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Amit Sahai1 and Eleazar Eskin1,4,*
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ABSTRACT

Motivation: High-throughput sequencing technologies have impacted

many areas of genetic research. One such area is the identification of

relatives from genetic data. The standard approach for the identifica-

tion of genetic relatives collects the genomic data of all individuals and

stores it in a database. Then, each pair of individuals is compared to

detect the set of genetic relatives, and the matched individuals are

informed. The main drawback of this approach is the requirement of

sharing your genetic data with a trusted third party to perform the

relatedness test.

Results: In this work, we propose a secure protocol to detect the

genetic relatives from sequencing data while not exposing any infor-

mation about their genomes. We assume that individuals have access

to their genome sequences but do not want to share their genomes

with anyone else. Unlike previous approaches, our approach uses

both common and rare variants which provide the ability to detect

much more distant relationships securely. We use a simulated data

generated from the 1000 genomes data and illustrate that we can

easily detect up to fifth degree cousins which was not possible

using the existing methods. We also show in the 1000 genomes

data with cryptic relationships that our method can detect these

individuals.

Availability: The software is freely available for download at http://

genetics.cs.ucla.edu/crypto/.

Contact: fhormoz@cs.ucla.edu or eeskin@cs.ucla.edu

Supplementary information: Supplementary data are available at

Bioinformatics online

1 INTRODUCTION

Detecting relatives from genetic data is one of the fundamental

problems in genetics. As genotype-chip technologies reduce the

cost of collecting genetic data for each individual, many personal

genomic companies provide various services. One such service is

the identification of relatives using genetic data. The underling

idea of this service is to collect genotypes of different individuals

and to store their data in a database. Then, the genotype for each

pair of individuals is compared and any pair of individuals that

appear to be genetically related are notified of a match.

Unfortunately, the current version of this service provided by

all companies requires individuals to share their genetic data with

a trusted company.

Homer et al. (2008) already raised many privacy issues by

showing that we can detect the existence of an individual in a

pool of individuals when the minor allele frequency is available.

Thus, the disease status of any individual involved in a GWAS

might be exposed to the public. Furthermore, Sankararaman

et al. (2009) extended the work (Homer et al., 2008) and

showed that with access to thousands of variant summary stat-

istics is enough for detecting the existence of an individual in

a pool.
Recently, He et al. (2013) have proposed a secure method for

detecting the genetic relatives using genotype data. This method

uses the ‘fuzzy’ encryption (Dodis et al., 2008; Ishai et al., 2011).

The ‘fuzzy’ encryption is very similar to the traditional encryp-

tion and decryption protocols where each individual has a public

key and a private key. Public key for each individual is accessible

by all the other individuals and the private key for each individ-

ual is hidden from all the other individuals. In the traditional

protocol, we use the same private key to decrypt the message that

was used to encrypt the message in the first place. However, in

the ‘fuzzy’ encryption the two keys should be only close but not

necessarily the same. Thus, an individual can detect the genetic

relatives by downloading the available public key for all other

individuals and compare their public key with his private key.

They show if two individuals are genetically related their secure

method can detect them while not leaking any information.

Moreover, this method is designed such that individuals who

are not related to others will not obtain any information.

A drawback of this approach is that it can only be applied to

common variants.
We propose a novel encoding mechanism that convert each

individual’s haplotypes to a set of integer values such that the

comparison between two sets approximate the genetic compari-

son between the two individuals where each individual has access

only to its own variants list. The main innovations of our ap-

proach compared to He et al. (2013) is that we use a novel

encoding which allows for us to utilize all variants in an individ-

ual’s genome. This is challenging because many of the variants

have not yet been discovered. In addition, our cryptographic

scheme uses list decoding which has some advantages to other

approaches for fuzzy encryption.
We use both simulated and real data to show the utility of our

method. We generated series of family relationships using the

1000 genomes data as the founder of the population. Then, we

randomly generated offsprings for different generations. With

the simulated data, we show that our secure protocol could

detect up to fifth degree cousins. However, the previous
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method (He et al., 2013) can only detect up to third degree

cousins. Furthermore, we use Luhya in Webuye (LWK) popula-

tion from the 1000 genomes data (1000 Genomes Project

Consortium, 2010, 2012) that contains cryptic relationships to

show that method could detect these cryptic individuals.

