated bandwidth and utility resulting from the end of each

iteration in Table 2.4 with the corresponding flow routing and link usage shown in

Figure 2.4 (b)-(e).

The algorithm starts with the first segment and determines until all com-

modities are saturated or 100% utility is reached. In the first iteration, the al-

gorithm uses the bandwidth difference, ∆x[1], in the first segment (0%-20%) as
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the routed demand for each commodity, that is 10, 20 and 50 for commodities (A,

D), (B, D) and (C, D), respectively. Given the requested demand, a MCF solver

routes demand as shown in Figure 2.4 (b) to achieve the maximum λ, 2. Since

λ is larger then 1, the second iteration proceeds to the next segment (20%-50%)

and repeat the MCF flow routing on the residual link capacity with demand 5,

50, 30. As shown in Figure 2.4(c), in the second iteration, the maximum λ can

be achieved is only 0.8 because link (B, D) is saturated. As the result, we have

to scale down the routed demand by λ, 0.8, and identify commodity (B, D) as

saturated. Since λ is less than 1 after the second iteration, the third iteration

stays at the same segment (20%-50%) and route the reminding demand 1 and 6

for unsaturated commodities (A, D) and (C, D), respectively. Its routing shown

in Figure 2.4(d) indicates there is just enough capacity to route the demand, so

the algorithm can proceed to the next segment and commodity (A, D) is identified

as saturated. Then the fourth iteration proceeds to the third segment (50%-70%)

with the demand of the only left commodity (C, D). Finally, the algorithm is

terminated because link (C, D) is fully utilized and commodity (C, D) is also sat-

urated as shown in Figure 2.4(d). The final bandwidth allocation of commodities

is the summation of all iterations. The last two rows of Table 2.2 summarize the

allocated bandwidth and achieved utility of each commodity. As we can see, the

algorithm terminates within 4 iterations and only calls the MCF solver once in

each iteration. Therefore, the algorithm complexity can be greatly reduced.

2.7 Evaluation

In the following, we first briefly introduce our evaluation setup. We then

compare our multi-path utility max-min allocation results with existing max-min

allocation solutions to demonstrate the improvements of our approach. Finally, we

analysis the effectiveness and complexity of our local algorithms.
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Figure 2.5: Abilene network topology.

2.7.1 Setup

We evaluated our bandwidth allocation solutions on the Abilene network

using actual network topology and traffic trace data. As shown in Figure 2.5,

the Abilene network has 11 nodes interconnected by 10 Gb/s links. The traffic

trace data can be found in [100] as a set of traffic matrices. Each traffic ma-

trix contains the demand rate between an OD pair at a 5-minute time interval,

and it is computed based on the actual packet sampling information collected

from network routers. In Section 2.7.2 and 2.7.2, we compare our multi-path

utility max-min allocation with the traditional weighted max-min and utility max-

min allocations under single-path problem formulation. For simplicity, we use

MP UMMF to denote the results from our optimal multi-path utility max-min

allocation algorithm, while UMMF and WMMF represent the single-path alloca-

tion of utility max-min and weighted max-min, respectively. Specifically, for the

two single-path max-min allocations scenario, we fixed the routing path of each

commodity to its shortest path between the source and destination node. We

determine the weight and utility function of each commodity based on the histor-

ical traffic measurements over 2 months period from 3/1/04 to 4/21/04. In the

weighted max-min allocation scenario, the weight of a commodity is the average

demand over its historical traffic measurements. On the other hand, in the utility
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max-min allocation scenario, we determine the utility of a commodity as the em-

pirical cumulative distribution function of its historical demands, so that the utility

value is directly corresponding to the acceptance probability (i.e., the probability

of having sufficient bandwidth allocation for a commodity). The allocation of both

single-path max-min allocations can be solver by the traditional water-filling algo-

rithm [22], while our multi-path utility max-min allocation is computed by solv-

ing the ε-OPT MP UMMF algorithm with the linear programming optimization

tool CPLEX [43]. Finally, Section 2.7.3 compares the allocation results computed

from our optimal algorithm and the two local algorithms, ε-LOCAL MP UMMF

and PWL-LOCAL MP UMMF. All experimental results were computed on a Intel

2 GHz Duo CPU with 3 GB memory.

2.7.2 Max-Min Fair Allocations Comparison

Here, we compare the allocation results of MP UMMF, UMMF andWMMF.

As we know, current backbone networks are over-built to accommodate fluctua-

tions in traffic. To emphasize the importance of bandwidth allocation when link

capacity is relatively scarce, we adjusted the degree of resource contention in our

evaluations by scaling down the link capacity (10 Gb/s) by a factor of 10 to 20. In

the following, we first show the utilities of individual commodities achieved by each

of the allocations when link capacity is 1 Gb/s. Then we compare the minimum

utility and excess demand under varied degrees of resource contention.

Utility of Individual Commodities

We take the allocation results when link capacity is 1 Gb/s as an example

to show the utility achieved for each commodity. The results under other degrees

of resource contention are discussed later. Since the Abilene network has 11 nodes,

there are 110 OD pairs in total, with the corresponding commodities defined. We

plot the utility of each commodity in Figure 2.9 from the commodity with the

lowest utility to the highest utility, and we have the following observations.

First, the results of utility max-min allocations appear as step functions

because all commodities identified as saturated in the same iteration have the
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Figure 2.6: The utility of individual commodities under different max-min alloca-
tions when link capacity is 1 Gb/s.

same utility/acceptance probability. But, in weighted max-min allocation, the

commodities saturated at the same iteration could have different utilities because

its linear utility function is only an approximation to the actual non-linear utility

function of acceptance probability.

Second, we found MP UMMF achieves much greater utility than UMMF

and WMMF for most of the commodities, especially for the ones with smaller

utility. For example, the minimum utility of MP UMMF, UMMF and WMMF are

87.63%, 75.99% and 69.89%, respectively. In other words, MP UMMF increases

the minimum utility of UMMF and WMMF by a factor of 1.15x (87.63/75.99) and

1.25x (87.63/69.89), respectively. In addition, the result of UMMF is also higher

than WMMF by a factor of 1.10x (87.63/69.89).

As defined by the utility order in Definition 9, the allocation results with

higher minimum utility are fairer. Therefore, our multi-path utility multi-path

allocation appears to improve both the fairness and total utility of bandwidth al-

location. Accordingly, we further investigate the minimum utility and actual excess

demand under varied resource contention in Section 2.7.2 and 2.7.2, respectively.
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Figure 2.7: The minimum utility of max-min allocations when link capac-
ity (10 Gb/s) is scaled down by a factor of 10 to 20 with every 100 Mb/s apart.

Minimum Utility

Figure 2.7 plots the minimum utility under varied degrees of resource con-

tention when we scale down the link capacity by a factor of 10 to 20 with every

100 Mb/s apart. For all allocations, the minimum utility decreases as the de-

gree of resource contention increased. However, MP UMMF consistently achieves

the highest utility among all allocations, especially when the degree of resource

contention is higher. This is because the allocation becomes crucial as the link

capacity is limited. For example, when link capacity is 500 Mb/s, the minimum

utilities of MP UMMF, UMMF and WMMF are 56.84%, 37.87% and 19.12%, re-

spectively. In other words, the MP UMMF is able to further increase the minimum

utility of UMMF and WMMF allocations by a factor of 1.50x (56.84/37.87) and

2.97x (56.84/19.12), respectively. As shown from the figure, although UMMF opti-

mizes for the same utility functions as MP UMMF, it is not able to efficiently utilize

bandwidth by adjusting routing. As a result, it clearly achieves much less utility

than the multi-path allocation. Furthermore, the minimum utility of WMMF is

ever smaller than UMMF because it is difficult to use a single weight value to

capture or approximate the actual non-linear utility function. Therefore, only

MP UMMF can consistently achieve the best results by considering both multi-

path routing and nonlinear utility functions.
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Figure 2.8: The excess demand of max-min allocations when link capac-
ity (10 Gb/s) is scaled down by a factor of 10 to 20 with every 100 Mb/s apart.

Excess demand

Next, we compare the excess demand under varied link capacity. Under a

given link capacity, we determine the excess demand of the traffic offering during

5-days period from 4/22/04 to 4/26/04 which is different from the traffic datasets

for computing our bandwidth allocations. Figure 2.8 plots the average excess

demand over the results at all time intervals within the 5-days period. As shown

in the figure, we have lower excess demand with greater link capacity because each

commodity can be allocated more bandwidth and less traffic demand would excess

the bandwidth allocation. But, again MP UMMF is still able to achieve the lowest

excess demand among the three. For example, when link capacity is 1,000 Mb/s,

the excess demand of MP UMMF, UMMF and WMMF is 15.56%, 24.69% and

32.48%, respectively. In other words, MP UMMF substantially reduces the excess

demand of UMMF and WMMF by 36.98% and 52.09%, respectively. Therefore,

our improvement on the utilities shown previously also transfers to less excess

demand for our coplar circuit provisioning.
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2.7.3 Local Algorithm Analysis

We analyze our two local algorithms, ε-LOCAL MP UMMF and PWL-

LOCAL MP UMMF, by comparing them with the optical algorithm ε-OPT MP

UMMF. First of all, we show that our local algorithms are able to produce smaller

but similar allocation results to the approximated optical solution. Figure 2.9 and

2.10 plot the allocated utility results of commodities with link capacity 1 Gb/s and

500 Mb/s. As we have shown in Figure 2.7, less network link capacity results lower

bandwidth allocation and utility. But also here we observed the results of both

local algorithms were very close to the optimal solution. Specifically, the average

utility difference between ε-LOCAL MP UMMF and ε-OPT MP UMMF in three

figures were 0.14%, 0.53% and 2.32%, respectively. Similarly, the average utility

difference between PWL-LOCAL MP UMMF and ε-OPT MP UMMF in three fig-

ures were 0.15%, 0.27% and 3.12%, respectively. Even the 90 percentile number

of the utility differences between ε-LOCAL MP UMMF and ε-OPT MP UMMF

were only 0.44%, 0.99% and 8.74%, while the 90 percentile number between ε-

LOCAL MP UMMF and ε-OPT MP UMMF were 0.73%, 1.52% and 10.96%, re-

spectively. There are greater differences under less link capacity because early

link saturation is more likely to occur in such network and causes lower utility
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allocation for local algorithms. However, as shown by the average number and

figures, these larger difference points suddenly occur. Also notice from the figures,

optimal algorithm still achieves the greatest utility max-min allocation according

to the utility order because it has larger utility value for commodities with less

utility. But, optimal does not provide strictly higher utility for all commodities

because of the limited network capacity. Thus, we could still find some commodi-

ties have higher utility values under local algorithm. But those commodities are

mostly located at the end of the curves, so the fairness among commodities can be

maintained.

Next, we demonstrate how much computational time and algorithm com-

plexity can be reduced by using local algorithms. Table 2.3 summarizes the

results under several network settings. For simplicity, we use OPT, LOC and

PWL to denote algorithms ε-OPT MP UMMF, ε-LOCAL MP UMMF and PWL-

LOCAL MP UMMF, respectively. We represent the complexity of algorithms by

the number of function calls to a MCF solver because it is most expensive oper-

ation in all three algorithms. Generally, complexity increases when network has

less link capacity because fewer commodities are able to achieve 100% utility and

more computation iterations are required. But it may also depend on the num-

ber of commodities identified as saturated at each iteration. As we observed,

ε-LOCAL MP UMMF actually had less MCF calls at 500 Mb/s than 1 Gb/s.

Nevertheless, the optimal algorithm clearly required a lot more number of MCF

function calls than the other two local algorithms in all test scenarios. In partic-

ular, among the two local algorithms, PWL-LOCAL MP UMMF algorithm had

even much fewer MCF calls than ε-LOCAL MP UMMF.

Furthermore, the complexity reduction of local algorithms over the opti-

mal algorithm was greatly increased as the problem getting more complex. For

example, with link capacity 250 Mb/s, the number of MCF calls of OPT, LOC

and PWL were 917, 324 and 195, respectively. As we explained in Section 2.6,

the ε-OPT MP UMMF algorithm has much more MCF calls because it uses MCF

solver to test the saturation of each commodity. While the ε-LOCAL MP UMMF

local algorithm does not have this expensive saturation test, it still makes multi-
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Table 2.3: Running time and complexity comparison of optical and local multi-
path utility max-min algorithms.

Network Link # of MCF function calls Running Time (seconds)
Capacity OPT LOC PWL OPT LOC PWL

Abilene 1 Gb/s 639 249 177 62.21 14.71 7.18
11 nodes 500 Mb/s 696 218 192 67.52 11.73 7.64
28 links 250 Mb/s 917 324 195 94.53 15.83 7.69

GEANT 38 Mb/s
23 nodes o 2032 882 478 60h31m 3h57m 1h2m
74 links 2.5Gb/s

ple MCF calls from the binary search step in each iteration. In contrast, PWL-

LOCAL MP UMMF algorithm only makes exactly one MCF calls in each iteration

and the number of iterations is bounded by the number of segments and commodi-

ties. Therefore, PWL-LOCAL MP UMMF algorithm has the lowest complexity,

and its complexity grows much slower than the others. As expected, the algo-

rithm complexity directly affects the running time of algorithms. Thus, PWL-

LOCAL MP UMMF algorithm also had much less running time. For example,

under link capacity 250 Mb/s, PWL-LOCAL MP UMMF significantly reduces

the running time of the approximated optimal and local algorithms by 91.87%

and 51.42%, respectively.

Finally, while it is still feasible to use optimal algorithm for a small net-

work like Abilene, we next show that the necessities of local algorithms for larger

networks, such as GEANT [44]. GEANT is a European public network with 23

nodes connected by 74 links varied from 155 Mb/s to 10 Gb/s. Similar to the

Abilene experiments, we build the utility of commodities from the historical traf-

fic measurements [86] and compute the corresponding utility max-min bandwidth

allocation. With the network size double, we not only have 4 times more number

of commodities, the number of possible routing paths is also greatly increased. As

a result, the running time significantly increases to around 60 hours, 4 hours and

1 hour for algorithm OPT, LOC and PWL, respectively. Therefore, as we can

imagine, a huge commercial core network with hundreds of nodes and links would

require a local algorithm like PWL-LOCAL MP UMMF algorithm to compute a

relatively effective multi-path allocation within reasonable time.
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2.8 Conclusion

We believe finding a multi-path utility max-min bandwidth allocation is

fundamental and crucial for several network problems and applications, such as

traffic engineering. As showing from our statistical traffic engineering application

example, multi-path utility max-min algorithms are able to achieve higher utility,

and this higher utility translates to significant performance improvements. Fur-

thermore, with the rapidly increasing traffic and disproportional expensive of faster

processor, multi-path transmissions may become a fundamental part of the Future

Internet.

This chapter, for the first time, defines the utility max-min problem under

multi-path routing and presents both optimal and local algorithms that can be ef-

ficiently implemented using a linear program solver. However, there are still many

interesting questions on multi-path utility max-min remain unanswered. We con-

sider this work as the first step toward this important problem and fully expect to

have more efficient and accurate approximated algorithms for the optimal solution

in the future. Last but not least, the scope of this chapter is limited in theoretical

results. Thus, for practical implementation, we might want a distributed or on-

line local algorithm. Also, we have to consider the packet re-ordering issue under

multi-path routing.

Chapter 2, in full, is currently being prepared for submission for publication

of the material. Chou, Jerry; Lin, Bill. The dissertation author was the primary

investigator and author of this material.



Chapter 3

Adaptive Rerouting Mechanism

3.1 Introduction

This chapter describes our adaptive rerouting mechanism of coplar to

dynamically handle burst and unexpected traffic exceeding from the provisioned

circuits. In general, adaptive routing algorithms are interested in the following

problem. Given a set routing paths between each source and destination pair and

a load depending link cost function, the question is how to split traffic among

available paths, so that the network cost is minimized. Several adaptive routing

algorithms [33, 49, 35] has been proposed, and majority of their works were focus

on the optimization of network cost and converge time of the algorithm. Therefore,

it is not our interest to propose a new adaptive routing algorithm. Instead, our goal

is to apply an adaptive routing algorithm on coplar and evaluate the performance

improvement of coplar.

