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Abstract of the Thesis

Study of Differences in Behavior of

Asymptotically Distribution Free Test Statistics

in Covariance and Correlation Structure

Analysis

by

Yafei Huang

Master of Science in Statistics

University of California, Los Angeles, 2013

Professor Peter Bentler, Chair

The asymptotically distributed free (ADF) method is often used to estimate pa-

rameters or test models without a normal distribution assumptions on variables,

both in covariance structure analysis and in correlation structure analysis. How-

ever, little has been done to study the differences in behaviors of the ADF method

in covariance structure analysis and correlation structure analysis. In this thesis

the behaviors of the ADF method in covariance structure analysis and correla-

tion structure analysis were studied for three test statistics, χ2 test TAGLS and

its small-sample improvements TY B and TF (AGLS). Results showed that the ADF

method in correlation structure analysis with test statistic TAGLS performs much

better at small sample sizes than the corresponding test for covariance structures.

However, test statistics TY B and TF (AGLS) under the same conditions generally

perform better with covariance structures than with correlation structures. Re-

sults also showed that condition numbers of weight matrices are systematically

increased with substantial increase in variance as sample size decreases. Implica-

tions for research and practice are discussed.
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CHAPTER 1

Introduction

Structural equation modeling (SEM) is a set of statistical techniques that ex-

amine causal relations between one or more independent variables (IVs), either

discrete or continuous, and one or more dependent variables (DVs), either dis-

crete or continuous. Both IVs and DVs can be either latent variables (factors)

or measured variables. For comprehensive reviews of SEM, readers can refer to

[Byr06, YB07, Ull10, Mul09, Kli11, UB13]. SEM is based on the general linear

model and is widely used in psychology and other social sciences. For its applica-

tions in practice, readers can refer to [AG88, Byr06, MA00, Kli11].

In general SEM models, latent variables can be functionally related. A special-

ized subset of SEM models involve latent variables that may be correlated but

have no directional or causal influences on each other. These are called measure-

ment models and can be categorized into exploratory factor analysis (EFA) and

confirmatory factor analysis (CFA). EFA techniques are typically used in the pre-

liminary phase of research where the researcher has observed data and hypotheses

of the underlying structure but needs to discover the exact structure. Through

EFA, the researcher explores and determines configuration of factors, the relations

among factors, and how observed variables are associated with factors. For re-

views of EFA techniques, readers can refer to the aforementioned comprehensive

reviews of SEM, as well as [FMT86, FWM99, Tho04, Mul10].

In CFA, the researcher already knows the most probable underlying structure:

how many factors, the relations among factors, and the relations between factors
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and observed variables. The main goal of CFA research is to verify and test the

hypothesized structure, including estimation of model parameters. For reviews of

CFA, readers can also refer to [Bro06, SNS06, Har09]. One important difference

between EFA and CFA is, EFA is typically performed using correlations, while

in CFA researchers mostly analyze covariance matrices. A covariance, as a non-

standardized correlation, also contains scale information of variables. For a many

sets of data, it is possible to use either correlation or covariance structures to

analyze the data since the key parameters of interest are related by a rescaling.

Thus either approach would be used to evaluate a model. This study compares

test statistics in covariance v.s. correlation structures.

Parameter estimation and test statistics are important research areas in CFA.

After the structure of a model is specified, the researcher needs to estimate pa-

rameters of the model. Typically these are estimated by minimizing the differ-

ence between measured unstructured sample covariance matrix and the estimated

structured population covariance matrix. There are two important aspects of this

estimation: the function to be minimized should have a statistical interpretation,

and the associated test statistic should provide a test of the covariance structure.

The function to be minimized is usually chosen to be

F = (s− σ(θ))′W (s− σ(θ)), (1.1)

where s is the vectorized sample covariance matrix of the observed variables, σ is

the vectorized population covariance matrix, θ is the vector of parameters, and

W is the weight matrix. Different methods choose different weight matrices.

