
UC Irvine
ICS Technical Reports

Title
Programming in a viable data flow language

Permalink
https://escholarship.org/uc/item/0md35184

Authors
Arvind
Gostelow, Kim P.
Plouffe, Wil

Publication Date
1976

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0md35184
https://escholarship.org
http://www.cdlib.org/

Programming In a

Viable Data Flow Language

by

Arvind

Kim P.

Wil Plouffe

Kim P. Gostelow ^

August 1976
REVISED

Technical Report #89

Department of Information and Computer Science
University of California, Irvine

Irvine, California 92717

This research is supported by NSF Grant McS 76-12460
The UCI Dataflow Architecture Project.

ABSTRACT

Current solid state technology suggests that future computers will
be highly asynchronous machines comprising small intercommunicating processors,
each processor contributing its effort to some part of the ongoing computation.
The functional basis of such a machine demands a totally different foundation
than that of current machines and languages. Data flow has been suggested as an
alternative approach to vonNe mann type machines and associated sequential
languages. A major cricism of data flow in the past has been the lack of
a suitable higher-level programming language for coding programs. We
feel that the sketch of a higher-level language presented here not only
answers the criticism but also brings an asynchronous control structure
into programming languages, as well as a strong theoretical basis for
such properties as modularity and verifiability of programs. The paper
contains a description of the ^rvine ^ata Flow language ID. Three complete
examples of programs in ID are included in section 3. For sake of reference,
a BNF grammar for ID has been included in Appendix A.

Programming in a Viable Data Flow

Language

1. Why another language?

Future computers will be highly asynchronous machines comprising

thousands of small intercommunicating processors, each processor con

tributing its effort to some part of the ongoing computation. The

functional basis of such a machine demands a totally different foundation

[GIMT74] than that of current machines and programming languages. The

central problem is removing the inhibitions imposed by "classical von

Neumann architecture", its emphasis on centralized control, and the non

functional un-modular programming languages it invites.

In place of current principles, we, along with others [r0ennis73 a,

GIMT74], feel that data flow can provide the needed foundation for

these future machines. By data flow, we mean a language in which

(1) an operation proceeds when and only when all

operands needed for that operation become available,

and (2) operations, at whatever level they might exist, are

purely functional and produce no side-effects.

Based upon a theoretically sound low-level data flow language proposed

by Dennis [Dennis73 a] ,we have developed a new machine-level interpreter

capable of effectively exchanging blocks of processors for slices of time

[AG75,AG76]. This new interpreter operates by "unraveling" or "unfolding"

programs (consider, for example, a loop) and asynchronously executing not

only distinct statements, but also distinct initiations of the same

statement. The unraveling interpreter does this in a straightforward

and mechanical way with no preliminary analysis.

3
For example, the usual 0^n) time complexity of matrix multiply on

a standard machine is 6(n) under the unraveling interpreter, and the

usual program for Hoare's quicksort under this new interpreter executes

in (5(n) with a worst case time of 0([n^) . The computations are short in

time, but require more space, thus potentially utilizing the large numbers

of processors which hew technology can provide. We are reducing the

length of the time critical path without changing the total computational

flux.

Nevertheless, a major criticism of data flow in the past has been the

lack of a suitable higher-level programming language for coding data

flow programs. (Recently, Weng [Weng75] has proposed a programming

language for data flow; his work, however, concentrated largely on

other aspects of data flow.) We feel that the sketch of a higher-level

data flow language as presented here not only answers the criticism,

but also brings an asynchronous control structure into programming languages,

as well as a strong theoretical basis for such properties as modularity

and verifiability of programs. It .is these aspects of data flow which

are fundamental and which have been captured in the Irvine Data

Flow language ID.

In the following. Section 2 presents much of the language ID by example

program segments» while Section 3 gives three complete example procedures.

Section 4 then reviews how asynchrony, modularity, and verifiability are

reflected in ID.

2. The language ID

The Irvine Data Flow language ID is a textual and high-level version

of Dennis' Data Flow (DDF) language [Dennis73a]. While a complete BNF

syntax for ID appears in Appendix A, the language will be largely explained

by the use of program segments, and only the most important syntactic

entities are refered to in the discussion. The version of ID that appears

here does not address all issues which must be resolved if. ID

were to become a programming facility. Instead, in our opinion, we have

concentrated, on the more important issues in the design of a data flow

language. While such constructs as blocks, loops, and conditionals

are discussed at some length, issues regarding typing of variables,

selection of primitive operators, and input-output are not raised.