However, as mentioned in Chapter 1, it is not trivial to apply an adap-

tive routing algorithm on coplar, and this chapter would address three main

challenges. First is to explore routing path diversity without routing information

explosion and routing loop. Second is to compute the cost of path under our own

routing infrastructure. Third is to design an appropriate cost function for the

adaptive routing algorithm, so that when the algorithm reaches its optimal value,

our network performance objective could also be achieved. Therefore, while the

goal of an adaptive routing algorithm is to optimize the path cost of any giving
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routing paths and cost function, our goal is to find the appropriate routing paths

and cost function to achieve the objective of our network problem. Therefore,

our work on adaptive routing is complement to those previous works on adaptive

routing algorithm [33, 49, 35].

Specifically, in this chapter we consider a game theory adaptive routing algo-

rithm based on Wardrop equilibrium. We choose this game theory based adaptive

routing algorithm for several reasons. First, the Wardrop equilibrium is defined

under selfish routing model [90], thus no synchronization or coordination is re-

quired among routers. Second, it is proven in [36] that Wardrop equilibria could

be reached by a fast converge time algorithm. Third, Wardrop equilibrium routing

algorithm does not require a path-centric routing infrastructure. It is a crucial

factor to our problem because we would like to explore as much path diversity as

possible in our coplar rerouting scheme. As a result, it could be infeasible to

setup all possible routing paths for a large network using existing routing technol-

ogy, such as MPLS (Multi Protocol Label Switching).

In the rest of the chapter, we first review previous work on adaptive routing

in Section 3.2 and background of Wardrop equilibrium in Section 3.3. Then we

address the three challenges of adaptive rerouting on coplar in Section 3.4 to

Section 3.6. Section 3.4 proposes loop-free routing table structures, Section 3.5

proposes propagation protocol for computing path cost. Section 3.6 design the

cost function for adaptive routing algorithm. Finally, the chapter concludes in

Section 3.7

3.2 Related Work

In this section, we review some existing adaptive routing algorithms and

theories. Majority of the work on adaptive routing [83] were proposed in theory

in the sense that the entire network architecture has to be replaced and results

were limited to off-line algorithm analysis. Until recently, approaches that allow

automatic online traffic engineering on top of an existing routing infrastructure

were proposed, such as MATE [33], TeXCP [49] and Replex [35]. All these routing
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mechanisms aim to optimize network cost by adaptively selecting routing paths for

traffic from source (ingress router) to destination (egress router), but all of them

are based on a different theoretical analysis to guarantee proven performance and

converge time.

MATE (MPLS Adaptive Traffic Engineering) is an end-to-end control pro-

tocol that does not require intermediate nodes to perform any action besides nor-

mal packet forwarding. But, it does rely on sending probe packets through each

path to monitor the current cost, such as packet delay or packet loss. MATE is

implemented as an on-line optimization algorithm based on the Kuhn-Tucker the-

orem [22]. According to the theorem, if we adjust traffic based on the derivative

length of paths which can be computed from the path cost, the network system

would eventually reach its system optimal where the total network cost is min-

imized. Different from the end-to-end approach of MATE, TeXCP uses a light-

weight prob message to receive explicit feedback from intermediate routers/nodes

and discover path utilization. Traffic is moved adaptively from over-utilized path

to under-utilized path, and the maximum link utilization can be minimized. The

traffic adjustment algorithm and strategy is similar to the XCP protocol for con-

gestion control. Through the feedback message, intermediate routers/nodes are

able to coordinate the traffic from different ingress routers and prevent traffic os-

cillation among these paths. Since feedback message is per path basis, routing path

setting like MPLS is required. In contrast to MATE and TeXCP, Replex is not re-

stricted to path-centric scenarios, such as MPLS (Multi Protocol Label Switching).

The foundation theory of Replex is selfish routing. Thus, there is no coordination

among routers besides aggregating cost along routing paths. Although the adap-

tive routing algorithm discussed in this chapter is similar to Replex, our focus is

to apply adaptive routing rather than propose the routing algorithm as mentioned

in Section 3.1.

Selfish routing is an attractive routing model to be considered for adaptive

routing because it assumes no coordination and regulation among senders. Such

model is well known to be formulated as a game theory problem [68] and people

are interested in the existence of an equilibrium state, Nash equilibria, and the
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bound between the cost of selfish routing and optimal routing. The problem has

also been extensively studied in different area of networking with different cost

models. For example, [55, 82] discussed the existence of equilibrium state in a flow

control model at a router or switch. [56] proved Nash equilibrium is optimal for

a two-node multiple links network. In particular, considering selfish routing on

a general network routing problem has been studied since [90, 20]. The network

reaches the equilibrium state when all paths have equal cost, and it is known as

the Wardrop Equilibria [90]. [78] proved that if the cost of each edge is linear

to its congestion, then the total network cost under the routes chosen by selfish

routing is at more 4/3 times the optimal value. Furthermore, if the cost function is

continuous and non-decreasing to the edge congestion, the results of selfish routing

is no more than the cost incurred by optimally routing twice as much traffic.

3.3 Background

Here reviews the definitions and routing policy of Wardrop equilibrium.

3.3.1 Wardrop Equilibrium of Selfish Routing

Considering a network G = (V,E) with a set of commodities [k] = 1, · · · , k
specified by a source si, a destination ti and a total flow demand di. Each com-

modity i is given a set of all possible routing paths Pi. Wardrop traffic model [90]

assumes an infinite number of selfish agent, and each of them wants to send an

infinitesimal amount of traffic through a network. Each agent belongs to a single

commodity i and sends its traffic from si to di by using one of the paths p ∈ Pi.

Therefore, the strategy space of the game is a flow vector fp which represents the

amount of traffic/agent routed on each path p ∈ Pi,∀i. A flow vector is only consid-

ered as feasible or valid when
∑

∀p∈Pi
fp = di. This flow assignment in turn induces

cost on edges as the following. Each link e ∈ E is associated with a non-decreasing

cost function `e(fe) where fe denotes the amount of traffic on edge e. The cost of

a path p is `p = agg∀e∈p`e(fe) where agg is some aggregation function. Since all

agents selfishly route their traffic on path with lower cost, the network eventually
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Algorithm 1 The (α− β)-exploration-replication policy

Every time interval T , each commodity i performs:
1. Path sampling: Perform step (a) with probability β,

and perform (b) with probability 1− β.
(a) Uniform sampling:

Pick a path Q ∈ Pi with probability 1/|Pi|.
(b) Proportional sampling:

Pick a path Q ∈ Pi with probability fQ/di.
2. Path migration: If `Q < `P , migrate from P to Q

with probability
`P−`Q
`P+α

.

reaches a stead state called Wardrop equilibrium when all paths p ∈ Pi∀i have the
same cost. Thus there is no incentive for any traffic/agent to change its routing

assignment. The formal definition of Wardrop equilibrium is given in Definition 12

Definition 12 (Wardrop equilibrium [90]). A feasible flow vector f is at

Wardrop equilibrium if for each commodity i ∈ [k] and each path p ∈ Pi with

fp > 0 it holds that `p(f) ≤ `′p(f) for all p
′ ∈ Pi.

3.3.2 (α− β)-exploration-replication policy

The Wardrop equilibrium state can be reached quickly by a proven strategy

called (α − β)-exploration-replication policy [36]. The strategy is shown in Algo-

rithm 1. Every interval T , agents activate with probability λ and simultaneously

change their flow assignments based on an adaptive sampling method consisted of

uniform and proportional sampling. The uniform sampling guarantees that every

path has strictly positive sampling probably, and all paths in strategy space can be

explored. On the other hand, the proportional sampling selects path proportional

to traffic load, so that a better path would be preferred in the sampling process

and converge time could be shorten. A path with higher load normally indicates a

path with lower cost because traffic is routed selfishly. Finally, to avoid oscillation,

traffic migrates from a higher cost path P to a lower cost Q with probability
`P−`Q
`P+α

where α is some parameter to prevent the migration probability to become infi-

nite. Therefore, given a set of routing paths Pi for a commodity i. If we know the
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current split ratio of path wp (i.e. the percentage of traffic of commodity i routed

on path p) as well as the cost of path `p, Wardrop equilibrium can be reached by

periodically adjusting the split ratio between each pair of paths P and Q ∈ Pi,

such that when `Q < `P :

4 = λ[(
β

|Pi|
+ (1− β)wQ) ·

`P − `Q
`P + α

]

wP = wP −4, wQ = wQ +4.

3.4 Loop-free Routing Table Construction

As mentioned in Section 3.1, our first challenge is to explore path diver-

sity for adaptive rerouting without forming routing loop by constructing loop-free

routing tables. The basic idea of loop-free routing tables is to limit the path selec-

tions during rerouting process, so that a packet cannot select a node that has been

visited before as its next intermediate node. At the same time, these loop-free

routing tables should still preserve enough path diversities to allow the adaptive

load-balance rerouting algorithm to have sufficient dynamic routing ability to ex-

plore the available residual circuit capacities in a network. In this section, we

propose two methods to construct loop-free routing tables. The first one is based

on maximum directed acyclic graph and the second one is based on ring topology.

3.4.1 Acyclic graph loop-free routing table

Our goal is to build a routing table for each IE pair (s, t) on every node,

each routing entry on node i indicates a possible next forwarding node from i and

t for the traffic of IE pair (s, t). Thus, assigning a routing entry is exactly the same

as giving a direction to the corresponding outgoing circuit/edge on the network

graph. As a result, constructing loop-free routing tables is the same as finding

a directed acyclic subgraph on our provisioned circuits, so that any routing path

that follows these directed circuits are loop-free. More specifically, to explore the

maximum path diversity, we want to find the maximum directed acyclic graph [40],

which is the directed acyclic subgraph with the most edges.
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0 4321

(a) A example of directed acyclic
graph of a network with 5 nodes.

0 4321

(b) A routing loop occurs, if a directed
edge is added from node 2 to 0.

Figure 3.1: Illustration of directed acyclic graph for loop-free routing.

ts ts

Figure 3.2: Multiple possible acyclic graph solutions.

HSSD

NY

CHI

SF
[SF, NY] 

SF CHI,SD,HS,NY

[SF, NY] 

CHI SD,HS,NY

[SF, NY] 

SD HS,NY

[SF, NY]

HS NY

Figure 3.3: An routing table example from SF to NY constructed based on an
acyclic graph.
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Computing a maximum directed acyclic subgraph on an arbitrary graph

has been shown to be NP-Complete [40]. However, in our problem, the underlying

graph is a fully connected mesh because our circuit provisioning algorithm setups

a circuit between each ingress and egress router pair. In this special case, as

indicated in [40], for any IE-pair (s, t), its maximum acyclic subgraph can be

found by inducing any permutation order of nodes starting with s and ending with

t. For example if we have a network with 5 nodes and use the the node list from

0 to 4 for IE-pair (0,4), its maximum acyclic subgraph is shown in Figure 3.1 (a).

We can easily prove that the directed acyclic graph in Figure 3.1 (a) is also the

maximum directed acyclic graph because there is a directed edge connects every

pair of nodes from left to right. If we add one more arbitrary directed edge into

the graph as shown in Figure 3.1 (b), it must connect a node from right to left.

As a result, any new directed edge will definitely create a cycle or routing loop

like between node 0 and 2 in our example. Since there could be multiple acyclic

graph solutions as shown in Figure 3.2, we use the one with the maximum circuit

capacity from an ingress router s to an egress router t. Then Figure 3.3 shows an

example of our routing table construction.

3.4.2 Ring-based loop-free routing table

Although acyclic loop-free routing tables give us the maximum path di-

versity, it creates a set of routing tables for each IE-pair. Thus each node will

have O(N 2) routing tables instead of O(N) where N is the size of a network.

The larger number of routing tables could consume more storage space on router.

More important, it would require higher computational and communication cost

to maintain the routing information in routing tables as discussed more detailed in

Section 3.5.1. Therefore, in the following, we proposed another loop-free routing

tables strategy based on a ring graph.

The basic idea is to locate nodes in a ring topology and label them in order

as showing in Figure 3.4 (a). Clearly, there is no routing loop if we limit traffic to

travel either in a clockwise or counter-clockwise direction on the ring. Furthermore,

since all packets having the same destination and traveling in the same direction
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(a) Loop free routing on a ring topology.

E+

E–

next hop for 
destination t 

i+1
i+2

.
t-1
t

t+1
.

i-2
i-1

(b) Routing table on node i for destination t.

Figure 3.4: The loop-free routing paths and routing tables based on a ring topology.
Any packet is either be forwarded in clockwise or counter-clockwise direction by
their corresponding routing entries E+ and E− in a routing table.

are using the same routing paths, we only need O(N) routing tables per node with

two routing tables per destination. In fact, we could even combine the two routing

tables into one because no forwarding node can be in both clockwise and counter-

clockwise direction except the destination. Therefore, Figure 3.4 (b) represents

the routing table for any destination t on node i where E+ is a set of clockwise

routing entries and E− is a set of counter-clockwise routing entries. When a packet

arrives, a node would either select the next forwarding from E+ or E− depending

on the location of the source. For example, if a packet of IE-pair (0, 4) arrives

node 2, we know the packet is traveling in clockwise direction and must be routed

by an entry in E+ which includes node 3 and 4. Therefore, once a packet decides

to route in a clockwise/counter-clockwise direction, it would always be forwarded

in the same direction by the routing entries in E+/E− on every intermediate node

without routing loop.

3.5 Propagation Protocol for Path Computation

Here, we would like to compute the path cost resulting from our loop-free

routing table described in Section 3.4. In brief, we show the path cost can be
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computed as a dynamic programming program and implemented as a on-line com-

putation with the help of a propagation protocol. In particular, we first consider

the acyclic loop-free routing table structure. Then simplify the results to the ring-

based loop-free routing table structure.

3.5.1 Propagation protocol for acyclic loop-free table

With acyclic loop-free routing table, every node i has a routing entry for

every IE-pair (s, t) to next hop j. Each routing entry is associated two valuesWst
ij

and Cst
ij where Wst

ij is the split ratio for node i to choose node j as the next hop

for commodity (s, t), and Cst
ij is the corresponding path cost to send a packet to

destination t through the next hop j for commodity (s, t). Let `ij be the link cost

of edge from i to j. Our goal is to compute Cst
ij with the given value ofWst

ij and

`ij. Let Cst
i be the path cost from any intermediate node i to destination t for

commodity (s, t). Clearly, we know Cst
ij = `ij + Cst

j . Thus, we first show how to

compute Cst
j in Theorem 4.

Theorem 4. Assume we use node list (nN−1, nN−2, · · ·, n1, n0) to construct the

loop-free routing tables for a commodity (s, t) where nN−1 = s and n0 = t. The

path cost Cst
i from intermediate node i to destination t for commodity (s, t) is

∑

j=n0→ni−1
Wst

ij(`ij + Cst
j ) for any i < N .

Proof. We iteratively compute Cst
i from i = 0 until i reaches the source node nN−1.

For simplicity, we use i to denote ni in the following equations.

We already know Cst
0 = 0 because there is no cost if source and destination

are the same node.

When i = 1, n1 can only directly forward traffic to destination n0. Thus

the path cost is equal to the link cost from n1 to n0 and

Cst
1 =Wst

1,0`1,0.

When i = 2, n2 could directly send to n0 or forward to n1 as an intermediate to

n0. Since we already computed the cost from n1 to n0, C
st
1 , in previous iteration,
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the cost from n2 to n0 through n1 is `2,1 + Cst
1 . Thus the total path cost from n2

to n0 is

Cst
2 =Wst

2,0`2,0 +W
st
2,1(`2,1 + Cst

1 ).

Similarly, when i = 3, n3 could forward traffic to n2, n1 or n0. As we already

computed the path cost from n2 to n0 and n1 to n0, the total path cost from n3

to n0 is

Cst
3 =Wst

3,0`3,0 +W
st
3,2(`3,2 + Cst

2 ) +W
st
3,1(`3,1 + Cst

1 ).