Early development of estimation methods were mostly under the assumption of

multivariate normality. Maximum likelihood (ML) [Jor69] is one of the most

commonly employed techniques. It will yield the most precise estimates when

the multivariate normal assumption of observed variables is satisfied. Generalized

least square (GLS) [Bro84b] has the same optimal properties as the ML under the

same normal assumption, and is obtained as a special case of (1.1).
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However, in practice, the multivariate normal assumption is not always valid

[BC87, Rus02]. When the multivariate normal assumption is violated, researchers

either use other methods under different distribution assumptions or make correc-

tions to statistics resulting from normal methods. Among various methods of the

first approach, the asymptotically distribution free (ADF) method [Bro84a, Dij81]

is the one that does not have any distributional assumptions. But it is often im-

practical when the number of variables is large and can also be inaccurate when

the number of samples is not large [HBK92, CWF96]. Various adjustments to test

statistics have been proposed to correct the behavior of estimators in such situa-

tions. This topic will be discussed in Chapter 2 after further details on estimation

methods is presented.

There are other estimation methods with distribution assumptions more general

than multivariate normal but more restricted than arbitrary. Among them, mul-

tivariate elliptical theory (ERLS) [Bro82, BB86] introduces an additional kurtosis

parameter to control the distribution of a variable such that it can be heavier tailed

or lighter tailed than normal. Some more recent studies, including a geodesic dis-

crepancy function for use in covariance structure analysis [BOB97], have been

proposed to extend the elliptical theory family. Later, an extension of elliptical

theory, heterogeneous kurtosis theory (HK) [KBB90], was proposed to use hetero-

geneous kurtoses for different variables. HK can be as easily computed as ERLS,

yet applied to a wider class of multivariate distribution with different kurtosis.

There are also studies of comparing different methods under different conditions

such as non-normality or factor-error dependence situations [HBK92, FC04].

When distributional assumptions are false or sample sizes are too small for some

estimation methods, test statistics that are based on these assumptions, or that

are only accurate when sample sizes are large, can be corrected to cope with these

problems. One of the examples is a scaling correction method (SCALED) devel-

oped in [SB88, Kan90]. The SCALED method calculates a scaling correction based
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on model, estimation method, and sample fourth-order moments, and test statis-

tics are corrected by the scaling factor. Some more recent statistical corrections in-

clude a YB-correction in [YB97], an F-statistics in [YB99], and a Barlett-corrected

adjusted statistic [Fou00]. There have been studies of comparisons of these cor-

rected statistics under different conditions in [CWF96, YB99, Fou00, NH04].

Although correlation structure analysis can be traced back as early as in [Wri21,

Wri34, Jor78], for the past quarter century, most of the structure analysis meth-

ods were developed using covariance matrices since the asymptotic distribution of

covariance secured to be better understood. However, psychological theories or

data have been specified in terms of correlation coefficients, and it is important to

be able to perform correlation structure analysis as well. In correlation structures,

the vectors in (1.1) is the vector of correlations rather than covariances, and model

σ and weight matrix W are adjusted accordingly.

In the past, some correlation structure analysis was done with correlation matrices

being treated as special covariance matrices and covariance structure analysis was

used [KM78, Cud89, SB90]. If the model is fully scale-invariant, this procedure

may yield correct statistics. However, if the model is not fully scale-invariant, it

is very likely that parameter estimation or test statistics will be incorrect. The

statistical theories for correct analysis of correlations were developed rather slowly

for the past quarter century [SH82, Lee83, Moo85, Mel00, Ben07, BS10]. Some of

the estimation methods are already incorporated in EQS [Ben06].

There has been very little research to evaluate the performance of different param-

eter estimation methods in correlation structure analysis [Fou00, Mel00], and very

little is known about the performance of covariance structure analysis and correla-

tion structure analysis using similarly justified parameter estimation methods and

test statistics. In this thesis, we directly compare the performance of covariance

structure analysis and correlation structure analysis with a Monte Carlo confir-

matory factor analysis, using the ADF method and several test statistics, aiming
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to understand the differences in performance. We study the different behaviors of

covariance and correlation structure test statistics when theoretical multivariate

normal conditions are violated. Three ways of violating theoretical conditions are

investigated: normal distribution assumption violation, independence assumption

violation, and/or asymptotic sample size requirement violation.
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CHAPTER 2