In addition, more advanced topics such as the introduction of abstract

data types have not yet been addressed. The new semantics, rather than the

syntax of the language, has been our main focus. One of the design goals

is to be able to translate ID into DDF which is known to be side-effect

free and has easily understood semantics. Significant progress toward

this goal has been made.

2.1 Programs and expressions

A program in ID is defined to be an expression; execution of a

program means to evaluate the associated expression. Conceptually

an expression is a box with labelled inputs and ordered outputs. The

simplest expression may be a constant, a variable, a procedure call, or

a selection of a value from a structure. Other expressions can be

formed by the usual technique of joining two expressions by a binary

operator or by forming a list of expressions. An expression list :(Eigure 1)

is two or more expressions separated by a comma, where the comma imposes

the necessary ordering.

I

Figure 1

An expression list

The ordering of expressions in an expression list has no effect on the

evaluation process. Evaluation of expressions is asynchronous, dependent

solely on the availability of the operands.

When writing an expression list, it is sometimes convenient to be

able to identify certain partial results. An assignment statement in

ID represents the process of assigning names to the outputs of an expression.

However, names must be chosen carefully so that no two partial results

have the same name (the so-called "single-assignment" rule). ID,

like DDF or pure LISP [McCarthybO], is essentially a language without

variables, but when a name is assigned to a partial result it is

usual to call, that name a "variable". Since an assignment statement

only names the output of an expression, it in itself is not an expression.

The basic entity that represents an expression formed by using

assignment statements is a block. A block contains assignment statements

separated by semicolons, and a list of expressions to be returned as

the value of that block. Figure 2 gives an example of a block.

(x g(a,b); y f (x,b) ; z x+y return x,z)

Figure 2

An example of a block

Since variables represent partial results, it is always possible to

write a program without them. For example, the block expression of

Figure 2 can also be written as

(x -e- g(a,b); y f (x,b) return x,x+y)

or as

(x-^ g(a,b) return x,x+f(x,b))

or simply as a list of expressions

(g(a,b),g(a,b)+f(g(a,b),b))

However, this last expression represents substantially more computation

than the original block expression because g(a,b) would be evaluated three

times as opposed to once.

Since variables are assigned values only once, the order of assignments

is irrelevant. The meaning of a block remains unaltered even if statements

separated by a semicolon are interchanged. The reader can verify this

for the example in Figure 2. This lack of ordering captures the basically

asynchronous nature of data flow. ^

For purposes of modularity we Introduce scoping rules whereby a

variable that is assigned a value within a block is not visible outside that

block. Hence, no side-effects can occur in outer blocks due to assignments to

names within inner blocks. In the example of Figure 2, variables x,y, and z

are internal to the block while the variables a and b must come from

outside that block. This is because a and b have not been assigned any

value within the block, while x,y, and z have been so assigned. Consider

the example of Figure 3, where the block from Figure 2 has been enclosed

in another block. The names x and y that occur in the inner block represent

different partial results than the ones represented by x and y in the outer

block. The block expression from Figure 3 is reproduced below with changed

variable names to clarify the meaning of the block expression.

(x^ g(a); b-^ hCx,a); z,y-f- (x' -e g(a,b); y' -f- f(x',b)
return x',x'+y') return b+z,y)

a - • -

(x ^ g(a); b ^ h(x,a); z,y ^ (x ^ g(a,b); y ^ f(x,b)
return x.x+y) return b+z.y)

Figure 3

A block expression and scoping rules

The evaluation of this block will proceed whenever a value for a

becomes available, and the inner block will execute only after both a and b

become available. Even though the same name can appear at different lexical

levels without violating the single-assignment rule, a name can never

appear twice on the left hand side of assignment statements in the same

block. For example, (x h- y; x t<- g(a) return x) will not return y, nor g(a),

nor either of them nondeterministically. It is an invalid expression.

Hence, a block (actually any expression) can be inserted anywhere

in another expression without causing any kind of side-effects in the

outer expression. It must be remembered, however, that due to scoping

rules, evaluation of a block does depend upon the context.