By repeating the same cost computation for i from 4 to k − 1, the total path cost

from nk to n0 is computed as

Cst
k =

∑

j=n0→nk−1

Wst
kj(`kj + Cst

j ).

Although any node i could compute its path cost Cst
ij with the full knowl-

edge of the link cost and routing information from other nodes, it could be both

communication and computation costly. This is due to the fact that each node has

O(N 2) routing tables and each routing table has O(N) entries. If there are 100

nodes and a routing informationW is stored as double, each node has to broadcast

a message size with 128 Mb (1003 ∗ 128 bits) to every other nodes. Furthermore,

redundant computation occurs among nodes because the value of Cst
k is actually

the same for every nodes according to Theorem 4. Therefore, instead, we propose

a online dynamic programming solution with the help of a propagation protocol

for path computation. As shown in Theorem 4, Cst
i is computed from a series

of Cst
k ,∀k < i where node k only needs its local link cost measurements, `kj,∀j,

local routing information,Wst
kj,∀s, t, j, and the path cost, Cst

j ,∀s, t, from its neigh-

bor j. Therefore, the propagation protocol for our acyclic loop-free routing table

structure is shown in Algorithm 2.
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Algorithm 2 Acyclic graph propagation protocol

Every time interval T , each node i performs:
1. Receiving path cost Cst

j from each neighbor j.
2. Measure link cost `ij to each neighbor j.
3. Update cost in routing table ∀ IE-pair (s, t), neighbor j:

Cst
ij = `ij + Cst

j .
4. Compute path cost for each IE-pair (s, t):

Cst
i =

∑

∀j∈Est
i
Wst

ij(`ij + Cst
j )

5. Broadcast path cost Cst
i ,∀s, t, to each neighbor j.

Algorithm 3 Ring-based propagation protocol

Every time interval T , each node i performs:
1. Receiving cost C t+

j and Ct−
j from each neighbor j.

2. Measure link cost `ij to each neighbor j.
3. Update cost in routing table ∀ destination t, neighbor j:

If j ∈ Et+
i ,Ct

ij = `ij + Ct+
j .

Otherwise,Ct
ij = `ij + Ct+

j .
4. Compute path cost for each destination t:

Ct+
i =

∑

∀j∈Et+
i
Wt

ij(`ij + Ct+
j )

Ct−
i =

∑

∀j∈Et−
i
Wt

ij(`ij + Ct−
j )

5. Broadcast C t+
i and Ct−

i ,∀t, to each neighbor j.

3.5.2 Propagation for ring-based loop-free table

With ring-based loop-free routing table structure, we are able to reduce the

complexity of path cost computation and the size of propagation message for two

reasons. First, ring-based structure has fewer routing tables. Instead of computing

the path cost for each commodity (s, t), Cst
i ∀s, t, i, here we only need to know the

cost of clockwise path from i to t, C t+
i , and the cost of counter-clockwise path from

i to t, Ct−
i , for all destination t and intermediate node i. Second, as we mentioned

in Section 3.4.2, once a packet decides to route in the clockwise or counter-clockwise

direction at its source node or ingress router, it will always be forwarded in the

same direction afterwards. In other words, the cost of C t+
i only depends on the

cost Ct+
k for all k in between i and t, and the same relation could be found for

Ct−
i . Thus, similar to the proof in Theorem 4, we could compute the path cost of

Ct+
i =

∑

j=n0→ni−1
Wt

ij(`ij +Ct+
j ) where (ni, ni− 1, · · ·n0) are the nodes from i to

t in the clockwise direction, as well as the path cost of C t−
i . As a result, comparing
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to the computation for acyclic loop-free structure, each node only computes and

propagates the clockwise and counter-clockwise cost for each destination rather

than every pair of nodes. The detailed description of the propagation protocol for

ring-based structure is shown in Algorithm 3.

3.6 Cost Function Assignment

After we introduce the policy to adjust split ratio of rerouting paths and the

propagation protocol to compute path cost, this section discusses the cost function

of links. Our goal is find an appropriate cost function that can achieve the objec-

tive of our new routing paradigm. That is to maximize network throughput and

minimize router load or O/E/O conversions. We start with a naive cost function

using link utilization to demonstrate the importance of cost function. Then we

design our own escalated step cost function to achieve our network performance

objectives. The cost function could be modeled as the delay of path where path

delay could be either measured a ping-like mechanism or estimated by average

queuing delay. Another solution is to use an escalated step function as described

in this section.

Figure 3.5 illustrates why it is not trivial to design a cost function for our

network performance objectives. The dummy network in the example has a direct

path and a two-hop path from source s to destination t. Assume we simply use

the sum of link utilization as our cost function. Intuitively, it would prefer the

path with lower utilization and fewer links. Thus, the network throughput could

be increased and O/E/O conversion could be reduced. However, if the network is

under utilized as shown in Figure 3.5 (a), the cost of direct path could be easily

as twice as much as the two-hop path. As a result, we would reroute more traffic

to two-hop path, even though there is clearly plenty of residual capacity left on

the direct path. Thus, unnecessary O/E/O conversions or hops occur from the

adaptive routing. On the other hand, if the network is highly utilized as shown

in Figure 3.5 (b), the cost of two-hop path could be much higher than the direct

path. In consequence, even the direct path is already congested, our adaptive
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= 0.1 

Cost s t: 0.4 
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(a) Traffic shifts to alternated path
and increases unnecessary O/E/O con-
versions.
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i

utilization = 1.0 
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= 0.7 

utilization 
= 0.7 

Cost s t: 1.0 
Cost s i t: 1.4 

(b) Traffic shifts to already con-
gested direct path and reduces network
throughput.

Figure 3.5: Example of using link utilization as cost function.

routing algorithm would still prefer the direct path and could not increase network

throughput using the two-hop path as we wanted. Therefore, regardless what

adaptive routing algorithm we are using, if we don’t have an appropriate cost

function, undesired network performance could occur.

To achieve the network performance objectives, our approach is to design

a escalated step cost function that can explicitly control the condition of using a

longer path. The intuition is that we should always prefer the direct path when

it is un-congested. However, as the direct link becomes congested, we would start

shifting traffic to alternated longer paths. More specifically, the lengths of the

alternated path should be limited by the degree of congestion on direct path. For

example, if the link utilization of the direct path under 80%, we would only use

one-hop path which is exactly the direct path itself. If the link utilization of the

direct path above 80% but under 90%, then we will reroute traffic on the two-hop

path as well. Finally, we will only reroute traffic on five-hops path when the direct

path is extremely congested such as over 98% link utilization. In other words, the

cost function has to explicitly capture the relation between path length and link

utilization.

According to the above intuition, we design the escalated step cost function

based on a vector of increasing link utilization values U = (u2, u3, · · · , uk). Our

goal is to assign a cost ci for each of the utilization value ui, such that the value

of ui indicates the minimum utilization requirement to use an i hops path. Before
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Figure 3.6: Proposed escalated step cost function based on a vector of link utiliza-
tion U .

describing how to assign the corresponding cost vector C = (c2, c3, · · · , ck) for

U , we observe several advantages of such cost function. First, it allows network

operators to determine when to use longer paths. For example, a network with

more powerful router could have lower vector values, so that there is more path

diversity to load balance traffic and increase network throughput. On the other

hand, if a network doesn’t have enough computation power or queuing space on

routers, the network could set higher vector values to prevent rerouting and limit

router load. Second, the value of u2 explicitly restricts the minimum link utilization

for rerouting, while the length of the vector k is the maximum number of hops or

O/E/O conversions allowed. Thus a network operator could easily control the

two most critical parameters for our adaptive rerouting algorithm. Last but not

least, the value of vector U does not necessary to be link utilization. It could

also be any network metric, such as queuing delay, latency delay, etc. However,

since our primary goal is to improve network throughput, link utilization is a

better indication for possibly packet drops. Also, the value of link utilization has

a more general implication because its value must be in between 0% and 100%. In

contrast, the value of delay is more meaningful respect to a specific network size

or application requirements.
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Figure 3.7: Example of using our proposed escalated step cost function shown in
Figure 3.6 with U = (50%, 75%, 87.5%, 93.75%, 100).

To design our cost function, we model it as a step function based on vectors

U and C as shown in Figure 3.6. Thus, if the utilization of a link e is u and u < ui,

the cost of the link is `e = ci. Considering a one-hop direct path P and a alternated

multi-hops path P ′, we start assign the cost vector C from c2 to ck. Assume we set

the cost of c2 to be some constant δ. When the link utilization of P is less than u2,

the cost of P ′ can never be smaller than P because P ′ is consisted of at least two

links and the cost of each link is at least c2. In other words, `P = u2 < 2∗u2 < `P ′ .

Therefore, we would always prefer direct path when the link congestion is less u2.

When the link utilization of P is less than u3, we have to set c3 small enough, so

that any alternated path P ′ with more than three hops has higher cost than c3.

Again because the minimum cost of a link is δ, c3 should be at least 2δ. Similarly,

if we don’t want any alternated path P ′ with i hops has lower cost than our direct

path with utilization less than ui, ci must be at least (i − 1)δ. Therefore, it is
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actually rather easy to set the cost of our vector C as ci = (i − 1)δ,∀i ∈ [2, k] as

shown in Figure 3.6.

Finally, Figure 3.7 re-examines the same network scenario of Figure 3.5, but

using our proposed cost function with the utilization vector U=(50%,75%,87.5%,

93.75%,100%) shown in Figure 3.6. When network is under utilized, Figure 3.7 (a)

shows that all traffic would be routed on direct path as long as the link utilization

is lower than 50%. On the other hand, when network is congested as Figure 3.7 (b),

our cost function would have higher cost for direct path and reroute traffic to al-

ternated path, so that the network throughput can be increased. Finally, since we

assign a fixed cost difference among each level of link congestion, when ever the

congestion of direct path increased by one level, we could either use an alternated

path with one more hop or a link with more congested link. For example, in Fig-

ure 3.7 (c), the link utilization of direct path is increased from δ to 3δ. Therefore,

we could also reroute traffic on a path consisted of three links with minimum cost,

or a path with only two links while one of them is more congested.

3.7 Conclusion

In this chapter, we address how to apply a game theory based adaptive

routing algorithm to the rerouting mechanism of coplar. Specifically, we propose

two loop-free routing table structures based on acyclic graph and ring topology

to fully explore path diversity without creating routing loop. We also give the

propagation protocol to compute path cost online without broadcasting routing

information. Finally, we demonstrate the criticality of cost function to our coplar

rerouting mechanism, and propose escalated step function to explicitly capture

the relation between path length and network congestion, so that the network

throughput could be maximized while O/E/O conversion could be minimized. The

in-depth evaluations of proposed approach are giving in Chapter 4.



Chapter 4

Evaluation of COPLAR

Our coplar approach was extensively evaluated using a well-known realis-

tic network simulator, NS2 on two real large PoP-level backbone networks, namely

Abilene [2] and GEANT [44], with real traffic trace data over two months. We

first describes the detail of our simulation setup and algorithm parameters in Sec-

tion 4.1 followed by the evaluation results of coplar in three aspects. Section 4.2

shows the effectiveness of our circuit provisioning. Section 4.3 analyzes the design

of our rerouting algorithm. Finally, we demonstrate the overall performance of

coplar by comparing with the two well-known packet switching routing, OSPF

and ECMP, in Section 4.4. The chapter is concluded in Section 4.5.

4.1 Experimental Setup

We used NS2 simulator to extensively evaluate our coplar routing paradigm

using the adaptive rerouting scheme described in Chapter 3 on two separate real

large PoP (point of presence)-level backbone networks, namely Abilene [2] and

GEANT [44]. Abilene is a public academic network in the US with 11 nodes in-

terconnected by OC192, 10 Gb/s, links. Its network topology has been shown in

Figure 2.5. GEANT is a network connects with variety of research and educa-

tion networks in Europe. The topology of GEANT has been slightly changed and

evolved in the past few years. Our experiments were based on an December 2004

68
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Table 4.1: The traffic matrices information for Abilene and GEANT.

Network Circuit provision Simulated Time
history traffic matrix traffic matrix Interval

Abilene 03/01/04−04/21/04 04/22/04-04/26/04 5 minutes
GEANT 01/01/05−04/10/05 04/11/05-04/15/05 15 minutes

network snapshot 1, in which has 23 nodes and 74 links varied from 155 Mb/s

to 10 Gb/s. Both networks have been studied and discussed in previous research

literatures, and their datasets, including network topology, routing information,

and traffic measurements, are available in the public domain. In the following, we

first explain the traffic matrices used in the experiments. Then we describe our

implementation of adaptive rerouting algorithm in NS2. Finally, we summarize the

routing algorithms compared in our evaluation and their implementation detail.

4.1.1 Traffic Matrices

Traffic matrices are used in our experiments both for deriving circuit con-

figurations using the multi-path utility max-min allocation algorithms described in

[27, 28] as well as for creating simulation traffic for our performance evaluations. A

traffic matrix consists of the demand rate (kb/s) of every IE pair (Ingress-Egress

router pair) within a certain time interval (e.g. 5 minutes for Abilene and 15

minutes for GEANT). For both networks, we used the real traffic matrices pro-

vided from a third party [87]. The traffic matrix datasets for the Abilene network

are available at [100], and the traffic matrix datasets of the GEANT network are

available at [86].

In brief, these traffic matrices are derived based on the flow information

collected from key locations of a network by traffic monitors, such as netflow [1].

Then the flow information is transformed into the demand rate of each IE pair in

a traffic matrix based on the routing information in the network. We collected the

traffic matrices in each network for an extended period of time to represent the

historical traffic measurements and simulation traffic load. The detail information

1The shapshot is available at http://www.geant.net/upload/pdf/GEANT\ Topology\
12-2004.pdf.
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Table 4.2: Parameters of the game theory adaptive rerouting algorithm.

parameter purpose value
α optimization parameter 0.1
β uniform sampling ratio 0.75
λ maximum weight shift 0.1
T update interval 0.2s
U utilization vector u2 = 80

for cost function ui = 1− [(1− u2) ∗ 0.5i−2]

of the traffic matrices used on two networks are summarized in Table 4.1.

Furthermore, as we know, current backbone networks are designed to be

under utilized. To demonstrate network routing can improve network performance

in a network with high utilization, we normalized our simulated traffic matrices

by scaling their offering load by some factor, such that at least one traffic matrix

had fully saturated links under OSPF routing. The scale factor for Abilene and

GEANT were roughly equal to 4 and 2, respectively.

4.1.2 NS2 Implementation Detail of Routing Algorithms

Here summarizes the algorithms compared in this chapter.

Packet Switching - OSPF/ECMP

Open Shortest Path First (OSPF) is a dynamic routing protocol widely

used in IP networks. It routes traffic through the path with minimum aggregated

link weight. Extend from OSPF, Equal-Cost Multi-Path (ECMP) [8] is a Cisco

router implementation of a multi-path load balancing scheme. In Abilene network,

we used the actual OSPF link weight provided from [100] to determine the OSPF

and ECMP paths. However, we don’t have the link weight information for GEANT

network. Thus, we simply use equal weight for all links in the GEANT network to

determine its OSPF and ECMP paths.
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COPLAR with Game Theory Algorithms

To simulate our circuit switching routing, we used network links to repre-

sent a set of virtual circuits. In other words, we re-established a fully connected

mesh network with exactly one link between each IE pair, and the link capacity

is the allocated bandwidth for the IE pair computed from from the circuit pro-

visioning algorithm proposed in [27]. Therefore, the term link is interchangeable

with circuit or virtual circuit in the following implementation description. Note

that, for simplicity, we didn’t create circuit at physical layer. Therefore, we didn’t

consider the finer grain traffic distribution among the physical circuits of an IE

pair. We assume a router has the ability to fully utilize its virtual circuit capacity

by load balancing the incoming traffic to all physical circuits.

We also implemented our own classifier module and routing module in NS2.