Test Statistics

Suppose the model has p continuous variables and q parameters. Let θ be the

parameter vector (q by 1), S be the unbiased sample covariance matrix (p by p),

Σ be the population covariance matrix (p by p): Σ = Σ(θ). Let s (p∗ by 1, where

p∗ = p(p+1)
2

) be the vector of elements in the lower triangular of S, σ (p∗ by 1) be

the vector of elements in the lower triangular of Σ : σ = σ(θ). The ADF method

minimizes the generalized least squares function

Q = (s− σ(θ))′W (s− σ(θ)) (2.1)

to get the optimal parameter estimator θ̂, and W is an optimal weight matrix

defined in (2.5) below. Then a goodness-of-fit χ2 test is given by

TAGLS = nQ̂ = (N − 1)Q(θ̂), (2.2)

where N is sample size. The χ2 test has degrees of freedom d = p∗− q+ r, where

r is the number of nondependent constraints (r = 0 if there is no constraints).

Yuan and Bentler [YB97] improved the statistic (2.2) and proposed

TY B =
TAGLS

1 + TAGLS

n

. (2.3)

TY B becomes TAGLS as sample size gets larger, but appears to perform better than

TAGLS at smaller sample sizes.

Another statistics developed by Yuan and Bentler [YB99] is

TF (AGLS) =
N − d
nd

TAGLS. (2.4)
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This is referred to an F distribution with d and (N − d) degrees of freedom. It

may perform even better than TY B at the smallest sample sizes.

As for the weight matrix W , a consistent estimator is

W = V̂ −1 = V (θ̂)−1. (2.5)

The matrix V is defined by the asymptotic distribution of the residual

√
n(s− σ)

D−→ Normal(0, V ). (2.6)

In covariance structures, the typical element of V are usually given by

vij,kl = σijkl − σijσkl, (2.7)

where σij is sample covariance and

σijkl = E(zi − µi)(zj − µj)(zk − µk)(zl − µl) (2.8)

is the multivariate product moment for four variables i, j, k, and l.

In correlation structure analysis, the generalized least squares function is given

by

Q = (r − ρ(θ))′W̃ (r − ρ(θ)) (2.9)

instead of (2.1), where r and ρ are the vector of elements of the sample correlation

matrix and the vector of elements of the population correlation matrix, respec-

tively. The optimal choice of W̃ is W̃ = ̂̃V −1 in EQS [Ben06] and Ṽ is defined by

the asymptotic distribution of the residual

√
n(r − p) D−→ Normal(0, Ṽ ). (2.10)

The elements of the matrix Ṽ were given by Steiger and Hakstian [SH82] and de

Leeuw [Lee83] separately as

ṽij,kl =ρijkl + 0.25ρijρkl {ρiikk + ρjjkk + ρiill + ρjjll}

− 0.5ρij {ρiikl + ρjjkl} − 0.5ρkl {ρijkk + ρijll} , (2.11)
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where ρij is sample correlation and

ρijkl =
σijkl√

σiiσjjσkkσll
. (2.12)

The three test statistics from covariance structure analysis can also be applied to

correlation structure analysis. However, almost nothing is known about their be-

havior in practice, i.e., under conditions of violation of distributional assumptions

and less than asymptotic sample sizes.
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CHAPTER 3

Method

We used the confirmatory model in [HBK92]: x = Λξ + ε, where x is a vector of

measured variables, ξ is a vector of latent variables (factors), ε is a vector of unique

errors, and Λ is a factor loading matrix. Typically, ξ is assumed to be normally

distributed and uncorrelated from ε, ε’s are assumed to be independent from each

other, in which case the covariance matrix Σ = Σ(θ) = ΛΦΛ′+ Ψ, where Φ and Ψ

are the covariance matrices of ξ and ε, respectively. We tested all 7 conditions in

[HBK92]: factors and errors are normally distributed, errors are independent from

factors (Case 1); factors and errors are non-normally distributed, errors are inde-

pendent from factors, and factor covariance matrix is fixed (Case 2); factors and

errors are non-normally distributed, errors are independent from factors (Case 3)

; factors are normally distributed, errors are non-normally distributed, errors are

independent from factors (Case 4); factors and errors are normally distributed,

but division by a random variable creates dependence (Case 5); factors are nor-

mally distributed, errors are non-normally distributed, with factors and errors

dependent (Case 6); factors and errors are non-normally distributed, and factors

and errors are dependent (Case 7).