2.2 Loop expressions

Like most conventional languages, looping constructs are essential for

writing interesting programs in ID. All looping constructs in ID are

expressions consisting of four parts: an initial assignment part, a

predicate to decide conditions for further iteration, a list of assignment

statements, and a list of expressions to be returned as the value of the

loop. Consider the example in Figure 4. It represents a program to

compute the smallest i such that the sum of all the integers from 1 to i

exceeds some, number s.

1 (initial i 1;
2 sum -<-1
3 while sum<s do

4 i •<- i+1;
5 sum -e sum+i
6 return i)

Figure 4

A loop expression to find the smallest i such that V
^ 3 > s
3=1

8

Since an initial value for i and sum is needed to start the loop,

both of these are specified in the initial part of the loop. The statements

in the loop also show that i and sum are updated at each iteration. We

had claimed while discussing blocks that two assignments can be interchanged

without altering the meaning of the program. This raises the issue of

whether the old value of i or the updated value of i is to be used in

sum -^4 sum + i (line 5 of the loop expression in Figure 4).

If the meaning of the program is to remain unchanged by reordering

statements 4 and 5, then the i on the right hand side of both assignment

statements must carry the same value. Hence i on the right hand side

can only represent the present or the un-updated value. Figure 5

gives an equivalent pseudo-Algol program.

1 i -e 1; sum 1;
2 while sum ^ s do

3 begin
4 i' i+1;
5 sum' sum+i;
6 i -e- i';
7 sum sum'

8 end;

Figure 5

A pseudo-Algol program representing
the loop expression of Figure 4

An alert reader is certainly going to complain about the violation of

the single-assignment rule. Even though the semantics of a loop expression

may be clear, it would appear that multiple values are being assigned to

both variables i and sum. A clearer and more correct picture of what is

taking place in a loop is quite different. One should think of the new

variables (I.e. partial results) i and sum as being created at each

iteration. Rather than using different names for variables generated

at each iteration, we can treat i and sum as generic names representing

all partial results (i.e. i+1 and sum+i). This picture is more

correct because in ID (as well as in DDF) i and sum will not represent

two memory cells whose values are updated at each iteration. Instead,

each iteration generates a new token with the new value which can be used

in the next iteration according to specific rules.

Like a block, or a list of expressions, a loop expression may

begin execution any time after it receives all required inputs. In

Figure 4, the only required input is s. The assignment

statements in the initial part look syntactically like all other assignment

statements5 however, their meaning is quite different. The names appearing

on the left side of initial assignments have meaning only inside the

loop expression, while names appearing on the right side of

initial assignments,must come from outside the loop expression. If

x-ef(x) appears in the initial assignment part of a loop expression, it is

completely valid and means to take the value of a variable named x from

outside, and use function f applied to that value as the initial value

for a variable named x inside the loop expression. Figure 6 gives an

example of a loop expression nested in a block.

1 (x -s- g(a);
2 y a* (initial x f (x)
3 for i from 1 n ^
4 y -e x+q;
5 X f (x)+y
6 return x)
7 return y)

Figure 6

A loop expression nested in a block

10

The meaning of this is clear if we replace the x in line 1 and the

X inside f(x) in line 2 by x'. The DDF equivalent of this program is

given in Figure 7. Note that q is a loop constant and both x' and q are

externals to the loop expressions. For the outermost block, however,

a and q are the external inputs. (Implementation considerations might imply

distinct forms of handling loop constants.)

q

switch
T F

last X

Figure 7

A DDF program equivalent to the expression of Figure 6

11

2.3 Conditionals

ID allows both conditional expressions dnd conditional statements.

Both if-then-else and case type conditions are permitted. Here we will

only discuss the if-then-else constructs. The basic restriction in

if-expressions is that the else clause must be present. Consider the

following assignment statement.

x,y (if p(a) then f(a),g(a) else f(b),g(b))

The meaning of this expression is obvious. However, all of the following

statements are semantically invalid and will be detected at compile

time.

x,y p(a) then f(a),g(a))

x,y X- (if p(a) then f(a) else f(b),g(b)) ^ invalid

X X- (if p(a) then f(a),g(a) else f(b))

Weng has discussed the semantics of conditional statements in his

thesis [Weng75] and has pointed out that a variable assigned on one side

of an i^ must be assigned on both sides of the 2:^* That is

(if p(a) then x x- f (a) else yx- g(b))

is an invalid statement. We agree, but have introduced some default rules

for conditional statements that have proven very useful in writing loop

expressions. The default rule essentially states that if a variable

is being assigned on only one side of an^, then it remains unchanged

on the other side of the 1^.