Each classifier object represents a routing table. For simplicity we only consider

ring-based loop-free routing table structure in our evaluation section, so we created

a routing table for each destination on every node. A routing table contains a set

of entries for all possible next hop for the destination, and each entries associated

with a weight and cost for the outgoing path. When a packet arrives, we first

find its routing table based on the destination, then randomly select a outgoing

link/circuit from the table with the probability proportional to its weight. If

the output queue of the selected link/circuit is full, the packet gets dropped. The

routing module implemented the propagation protocol described in Figure 3 which

periodically measure the cost of link and re-compute path cost. The path cost is

then propagated to neighbors as a regular message. Therefore, the propagation

information could also be dropped on congested links. Finally, other detailed

setting of parameters used in the evaluation is summarized in Table 4.2.

COPLAR with Greedy Rerouting Algorithm

Finally, besides the game theory rerouting algorithm, we also consider a

greedy rerouting scheme which always forwards traffic to its direct outgoing circuit

until the output queue is 95% full. Once the output queue is full, a router simply

load balances the excess traffic to all possible outgoing circuits proportional to the



72

residual capacity of the circuit. Comparing to the game theory, greedy approach

only requires local information on the residual capacity of outgoing circuits. How-

ever, because the lacks of the path information, greedy algorithm could perform

worse than the game theory algorithm as shown in Section 4.3.3.

4.1.3 Performance Metrics

Based on the performance objective of coplar, we evaluate network per-

formance using the following metrics.

• Drop rate: the complement of network throughput.

• O/E/O conversion: the number of hops over virtual circuits for coplar,

and the number of hops over physical links for packet switching approach

like OSPF and ECMP.

• Router load: the amount of traffic required forwarding process at intermedi-

ate routers.

Our evaluations compare routing algorithms based on their performance

metric values measured under each simulated time interval traffic matrix. Specif-

ically, for a given traffic matrix of a time interval, we simulate the traffic under

each routing algorithms and record its corresponding performance metric values

over time. As shown in Figure 4.4, network states will converge and stabilized

after about 10 seconds. Thus, we use the average number over 5 seconds after

a warmup period of 25 seconds as the performance measurement of a given time

interval, and the rest of chapter presents the results based on these performance

measurements at each simulated time interval.

4.2 Circuit Provisioning Analysis

4.2.1 With vs. without rerouting

This section evaluates the performance of coplar using the real data traffic

trace across a 5-day period (Monday to Friday). coplar re-configured its circuits
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Figure 4.1: Traffic drop rate across a week under coplar and coplar-nr. The
inner graphs enlarge the results of Abilene from 2pm to 8pm on Wednesday and
the results of GEANT on Wednesday.

at each hour based on the historical traffic measurements. In particular, we com-

pare the drop rate of coplar and coplar without rerouting scheme. coplar

without rerouting is referred to as coplar-nr. Since the time granularity of traffic

matrices in Abilene is 5 minutes, there are a total of 1,440 consecutive data points

over the 5-day simulation period. Similarly, the GEANT network has 288 data

points from its 15-minute traffic matrices.

The drop rates of each of the traffic matrix across 5-day simulation are re-

ported in Figure 4.1. As shown in the figure, even without our rerouting scheme,

coplar-nr achieves relatively low drop rates over all traffic matrices. In partic-

ular, the inner graphs of Figure 4.1 zoom in the drop rates on a particular day

(Wednesday) and show the maximum drop rate of coplar-nr are only 7% and 3%

in Abilene and GEANT, respectively. Therefore, our provisioning algorithm did

effectively allocate bandwidth and minimize drop rate even in a congested network.

Furthermore, by combining circuit configurations with rerouting, coplar is able

to achieve 0% drop rates for all simulated traffic by utilizing the spare capacity of

circuits.
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Figure 4.2: Utility achieved for each IE flow under single-path and multi-path
utility max-min problem formulation.
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Figure 4.3: Traffic drop rate across a week under single-path and multi-path cir-
cuit configurations. The inner graphs enlarge the results on Wednesday for both
networks.

4.2.2 Single-path vs. multi-path circuit provisioning

Here, we analyze the performance improvement from solving our circuit

provisioning algorithm as a multi-path problem rather than a single-path prob-

lem. Because circuit provisioning plays a more important role when a network has

higher utilization, and link capacity is more scarce, we present the circuit provi-

sioning results under the normalized traffic matrices with a scale factor of 2 in this

subsection. The multi-path solution was computed by the algorithm proposed in

Chapter 2, while the single-path solution was derived by the traditional single-path

“water-filling” algorithm [24, 79].
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First, with a given network topology and utility functions of traffic dis-

tribution, we compare the utility (acceptance probability) can be achieved under

multi-path solution and single-path solution. As an example, we presents the

bandwidth allocation results computed at peak hour 5pm on Wednesday for both

networks. Figure 4.2 plots the utilities of each IE flow, and the IE flows are sorted

by their utilities in the figures. As shown in the figure, multi-path algorithm

achieves strictly higher utility for all IE pairs in both networks. In particular,

comparing to single-path algorithm, our multi-path algorithm maximizes the min-

imum utility from 74.74% to 92.90% in Abilene, and from 45.15% to 56.54% in

GEANT. Furthermore, the number of IE pairs with 100% utility also increases

from 40 to 46 in Abilene and 223 to 290 in GEANT.

We then show the impact of multi-path formulation on circuit configuration

in practice. Figure 4.3 plots the drop rates of single-path and multi-path solutions.

Again, we present the drop rates across 5-day simulated traffic. Notice the multi-

path results shown in Figure 4.3 are higher than the drop rate of coplar-nr

in Figure 4.1 because Figure 4.3 has twice as much traffic as in Figure 4.1. As

shown in the figure, multi-path solution significantly reduces drop rates at all

time instances in both networks, especially in the Abilene network where single-

path routing suffers higher drop rates because of the existence of bottleneck links.

For example, at 4AM Wednesday in Abilene, the multi-path circuit configuration

reduces the drop rate of the single-path solution by 91.30% from 20.12% to 1.75%.

Across all the simulated traffic matrices, the multi-path solution reduces the drop

rate of the single-path solution by 46.69% to 100% in Abilene and 15.88% to 98.51%

in GEANT. Therefore, the results in Figure 4.2 and Figure 4.3 strongly indicate

the importance and advantage of multi-path routing to circuit provisioning.

4.3 Adaptive Rerouting Analysis

In this section, we investigate the properties of our adaptive rerouting al-

gorithms including the converge time of the algorithms, the impact of loop-free

routing and the effectiveness of cost functions.
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Figure 4.4: Converge time comparison.

4.3.1 Converge Time Analysis

First of all, we evaluate the convergence property of adaptive rerouting

algorithms. In particular, we are interested in whether an adaptive rerouting

algorithm can reach a steady state and how long does it take to converge. If an

adaptive rerouting algorithm cannot converge, the network could be unstable and

cause unnecessary packet drops. On the other hand, if the converge time is too

long, an adaptive rerouting algorithm could never reach its optimal performance

because traffic is dynamically changing. Here, we use the peak hour traffic at time

interval 4pm scaled by a factor of 2 as an example to demonstrate the converge

property. Figure 4.4 plots the change of network drop rate over 2 minutes after

the network traffic was initiated in the network. The network drop rate is the

complement of network throughput (i.e. the percentage of offering traffic routed

through a network). In the figure, we compare the results of a greedy load balanced

algorithm without routing loop and the adaptive rerouting algorithm based on

game theory described in Section 4.1.2.

At the beginning of a simulation, all traffic use its direct circuit, then the

adaptive rerouting algorithms start to adjust the split ratio among other rerouting

paths when excess traffic occur on the direct path. Thus, as expected, the network

drop rate of GEANT network decreases over time as shown in Figure 4.4 (b).



77

Furthermore, both adaptive rerouting algorithms reached a steady state within 10

seconds. Especially, the greedy algorithm was able to keep using the same routing

after achieving 0% drop rate. However, in the results of Abilene network shown

in Figure 4.4 (a), the network had higher utilization and both adaptive rerouting

algorithm cannot achieve 0% drop rate. Even though the greedy algorithm was still

able to reduce drop rate within 10 seconds, it cannot reach steady state and its drop

rate was oscillated between 6% to 8%. On the other hand, the adaptive rerouting

algorithm based on game theory had a much more stable converge state with less

than 0.5% drop rate variation after 10 seconds. Therefore, while both adaptive

rerouting algorithms could effectively reduce network drop rate, the algorithm

based on game theory could guarantee a network quickly converges to a steady

state within less than 10 seconds.

4.3.2 Routing Loop Comparison

Next, we analysis the impact of routing loop for adaptive rerouting. Since

our adaptive rerouting algorithm based on game theory must have loop-free paths,

we evaluate routing loop using the greedy rerouting algorithm. Specifically, we

compare the greedy routing with routing loop where a node can forward traffic

any node, and the greedy routing without routing loop where loop is eliminated

by using our ring-based loop-free routing table. Figure 4.5 plots the drop rate

when network traffic is scaled by a factor of 0.5 to 3. At each scale factor, we plot

the average number of results from 24 time intervals evenly scatter across the fist

day simulated traffic matrices. For the Abilene network shown in Figure 4.5 (a),

we have similar results for both with and without using loop-free routing tables.

However, under a lower utilized network like GEANT network, greedy algorithm

with routing loop can achieve much lower drop rate as shown Figure 4.5 (a). With-

out loop-free routing table can achieve lower drop rate for two reasons. First, the

loop-free routing table limits the path diversity to prevent routing loop. Thus,

less routing path options are available to reroute traffic. Second, greedy algorithm

could easily make wrong routing decision because it only has the next hop infor-

mation, and routing loop allow the greedy algorithm to regret its routing decision.
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Figure 4.5: Drop rate comparison between with and without routing loop.

For example, assume node s can use node A or B as intermediate node to reach

destination node t. If there is lots of residual circuit capacity left from s to A but

no residual capacity left from A to t, the greedy algorithm without routing loop

will send more traffic through A and drop all packets at circuit from A to t. On

the other hand, the greedy algorithm with routing loop could send traffic from A

back to s, then pick node B instead to achieve lower drop rate.

Although allowing routing loop could achieve higher network throughput,

it also cause serious routing problem for optical networks. Similar to Figure 4.5,

we plot the maximum number of O/E/O conversion and router load for GEANT

network in Figure 4.6. As shown in Figure 4.6 (a), the maximum number of

O/E/O conversion with routing loop quickly reaches its maximum limit 32. In

contrast, our loop-free routing successfully limits the maximum O/E/O conversion

at 8. Furthermore, the greedy algorithm with routing loop causes much higher

router load because it keeps rerouting packets until a packet reaches its destination

or maximum forwarding limit. In particular, the average router increases at an

exponential rate for the greedy algorithm with routing loop because as the network

getting more congested, it becomes harder to find residual capacity. As a result, the

greedy algorithm makes more wrong routing decision and causes more routing loop

and redundant router load. Therefore, loop-free routing is necessary to prevent an
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Figure 4.6: Network performance comparison between with and without routing
loop in GEANT network.

explosion for router load and number of O/E/O conversion.

4.3.3 Cost Function Comparison

Finally, we compare the network performance of using different cost func-

tions for the game theory based adaptive rerouting algorithm. Specifically, we

consider three cost functions. The first cost function is the link utilization, u. The

second cost function is the queuing delay, q, which is actually a function of link

utilization according to the M/D/1 queuing model [67] where q = 1
2∗(1−u)

+1. Thus,

the queuing delay is tail-up as the link utilization growing to 100%. The last cost

function is our escalated function shown in Table 4.2 where ui = 1−[(1−u2)∗0.5i−2]
and rerouting starts after link utilization is larger than 80%.

Figure 4.7, 4.8 and 4.9 plots the measurements under varied traffic scale

factor for drop rate, maximum O/E/O conversion and router load, respectively.

As shown in Figure 4.7, using link utilization and queuing delay as cost function

did not result in lower drop rate than our proposed cost function. In fact, their

drop rates were even higher than the greedy algorithm without routing loop. On

the other hand, our cost function achieve a low drop rate that almost close to the

greedy algorithm with routing loop. In addition, as shown in Figure 4.8 and 4.9,

the maximum number of O/E/O conversion and router load grow slowly using our
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escalated step cost function. From Figure 4.8 and 4.9, we also found the maximum

number of O/E/O conversion and router load for the other two cost functions have

higher values at smaller scale factor and slightly decrease when traffic scale factor

is larger. This is the caused by the problem we mentioned in Figure 3.5 where

a bad cost function could not appropriately decide when to reroute traffic. Even

though the cost function of queuing delay does have tail-up when link utilization

grows, clearly it starts to reroute when network utilization is still low while not

reroute enough traffic when network utilization is high. Therefore, overall, our

proposed cost function described in Section 3.6 has the lowest drop rate among all.

In particular, our cost function achieves a drop rate close to the greedy algorithm

with routing loop, while we prevent the network from suffering the high router

load and number of O/E/O conversion.

4.4 Overall Performance Analysis

We extensively evaluate the performance of our coplar routing paradigm

by comparing with the two well-known packet switching routing, OSPF and ECMP.

4.4.1 Time Series Performance Evaluation

First, we plot the time series network performance at each of simulated time

intervals across the first day (288 intervals for Abilene, 96 intervals for GEANT)

in Figure 4.10 and Figure 4.11. Again, to show the results at a higher utilized

network, the traffic was scaled at a factor of 2. As shown in Figure 4.10, both

networks suffer higher drop rate at peak hour (4pm for Abilene and 8AM for

GEANT). In Abilene network, ECMP achieved lower drop rate because traffic

was load balanced across multiple paths and network congestion could be less. In

GEATN network, because only paths with the exact same length were considered

by ECMP, we didn’t observe multi-path routing occur often. Thus, the results of

OSPF are similar to ECMP. Nevertheless, our coplar architecture with adaptive

rerouting consistently achieved lowest drop rate in most of time intervals. However,

as shown in Figure 4.11, coplar with adaptive rerouting achieved better network
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throughput with much lower router load. Specifically, in Abilene network, the

highest average router load for OSPF, ECMP and coplar is 6.56 Gb/s, 5.82 Gb/s

and 0.29 Gb/s. In GEANT network, the highest average router load for OSPF,

ECMP and coplar is 801 Mb/s, 801 Mb/s and 57 Mb/s. In other words, coplar

reduces router load by 92.1% to 97.2 among all time intervals in GEANT network,

and by 94.32% to 99.8% in Abilene network.

4.4.2 Scaled Traffic Performance Evaluation

Then, we plot the performance comparison under varied traffic scale fac-

tors in Figure 4.12-4.13, and we summarize results in Table 4.3. Figure 4.12 shows

that coplar has significant lower drop rate than OSPF and ECMP at all scale

factors. OSPF starts dropping packet after scale factor 1 for both networks be-

cause we already normalized the traffic so that at least one link was fully utilized

under OSPF. Furthermore, we observed the drop rate of OSPF and ECMP grow

faster in Abilene because more links congested at higher scale factors. In contrast,

the number of congested links still remains the same in GEANT as scale factor

increases because we have much higher link utilization at a few links due to their

smaller capacity. As a result, drop rate is linear increased for OSPF and ECMP

which only use fix routing paths.

Figure 4.14 and 4.15 show that coplar can provide much higher network

throughput with significantly less O/E/O conversion. The number of O/E/O

conversion for OSPF and ECMP remains constant regardless scale factor because

their routing are static. The number of O/E/O conversion of OSPF and ECMP are

both solely dependent on the network topology, and it is around 2.5 in average and

6 in maximum. In contrast, benefit from establishing direct circuit among IE-pairs,

the average O/E/O conversion of coplar is almost remains at 1 and only slightly

grows as traffic scale increases. Even though the maximum O/E/O conversion

could increase more, coplar still has less worst case O/E/O conversion than

OSPF and ECMP in Abilene and one additional O/E/O conversion in GEANT.

Finally, directly caused by the O/E/O conversion, Figure 4.13 shows coplar

also has significant less router load than OSPF and ECMP. This is due to the fact
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that majority of the traffic can be carried by its direct circuit without the need of

intermediate routers. Furthermore, we found the router load increased rapidly for

OSPF and ECMP, while coplar almost maintain constant load. Thus coplar is

able to handle much more offering traffic without overwhelming electronic routers.