More specifically, the confirmatory factor model we used contains 15 measured

variables, 3 latent variables, and 15 unique errors. A simple Λ is used such that

each measured variables is dependent on one and only one latent variable, as
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shown in (3.1).

Λ′ =
0.7 0.7 0.75 0.8 0.8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.7 0.7 0.75 0.8 0.8 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.7 0.7 0.75 0.8 0.8


(3.1)

Variances of the factors are 1.0, and the covariances among the three factors

are 0.3, 0.4, and 0.5. The variances of the errors are set to values such that the

variances of the measured variables are 1.0 under normality.

After the population covariance matrix Σ is generated for each case (condition),

random samples of a specific sample size are drawn from the population. We set

different sample sizes to be 150, 250, 500, 1000, 2500, 5000, and 10000. In each

sample set, the parameters of the model are estimated using ADF with covariance

structure analysis and correlation structure analysis. In estimation, Λ1,5, Λ2,10,

and Λ3,15 are fixed to 0.8, and the rest of non-zero parameters are free to be

estimated. In the covariance structure, there are a total of 33 parameters to be

estimated, while in correlation structures, there are 18 since Ψ̂ = I − diag(Λ̂Φ̂Λ̂′).

For each sample size, we replicate the process 200 times. The performance of

the three test statistics across the 200 replications are then evaluated with mean,

standard deviation, and rejection rate at α=0.05 level. We also recorded and

evaluated the condition numbers of weight matrices W for both covariance and

correlation structure analysis, where a condition number is the ratio of largest to

smallest eigenvalue. We expect better condition numbers when test statistics per-

form well, and hope to understand the relationship between the size of condition

numbers and other conditions such as non-normality or dependence. All these

statistics are the main results of this study.

The experimental design of each case is as follows:
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Case 1: all factors and all errors are normally distributed, errors are indepen-

dent from factors.

Case 2: all factors and all errors are non-normally distributed, with kurtosis

of the 3 factors -1.0, 2.0, and 5.0, and the kurtoses of the 15 errors -1.0, 0.5, 2.5,

4.5, 6.5, -1.0, 1.0, 3.0, 5.0, 7.0, -0.5, 1.5, 3.5, 5.5, and 7.5. Errors are independent

from factors. All elements in the factor covariance matrix are fixed at their true

values.

Case 3: all factors and all errors are non-normally distributed, with kurtoses

of the 3 factors -1.0, 2.0, and 5.0, and the kurtoses of the 15 errors -1.0, 0.5, 2.5,

4.5, 6.5, -1.0, 1.0, 3.0, 5.0, 7.0, -0.5, 1.5, 3.5, 5.5, and 7.5. Errors are independent

from factors.

Case 4: all factors are normally distributed. All errors are non-normally dis-

tributed, with the kurtoses -1.0, 0.5, 2.5, 4.5, 6.5, -1.0, 1.0, 3.0, 5.0, 7.0, -0.5, 1.5,

3.5, 5.5, and 7.5. Errors are independent from factors.

Case 5: the factors and errors are normally distributed variables divided by a

common random variable Z =

√
χ2
(5)

3
that is independent from all the factors and

errors. Errors and factors are dependent because of Z.

Case 6: the factors are normally distributed, the errors are non-normally dis-

tributed as specified in Case 4. They are both divided by a common random

variable Z as specified in Case 5. Errors and factors are dependent because of Z.

Case 7: the factors and errors are non-normally distributed as specified in Case

3. They are both divided by a common random variable Z as specified in Case 5.

Errors and factors are dependent because of Z.