2 METHODS

2.1 Overview

Our method uses the ‘fuzzy’ encryption, which is a new method in the

field of cryptography (Dodis et al., 2008; Ishai et al., 2011). The ‘fuzzy’

encryption is similar to the traditional encryption and decryption

protocols where each individual has a public key and a private key.

The public key for each individual is accessible by all other individ-

uals and the private key for each individual is hidden from all other

individuals. In a traditional protocol to decrypt the message we use the

same private key that was used to encrypt the message in the first place

as shown in Figure 1A. However, in ‘fuzzy’ encryption, decryption is

possible only if the Hamming distance between the two keys is less

than a predefined threshold ‘t’ as shown in Figure 1B. The ‘fuzzy’ de-

cryption terminates successfully if the Hamming distance between the

keys is5‘t’ and it fails otherwise. Mostly, the keys used in ‘fuzzy’ encryp-

tion are in form of extremely long vectors which are sparse and the

sparsity allows us to compute the Hamming distance efficiently using

‘fuzzy’ encryption.

Fuzzy extractors can be used to implement secure comparison of sets

of a fixed size (number of elements in a set) which is the basis of our

approach to private relative identification. The secure comparison of

sets works as follows. Each individual has a set of elements which is

private to the individual. Using the cryptographic protocol based on

fuzzy extractors, each individual is able to identify which other individ-

uals have a set with at least ‘t’ elements in common. The way the protocol

works is that each individual releases some public information referred to

as a ‘secure sketch’ and then individuals compare their sets against the

sketches of others. The individual can recognize if the sets of the two

individuals contain at least ‘t’ common elements.

The way secure set comparison is implemented using fuzzy extractors

is that the private keys that are generated encode the membership of each

element of the set. We consider all sets contain k elements, each of which

is binary vectors of length m, then there are a total of 2m possible elem-

ents. The private keys are binary vectors of length 2m with k ‘1’s encoding

which element exists in an individual’s set. We use fuzzy extractors to

generate public keys for these private keys where the threshold for de-

cryption is 2k� t: Any pair of private keys which have Hamming dis-

tance 5ð2k� tÞ are correspond to sets that have at least ‘t’ elements in

common. Any pair of private keys that have Hamming distance of

4ð2k� tÞ will have5‘t’ elements in common. Each individual can release

their public keys and other individuals can detect if their sets have at least

‘t’ elements in common by attempting to decrypt the public key using

their private key.

In this work similar to previous work (He et al., 2013), we use the fuzzy

extractor to compute the symmetric set difference as a black box. Our

goal is to encode the two haplotypes (diploid genome) for each individual

to a set such that the symmetric set difference between individuals cor-

responds to the genetic similarity between the two individuals. In the

previous method (He et al., 2013), only the common variants are used

and assumed the list of variants between all the individuals are the

same, as a result we convert the haplotypes to a set by considering

non-overlaping segments. Thus, the symmetric set difference between

the generated sets can approximate the hamming distance between their

haplotypes. However, in our work we want to utilize the rare variants and

relax the assumption that all individuals have access to the list of all the

variants between all the individuals. In this work each haplotype is com-

pared against the reference genome and the positions where they differ

are marked as ‘1’ and the rest are marked as ‘0’. Thus, individuals that are

related have more positions in the haplotype marked similarly as com-

pared to the unrelated individuals. Using the encoded genome we gener-

ate ‘sketch’ that contains private information and is used as the private

key. From the sketch we generate the ‘secure sketch’ and use it as the

A B

Fig. 1. In traditional encryption and decryption protocol, each individual generates two codes using the key generation process. The public key (Pk) is

accessible by every one, and the private key (Sk) should be kept secret. In order to send a secure message to a sender we will use the public key available

by the sender to encode the message. Then, the receiver will use the secret key (private), which was generated for the sender with the public key in the key

generation process, to decrypt the message as shown in panel (A). The Fuzzy extractor is similar to traditional encryption and decryption protocol with

one major difference, that the private key to decrypt the encrypted message has to be close to the original private key, which was generated in key

generation process, and not necessary the same key as shown in panel (B)
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public key. In order for two individuals ‘A’ and ‘B’ to detect if they are

related or not, individual ‘A’ compares its private sketch with the se-

cure sketch obtained from individual ‘B’. If the two individuals are

related the ‘fuzzy’ encryption method terminates successfully, if not the

program fails.