Concludes all, our results show our coplar routing paradigm with pro-

posed adaptive rerouting algorithm successfully improves network throughput while

significantly reduces router load and O/E/O conversion for optical networks. There-

fore, the coplar architecture could be suitable on optical networks for both per-

formance and feasibility purposes.

4.5 Conclusion

In this chapter we extensively evaluate our coplar approach with realistic

simulator and network datasets. Our evaluation results show a number of interest-

ing results. First, the majority of the traffic was able to be carried by the circuits

computed from our circuit provisioning algorithm even during peak traffic hours.

Throughout a full week of traffic simulation, the maximum drop rate is merely 7%

with 0% drop for the most of time intervals. The results also show that we can

achieve such low drop rate because of the ability of considering multi-path routing

in our bandwidth allocation algorithm for circuit provisioning.

Second, the results show our adaptive rerouting approach can quickly con-

verge a steady state to prevent network becomes oscillated and unstable. Further-

more, our loop-free routing table for rerouting significantly reduces redundant over-

head for electronic routers and O/E/O conversion for traffic by eliminating routing

loop. Finally, we demonstrate our cost function design successfully achieves our

network performance objectives, so that the network throughput is maximized and

router load is minimized.

Last but not least, we demonstrate with the help of adaptive rerouting,

coplar was able to achieve much lower drop rate. In addition, when the actual

traffic were scaled up, coplar was surprisingly able to handle a higher traffic

load than conventional packet routing [66, 8]. The effectiveness of coplar can be



83

attributed to the path diversity available for the adaptive rerouting of traffic as

well as the ability of rerouting algorithm to adjust routing on-the-fly. Therefore,

coplar could achieve much higher network throughput by utilizing residual circuit

capacity in a more effective manner.

Summarize all, coplar achieved much higher network throughput with

significantly less overhead on electronic routers and O/E/O conversions for traffic.

Therefore, it is possible to use coplar for optical networks to provide even better

network performance while alleviating the bottleneck of electronic routers.
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Figure 4.7: Drop rate comparison using different cost functions.
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Figure 4.8: Maximum O/E/O comparison using different cost functions.
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Figure 4.9: Average router load comparison using different cost functions.
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Figure 4.10: Drop rate comparison over 24 hours when traffic is scaled by a factor
of 2.
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Figure 4.11: Average router load comparison over 24 hours when traffic is scaled
by a factor of 2.
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Figure 4.12: Drop rate comparison with traffic scale varied from 1 to 3.
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Figure 4.13: Average router load comparison with traffic scale varied from 1 to 3.
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Figure 4.14: Average number of O/E/O conversion comparison with traffic scale
varied from 1 to 3.
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Figure 4.15: Maximum number of O/E/O conversion comparison with traffic scale
varied from 1 to 3.
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Table 4.3: coplar performance comparison with OSPF and ECMP under varied
traffic scale factor.

Matric Network Routing Traffic Scale Factor
1.0 1.5 2.0 2.5 3

OSPF 0.00 2.40 11.12 20.19 27.79
Abilene ECMP 0.00 0.00 1.41 9.39 18.53

drop coplar 0.00 0.00 0.03 3.33 9.38
rate (%) OSPF 0.00 0.82 1.35 2.51 5.53

GEANT ECMP 0.00 0.82 1.35 2.50 4.83
coplar 0.02 0.04 0.16 1.02 2.30

OSPF 2711 3983 4860 5465 6020
Abilene ECMP 2304 3456 4565 5416 6079

router coplar 0 0 75 78 122
load OSPF 324 485 646 805 952

(Mb/s) GEANT ECMP 324 485 646 805 952
coplar 4 14 34 55 80

OSPF 2.625 2.625 2.625 2.625 2.625
Abilene ECMP 2.523 2.523 2.523 2.523 2.523

average coplar 1.000 1.000 1.014 1.018 1.024
O/E/O OSPF 2.410 2.410 2.410 2.410 2.410

GEANT ECMP 2.405 2.405 2.405 2.405 2.405
coplar 1.022 1.049 1.087 1.117 1.154

OSPF 6 6 6 6 6
Abilene ECMP 6 6 6 6 6

maximum coplar 1 1 4 4 5
O/E/O OSPF 5 5 5 5 5

GEANT ECMP 5 5 5 5 5
coplar 4 5 6 6 6



Chapter 5

Network Security Application -

Proactive Surge Protection

5.1 Introduction

A coordinated attack can potentially disable a network by flooding it with

traffic. Such attacks are also known as bandwidth-based distributed denial-of-

service (DDoS) attacks and are the focus of our work. Depending on the operator,

the provider network may be a small-to-medium regional network or a large core

network. For small-to-medium size regional networks, this type of bandwidth-

based attacks has certainly disrupted service in the past. For core networks with

huge capacities, one might argue that such an attack risk is remote. However,

as reported in the media [9], large botnets already exist in the Internet today.

These large botnets combined with the prevalence of high speed Internet access

can quite easily give attackers multiple tens of Gb/s of attack capacity. Moreover,

core networks are engineered to support normal traffic loads reliably and not to

support maximum traffic load from all subscribers. For example, in the Abilene

network [2], some of the core routers have an incoming capacity of larger than 30

Gb/s from the access networks, but only 20 Gb/s of outgoing capacity to the core.

Although commercial ISPs do not publish their oversubscription levels, they are

generally substantially higher than the ones found in the Abilene network due to

89
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commercial pressures of maximizing return on investments.

Considering these insights, one might wonder why we have not seen mul-

tiple successful bandwidth-based attacks to large core networks in the past. The

answer to this question is difficult to assess. Partially, attacks might not be occur-

ring because the organizations which control the botnets are interested in making

money by distributing SPAM, committing click frauds, or extorting money from

mid-sized websites. Therefore, they would have no commercial interest in disrupt-

ing the Internet as a whole. Another reason might be that network operators

are closely monitoring network utilization and actively balancing traffic flow and

blocking DDoS attacks. Nonetheless, recent history has shown that if such an at-

tack possibility exists, it will eventually be exploited. For example, SYN flooding

attacks were described in [4] years before such attacks were used to disrupt servers

in the Internet.

To defend against large bandwidth-based DDoS attacks, a number of de-

fense mechanisms currently exist, but many are reactive in nature (i.e., they can

only respond after an attack has been identified in an effort to limit the damage).

However, the onset of large-scale bandwidth-based attacks can occur almost instan-

taneously, causing potentially a huge surge in traffic that can effectively knock out

substantial parts of a network before reactive defense mechanisms have a chance to

respond. To provide a broad first line of defense against DDoS attacks when they

happen, we propose a new protection mechanism called Proactive Surge Protection

(PSP). In particular, under a flooding attack, traffic loads along attack routes will

exceed link capacities, causing packets to be dropped indiscriminately. Without

proactive protection, even for traffic flows that are not under direct attack, sub-

stantial packet loss will occur if these flows pass through links that are common to

attack routes, resulting in significant collateral damage. The PSP solution aims to

provide bandwidth isolation between flows so that the collateral damage to traffic

flows not under direct attack is substantially reduced.

This bandwidth isolation is achieved through a combination of traffic data

collection, bandwidth allocation of network capacity based on traffic measure-

ments, metering and tagging of packets at the network perimeter into two differ-



91

entiated priority classes based on capacity allocation, and preferential dropping

of packets in the network when link capacities are exceeded. It is important to

note that PSP has no impact on the regular operation of the network if no link is

overloaded. It therefore introduces no penalty in the common case. In addition,

PSP is deployable using existing router mechanisms that are already available in

modern routers, which makes our approach scalable, feasible, and cost effective.

Further, PSP is resilient to IP spoofing as well as changes in the underlying traffic

characteristics such as the number of TCP connections. This is due to the fact

that we focus on protecting traffic between different ingress-egress interface pairs

in a provider network and both the ingress and egress interface of an IP datagram

can be directly determined by the network operator. Therefore, the network op-

erator does not have to rely on unauthenticated information such as a source or

destination IP address to tag a packet.

Specifically, we propose three policies, Mean-PSP, CDF-PSP and GCDF-

PSP. Mean-PSP is solely based on the average traffic demand while CDF-PSP takes

into consideration of the traffic variability observed in historical traffic measure-

ments. CDF-PSP aims to maximize the acceptance probability (or equivalently

the min-max minimization of the drop probability) of packets by using the cumu-

lative distribution function over historical data sets as the objective function, and

it can be solved as an utility max-min fair bandwidth allocation problem. Finally,

GCDF-PSP is a variant of the CDF-PSP policy in which the traffic variability is

modeled as a Gaussian distribution, and the problem is simplified to a weighted

max-min bandwidth allocation problem. Furthermore, GCDF-PSP allows network

operators to model future traffic variability scenarios in which historical datasets

are not applicable.

To test the robustness of our proposed approach, we evaluated the PSP

mechanism using both highly distributed attack scenarios involving a high percent-

age of ingress and egress routers, as well as targeted attack scenarios in which the

attacks are concentrated to a small number of egress destinations. Our exten-

sive evaluation across two large commercial backbone networks shows that up to

95.5% of the network could suffer collateral damage, but our solution was able to
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significantly reduce the amount of collateral damage by up to 97.58% in terms of

the number of packets dropped and up to 90.36% in terms of the number of flows

with packet loss. In addition, we show that PSP can maintain low packet loss

rates even when the intensity of attacks is increased significantly. Beyond eval-

uating extensively the impact of our protection scheme on packet drops, we also

present detailed analysis on the impact of our scheme at the level of flow aggregates

between individual ingress-egress interface pairs in the network.

The rest of this chapter is organized as follows. Section 5.2 outlines related

work. Section 5.3 presents a high-level overview of our proposed PSP approach.

Section 5.4 describes in greater details the central component of our proposed ar-

chitecture that deals with bandwidth allocation policies. Section 5.5 describes our

experimental setup, and Section 5.6 presents extensive evaluation of our proposed

solutions across two large backbone networks. Finally, we discuss the limitations

of the approach in Section 5.7 and conclude the chapter in Section 5.8.

5.2 Related Work

DDoS protection has received considerable attention in the literature. The

oldest approach, still heavily in use today, is typically based on coarse-grain traffic

anomalies detection [59, 3]. Traceback techniques [93, 80, 84] are then used to

identify the true attack source, which could be disguised by IP spoofing. After

detecting the true source of the DDoS traffic the network operator can block the

DDoS traffic on its ingress interfaces by configuring access control lists (ACL) or by

using DDoS scrubbing devices such as [6]. However, rarely are the true sources of

DDoS traffic identified, which limits use of ACLs as a last resource means to block

attack traffic since legitimate traffic will likely also be blocked. DDoS scrubbers

tend to attract more traffic into the core network toward scrubbing facilities, which

is counter to our objective to protect the core network. Furthermore, although

these approaches are practical, they do not allow for an instantaneous protection

of the network. As implemented today, theses approaches require multiple minutes

to detect and mitigate DDoS attacks, which does not match the time sensitivity of
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today’s applications. Similarly, network management mechanisms that generally

aim to find alternate routes around congested links also do not match the time

sensitivity of today’s applications.

Work has also focused on enhancing the current Internet protocol and rout-

ing implementations. For example, multiple proposals have suggested to limit the

best effort connectivity of the network using techniques such as capabilities mod-

els [72, 94, 69] , filtering schemes [57, 14] or routing modification [16, 38]. The

main focus of these papers is the protection of customers connecting to the core

network rather than protecting the core itself, which is the focus of our work. To

illustrate the difference, consider a scenario in which an attacker controls a large

number of zombies. These zombies could communicate with each other, granting

each other capabilities or similar rights to communicate. If planned properly, this

traffic is still sufficient to attack a core network. The root of the problem is that

the core cannot rely on either the sender or the receiver of the traffic to protect

itself.

Recently, a couple of novel defense mechanisms deployed in a core network

are also proposed to mitigate suspicious attack traffic. One of them is prime [89]

and the other is pushback [45]. Similar to the proposals limiting connectivity

cited above, prime focuses on protecting individual customers. This leads again

to an issue of reliance in that a service provider should not rely on its customers

for protection. Furthermore, their solution relies heavily on the operator and

customers knowing a priori who are the good and bad network entities, and their

solution has a scalability issue in that it is not scalable to maintain detailed per-

customer state for all customers within the network. On the other hand, pushback

is a reactive defense mechanism which detects suspicious traffic at congested routes

then sends filtering messages to upstream routers. Not only does pushback require

communication and cooperation between routers, it simply needs time to react and

propagate the filtering messages.

Our work builds on the existing body of literature on max-min fair resource

allocation [22, 88, 42, 24, 75, 79, 71] to the problem of proactive DDoS defense.

However, our work here is different in that we use max-min fair allocation for the
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purpose of differential tagging of packets with the objective of minimizing collateral

damage when a DDoS attack occurs. Our work here is also different than the server-

centric DDoS defense mechanism proposed in [96], which is aimed at protecting

end-hosts rather than the network. In their solution, a server explicitly negotiates

with selected upstream routers to throttle traffic destined to it. Max-min fairness

is applied to set the throttling rates of these selected upstream routers. Like [89]

discussed above, their solution also has a scalability issue in that the selected

upstream routers must maintain per-customer state for the requested rate limits.

Finally, our work also builds on existing preferential dropping mechanisms

that have been developed for providing Quality-of-Service (QoS) [29, 32]. However,

for providing QoS, the service-level-agreements that dictate the bandwidth alloca-

tion are assumed to be either specified by customers or decided by the operator for

the purpose of traffic engineering. There is also a body of work on measurement-

based admission control for determining whether or not to admit new traffic into

the network, e.g. [39, 47]. With both service-level-agreement-based and admission-

control-based bandwidth reservation schemes, rate limits are enforced. Our work

here is different in that we use preferential dropping for a different purpose to pro-

vide bandwidth isolation between traffic flows to minimize the damage that attack

traffic can cause to regular traffic.

5.3 Proactive Surge Protection

In this section, we present a high-level architectural overview of a DDoS

defense solution called Proactive Surge Protection (PSP). To illustrate the basic

concept, we will depict an example scenario for the Abilene network. That net-

work consists of 11 core routers that are interconnected by OC192 (10 Gb/s) links.

For the purpose of depiction, we will zoom in on a portion of the Abilene net-

work, as shown in Figure 5.1(a). Consider a simple illustrative situation in which

there is a sudden bandwidth-based attack along the origin-destination (OD) pair

Chicago/NY, where an OD pair is defined to be the corresponding pair of ingress

and egress nodes. Suppose that the magnitude of the attack traffic is 10 Gb/s.
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Figure 5.1: Attack scenario on the Abilene network.

This attack traffic, when combined with the regular traffic for the OD pairs Sunny-

vale/NY and Denver/NY (3 + 3 + 10 = 16 Gb/s), will significantly oversubscribe

the 10 Gb/s Chicago/NY link, resulting in a high percentage of indiscriminate

packet drops. Although the OD pairs Sunnyvale/NY and Denver/NY are not un-

der direct attack, these flows will also suffer substantial packet loss on links which

they share with the attack OD pair, resulting in significant collateral damage. The

flows between Sunnyvale/NY and Denver/NY are said to be caught in the crossfire

of the Chicago/NY attack.

5.3.1 PSP Approach

The PSP approach is based on providing bandwidth isolation between dif-

ferent traffic flows so that the amount of collateral damage sustained along crossfire

traffic flows is minimized. This bandwidth isolation is achieved by using a form

of soft admission control at the perimeter of a provider network. In particular, to

avoid saturation of network links, we impose rate limits on the amount of traffic

that gets injected into the network for each OD pair. However, rather than im-

posing a hard rate limit, where packets are blocked from entering the network, we

classify packets into two priority classes, high and low. Metering is performed at

the perimeter of the network, and packets are tagged high if the arrival rate is

below a certain threshold. But when a certain threshold is exceeded, packets will

get tagged as low priority. Then, when a network link gets saturated, e.g. when
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an attack occurs, packets tagged with a low priority will be dropped preferentially.

This ensures that our solution does not drop traffic unless a network link capacity

has indeed been exceeded. Under normal network conditions, in the absence of

sustained congestion, packets will get forwarded in the same manner as without

our solution.