In all cases but Case 2, the degrees of freedom is 87. Thus in theory E(TAGLS)=87

for all cases but Case 2. In Case 2, the degree of freedom is 93. Thus in theory

E(TAGLS)=93 for Case 2. E(TY B) is smaller than E(TAGLS) but they are asymp-

totically the same (TY B →TAGLS as N→ ∞). E(TF (AGLS)) is smaller than 1 and

11



E(T(F (AGLS))) →1 as N→ ∞. The expected rate of rejections at α=0.05 level

would be 5%.
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CHAPTER 4

Results

The simulation results are summarized in Tables 1-7, each case (condition) in

one table. The statistical results of covariance structure analysis with TAGLS

agree with the corresponding results in [HBK92]. Thus validates the simulation

methodology.

Table 4.1 summarizes the results in Case 1, with covariance structure results

in the top half, and correlation results in the bottom half of the table. This is the

baseline model. The factors, errors, as well as measured variables are all multivari-

ate normally distributed. Asymptotically, E(TAGLS)= E(TY B)=87, SD(TAGLS)=

SD(TY B)=13.19, E(TF (AGLS))=1, SD(TF (AGLS))=0.1516, and the expectated re-

jection count at α=0.05 level would be 10. Due to their nature, E(TY B) and

E(TF (AGLS)) are always smaller than their asymptotically value: the smaller sam-

ple size is, the smaller their expectations are.

Although the ADF method in covariance structure and correlation structure

analyses yield similar behaviors when the sample size is large, these tests perform

differently when the sample size is small. In general, TAGLS performs better in

correlation structure analysis than in covariance structure analysis. There are far

too many model rejections in covariance structure analysis at all but the largest

sample sizes, while the rejection rates for correlation structures are much close to

nominal levels with only a small amount of model over rejection. The statistics

TY B and TF (AGLS) that were proposed to reduce the amount of model over rejection

in covariance structures actually do so, with TY B performing closer to nominal level

13



than TF (AGLS). In contrast, these two test statistics substantially overcorrect in

correlation structures so that models are accepted more frequently than expected

under the null hypothesis of model structure.

We also compared the condition numbers of the weight matrices associated

with both methods. As can be seen in the bottom section of Table 4.1, the

means and standard deviations of the condition numbers for both covariances

and correlations decrease as sample size increases. In general, better performance

of test statistics occurs when the condition numbers are smaller. The condition

numbers of weight matrices in correlation structure analysis are roughly similar

in size to those in covariance structure analysis, though they are a bit smaller for

the latter.

Table 4.2 and table 4.3 summarize the results in Case 2 and Case 3. Factors

and errors in both cases are non-normally distributed, while the factor covariance

matrix is fixed in Case 2. The covariance structure analysis performance of TAGLS

is similar in both cases and is also similar to that in Case 1, although the perfor-

mance in Case 3 is generally better than in Case 2. In contrast, the correlation

structure analysis performance of TAGLS in the two cases is vastly different with

small sample sizes: the performance in Case 3 is much better than the performance

in Case 2 and very similar to that in Case 1. Thus the ADF method in covariance

and correlation structure analyses generally performs under these conditions of

non-normality as it had under normality, though the fixed factor covariance ma-

trix (Case 2) does cause it trouble in correlation structure analysis with smaller

sample sizes. The performance of TY B and TF (AGLS) in covariance and correlation

structure analyses in Case 3 is similar to their performance in Case 1. Results in

Case 2 are a bit more complex, with covariance structure performance somewhat

worse at small samples and correlation structure performance somewhat better at

larger sample sizes as compared to Case 1.

Since the distributions of factors and errors in Case 2 and Case 3 are the

14



Table 4.1: Summary of simulation results for Case 1.

Sample size

Method Statistics 150 250 500 1000 2500 5000 10000

ADF,

covariance TAGLS

structure M 224.649 146.8563 110.1098 98.9225 89.9213 87.8146 88.154

analysis SD 49.8764 28.9769 19.263 16.4164 13.1901 12.7041 13.1948

Count 200 184 92 46 16 10 10

TY B

M 88.5393 91.5565 89.8005 89.8083 86.7361 86.2683 87.3667

SD 7.9981 11.2973 12.8646 13.5554 12.2573 12.2627 12.9567

Count 0 11 12 16 10 9 8

TF (AGLS)