We need to show our method is secure as each individual release a

public key that is generated from each genome that contains private data.

We need to show the amount of information obtained from public key is

small relative to the total amount of data in each genome. We use entropy

to measure the amount of information. Entropy is a known quantity to

measure the amount of information in a data and entropy is an additive

quantity. Thus, in order to show our method is secure we have to show

the entropy in the human genome is much larger than the entropy in the

public key (sketch). The entropy in ‘fuzzy’ encryption is bounded by t2

s

where ‘t’ is the number of elements that are in common between the sets

and s is the number of elements in each set. Intuitively, this value corres-

ponds to the strength of an encryption. If there are 100 bits of entropy

remaining, a brute force approach to identify the set would require the

same effort to crack 100-bit encryption. As long as this number is4100

bits, the protocol is relatively secure.

2.2 Estimating genetic relatives by comparing sets

There exist a series of methods to detect the relatedness among different

individuals and even build the family tree using the Identity by descent

(IBD) (Li et al., 2010; Stevens et al., 2011; Wang, 2011). In this section we

describe a simple method to approximate the relatedness using the haplo-

type data which can be used to build a secure protocol.

We assume that we have N individuals and we have access to each

individual’s variants and the reference genome. In our method we only

consider single-base variants which include both common and rare vari-

ants. Furthermore, we assume we have access to the phased haplotypes of

each individual, in the case we have unphased haplotypes, we can phase

them by using the existing methods (Browning and Browning, 2007; Li,Y.

et al., 2010; Scheet and Stephens, 2006; Stephens and Scheet, 2010), we

phased the individuals using a reference dataset of individuals which did

not contain any individuals that are related to the ones we are phasing.

We convert the two haplotypes for each individual to a single set such

that the set comparison between the two individuals’ haplotypes can es-

timate the genetic relatedness. In our method, unlike the previous

method, the list of all the variants is not the same between all the indi-

viduals. Thus, we need to convert each individual’s haplotypes to a binary

string such that the hamming distance between the two strings estimates

the similarity between the two individuals. Furthermore, the variants that

occur in the same positions in the haplotype should be compared against

each other. Thus, we use the reference genome to align the variants such

the same variants are compared. We convert each individual genome

(donor) to binary genome by comparing each donor genome to the ref-

erence genome, we convert each position to ‘0’ when there exists no

variants between the donor and the reference genome and otherwise

‘1’. We partition each binary genome to non-overlapping segments of

30 000bp. We generate a set for each individual such that each element

of the set contains the segment data (string of length 30 000 which repre-

sents the binary genome of that segment) and the segment position. We

compute the summation of the binary value of the segment position and

the segment data and store the computed value in a set. In order to

compute the summation we used the arithmetic addition operation for

binary numbers. More formally, letHi indicates the i-th individual binary

haplotypes where Hi=fH
1
i ;H

2
i g such that H1

i and H2
i represent the first

and second haplotypes, respectively, for i-th individual. In our model we

consider two haplotypes for each individual as we assume we are dealing

with diploid genomes (two copies of each chromosome). Moreover,Hf1;2gij

2 f0; 1g30 000 represent the j-th segment of the i-th individual’s binary

haplotype. We use Si to indicate the set for i-th individual and sij
to indicate the j-th element of the set Si representing the j-th segment

of genome.

sf1;2gij =Hf1;2gij +BðjÞ

Sf1;2gi =

(
sf1;2gij : 8j 2 1 . . .

M

30;000

� �)

Si=S1
i [ S

2
i

where Bð:Þ denotes the binary representation of an integer number andM

denotes total number of base pair in each genome, in the case of human

genome M=3 billions.

If the distance score between two individuals is5‘t’ we consider them

as related individuals and if the distance score is4‘t’ we consider them as

unrelated individuals. We assume the value of ‘t’ is computed using a

training set where the true relationship between each pair of individuals is

known.