Consider again the above example, now depicted in Figure 5.1(b). Suppose

we set the high priority rate limit for the OD pairs Sunnyvale/NY, Denver/NY,

and Chicago/NY to 3.5 Gb/s, 3.5 Gb/s, and 3 Gb/s, respectively.This will ensure

that the total traffic admitted as high priority on the Chicago/NY link is limited to

10 Gb/s. Operators can also set maximum rate limits to some factor below the link

capacity to provide the desired headroom (e.g. set the target link load to be 90%).

If the limit set for a particular OD pair is above the actual amount of traffic along

that flow, then all packets for that flow will get tagged as high priority. Consider

the OD pair Chicago/NY. Suppose the actual traffic under an attack is 10 Gb/s,

which is above the 3 Gb/s limit. Then, only 3 Gb/s of traffic will get tagged as

high priority, and 7 Gb/s will get tagged as low priority. Since the total demand on

the Chicago link exceeds the 10 Gb/s link capacity, considerable packets would get

dropped. However, the packets drop will come from the OD pair Chicago/NY since

all packets from Sunnyvale/NY and Denver/NY would have been tagged as high

priority. Therefore, the packets for the OD pairs Sunnyvale/NY and Denver/NY

would be shielded from collateral damage.

Although our simple illustrative example shown in Figure 5.1 only involved

one attack flow from one ingress point, the attack traffic in general can be highly

distributed. As we shall see in Section 5.6, the proposed PSP method is also quite

effective in such distributed attack scenarios.

5.3.2 PSP Architecture

Our proposed PSP architecture is depicted in Figure 5.2. The architecture

is divided into a policy plane and an enforcement plane. The traffic data collection

and bandwidth allocation components are on the policy plane, and the differential

tagging and preferential drop components are on the enforcement plane.
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Figure 5.2: Proactive Surge Protection (PSP) architecture.

Traffic Data Collector: The role of the traffic data collection component is

to collect and summarize historical traffic measurements. For example, the widely

deployed Cisco sampled NetFlow mechanism can be used in conjunction with mea-

surement methodologies such that those outlined in [34] to collect and derive traffic

matrices for different times throughout a day, a week, a month, etc, between dif-

ferent origin-destination (OD) pairs of ingress-egress nodes. The infrastructure for

this traffic data collection already exists in most service provider networks. The

derived traffic matrices are used to estimate the range of expected traffic demands

for different time periods.

Bandwidth Allocator: Given the historical traffic data collected, the role of

the bandwidth allocator is to determine the rate limits at different time periods.

For each time period t, the bandwidth allocator will determine a bandwidth alloca-

tion matrix, B(t) = [ bs,d(t) ], where bs,d(t) is the rate limit for the corresponding

OD pair with ingress node s and egress node d for a particular time of day t.

For example, a different bandwidth allocation matrix B(t) may be computed for

each hour in a day using the historical traffic data collected for same hour of

the day. Under normal operating conditions, network links are typically under-

utilized. Therefore, traffic demands from historical measurements will reflect this

under-utilization. Since there is likely to be room for admitting more traffic into
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the high priority class than observed in the historical measurements, we can fully

allocate in some fair manner the available network resources to high priority traffic.

By fully allocating the available network resources beyond the previously observed

traffic, we can provide headroom to account for estimation inaccuracies and traffic

burstiness. The bandwidth allocation matrices can be computed offline, and oper-

ators can remotely configure routers at the network perimeter with these matrices

using existing router configuration mechanisms.

Differentiated Tagging: Given the rate limits determined by the bandwidth

allocator, the role of the differential tagging component is to perform the metering

and tagging of packets in accordance to the determined rate limits. This component

is implemented at the perimeter of the network. In particular, packets arriving

at ingress node s and destined to egress node d are tagged as high priority if

their metered rates are below the threshold given by bs,d(t), using the bandwidth

allocation matrix B(t) for the corresponding time of day. Otherwise, they are

tagged as low priority. These traffic management mechanisms for metering and

tagging are commonly available in modern routers at linespeeds.

Preferential Drops: With packets tagged at the perimeter, low priority pack-

ets can be dropped preferentially over high priority packets at a network router

whenever a sustained congestion occurs. Again, this preferential dropping mech-

anism [29] is commonly available in modern routers at linespeeds [5]. By using

preferential drop at interior routers rather than simply blocking packets at the

perimeter when a rate limit has been reached, our solution ensures that no packet

gets dropped unless a network link capacity has indeed been exceeded. Under nor-

mal network conditions, in the absence of sustained congestion, packets will get

forwarded in the same manner as without our surge protection scheme.

5.4 Bandwidth Allocation Polices

Intuitively, PSP works by fully allocating the available network resources

into the high priority class in some fair manner so that the high priority class rate

limits for the different OD pairs are at least as high as the expected normal traffic.
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This way, should a DDoS attack occur that would saturate links along the attack

route, normal traffic corresponding to crossfire OD pairs would be isolated from

the attack traffic, thus minimizing collateral damage. In particular, packets for a

particular crossfire OD pair would only be dropped at a congested network link if

the actual normal traffic for that flow is above the bandwidth allocation threshold

given to it. Therefore, bandwidth allocation plays a central role in affecting the

drop probability of normal crossfire traffic during an attack. As such, the goal

of bandwidth allocation is to allocate the available network resources with the

objective of minimizing the drop probabilities for all OD pairs in some fair manner.

5.4.1 Formulation

To achieve the objectives of minimizing drop probability and ensuring fair

allocation of network resources, we formulate the bandwidth allocation problem

as a utility max-min fair allocation problem [22, 24, 79, 71]. The utility max-min

fair allocation problem can be stated as follows. Let ~x = (x1, x2, . . . , xN ) be the

allocation to N flows, and let (β1(x1), β2(x2), . . . , βN (xN)) be N utility functions,

with each βi(xi) corresponding to the utility function for flow i. An allocation ~x is

said to be utility max-min fair if and only if increasing one component xi must be

at the expense of decreasing some other component xj such that βj(xj) ≤ βi(xi).

Conventionally, the literature on max-min fair allocation uses the vector

notation ~x(t) = (x1(t), x2(t), . . . , xN(t)) to represent the allocation for some time

period t. The correspondence to our bandwidth allocation matrix B(t) = [ bs,d(t) ]

is straightforward: bsi,di(t) = xi(t) is the bandwidth allocation at time t for flow

i, with the corresponding OD pair of ingress and egress nodes (si, di). Unless

otherwise clarified, we use the vector notation ~x(t) = (x1(t), x2(t), . . . , xN (t)) and

our bandwidth allocation matrix notation interchangeably.

The utility max-min fair allocation problem has been well-studied, and as

shown in [24, 79], the problem can be solved by means of a “water-filling” algo-

rithm. We briefly outline here how the algorithm works. The basic idea is to

iteratively calculate the utility max-min fair share for each flow in the network.

Initially, all flows are allocated rate xi = 0 and are considered free, meaning that
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its rate can be further increased. At each iteration, the water-filling algorithm aims

to find largest increase in bandwidth allocation to free flows that will result in the

maximum common utility with the available link capacities. The provided util-

ity functions, (β1(x1), β2(x2), . . . , βN(xN)), are used to determine this maximum

common utility. When a link is saturated, it is removed from further considera-

tion, and the corresponding flows that cross these saturated links are fixed from

further increase in bandwidth allocation. The algorithm converges after at most

L iterations, where L is the number of links in the network, since at least one link

becomes saturated in each iteration. The reader is referred to [24, 79] for detailed

discussions.

In the context of PSP, the utility max-min fair algorithm is used to im-

plement different bandwidth allocation policies. In particular, we describe in this

section three bandwidth allocation policies, Mean-PSP, CDF-PSP and GCDF-PSP.

All of them are based on traffic data collected from historical traffic measurements.

The first policy, Mean-PSP, simply uses the average historical traffic demands ob-

served as weights in the corresponding utility functions. Mean-PSP is based on

the simple intuition that flows with higher average traffic demands should receive

proportionally higher bandwidth allocation. However, this policy does not directly

consider the traffic variance observed in the traffic measurements.

To directly account for traffic variance, we propose a second policy, CDF-

PSP, that explicitly aims to minimize drop probabilities by using the Cumulative

Distribution Functions (CDFs) [22] derived from the empirical distribution of traf-

fic demands observed in the traffic measurements. These CDFs can be used to

capture the probability that the actual traffic will not exceed a particular band-

width allocation. When these CDFs are used as utility functions, maximizing the

utility corresponds directly to the minimization of drop probabilities.

Finally, GCDF-PSP is proposed when we consider the CDF of historical

traffic can be approximated by a Gaussian distribution. Specially, we show the

utility max-min allocation of CDF-PSP can be reduced to weight max-min in

GCDF-PSP by selecting the weight of each flow to be the variance of traffic demand

in Gaussian distribution. Each of these three policies is further illustrated next.
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Figure 5.5: CDF-PSP water-filling
illustrated.

5.4.2 Mean-PSP: Mean-based Max-min Fairness

Our first allocation policy, Mean-PSP, simply uses the mean traffic demand

as the utility function. In particular, the utility function for flow i is a simple

linear function βi(x) = x
µi
, where µi is the mean traffic demand of flow i, which

simplifies to an easier weighted max-min fair allocation problem.

To illustrate how Mean-PSP works, consider the small example shown in

Figure 5.3. It depicts a simple network topology with 4 nodes that are intercon-

nected by 10 Gb/s links. Consider the corresponding traffic measurements shown

in Table 5.1. For simplicity of illustration, each flow is described by just 5 data

points, and the corresponding mean traffic demands are also indicated in Table 5.1.

Consider the first iteration of the Mean-PSP water-filling procedure shown in Fig-

ure 5.4(a). The maximum common utility that can be achieved by all free flows

is β(x) = 1, which corresponds to allocating 2 Gb/s each to the OD pairs (A,D)

and (B,D) and 6 Gb/s each to the OD pairs (C,D), (A,C), and (B,C). For

example, βA,D(x) =
x
µ
= 1 corresponds to allocating x = 2 Gb/s since µ for (A,D)
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Table 5.1: Traffic demands and the corresponding bandwidth allocations for Mean-
PSP and CDF-PSP.

Flows Historical traffic measurements BW allocation
Measured demands Mean Mean-PSP CDF-PSP

(sorted) 1st 2nd 1st 2nd
(A,D) 1 1 2 2 4 2 2 2 2 2
(B,D) 1 1 1 3 4 2 2 2 3 3
(C,D) 4 5 5 5 11 6 6 6 5 5
(A,C) 4 5 5 5 11 6 6 8 5 8
(B,C) 5 5 6 6 8 6 6 8 6 7

is 2. Since all three flows, (A,D), (B,D), and (C,D), share a common link CD,

the sum of their first iteration allocation, 2 + 2 + 6 = 10 Gb/s, would already

saturate link CD. This saturated link is removed from consideration in subsequent

iterations, and the flows (A,D), (B,D), and (C,D) are fixed at the allocation of

2 Gb/s, 2 Gb/s, and 6 Gb/s, respectively.

On the other hand, link AC is only shared by flows (A,C) and (A,D), which

has an aggregate allocation of 2 + 6 = 8 Gb/s on link AC after the first iteration.

This leaves 10−8 = 2 Gb/s of residual capacity for the next iteration. Similarly, link

BC is shared by flows (B,C) and (B,D), which also has an aggregate allocation

of 2 + 6 = 8 Gb/s on link BC after the first iteration, with 2 Gb/s of residual

capacity. After the first iteration, flows (A,C) and (B,C) remain free.

In the second iteration, as in shown Figure 5.4(b), the maximum common

utility is achieved by allocating the remaining 2 Gb/s on link AC to flow (A,C)

and the remaining 2 Gb/s on link BC to flow (B,C), resulting in each flow having 8

Gb/s allocated to it in total. The final Mean-PSP allocation is shown in Table 5.1.

5.4.3 CDF-PSP: CDF-based Max-min Fairness

Our second allocation policy, CDF-PSP, aims to explicitly capture the traf-

fic variance observed in historical traffic measurements by using a Cumulative

Distribution Function (CDF) model as the utility function. The use of CDFs [22]

captures the acceptance probability of a particular bandwidth allocation as follows.
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Let Xi(t) be a random variable that represents the actual normal traffic for flow

i at time t, and let xi(t) be the bandwidth allocation. Then the CDF of Xi(t) is

denoted as
Pr[Xi(t) ≤ xi(t)] = Φi,t(xi(t)),

and the drop probability is simply the complementary function

Pr[Xi(t) > xi(t)] = 1− Φi,t(xi(t)).

Therefore, when CDFs are used to maximize the acceptance probabilities for all

flows in a max-min fair manner, it is equivalent to minimizing the drop probabilities

for all flows in a min-max fair manner.

In general, the expected traffic can be modeled using different probability

density functions with the corresponding CDFs. One probability density function

is to use the empirical distribution that directly corresponds to the historical traffic

measurements taken. In particular, let (ri,1(t), ri,2(t), . . . , ri,M (t)) be M measure-

ments taken for flow i at a particular time of day t over some historical data set.

Then the empirical CDF is simply defined as

Φi,t(xi(t)) =
# measurements ≤ xi(t)

M

=
1

M

(

M
∑

k=1

I(ri,k(t) ≤ xi(t))

)

,

where I(ri,k(t) ≤ xi(t)) is the indicator that the measurement ri,k(t) is less than or

equal to xi(t). For the example shown in Table 5.1, the corresponding empirical

CDFs are shown in Figure 5.6. For example in Figure 5.6(a) for OD pair (A,D),

a bandwidth allocation of 2 Gb/s would correspond to an acceptance probability

of 80% (with the corresponding drop probability of 20%).

To illustrate how CDF-PSP works, consider again the example shown in

Figure 5.3 and Table 5.1. Consider the first iteration of the CDF-PSP water-filling

procedure shown in Figure 5.5(a). To simplify notation, we will simply use for

example βA,D(x) = ΦA,D(x) to indicate the utility function for flow (A,D) for

some time period t, and we will use analogous notations for the other flows.
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In the first iteration, the maximum common utility that can be achieved

by all free flows is an acceptance probability of β(x) = 80%, which corresponds to

allocating 2 Gb/s to (A,D), 3 Gb/s to (B,D), 5 Gb/s each to (C,D) and (A,C),

and 6 Gb/s to (B,C). This first iteration allocation is shown in bold black lines in

Figure 5.6. With this allocation in the first iteration, link CD is again saturated

since the sum of the first iteration allocation to flows (A,D), (B,D), and (C,D)

is 2 + 3 + 5 = 10 Gb/s, which would already reach the link capacity of CD.

Therefore, the saturated link CD is removed from consideration in subsequent

iterations, and the flows (A,D), (B,D), and (C,D) are fixed at the allocation of

2 Gb/s, 3 Gb/s, and 5 Gb/s, respectively.

For link AC, which is shared by flows (A,C) and (A,D), the first iteration

allocation is 2 + 5 = 7 Gb/s, leaving 10 − 7 = 3 Gb/s of residual capacity. Sim-

ilarly, for link BC, which is shared by flows (B,C) and (B,D), the first iteration

allocation is 3 + 6 = 9 Gb/s, leaving 10− 9 = 1 Gb/s of residual capacity.

In the second iteration, as in shown Figure 5.5(b), the maximum common

utility 90% is achieved for the remaining free flows (A,C) and (B,C) by allocating

the remaining 3 Gb/s on link AC to flow (A,C) and the remaining 1 Gb/s on link

BC to flow (B,C), resulting in a total of 8 Gb/s allocated to (A,C) and 7 Gb/s

allocated to (B,C). This second iteration allocation is shown in dotted lines in

Figure 5.6. The final CDF-PSP bandwidth allocation is shown in Table 5.1.