1 (initial xx-0; yx-0
2 while X < c do

3 (if X = y then xx-f(x) else yx-g(y))
4 return x,y)

Figure 8
Default values in an if statement

12

In ID the meaning of line 3 is

(if X + y then x f (x) ; y y else x x; y -e g(y)) .

It is obvious that the default rule will not be meaningful unless the

variables being assigned to (i.e. x and y) have previous values.

2.4 Procedure calls

The meaning of a procedure call is absolutely straightforward and is

in strict accordance with the rules of DDF. A procedure is an expression

with an input-output specification, and the argtiments are always passed

by value. If the procedure can be compiled, it is guaranteed to be

well-behaved [Denn.is73a3 and thus exhibits no side-effects (i.e. memory).

Two invocations of a procedure can never interfere with one another, and since

arguments are passed to a procedure only after they have been evaluated,

there is no ambiguity about the context in which arguments are evaluated.

Unlike Algol-60, the scoping of names does not extend inside the procedure

body; that is, all the outside information used by a procedure must be

explicitly passed as input arguments.

13

3. Data s tructures and programming examples

Up to this point, all examples have used variables or

constantis with si.mple values, e.g. boolean, integer, etc. The base

language DDF is defined so that it is capable of dealing with structured

values (these structures being a generalization of the list structures

used in pure LISP [McCarthybO]). Astructured value, or structure, is

represented by a tree with selectors for tracing a path from the root node

to any other node. There are exactly two operations allowed on structures,

append and select, and one distinguished value A(the empty structure). The

append operator-- append (structure, selector, value>--is used to add a new

subtree to a node, resulting in a new structure (the original is not modified)

with the specified value and selector replacing the original subtree (if

it exists).

A append(A, "x'% 25)-

1
"y" iiyii

X true 25 4 "x" true

"This" "is" "a" "string"

Figure 9
An append operation

I

The select operator—select (structure, selector)^-is used to retrieve a

subtree from a node.

"7^1
select(B,2) = 23.6

15.5 23.6

n

12.2

Figure 10
A select operation

14

The actions of these two operations may be summarized by

select (append (A, s,v) ,x) s=x then v
else select(A,x)

and

select(A,x) = A.

The syntax used to invoke these operations is of the form

structure + [selector]value

which corresponds to

append(structure, selector, value)

and

structure[selector]

which corresponds to

select(structure, selector).

An additional syntax is available only within loops:

structure[selector] <- value

which is equivalent to

structure structure + [selector]value

and which corresponds to

structure •«- append (structure, selector, value).

Thus, a program which works with arrays in Algol may appear very similar when

written in ID.

Some examples of structure expressions and their semantics follow:

A["cat"_l E select (A,"cat")
A + ["columns"]n H append(A,"columns",n)
A + [i] = append(A,i,A)
ACi] <• V = append(A,i,v)
A + [i,j]x = A + Ci](A[i] + [j]x)

= append(A,i,append(select(a,i),j,x))
A+ [i]u + [k]v = append(append(A,i,u),k,v)

15

The procedures which follow use fairly simple algorithms, but they

illustrate the power of ID. The first procedure is HoareVs quicksort

(Figure 11). Each algorithm described here has a pseudo-Algol equivalent

given in Appendix B.

procedure Quicksort (a,n)

(Jl-e-nv2;
below, j ,above^(initial below<-A;

above^A; k-«-0
for i from 1 n ^

then (if a[i]<a[il]
then below[.i+l]-^a[i];

else above[k+1]-«-a[i] ;
k-«-k+l))

return (if j>l then Quicksort(below,j)
else below), j,

(if k>l then Quicksort(above,k)
else above))

return(initial sort-f-below+[j+1]a[H]
for i from i+2 to n do

sort[i]-^above[i-j-l]
return sort))

Figure 11

ID version of Hoare's quicksort

The time complexity for quicksort has an average of ©(n log n) and a

worst case behavior of 0(n^) for one processor. The ID counterpart, when

compiled in DDF and executed under the unraveling interpreter, has an

average behavior of ©(n) and a worst case behavior of Cf(n^), but requires

an average of 0(n) processors. The time complexity is decreased because

of the possibility of executing the recursive calls in parallel.