In order to compute the number of matched segments between two

individuals, we count the number of shared haplotypes for each segment

between the two individuals. There exist three possible values for each

segment: zero, one and two. Zero indicates both haplotypes in that seg-

ment are different between the two individuals, two indicates both haplo-

types in that segment are the same between the two individuals and one

indicates only one of the haplotypes is the same between the two

individuals.

2.3 Protecting privacy during identification of relatives

In order for individuals to securely compute the symmetric difference

between their genomic sets, we define a sketch where we hash the value

of each element in the genomic sets (Si). Let Ki indicates the sketch of i-th

individual and kij indicates the j-th element of the Ki that is obtained by

hashing the j-th element of the i-th individual genome set.

kij=h24 sij+r
� �

where r is a random binary number of size 100 that is referred to as the

salt, and h24ð:Þ is a collision-resistance hash function that returns the first

24 bits. One of the main properties of the elements in the secure set is that

the similarity between two chunks is preserved. If two segments differ in

one base pair their corresponding elements in the secure set differs due to

the hash function.

Collision-resistance hash function has two main properties: first, col-

lision-resistance hash function is one-way function. Second, finding dis-

tinct values which have the same hashed value is hard. We consider

function f to be a one way function such that given x computing f(x) is

easy. However, given the f(x) computing the x is hard. It is worth men-

tioning two segments obtained from the same genomic position in the

genome for two different individuals that differ in one base pair have a

different sketch element. Thus, reverse engineering the genome given the

secure set is extremely hard based on the hardness of inverting one way

functions.

However, using the sketch for identification leaks information. We can

compare the sketch of other individuals with our own sketch to detect

which genome segments are similar. Thus, this results in the leak of in-

formation. We use the sketch as the private key and use the improved

version of the Juels–Sudan construction (Dodis et al., 2008; Ishai et al.,

2011) that uses list decoding, followed by a hash check to generate a

secure sketch that is used as public key for individuals.

Using the above encoding, each individual is represented by a set con-

taining 24-bit elements. Individuals are related if they share at least ‘t’

of their elements. We can then use the secure set comparison from

Section 2.1 to allow individuals to identify their relatives without requir-

ing them to release their genomes.

The amount of entropy in ‘fuzzy’ encryption is bounded by t2

s where t is

the number of elements that are in common between the sets sand s is
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number of chunks. In the case of human s=3000 000 000
30000 =100 000:

Although computing the exact entropy of the human genome needs enor-

mous number of individuals, He et al. (2013) show that the approximate

amount of entropy in the human genome is much higher than t2

s : More

detail is provided in Appendix A.

2.4 Haplotype encoding independent of genome builds

The encoding mentioned in Section 2.2 depends on the genome build that

is used to call variants. Thus, individuals using different genome builds

are unable to compare their sets. In this section we propose a new encod-

ing which makes the encoding independent from the genome build which

is used to call the variants. Our encoding is based on the observation that

variant positions are typically identifiable using the 500-bp flanking se-

quence and the number of variants which differ in flanking sequence

between different builds is extremely low.

In this encoding each segment is of size 30 000bp and each segment

starts from a known common SNP in the dbSNP (http://www.ncbi.nlm.

nih.gov/SNP/). Then, for each variant in the segment we consider the

flanking sequence of length 500bp around the variant. Virtually all

common SNPs have been identified in the HapMap and 1000G projects.

We concatenate all the flanking sequences around each variant in a seg-

ment to represent the segment uniquely. Then, the collision resistance

hash function is applied as described above to generate elements of

the set.

2.5 Generating simulated data

In order for us to evaluate our method we must generate realistic simu-

lations. We generate simulation by randomly mating individuals and

generating a pedigree using a recombination rate of 10–7.

Since sequence errors and phasing errors affect the amount of match-

ing in real data, for our simulations to be valid, we must use similar error

rates. We utilize our real data to estimate the effect of these errors on

matching in order to guide our simulations as follows. We first generate

simulations without any error rates and compute the amount of matching

for siblings unrelated individuals in real data compared to our simulated

data. We then increase the error rate until the amounts of sharing are

comparable and then utilize these parameters in our simulations.