Comparing the results for CDF-PSP and Mean-PSP shown in Figure 5.6

and Table 5.1, we see that CDF-PSP was able to achieve a higher worst-case

acceptance probability for all flows than Mean-PSP. In particular, the CDF-PSP

results shown in Figure 5.6 and Table 5.1 show that CDF-PSP was able to achieve a

minimum acceptance probability of 80% for all flows whereas Mean-PSP was only

able to achieve a lower worst-case acceptance probability of 70%. For example,

for flow (B,D), the bandwidth allocation of 3 Gb/s determined by CDF-PSP

corresponds to an 80% acceptance rate whereas the 2 Gb/s determined by Mean-

PSP only corresponds to a 70% acceptance rate. The better worst-case result is

because CDF-PSP specifically targets the max-min optimization of the acceptance

probability by using the cumulative distribution function as the objective.
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Figure 5.6: Empirical CDFs for flows (A, D), (B, D), (C, D), (A, C), (B, C).

5.4.4 GCDF-PSP: Gaussian-based Max-min Fairness

Another probability Another distribution model that we can use with histor-

ical traffic measurements is the Gaussian distribution. GCDF-PSP allows network

operators to model future traffic variability scenarios in which historical datasets

are not applicable. In addition, we show the problem is simplified to a weighted

max-min bandwidth allocation problem.

We denote the CDF for flow i in a Gaussian distribution as Φµi,σ
2
i
(x), where

µi and σi are the mean and standard deviations for flow i, which can be derived

from the traffic measurements. To simplify the notation in our bandwidth alloca-

tion problem, we will simply use µi, σi, and Φµi,σi(xi) to denote the mean, standard

deviation, and CDF for a particular time of day t, without any subscript t, unless

otherwise needed.

To apply the Gaussian CDF model as utility functions in the water-filling

algorithm, at each iteration, instead of finding a bandwidth allocation ~x(t)p̄ =

(x1(t), x2(t), . . . , xN(t)) that can achieve the largest acceptance probability p̄, we
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find a bandwidth allocation ~x(t)λ̄ that can achieve the largest scaling factor λ̄ in

the following equation:

xi = µi + σi λ̄.

This is equivalent to solving the weighted max-min fair allocation problem using

the standard deviations (σ1, σ2, . . . , σN) as weights and the means (µ1, µ2, . . . , µN)

as offsets.

The reduction rests upon the observation that the inversed CDF for a Gaus-

sian distribution can be written as

xi = Φ−1
µi,σ

2
i

(p) = µi + σi Φ
−1(p) = µi + σi

√
2 erf−1(2p− 1)

which is interpreted as the minimum allocation of xi to ensure an acceptance prob-

ability of p, where

Φ−1(p) =
√
2 erf−1(2p− 1)

is the inverse standard normal cumulative distribution function defined for µ = 0

and σ = 1. Therefore, we can see that λ̄ can be derived from the maximum

acceptance probability p̄ as follows:

λ̄ = Φ−1(¯̄p) =
√
2 erf−1(2p̄− 1).

Given that Φ−1(p) is an increasing function, it follows that maximizing λ̄ in the

weighted max-min fair allocation is is equivalent to maximizing p̄ in the utility max-

min fair allocation problem. This reduction simplifies the bandwidth allocation

problem.

5.5 Experimental Setup

We employed NS2 based simulations to evaluate our PSP methods on two

large real networks.

US: This is the backbone of a large service provider in the US, and consists of

around 700 routers and thousands of links ranging from T1 to OC768 speeds.
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EU: This is the backbone of a large service provider in Europe. It has a similar

network structure as the US backbone, but it is larger with about 150 more routers

and 500 more links.

While the results for the individual networks cannot be directly compared to each

other because of differences in their network characteristics and traffic behavior,

multiple network environments allow us to explore and understand the performance

of our PSP methods for a range of diverse scenarios.

5.5.1 Normal Traffic Demand

For each network, using the methods outlined in [34], we build ingress

router to egress router traffic matrices from several weeks worth of sampled Netflow

data that record the traffic for that network [31]: US (07/01/07−09/03/07) and

EU (11/18/06−12/18/06 & 07/01/07−09/03/07). For each time interval τ , the

corresponding OD flows are represented by a N × N traffic matrix where N is

the number of access routers providing ingress or egress to the backbone, and

each entry contains the average demand between the corresponding routers within

that interval. The above traffic data are used both for creating the normal traffic

demand for the simulator as well as for computing the corresponding bandwidth

allocation matrices for the candidate PSP techniques. One desirable characteristic

from a network management, operations and system overhead perspective is to

avoid too many unnecessary fine time scale changes. Therefore, one goal of our

study was to evaluate the effectiveness of using a single representative bandwidth

allocation matrix for an extended period of time. An implicit hypothesis is that the

bandwidth allocation matrix does not need to be computed and updated on a fine

timescale. To this end, in the simulations, we use a finer timescale traffic matrix

with τ = 1 min for determining the normal traffic demand, and a coarser timescale

1 hour interval for computing the bandwidth allocation matrix from historical data

sets.
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5.5.2 DDoS Attack Traffic

To test the robustness of our PSP approach, we used two different types of

attack scenarios for evaluation – a distributed attack scenario for the US backbone

and a targeted attack scenario for the EU backbone. As we shall see in Section 5.6,

PSP is very effective in both types of attacks. In particular, we used the following.

US DDoS: For the US backbone, the attack matrix that we used for evaluation is

based on large DDoS alarms that were actually generated by a commercial DDoS

detection system deployed at key locations in the network. In particular, among

the actual large DDoS alarms there were generated during the period of 6/1/05

to 7/1/06, we selected the largest one involving the most number of attack flows

as the attack matrix. This was a highly distributed attack involving 40% (nearly

half) of the ingress routers as attack sources and 25% of the egress routers as attack

destinations. The number of attack flows observed at a single ingress router was

up to 150 flows, with an average of about 24 attack flows from each ingress router.

The attacks were distributed over a large number of egress routers. Although the

actual attacks were large enough to trigger the DDoS alarms, they did not actually

cause overloading on any backbone link. Therefore, we scaled up each attack flow

to an average of 1% of the ingress router link access capacity. Since there were

many flows, this was already sufficient to cause overloading on the network.

EU DDoS: For the Europe backbone, we had no commercial DDoS detection logs

available. Therefore, we created our own synthetic DDoS attack data. To evaluate

PSP under different attack scenarios, we created a targeted attack scenario in which

all attack flows are targeted to only a small number of egress routers. In particular,

to mimic the US DDoS attack data, we randomly selected 40% of ingress routers

to be attack sources. However, to create a targeted attack scenario, we purposely

selected at random only 2% of the egress routers as attack destinations. With

only 2% of the egress routers involved as attack destinations, we concentrated the

attacks from each ingress router to just 1-3 destinations with demand set at 10%

of the ingress router link access capacity.
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5.5.3 NS2 Simulation Details

Our experiments are implemented using NS2 simulations. This involved

implementing the 2-class bandwidth allocation, and simulating both the normal

and DDoS traffic flows.

Bandwidth Allocation and Enforcement: The metering and class differentia-

tion of packets are implemented at the perimeter of each network using the differ-

entiated service module in NS2, which allows users to set rate limits for each indi-

vidual OD pair. Our simulation updates the rate limits hourly by pre-computing

the bandwidth allocation matrix based on the historical traffic matrices that were

collected several weeks prior to the attack date: US (07/01/07−09/02/07) and

EU (11/18/06−12/17/06 & 07/01/07−09/02/07).
The differentiated service module marks incoming packets into different pri-

orities based on the configured rate limits set by our bandwidth allocation matrix

and the estimated incoming traffic rate of the OD pair. Specifically, we imple-

mented differentiated service using TSW2CM (Time Sliding Window with 2 Color

Marking), an NS2 provided policer. As its name implies, the TSW2CM policer

uses a sliding time window to estimate the traffic rate.

If the estimated traffic exceeds the given threshold, the incoming packet is

marked into the low priority class; otherwise, it is marked into the high priority

class. We then use existing preferential dropping mechanisms to ensure that lower

priority packets are preferentially dropped over higher priority packets when mem-

ory buffers get full. In particular, WRED/RIO1 is one such preferential dropping

mechanism that is widely deployed in existing commercial routers [29, 7, 5]. We

used this WRED/RIO mechanism in our NS2 simulations.

Traffic Simulation: For simulation data (testing phase), we purposely used a

different data set than the traffic matrices used for bandwidth allocation (learning

phase). In particular, for each network, we selected a week-day outside of the

days used for bandwidth allocation, and we considered 48 1-minute time intervals

(one every 30-minutes) across the entire 24 hours of this selected day. The exact

1RIO is WRED with two priority classes.
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date that we selected to simulate normal traffic is 09/03/07 for both the US and

EU networks. Recall that for a given time interval τ , we compute normal and

DDoS traffic matrices that give average traffic rates across that interval. These

matrices are used to generate the traffic flows for that time interval. Both DDoS

and network traffic are simulated as constant bandwidth UDP streams with fixed

packet sizes of 1 kB.

5.6 Experimental Results

We begin our evaluations in Section 5.6.1 by quantifying the potential extent

and severity of the problem that we are trying to address – the amount of collateral

damage in each network in the absence of any protection mechanism. We then

develop an understanding of the damage mitigation capabilities and properties of

our PSP mechanism, first at the network level in Section 5.6.2 and then at the

individual OD-pair level in Section 5.6.3. Section 5.6.4 explores the effectiveness

of the proposed schemes under scaled attacks, and Section 5.6.5 presents the results

under multi-path routing.

In the following results, we shall use the term No-PSP to refer to the baseline

scenario with no surge protection, while we use the terms Mean-PSP, CDF-PSP

and GCDF-PSP to refer to the PSP schemes based on mean, empirical CDF and

Gaussian CDF water-filling bandwidth allocation algorithms respectively. Recall

that an OD pair is considered as (i) an attacked OD pair if there is attack traffic

along that pair, (ii) a crossfire OD pair if it shares at least one link with an OD

pair containing attack traffic, and (iii) a non-crossfire OD pair if it is neither

an attacked nor a crossfire OD pair.

5.6.1 Potential for Collateral Damage

We first explore the extent to which OD pairs and their offered traffic de-

mands are placed in potential harm’s way because they share network path seg-

ments with a given set of attack flows. In Figure 5.7, we report the relative
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proportion of OD pairs in the categories of attacked, crossfire, and non-crossfire

OD pairs for both the US and EU backbones.

As described in Section 5.5.2, 40% of the ingress routers and 25% of the

egress routers were involved in the DDoS attack on the US backbone. In general,

for a network with N ingress/egress routers, there are N 2 possible OD pairs (the

ratio of routers to OD pairs is 1-to-N). For the US backbone, with about 700

routers, there are nearly half a million OD pairs. Although 40% of the ingress

routers and 25% of the egress routers were involved in the attack, the number

of attack destinations from each ingress router was on average about 24 egress

routers, resulting in just 1.2% of the OD pairs under direct attack. In general,

because the number of OD pairs grows quadratically with N (i.e. N 2), even in a

highly distributed attack scenario where the attack flows come from all N routers,

the number of OD pairs under direct attack may still only correspond to a small

percentage of OD pairs. For the EU backbone, there are about 850 routers and

about three quarters of million OD pairs. For the targeted attack scenario de-

scribed in Section 5.5.2, 40% of the ingress routers were also involved in the DDoS

attack, but the attacks were concentrated to just 2% of the egress routers. Again,

even though 40% of the ingress routers were involved, only 0.1% of the OD pairs,

among N 2 OD pairs, were under direct attack.

In general, the percentage of OD pairs that are in the crossfire of attack flows

depends on where the attacks occurred and how traffic is routed over a particular

network. For the US backbone, we observe that the percentage of crossfire OD

pairs is very large (95.5%), causing substantial collateral damage even though the

attacks were directed over only 1.2% the OD pairs. This is somewhat expected

given the distributed nature of the attack where a high percentage of both ingress

and egress routers were involved in the attack. For the EU backbones, the observed

percentage of crossfire OD pairs is also very large (83.5%). This is somewhat

surprisingly because the attacks were targeted to only a small number of egress

routers. This large footprint can be attributed to the fact that even a relatively

small number of attack flows can go over common links that were shared by a vast

majority of other OD pairs.
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Figure 5.7: The percentage of the number of the three OD pair types classified
under an attack traffic.
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Figure 5.8: The proportion of normal traffic demand corresponding to the three
types of OD pairs.

We next depict the relative proportions of the overall normal traffic demand

corresponding to each type of OD pairs. While the classification of the OD pairs

into the 3 categories is fixed for a given network and attack matrix, the relative

traffic demand for the different classes is time-varying, depending on the actual

normal traffic demand in a given time interval. Figure 5.8 presents a breakdown

of the total normal traffic demands for the 3 classes across the 48 time intervals

that we explored. Note that for both the networks, crossfire OD pairs account for

a significant proportion of the total traffic demand. Figures 5.7 and 5.8 together

suggest that an attack directed even over a relatively small number of ingress-

egress interface combinations, could be routed around the network in a manner

that can impact a significant proportion of OD pairs and overall network traffic.

The results above provide us an indication of the potential “worst-case”

impact footprint that an attack can unleash, if its strength is sufficiently scaled

up. This is because a crossfire OD pair will suffer collateral packet losses only if

some link(s) on its path get congested. While the above results do not provide any

measure of actual damage impact, they do nevertheless point to the existence of

a real potential for widespread collateral damage, and underline the importance

and urgency of developing techniques to mitigate and minimize the extent of such

damage.
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Table 5.2: Collateral damage in the absence of PSP with the 10th and 90th per-
centile indicated in the brackets.

Impacted Impacted Mean packet loss rate
OD Pairs(%) Demand(%) of impacted OD pairs(%)

US 41.37 37.79 49.15
[39.64, 42.72] [35.16, 39.37] [47.62, 50.43]

EU 43.18 45.33 68.11
[38.48, 47.81] [38.90, 52.05] [65.51, 70.46]

We next consider the actual collateral damage induced by the specified

attacks in the absence of any protection scheme. We define a crossfire OD pair

to be impacted in a given time interval, if it suffered some packet loss in that

interval. Table 5.2 presents (i) the total number of, and (ii) traffic demand for

the impacted OD pairs as a percentage of the corresponding values for all crossfire

OD pairs, and (iii) the mean packet loss rate across the impacted OD pairs. To

account for time variability, we present the average value (with the 10th and 90th

percentile indicated in the brackets) for the three metrics across the 48 attacked

time intervals. Overall, the tables show that not only can the attacks impact a

significant proportion of the crossfire OD pairs and network traffic, but that they

can cause severe packet drops in many of them. For example, in the EU network,

in 90% of the time intervals, (i) at least 39.64% of the cross-fire OD pairs were

impacted, and (ii) the average packet loss rate across the impacted OD pairs was

47.62% or more. To put these numbers in proper context, note that TCP, which

accounts for the vast majority of traffic today, is known to have severe performance

problems once the loss rate exceeds a few single-digit percentage points.

5.6.2 Network-wide PSP Performance Evaluation

We start the evaluation of PSP by focusing on network-wide aggregate

performance for crossfire OD pairs and note the consistent substantially lower loss

rates under either Mean-PSP, GCDF-PSP or CDF-PSP across the entire day.

Total Packet Loss Rate: For each attack time interval, we compute the total
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Figure 5.9: The crossfire OD pair total packet loss rate ratio over No-PSP across
24 hours.(48 attack time intervals, 30 minutes apart).

Table 5.3: The time-averaged crossfire OD-pair total packet loss rate with the 10th

and 90th percentile indicated in the brackets.

No-PSP Mean-PSP GCDF CDF-PSP

US 17.93 1.63 1.49 1.11
[16.40, 18.79] [1.02, 2.14] [0.77, 2.12] [0.47, 1.71]

EU 30.48 2.73 2.72 2.32
[27.22, 32.86] [1.21, 4.54] [1.12, 4.58] [0.79, 4.22]

packet loss rate which is the total number of packets lost as a percentage of the

total offered load from all crossfire OD pairs. Table 5.3 summarizes the mean, 10th

and 90th percentile of the total packet loss rates across 48 attack time intervals.