The second algorithm (Figure 12) is matrix multiplication

\?1

16

procedure multiply (a,b,il,m,n)
(initial cr«-A
for 1 from 1 £ do

c[i]-<-(initial d-<-A
for j from 1 to ri do

(initial s-^0
for k from 1 to m do

s-«-s+aLi,k]'^k,JJ
return s)

return d)
return c)

Figure 12
ID version of matrix multiply

The ID program of Figure 12 executes in 6(£+m+n) time utilizing
6) (£mn) processors. (It is possible for the unraveling interpreter to process

the DDF translation so that it executes in 0'(£+m+n) time but requiring only

^(An) processors.) The unraveling interpreter will try to execute all of

the multiplications and £n of the additions in parallel, thus reducing the

usual time complexity from 0'(£mn) to 0^(£-hn+n).

The final example is a subroutine used to solve the knight's tour

problem [Wirth76] and is given in Figure 13.

procedure try (x,y,i,h,a,b,n,s)
! (x,y) represents the current position of the Knight,

i represents the i^" move of the knight!
(initial h<-h; k-^-1
repeat u<-x+a[k] ; v-«-y+b[k];

(^ in(u,s) and in(v,s)
then (if h[u,v]=0

then (if i<n
then q,h-^try(u,v,i+l,h+[u,v]i,a,b,n,s)
else q-<-true;h[u,v]-^i)

else q-<-false)
else q-«-false) ;
k-t-k+1

until q ^ k=8
return q,h)

Figure 13

ID version of procedure
try of Wirth's knight's tour

17

4, ID and Important issues In programming languages

Programming is problem solving, and thus the only true methodologies

we have for problem solving,abstraction and decomposition into subproblems,

find themselves intimately involved in the activity of programming. It

is primarily through aiding the "intellectual management" of a problem

that abstraction and decomposition play a role, and facilitating the

use of these methodologies should be a primary goal in the design of any

programming language. This is certainly true when we recognize, in

the words of Wirth, "...the strong and undeniable influence that our

language exerts on our ways of thinking, and in fact defines and delimits

the abstract space in which we can formulate-give form to-our thoughts."

[Wirth74]

The notion of modularity plays a strong role by localizing the

effects that a unit of computation have and by encouraging structure

in programming. Procedures in ID have all the properties of modules,

such as the ability to be compiled independently, evaluation which is

context independent (except through the parameters), and no side effects.

We are considering the following construct where any expression in ID

can be made into an unnamed module:

(initial x^f- J2 '''' ^n expression)

where x^ is a variable external to the expression and is the value

to be used for evaluation. The semantics of the initial part above are

identical to the semantics of the initial part of a loop expression

(section 2.2). In effect the x^ serve as the formal parameters and the

y^ the calling parameters.

The above was largely concerned with one half of the programming

problem-composition of programs. Verification remains the other half.

With ID and its emphasis on modularity and locality of effect, correctness

I

I

18

should be easier to determine than with other programming languages.

In the terminology of the axiomatic approach, an absence of side-effects

implies invariants are more easily determined. In the functional approach,

we have utilized fixpoints[Kahn74, Manna74] to discover relations

between different data flow interpreters and to verify that two particular

interpreters produce the same results, albeit in very different ways

[AG76a]. The ease with which the theory was applied to data flow and

yielded results leads us to believe that the principles evidence by

data flow and ID can only aid correctness work.

C.A. Petri* has remarked that asynchrony has moved over the years

in stages from early curiosity, to a nice idea for speeding up computation,

then to a good thing if it were possible, and now to a fundamental

concept for operating systems, and that in the future asynchrony will

be recognized as fundamental for preserving the structure of computation.

Certainly the history is clear. The prediction is also certain to

become reality when one recognizes sequentiality and synchrony for the

unnatural and arbitrary constraints they impose. For example, it is

now universally accepted that an operating system is considerably

easier to comprehend and to write when viewed as a system of asynchronous

interacting processes.