3 RESULTS

3.1 Simulated data

In order to assess the performance of our method, we generated

simulated data for different levels of relatedness using the 1000

genomes data. We used the LWK population which consists of

116 individuals. Among these 116 individuals 19 individuals have

cryptic relationships that are removed from our data-generating

process, and we used the remaining individuals as the founder

individuals. In the first step, we used the founder individuals

to generate offspring by randomly mating the individuals.

Moreover, for simplicity we assume there exist no polygamy in

the simulated data, thus each individual is mated with only one

individual. In the next step, we use the generated offsprings to

generate offsprings of the next generation by pairing together

unrelated individuals from the current generation. We continue

to generate new offsprings until we have sufficient number of

distant relatives. In our case, we generated 10 generations from

the founder individuals. Using this data we can check different

levels of relatedness such as sibling, first-degree cousins, and

second-degree cousins and up to sixth-degree cousins. We uti-

lized a recombination rate of 10–7. We utilized a sequencing-error

and phasing-error rate which is consistent with what we observe

as the effect of errors on the amount of matching compared to

what is expected in real data as we describe in Section 2.
We compute the similarity score for each pair of individuals

using our encoding. We show there exists a separation between

the related and unrelated pairs of individuals which is shown in

Figure 2. We set the cut-off to 25 390 segments to separate the

related individuals from unrelated individuals. In Appendix A we

describe a principle way to select the cut-off.

Figure 3A indicates the histogram of similarity scores for dif-

ferent individuals. All pairs of individuals that have the same

relationship are shown with the same color in the histogram.

There exist a separation between the number of segments

shared between related individuals compared to unrelated indi-

viduals, we set the cut-off to 25390 segments to separate the

related individuals from unrelated individuals. This result indi-

cates that we can easily distinguish up to fifth-degree cousins

using the rare variants. We note that in a previous approach,

He et al. (2013) were able to distinguish only up to third-degree

cousins which only utilize the common variants. The result of

common variants is shown in Figure 3B.
We run our method to generate the secure sketch (public key)

for each simulated individual and then each individual uses the

secure sketch of another individuals and compare to its own

sketch (private key). As expected, for each pair of individuals

that are related, the program terminates successfully. However,

for unrelated pairs of individuals the program fails.
We use another population from the 1000 genomes to generate

simulated data using the same process to make sure our results

are not specific to only one population. We use the Mexican

Ancestry in Los Angeles, California (MXL) population. The

MXL consist of 69 individuals where nine individuals have cryp-

tic relationships. We removed the cryptic-related individuals so

that the founders are unrelated. We observe there exists a separ-

ation between the related and unrelated using our method of

Fig. 2. There exists a clear separation between the related and unrelated

individuals. We use the LWK population from the 1000 genomes data as

the founder and we use the cut-off of 25 390 segments to distinguish the

related and unrelated individuals
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comparing sets. We can detect up to fifth-degree cousins using

our method. The results are similar to the LWK population and

for the sake of space we did not show the results.

3.2 Real data

In order to assess the results of our method we used the 1000

genomes data. Although the 1000 genomes data consist of unre-

lated individuals, there exists three populations that contain

cryptic (not known before sequencing) relationships. These

three populations are African Ancestry in Southwest (ASW),

and LWK. We used the final phase of data. The ASW popula-

tion consists of 66 individuals where 10 individuals have cryptic

relationships. The LWK population consists of 116 individuals

where 19 individuals have cryptic relationships. The cryptic re-

lationships in this data are parent–child, sibling or second-order

relationships.
In order to detect if two individuals are related or not there

exist series of methods, the standard method is KING method

(Manichaikul et al., 2010). In this work we use a simpler idea

which can be used to build a secure protocol. We divide the

genome to segments of length 30 000 bits. Then, for each pair

of individuals we count the number of segments which are iden-

tical and then use a threshold to distinguish between related and

unrelated individuals. As shown in Figure 4 there exists a clear

separation between the related and unrelated individuals based

on the number of matched segments. Thus, the threshold of

25 390 number of segments can discriminate the related and un-

related individuals.
We run our method to generate the secure sketch (public key)

for each individual in the 1000 genomes data. Then, each indi-

vidual uses the secure sketches of other individuals and compare

it with their own sketch (private key). As expected, for each pair

of individuals that are related, the program terminates

successfully. However, for unrelated pairs of individuals the pro-

gram fails.
In order to check if the new encoding mention in Section 2.4

works, we used the known list of SNPs from Hg18 and Hg19
obtained from the HapMap project. For each SNP we consider