M 1.0918 1.105 1.0475 1.0392 0.998 0.992 1.0045

SD 0.2424 0.218 0.1833 0.1725 0.1464 0.1435 0.1504

Count 15 25 20 18 10 9 8

ADF,

correlation TAGLS

structure M 93.1574 93.3013 90.1351 89.9235 86.9441 86.383 87.3545

analysis SD 12.5419 14.7537 13.6532 13.8974 12.5499 12.3512 12.9292

Count 18/199 30 16 16 10 8 9

TY B

M 57.0763 67.5344 76.1201 82.349 83.9644 84.8867 86.5818

SD 4.7399 7.8378 9.7516 11.6855 11.6851 11.9296 12.6973

Count 0/199 0 0 3 4 4 8

TF (AGLS)

M 0.4527 0.702 0.8575 0.9446 0.965 0.9758 0.9954

SD 0.061 0.111 0.1299 0.146 0.1393 0.1395 0.1473

Count 0/199 0 0 3 4 4 8

Weight matrix condition numbers

ADF, M 25544.12 2007.359 629.4618 384.9135 277.3411 249.4422 233.8382

covariance SD 11260.63 518.0769 111.837 55.7553 28.73396 22.35056 17.72888

ADF, M 31140.09 2377.839 742.2598 436.6897 313.2534 281.8307 266.2201

correlation SD 13110.74 510.1428 118.5445 50.31107 25.48614 20.33156 19.1209

M: means of statistics; SD: standard deviations of statistics; Count: rejection count at α=0.05 level.

All results are based on 200 replications unless two numbers are given in the Count box,

in which case the second number is the number of replications that converged,

and the results are based on only the converged replications.
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same and we used the same seed for the simulations, the condition numbers of the

weight matrices are the same in both cases. We observe the same decreasing trend

in means and standard deviations as the sample size increases, with roughly equal

values for covariance and correlation structures. In both cases, these means and

standard deviations are significantly larger than in Case 1. At N = 10000, the

coefficients of variation (SD/M) of these condition numbers are roughly double in

Cases 2 and 3 as compared to Case 1. Stated differently, the signal/noise ratio

M/SD of the condition numbers is about twice as large with normal distributions

as with the non-normal ones.

Table 4.4 summarizes the results for Case 4, in which factors are normally

distributed, errors are non-normally distributed, and they are independent of each

other. By comparing the results with the previous ones, we can see that for

covariance structure analysis, the performance of all 3 statistics is similar to that

of Case 1 and Case 3. For correlation structure analysis, the performance of TAGLS

in Case 4 is slightly better than in Case 3, especially at the smallest sample size.

The performance of TY B and TF (AGLS) is very similar across the 3 cases, and,

as usual, they perform worse in correlation than covariance structures at most

sample sizes.

The condition numbers of the weight matrices in Case 4 are smaller than those

in Case 3 but somewhat larger than those in Case 1. Their coefficients of variation

are only marginally larger, and signal/noise slightly smaller, under this type of

non-normality than under normality. As in previous cases, the condition numbers

for covariance and correlation structures are highly similar.

Table 4.5, 4.6, and 4.7 summarize the results for Cases 5, 6, and 7, where fac-

tors and errors are divided by a common random number resulting in dependent

observations. In general, as in previous cases, TAGLS statistics in covariance struc-

tures perform nominally asymptotically but seriously over reject the true model at

small and medium sample sizes, while the correlational TAGLS performs much bet-
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Table 4.2: Summary of simulation results for Case 2.

Sample size

Method Statistics 150 250 500 1000 2500 5000 10000

ADF,

covariance TAGLS

structure M 286.3002 169.2534 121.4485 107.5488 97.4112 94.8508 94.8147

analysis SD 68.4868 32.8661 21.3566 16.801 14.3258 13.8507 13.5709

Count 200 190 115 58 19 15 11

TY B

M 96.7809 99.8579 97.2067 96.8897 93.6836 93.0483 93.906

SD 7.9676 11.6177 13.7109 13.6509 13.2313 13.3281 13.3087

Count 0 15 19 15 11 13 8

TF (AGLS)