So why have asynchronous languages not been developed? Consider

Wirth's comment again—language influences our way of thinking. Most

language designers would agree with his remark, but would not recognize

the constraints placed on their thinking by the classical von Neumann

machine. Machine architects have not volxmteered a real asynchronous

machine for the language designers, and language designers have never

demanded one.

* Keynote address at First International Conference on Petri Nets and
Related Methods, MIT, July 1-3, 1975.

5. Acknowledgements

We wish to thank very much, Valerie Isaac, Marion Kaufman, and

Shirley Rasmussen for their help in preparing this report under less than

optimal conditions.

I

I

I

I

I

6. References

[AG75] Arvind and K.P. Gostelow, A New Interpreter for Data Flow
Schemas and Its Implications for Computer Architecture, TR 72,
Department of Information and Computer Science, University of
California, Irvine, November 1975.

[AG76] Arvind and K.P. Gostelow, A Computer Capable of Exchanging
Processing Elements for Time, TR 77, Department of Information
and Computer Science, University of California, Irvine,
January 1976.

[AG76a] Arvind and K.P. Gostelow, The Relationship Between the Semantics
of a Data Flow Language According to Two Different Interpretive
Schemes, Department of Information and Computer Science, University
of California, Irvine, August 1976.

[Dennis73] Dennis, J. "Modularity" in Advanced Course on Software
Engineering - Lecture Notes in Economics and Mathematical Systems -
Vol 81, Springer-Verlag, pp. 128-182.

, [Dennis73a] Dennis, J.B., First Version of a Data Flow Procedure Language,
MAC TM 61 (originally published as Computation Structures Group Memo 93,
Nov 1973), Project MAC, MIT, May 1975.

[GIMT74] Glushkov, V.M., M.B. Ignatyev, V.A. Myasnikov and V.A. Torgashev,
Recursive Machines and Computing Technology, Information Processing 74,
North-Holland Publishing Company, Stockholm, Aug 1974, (pp 65-70).

[Kahn74] Kahn, G.,"The Semantics of a Simple Language for Parallel
Programming", Proceedings IFIP Congress Conference, 1974.

[Kosinskl73] Kosinski, P.R., A Data Flow Language for Operating Systems
Programming, Proceedings of ACM SIGPLAN-SIGOPS Interface Meeting,
SIGPLAN Notices Vol. 8, No. 9, September 1973. (pp 89-94)

[Manna74] Manna, Z., Mathematical Theory of Computation, McGraw-Hill, 1974.

[McCarthy60] McCarthy, J., "Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part I", Comm. ACM, April 1960, (pp 184-195).

[Weng75] Weng, Kung-Song, Stream-Oriented Computation in Recursiv.e
Data Flow Schemas M.S. Thesis (MAC Technical Memorandum 68),
Department of Electrical Engineering and Computer Science, MIT, October 1975.

[Wirth74] Wirth, N., "On the Composition of Well-Structured Programs",
ACM Computing Surveys (Special Issue:Programming) Vol 6, No. 4,
Dec 1974. (pp 247-260)

[Wirth76] Wirth, N., Algorithms + Data Structures = Programs, Prentice-Hall,
1976. (pp 140)

I

I

Appendix A

The following is a simple BNF grammar for ID.

1. Program

1.1 <program> ::= <expression> •

2. Expressions

2.1 <expression> ::= <simple expression>
I <unary operatorxsimple expression>
I <simple expressionxbinary operatorxsimple expression>
1 <structure expression>

2.2 <simple expression> ::= (<expression list>)
I <block expression>
1 <loop expression>
I <if expression>
I <case expression>
I <procedure call>
1 <variable>
I <constant>
I A
1 <simple expression>C<selector>]

2.3 <expression list> ::= <expression>
I <expression list>,<expression>

2.4 <structure expression> :[<append selector>]<simple expression>
I <simple expression>+[<append selector>]
I <simple expression>+C<append selector>]<simple expression>
I <3tructure expression>+[<append selector>]
I <structure expression>+[<append selector>]

<structure expression>

2.5 <block expression> ::= (<statement listxreturn clause>)

2.6 <loop expression> (initial <statement listxloop construct>
<return clause>)

2.7 <if expression> ::= (i^ <Boolean expression> then <expression list>
else <expression list>)

2.8 <case expression> ::= (case <case list-expression>
else•<expression list>)

2.9 <case list-expression> ::= :<Boolean expression?: <expression list?
1 <case list-expression? :<Boolean expression?:

<expression list?