500-bp sequence around the SNP in both builds of Hg18 and
Hg19. Then, we used the SSHA-256 to hash each string (1000 bp)
and compared the hash value for the same SNPs in the two

different builds. In our experiment we observed only 0.002

A B

Fig. 3. The histogram of the number of matched segments between different individuals in the simulated data. We used the set of unrelated individuals in

the LWK population from the 1000 genomes data as the founder. Panel (A) indicates our method which uses the rare variants to detect the relativeness

between the different individuals and panel (B) indicates the result of the method proposed by He et al. (2013). Thus, utilizing the rare variants, we can

detect up to fifth-degree cousin as opposed to the third-degree cousin

Fig. 4. The histogram of the number of matched segments between dif-

ferent individuals in the 1000 genomes data. We used the ASW and LWK

populations. For each pair of individuals we count the number of seg-

ments that are exactly match. We can use a cut-off of 25390 segments to

distinguish between the related and unrelated individuals in this dataset
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fraction of the SNPs will not have the same hash value. Meaning

only 0.002 of SNPs are not mapped to the right SNP position

when two different genome builds are used. As a result, the ma-

jority of SNPs are mapped to the same flanking sequence when

moving from Hg19 to Hg18. Thus, the encoding which utilizes

the flanking sequence can easily use a different genome build to

generate keys to be compared with the other individual’s public

key that was generated using a different genome build.

4 DISCUSSION

Sequencing technologies have made personal genomics possible

and many companies are providing information about ancestry

and health of individuals by utilizing genetic data. However, to

obtain these information, each individual has to share their gen-

omic data. The sharing of genomic data raises privacy issues.

One solution to the privacy issue is to use a trusted third party

for detecting relatedness, however, individuals may not feel com-

fortable to share their genetic data with a trusted party for de-

tecting related individuals. In this article, we demonstrate

detecting the relatedness between two individuals where both

individuals have access to their genetic data and no third party

is needed.
Recently, He et al. (2013) have proposed a secure method for

detecting the genetic relatives using genotype data. This method

uses the ‘fuzzy’ encryption. A limitation of He et al. (2013) is that

only previously know variants which are common can be used in

the method. Unfortunately, common variants are not as nearly

as informative for identifying relatives as rare variants which are

typically shared with only close family members.
In this work, we provide a secure method for individuals to

detect the genetic relatives from sequencing data without expos-

ing any information about their genomes that utilizes both

common and rare variants and through simulated data, we dem-

onstrate, we can detect up to fifth-degree cousins. We also show

in two populations from the 1000 genomes data that contains

cryptic relationships, our method can detect these individuals.

Our method also utilized an encoding that allows us to compare

individuals who utilized different genome builds for calling their

variants. Thus, genomes encoded using today’s genome build can

be used to detect relatives called using future builds.
The input to our method is the phased haplotypes, in the case

we have unpashed data, we phase our data using an existing

method (Browning and Browning, 2007; Li,Y. et al., 2010;

Scheet and Stephens, 2006); Stephens and Scheet, 2010). We

phased the individuals using a reference dataset of individuals

which did not contain any individuals that are related to the ones

we are phasing. We note that sequencing errors and phasing

errors decrease the amount of segment matches between related

individuals because an error in a segment that matches will

appear as a segment that does not match. Our experiments

over real data already implicitly take into account the sequencing

and phasing errors because any errors decrease our observed

amount of similarity among related pairs. As sequencing tech-

nologies mature and the error rates decrease, we expect that the

number of matches between related individuals will increase

accordingly.
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APPENDIX A

A1 SEPARATION CUT-OFF BETWEEN RELATED
AND UNRELATED INDIVIDUALS

In this section we describe a principled way to select a cut-off to

separate the related from unrelated individuals. Using real data

we observe the number of segments shared between unrelated

individuals follows a normal distribution Nð�; �2Þ where the

mean of the distribution is 19 325 and the standard deviation is

1080. Supplementary Figure S1 illustrates the QQplot of the

number of matched segments between each pair of unrelated

individuals in LWK population. Unfortunately, the real data

lack sufficient number of related individuals to observe if the

number of segments between related individuals follows a

normal distribution or not.
Given that the number of shared segments for unrelated indi-

viduals follows a normal distribution ðX�Nð�; �2ÞÞ; we select a

cut-off value of c such that the probability of observing a value

4c for the number of matched segment in unrelated individuals is

extremely small such as 1e – 8.