The mean loss rates under No-PSP in US and EU networks are 17.93% and 30.48%,

respectively. The loss rate is relatively stable across time as indicated by the tight

interval between the 10th and 90th percentile numbers. In contrast, the mean loss

rate is much smaller, less than 3%, for either PSP scheme. Figure 5.9 shows the

loss rate across time, for the 3 PSP schemes, expressed as a percentage of the

corresponding loss rates under No-PSP. Note that even though the attack remains

the same over all 48 attack time intervals, the normal traffic demand matrix is

time-varying, and hence the observed variability in the time series. In particular,

we observe comparatively smaller improvements during the the network traffic

peak times, such as 12PM (GMT) in the EU backbone and 6PM (GMT) in the US
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Table 5.4: The time-averaged total packet loss reduction with the 10th and 90th

percentile indicated in the brackets.

Reduction ratio Reduction ratio Reduction ratio Reduction ratio
from No-PSP from No-PSP from Mean-PSP from GCDF-PSP
to Mean-PSP to CDF-PSP to CDF-PSP to CDF-PSP

US 91.00 93.90 34.75 27.36
[88.56, 93.89] [90.77, 97.21] [20.06, 53.09] [19.47, 38.67]

EU 91.17 92.51 19.90 19.90
[85.79, 96.17] [86.46, 97.58] [4.01, 41.58] [6.21, 35.45]

Table 5.5: The time-averaged number of impacted OD-pairs with the 10th and 90th

percentile indicated in the brackets.

No-PSP Mean-PSP GCDF-PSP CDF-PSP

US 41.37 12.85 11.73 7.16
[39.06, 42.73] [9.58, 14.58] [8.38, 13.84] [3.94, 9.24]

EU 43.18 12.81 12.10 8.79
[38.43, 47.94] [7.28, 19.70] [7.05, 18.48] [3.84, 15.46]

backbone. This behavior is because the amount of traffic that could be admitted as

high priority is bounded by the network’s carrying capacity. During high demand

time intervals, on one hand, links will be more loaded increasing the likelihood of

congestion and overload. On the other hand, more packets will get classified as

low priority, increasing the population size that can be dropped under congestion

and overload. Table 5.4 summarizes the performance improvements for the PSP

schemes in terms of relative loss rate reduction of Mean-PSP and CDF-PSP across

the different time intervals. For each network, on average, all PSP schemes reduce

the loss rate in a time interval by more than 90% from the corresponding No-PSP

value. In addition, CDF-PSP has consistently better performance than Mean-PSP

and GCDF-PSP in both networks, while GCDF-PSP has a lower loss rate than

Mean-PSP in most of the time. Take US network as an example, CDF-PSP reduces

the loss rate of Mean-PSP and GCDF-PSP by 34.74% and 27.36, respectively.

Number of impacted crossfire OD pairs: We next determine the number

of impacted OD pairs, ie., the crossfire OD pairs that suffer some packet loss at

each time interval. It is desirable to minimize this number, since many important
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Figure 5.10: The ratio of number of crossfire OD-pairs with packet loss over No-
PSP across 24 hours.(48 attack time intervals, 30 minutes apart).

Table 5.6: The time-averaged reduction of number of impacted OD-pairs with the
10th and 90th percentile indicated in the brackets.

Reduction ratio Reduction ratio Reduction ratio Reduction ratio
from No-PSP from No-PSP from Mean-PSP from GCDF-PSP
to CDF-PSP to CDF-PSP to CDF-PSP to CDF-PSP

US 69.05 82.82 45.47 40.30
[65.20, 75.64] [78.11, 90.22] [35.12, 59.30] [31.71, 53.53]

EU 71.18 80.42 34.94 31.45
[58.62, 81.49] [67.66, 90.36] [21.72, 47.60] [16.33, 44.70]

network applications including real-time gaming and VOIP are very sensitive to

and experience substantial performance degradations even under relatively low

packet loss rates. For each of the 48 attack time intervals, we determine the number

of impacted crossfire OD pairs as a percentage of the total number of crossfire OD

pairs with non-zero traffic demand in that time interval. We summarize the mean

and the 10th and 90th percentiles from the distribution of the resulting values

across the 48 time intervals in Table 5.5 for No-PSP and the three PSP schemes.

The mean proportion of impacted OD pairs drops from a high of 41.37% under

No-PSP to 12.85% for Mean-PSP, 11.73% for GCDF-PSP and 7.16% for CDP-

PSP. We present the time series of the proportion of impacted OD pairs for the

three PSP schemes (normalized by the corresponding value for No-PSP) across the

48 time intervals in Figure 5.10, and summarize the savings from the three PSP
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schemes in Table 5.6. Across all the time intervals, we note that a high percentage

of crossfire OD pairs had packet losses under-No-PSP, and that both PSP schemes

dramatically reduce this proportion, with CDF-PSP consistently having the lowest

proportion of impacted OD pairs. Considering the Table 5.6 , the proportion of

impacted OD pairs in the US network is reduced, on average, by over 69% going

from No-PSP to Mean-PSP. From Mean-PSP to CDF-PSP, the proportion drops,

on average, by a further substantial 45.47%.

5.6.3 OD pair-level Performance

In Section 5.6.2, we explored the performance of the PSP techniques from

the overall network perspective. We focus the analysis below on the performance

of individual crossfire OD pairs across time.

In particular, we analyze the magnitude of packet losses for different cross-

fire OD pairs. An OD-pair can have different loss rates at different attack time

intervals, and here for each crossfire OD pair, we consider the 90th percentile of

these loss rates across time, where we consider only time intervals where that OD

pair had non-zero traffic demand. Figure 5.11 shows the cumulative distribution

function (CDF) of this 90th percentile packet loss rate across all crossfire OD-

pairs, except those that had no traffic demand during the entire 48 attack time

intervals. In the figure, a given point (x, y) indicates that for y% of crossfire OD-

pairs, in 90% of the time intervals in which that OD pair had some traffic demand,

the packet loss was at most x%. The most interesting region from a practical

performance perspective lies to the left of the graph for low values of the loss rate.

This is because many network applications and even reliable transport protocols

like TCP have very poor performance and are practically unusable beyond a loss

rate of a few percentage points. Focussing on 0 − 10% loss rate range which is

widely considered to include this ’habitable zone of loss rates’, the figure shows

that both Mean-PSP, GCDF-PSP and CDF-PSP have substantially higher per-

centage of OD pairs in this zone, compared to No-PSP, and that CDF-PSP has

significantly better performance. For example, the US network, the percentage

of OD pair with less than 10% loss rate increases from just 58.84% for No-PSP
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Figure 5.11: CDF of the 90 percentile packet loss rate for all crossfire OD pairs.
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Figure 5.12: The time-averaged mean crossfire OD-pair packet loss rate as the
attack volume scaling factor increases from 0 to 3.

to 70.48% for Mean-PSP, 74.03% for GCDF-PSP and 79.62% for CDF-PSP. The

trends are similar for the EU network.

5.6.4 Performance under scaled attacks

Given the growing penetration of broadband connections and the ever-

increasing availability of large armies of botnets “for hire”, it is important to

understand the effectiveness of the PSP techniques with respect to increasing at-

tack intensity. To study this, for each network, we vary the intensity of the attack

matrix by scaling the demand of every attack flow by a factor ranging from 0

to 3, in steps of size 0.25. For each value of the scaling factor, we measure the
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Table 5.7: Collateral damage under multi-path in the absence of PSP with the
10th and 90th percentile indicated in the brackets. The difference from single-path
routing is indicated in parenthesis.

Impacted Impacted Mean packet loss rate
OD Pairs(%) Demand(%) of impacted OD pairs(%)

US 37.19 (-4.18) 36.02 (-1.77) 47.81 (-1.34)
[33.76, 39.10] [31.59, 38.32] [45.89, 49.73]

EU 44.91(+1.73) 47.63 (+2.30) 50.13 (-17.98)
[39.50, 48.58] [43.20, 50.91] [46.10, 54.42]

time-averaged mean OD packet loss rate, which measures the average packet loss

rate across all crossfire OD pairs with non-zero traffic demand, across eight 1-min.

time intervals, equally spaces across 24 hours. Figure 5.12 shows that the loss rate

under No-PSP increases much faster than under Mean-PSP and CDF-PSP, as the

attack intensity increases. This is because under No-PSP, all the normal traffic

packets have to compete for limited bandwidth resources with the attack traffic,

while with our protection scheme only normal traffic marked in low priority class

is affected by the increasing attack. Therefore, even in the extreme case when the

attack traffic demand is sufficient to clog all links, our protection scheme can still

guarantee that the normal traffic marked in the high priority class goes through

the network. Consequently, our PSP schemes are much less sensitive to the degree

of congestion, as evident by the much slower growth of the drop rate. For example,

in the US network, as the scale factor increases from 1 to 3, under No-PSP, the

mean drop rate jumped from slightly above 20% to almost 40%. In comparison,

under CDF-PSP, the mean loss rate increases very little from less than 3% to 4%

over the same range of attack intensities. The trends demonstrate that across the

range of scaling factor values, both the PSP schemes are very effective in mitigat-

ing collateral damage by keeping loss rates low, with CDF-PSP having an edge

over Mean-PSP.

5.6.5 Multi-path Evaluation

Finally, we investigate the impact of multi-path routing to our attack sce-

narios and protection schemes. Specifically, as an example, we consider a Cisco
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Table 5.8: The time-averaged crossfire OD-pair total packet loss rate with the
10th and 90th percentile indicated in the brackets. The difference from single-path
routing is indicated in parenthesis.

No-PSP Mean-PSP GCDF CDF-PSP

US 16.33 (-1.60) 1.46 (-0.17) 1.34 (-0.15) 0.98 (-0.13)
[14.81, 17.46] [0.93, 1.96] [0.70, 1.93] [0.43, 1.50]

EU 22.60 (-7.88) 2.28 (-0.45) 2.10 (-0.62) 1.93 (-0.39)
[19.86, 25.41] [1.12, 3.49] [0.84, 3.33] [0.72, 3.23]

router implementation of a multi-path load balancing scheme called Equal-Cost

Multi-Path (ECMP) [8] routing. Here, we revisit the potential of collateral dam-

age in Table 5.7 and the network-wide performance evaluation in Table 5.8. Be-

sides the mean, 90th percentile and 10 th percentile numbers, we also indicate the

difference of mean from the results under single-path experiments.

As shown in Table 5.7, when a routing algorithm has the ability to route

traffic on multiple paths, the degree of damage could be reduced in term of packet

loss because link congestion can be alleviated by load balance traffic. For example,

the packet loss rate in US and Europe networks were reduced by 1.34% and 17.98%,

respectively. However, the range of damage would also be extended because attack

traffic is spread across more links. For example, the number of impacted OD pairs

and demand in Europe were increased by 1.73% and 2.30%, respectively. Therefore,

while multi-path routing could temporarily alleviate the degree of damage, it also

creates more potential damage of collateral damage, especially when the volume

of attacks could easily be further increased.

We then observe the impact of multi-path routing on our schemes. As shown

in Table 5.8, with multi-path routing, the total packet loss rate is reduced under

each of our protection schemes. The improvement of our PSP protection scheme

in multi-path routing is slightly less than single-path routing for two reasons. One

reason is multi-path routing has greater impact to No-PSP because the packet loss

rate of No-PSP is heavily depending on link congestions. Second reason is the

traffic load distribution on links in multi-path routing may not accurately match

to the static load estimation in our bandwidth allocation algorithm. As a result,

our PSP scheme could over or under allocate certain link capacity and limit the
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improvement. Nevertheless, our PSP protection schemes still significantly reduce

loss rate and with CDF-PSP performed the best followed by GCDF-PSP and

Mean-PSP.

5.7 Discussion

Although our PSP protection mechanism could effectively reduce the col-

lateral damage of a DDoS attack, there are some limitations and shortcoming of

the approach. In this section, we would like to address each of them as the fol-

lowing. 1) Our approach is designed to reduce the collateral damage of a flooding

DDoS attack in a network. While the problem itself is important and interesting

to network operators, our approach cannot protect endhost nor defense against

those non-bandwidth based attacks which target the network protocol or endhost

resources instead of the intermediate network. 2) Our approach is a first-line de-

fense mechanism which aims to effectively mitigate attack damage in a timeliness

fashion. While our approach has the strength of scalability and cost, it doesn’t

have the ability, like previous defense mechanisms, to accurately identify individual

attack flows and eliminate them from network by blocking or filtering. Therefore,

our approach is orthogonal to those traditional approaches, and we will still rec-

ommend to deploy other sophisticated defense systems along with PSP mechanism

to further improve network performance. 3) A fundamental limitation of our ap-

proach is that we rely on traffic stability to allocate bandwidth without exploring

application level packet information. As a result, our approach could treat any

bursty traffic as suspicious attack traffic. It will particularly causes problem when

the burst traffic is consistent of a bunch of legitimate flows, such as flash crowd.

However, the flash crowd traffic would not always be dropped by PSP for two rea-

sons. First, flash crowd traffic only gets dropped when a link congestion actually

occurs. Second, because we tend to fully allocate bandwidth based on traffic statis-

tic not simply average traffic, the OD pair with flash crowd traffic could receive

higher rate limit. Finally, although flash crowd traffic could be dropped preferen-

tially at congested links, it seems to be a reasonable decision for network operator
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from the fairness stand point of view because the flash crowd traffic shouldn’t grab

majority of the bandwidth regardless the users are legitimate or not.

5.8 Conclusion

PSP provides network operators with a broad first line of proactive defense

against DDoS attacks, significantly reducing the impact of sudden bandwidth-

based attacks on a service provider network. Among its salient features, PSP

is readily deployable using existing router mechanisms, and PSP does not rely

on any unauthenticated packet header information. The latter feature makes the

solution resilient to evading attack schemes that launch many seemingly legitimate

TCP connections with spoofed IP addresses and port numbers. By taking into

consideration traffic variability observed in traffic measurements, our proactive

protection solution can ensure the maximization of the acceptance probability of

each flow in a max-min fair manner, or equivalently the minimization of the drop

probability in a min-max fair manner. Our extensive evaluation across two large

commercial backbone networks, using both distributed and targeted attacks, shows

that up to 95.5% of the network could suffer collateral damage even though the

attacks were directed over only 1.2% of the OD pairs. Our solution was able to

significantly reduce the amount of collateral damage by up to 97.58% in terms of

the number of packets dropped and 90.36% in terms of the number of flows with

packet loss. In addition, we show that PSP can maintain low packet loss rates

even when the intensity of attacks is increased significantly, and PSP has similar

protection performance under multi-path routing.

Chapter 5, in full, is a reprint of the material as it appears in Transac-

tion on Networking. Chou, Jerry; Lin, Bill; Sen, Subhabrata; Spatscheck, Oliver,

IEEE/ACM Press, 2009. The dissertation author was the primary investigator

and author of this paper.



Chapter 6

Conclusions

This thesis is motivated by the growing disparity between optical capabili-

ties and Moore’s Law. While the packet switching approach used in the Internet

backbone networks has thus far been able to keep up, it is unclear whether elec-

tronic routers that have been used at the core of backbone networks will continue

to scale to match future traffic growth or optical link rates. In this thesis, we

propose a novel network architecture called coplar. In contrast to previously

proposed optical network architectures that are based on on-the-fly dynamic re-

configurations of optical circuits and switches, coplar is based on send traffic

over statically provisioned circuits by default and rerouting excess traffic via other

circuits with residual capacity. The proposed approach has been extensively eval-

uated on real actual networks using a well-known network simulato.. Finally, we

demonstrate that our work on bandwidth allocation and routing can be applied

to other common network problems and applications, such as network security,

quality of services, and resource management. Therefore, the contributions in this

thesis are not limited to the field of optical networks.

In fact, we consider our coplar framework as an initial step towards inves-

tigating the possibilities of using coarse-grain circuits and rerouting-over-circuits

in optical networks. In the future, there remains several questions that need to be

answered and several approaches that should be further explored. For example, is

there a more accurate or precise model to characterize traffic for coarse-grain circuit

provisioning? Can we provision circuits to guarantee the worst-case performance

123
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instead of using max-min allocation to strike the balance between throughput and

fairness? How do we better coordinate circuit provisioning and adaptive rerout-

ing to achieve even better network performance? Finally, there are a number of

implementation details that could be better addressed in the future.
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