I

I

I

I

I

I

A-2

2.1Q <procedure call> <procedure naine>(<expression list>)

3. Statements

3.1 <statement> ::= <assignment statement>
I <procedure declaration>

3.2 <statement list> ::= <statement>

I <statement list>; <statement>

3.3 <assignment statement> ::= <variable list> <expression list>
I <if statement>
I <case statement>
I <null>

3.4 <assignment statement lxst> ::= <assignment statement>
I <assignment statement list>; <assignment statement>

3.5 <variable list> <variable>

I <variai)le>C<append selector>]
I <variai>le list>, <variable>
I <variable llst>, <variable>[<append selector>]

3.6 <if statement> <Boolean expression>
then <assignment statement list>
else <assignment statement list>)

I (if <Boolean expression> then <assignment statement list>)

3.7 <case statement> ::= (case <case list-statement>

else <assignment statement list>)

3.8 <case llst-statement> ::= :<Boolean expresslon>:
<assignment statement list>

1 <case list-statement> ;<Boolean expression>:
<assignment statement list>

4. Miscellaneous Important Productions

4.1 <variahle> <identifier>

4.2 <procedure name> ::= <identifier>

4.3 <return clause> return <expression list>

4.4 <selector> ::= <expression>
I <selector>,<expression>

4.5 <append selector> <expression>
I <append selector:>, <expression>
I <append selector>][<expression>

I

I

I

I

I

I

I

I

I

I

I

I

A-3

5. Loops

5.1 <loop construct> while <Boolean expresslon> do
<assignment statement list>

I repeat <assignment statement list> until
<Boolean expression>

I <variable> from <expression> <for construct> do
<assignment statement list>

I for <variable> in <expression list> do
<assignment statement list>

5.2 <for construct> ::= ^ <expression> step <expression>
while <Boolean expression>

1 <expression> step <expression>
I <expression> while <expression>
I <expression>
I step <expression> while <Boolean expression>
I while <Boolean expression>

6. Procedures

6.1 <procedure declaration> ::= (<procedure declaration>)
I procedure <procedure name> (<formal parameters>)

<expression>

6.2 <formal parameters> <variahle>
I <formal parameters>,<variable>

I

I

I

I

I

I

I

I

I

I

I

I

I

Appendix B

The following are pseudo-Algol translations of the ID procedures

presented in Section 3.

procedijre Quicksort (a,n,sort)
array a[1:n],aboveC1:n],below[1:n],sort[1:n],temp[1:n];
integer i,j,k,n),n; value a,n;
begin

j:=k:=0;
m: =n'r2;
for i:=1 step 1 until n do

if ij^m

then begin
if a[i]<aLin]

then begin j:.=j+l; below[j] : =a[i] end
else begin k:-k+l; aboveCk]:=a[i] end

end

if j>l then Quicksort(below,j,sort);
if k>l then Quicksort(above,k,temp);
sort[j+1]:=a[m];
for i:=j+2 step 1 until n do

sortCi]:-tempEi-j-1];
end

Pseudo-Algol for quicksort

procedure multiply (a,b,c,i!,,m,n)
array aE1:£,l:m],b[l:m,l:n],c[1:l:n];
integer i, j ,k,j!,,m,n; real s; value a,b jCjJi,m,n;
for i:=l step 1 until Z do

for j:=1 step 1 until n do
begin

s: =0;
for k: =1 step 1 until m do

s:=s+aEi,k]*bEk,j];
cEi, j] : =s ;

end

Pseudo- Algol for matrix multiply

I

I

I

I

I

I

I

I

I

I

I

I

R

R

R

R

R

R

R

procedure try (i,x,y,q)
boolean q,ql; integer i,k,u,v,x,y; value i,x,y;
begin

k:=0;

repeat
k:=k+l; ql:-false;
u:=x+aCk]; v:=y+b[k];
if in(u,s) and in(v,s)

then if h[u,v]=0
then begin

h[u,v]=i;
if i<nsq

then begin
try(i+l,u,v,ql);
if not(ql) then hCu,v]=0

end

else ql:=true
end

until ql or k=8;
q:=ql

end

Pseudo-Algol for try

B-2