PðX � cÞ � 1e� 8

Thus, in our real data we set the cut-off to 25 390 (c=25390).

A2 IMPROVED JUELS–SUDAN CONSTRUCTION

In more detail, the idea of a secure sketch is based on the notion

of an error correcting code (ECC) [Blahut (1983), Van Lint (1982)

provide good introductory treatment of the theory or error cor-

rection]. An ECC is used to provide a reliable means of commu-

nication over noisy channels. Here, we provide a very brief and

simplified overview of ECC that is sufficient for our purposes.

For positive integers n, k, d, an (n, k, d) ECC is a k-dimensional

subspace of an n-dimensional vector space. Each element of the

k-dimensional subspace is called a codeword. The parameter d

specifies the distance of the code, which means that the Hamming

distance (the Hamming distance between two n-dimensional vec-

tors is the number of co-ordinates where they differ) between any

two code words is at least d. Thus intuitively, the distance of a

code is a measure of how ‘spread-out’ the code words are in the

n-dimensional space. Finally, the ECC comes with a mechanism

to ‘correct small errors’. This means that given a codeword v, if

we change a small number of coordinates of v to get a vector w,

then there exists an algorithm that on input w, outputs the ‘cor-

rect’ codeword v. Formally, an ECC comes with an efficient

Decoding Algorithm, which works as follows: given any n-dimen-

sional vector w as input, if there exists a codeword within dis-

tance d/2 of w, then the decoding algorithm outputs that vector,

otherwise, it outputs an error message specifying that decoding

failed. Note that as the distance of the code is d, there can be at

most a single codeword within a distance d/2 of any vector w.

This is called unique decoding.
The Juels–Sudan construction that we use from Dodis et al.

(2008) is based on a particular kind of ECC, called the Reed–

Solomon code. We first give a brief overview of the Reed–

Solomon construction, and then describe the Juels–Sudan
construction. An (n, k, d) Reed–Solomon code is a particular
kind of ECC that is defined as follows: fix a finite field F

(in our case, the field F will be the Galois field GFð224ÞÞ; and
consider the n-dimensional vector space Fn. To define the
k-dimensional subspace of code words, we begin by fixing a se-

quence of n points ða1; . . . ; anÞ; where each ai is an element of F.
The subspace of code words is obtained by evaluating all the
degree k – 1 polynomials (over F) on the points ða1; . . . ; anÞ;
i.e. let fð�Þ be a degree k – 1 polynomial whose coefficients are
elements of F. Then the corresponding code word is ðfða1Þ; . . . ;
fðanÞÞ: The code word subspace consists of the evaluations of all

degree k – 1 polynomials. It follows from elementary algebra that
the distance of the Reed–Solomon code is d=n� k+1: The
details of the decoding algorithm can be found in Blahut

(1983), Van Lint (1982).
Now we are ready to describe the improved Juels–Sudan con-

struction from Dodis et al. (2008). Recall that the genome is
represented as a set of 24-bit strings, which we take to be elem-

ents from the field GFð224Þ: Let s1=fw1; . . . ;wn g be such a set.
Our task is to convert the genome sketch s1 to a ‘secure sketch’
ss1, which satisfies two properties: (i) the secure sketch should not

reveal too much information about s1, and (ii) given the genome
sketch s2=f v1; . . . ; vn g of another individual and the secure
sketch ss1 of the first individual, we should be able to determine

if the two individuals are related or not. The Juels–Sudan algo-
rithm uses algebraic techniques to achieve this.
One of the main ideas of the Juels–Sudan construction is to

represent the genome sketch as a polynomial. In particular, we
first construct a polynomial p(x) whose roots are the wis; that is
pðxÞ=

Yn

i=1
ðx� wiÞ: Note that anyone who knows p(x) can

obtain the entire genome sketch by simply finding the roots of
p(x). Thus, in particular, we can not use p(x) itself as the secure
sketch (as it reveals too much information about the genome).

Instead, the idea is to reveal only a small part of the polynomial
p(x), and reconstruct the rest using error correction. This is done
as follows: p(x) is split into two polynomials phighðxÞ and plowðxÞ:
Polynomial phighðxÞ is a degree-n polynomial that matches p(x) in
the ‘ highest coefficients, and all the other coefficients are 0
(here, the parameter ‘ will be determined later). The polynomial

plowðxÞ is a degree-n – ‘ polynomial that matches with p(x) in the
n� ‘ smallest coefficients. Thus, pðxÞ=phighðxÞ+plowðxÞ: Only
the polynomial phighðxÞ is released in public. To complete the

scheme, we have to show two things: (i) revealing phighðxÞ does
not reveal too much information about the genome sketch, and
(ii) given phighðxÞ; and the genome sketch of another individual,

we can find out if there is a match or not.
We first describe how matches are determined. Let
f v1; . . . ; vn g be the genome sketch of another individual. Note

that if we can reconstruct the polynomial p(x), then it is easy to
check if there is a match or not (as p(x) contains all information
about the sketch fw1; . . . ;wn gÞ: As phighðxÞ is publicly available,

our task is to reconstruct plowðxÞ: First, note the following math-
ematical fact: as wi is a root of p(x), we have, pðwiÞ=0; which
implies that phighðwiÞ+plowðwiÞ=0 or plowðwiÞ=� phighðwiÞ: This
implies that even though we do not have plowðxÞ; we can evaluate
it on wi given phighðxÞ; which is publicly available. Further, if we
can evaluate plowðxÞ on large enough number of points, then we

can reconstruct plowðxÞ using elementary algebra (by a process
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called polynomial interpolation). However, we do not have
access to the wis, but only to vis. But if the individuals are related,
then the genome sketches of the individuals are close together,
which means most of the wis are the same as vis. Thus, if we

evaluate phighðxÞ on the vis, we obtain a ‘noisy’ version of the
evaluations of plowðxÞ: And this can now be corrected using error
correction. In particular, we construct the n-dimensional vec-

tor ðphighðv1Þ; . . . ; phighðvnÞÞ; and run the decoding algorithm of
the Reed–Solomon code on it. If the two genome sequences are
close by, then this algorithm outputs closest code word, which is

ðphighðw1Þ; . . . ; phighðwnÞÞ; from which plowðxÞ can be
reconstructed.
Now we come to the first point above, namely that revealing

phighðxÞ does not reveal too much information about the genome.
Clearly, the amount of information released depends on the
value of ‘; the smaller the value of ‘, the smaller the amount
of information released. On the other hand, we can not make ‘
too small, as then we will not have enough information to decode
(note that we are trying to reconstruct an n – ‘-degree polynomial
from n noisy points). Let t be the threshold for matching, i.e. if

two individuals are related, then there genome sketches have at
least t points in common. Then, to minimize the value of ‘, we
need to find the largest degree of the polynomial plowðxÞ that can

be correctly decoded given n points, with threshold t. For the

Reed–Solomon code with unique decoding, this turns out to be t,

and thus the remaining entropy is equivalent to t field elements.
Unfortunately, the way we have described the Juels–Sudan

scheme above does not work for our application. The reason is

that unique decoding of Reed–Solomon requires that the agree-

ment be very high, as compared to the size of the genome sketch.

However, in our application, even if the individuals are related,

the agreement can be very small. Thus, we move to a more

sophisticated error correction scheme called ‘list-decoding’ for

Reed–Solomon codes. The main advantage of list-decoding

over unique decoding is that it can tolerate very small agreement

thresholds also. The scheme remains essentially as we have

described so far, except that in the reconstruction step, instead

of using unique decoding to reconstruct plowðxÞ; we use the list-

decoding algorithm from Guruswami and Sudan (1998). The

remaining entropy in this case turns out to be t2=s field elements.

In the case of human s=3000000 000
30000 =100 000: Although comput-

ing the exact entropy of the human genome needs enormous

number of individuals, He et al. (2013) show that the approxi-

mate amount of entropy in the human genome is much higher

than t2

s :
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