M 1.1777 1.1475 1.0651 1.0499 1.0089 1.0011 1.0101

SD 0.2817 0.2228 0.1873 0.164 0.1484 0.1462 0.1446

Count 32 34 24 19 13 13 8

ADF,

correlation TAGLS

structure M 202.1393 137.5241 109.2368 100.8685 94.2044 92.4154 92.7229

analysis SD 51.3794 27.7071 19.6659 16.7556 14.2426 13.3547 13.3638

Count 197 155 66 39 15 8 9

TY B

M 84.521 87.7857 89.1964 91.4088 90.7101 90.7043 91.8535

SD 8.8089 11.3668 13.1356 13.7784 13.1842 12.8661 13.1113

Count 0 1 4 10 5 7 8

TF (AGLS)

M 0.8315 0.9324 0.958 0.9847 0.9757 0.9754 0.9878

SD 0.2113 0.1879 0.1725 0.1636 0.1475 0.141 0.1424

Count 1 3 6 11 7 7 8

Weight matrix condition numbers

ADF, M 76172.62 5834.362 1718.458 1029.257 712.7037 632.0674 575.7587

covariance SD 50905.41 2916.986 640.2147 352.0613 208.1045 163.8565 90.60651

ADF, M 73558.64 5943.245 1779.606 1044.091 713.614 619.9113 555.5487

correlation SD 43936.93 2752.86 619.3706 347.362 214.9624 149.7043 81.73356

M: means of statistics; SD: standard deviations of statistics; Count: rejection count at α = 0.05 level.

All results are based on 200 replications unless two numbers are given in the Count box,

in which case the second number is the number of replications that converged,

and the results are based on only the converged replications.
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Table 4.3: Summary of simulation results for Case 3.

Sample size

Method Statistics 150 250 500 1000 2500 5000 10000

ADF,

covariance TAGLS

structure M 219.9541 146.0257 110.1443 98.6583 90.4165 88.1948 88.5836

analysis SD 47.5195 27.9936 18.5762 16.3763 13.3616 12.9406 13.331

Count 199/199 180 99 46 16 10 12

TY B

M 87.8554 91.2699 89.851 89.5898 87.1955 86.6344 87.7885

SD 7.7019 11.0474 12.4379 13.5222 12.4152 12.4883 13.09

Count 0/199 11 14 13 7 7 11

TF (AGLS)

M 1.069 1.0987 1.0478 1.0364 1.0035 0.9963 1.0094

SD 0.2309 0.2106 0.1767 0.172 0.1483 0.1462 0.1519

Count 11/199 22 17 14 7 8 11

ADF,

correlation TAGLS

structure M 95.2845 93.5815 90.7471 89.9615 87.6806 86.7636 87.8856

analysis SD 15.121 15.7935 14.0571 14.2183 12.9792 12.4982 13.1776

Count 31 35 19 15 10 8 12

TY B

M 57.7759 67.6367 76.546 82.3744 84.6482 85.254 87.1031

SD 5.5777 8.3289 10.0192 11.9469 12.0778 12.0709 12.9404

Count 0 0 0 1 5 4 7

TF (AGLS)

M 0.4631 0.7041 0.8633 0.945 0.9731 0.9801 1.0015

SD 0.0735 0.1188 0.1337 0.1494 0.1441 0.1412 0.1502

Count 0 0 0 3 5 4 7

Weight matrix condition numbers

ADF, M 76172.62 5834.362 1718.458 1029.257 712.7037 632.0674 575.7587

covariance SD 50905.41 2916.986 640.2147 352.0613 208.1045 163.8565 90.60651

ADF, M 73558.64 5943.245 1779.606 1044.091 713.614 619.9113 555.5487

correlation SD 43936.93 2752.86 619.3706 347.362 214.9624 149.7043 81.73356

M: means of statistics; SD: standard deviations of statistics; Count: rejection count at α=0.05 level.

All results are based on 200 replications unless two numbers are given in the Count box,

in which case the second number is the number of replications that converged,

and the results are based on only the converged replications.
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Table 4.4: Summary of simulation results for Case 4.

Sample size

Method Statistics 150 250 500 1000 2500 5000 10000

ADF,

covariance TAGLS

structure M 221.4522 146.146 110.3154 98.7184 90.2788 88.1898 88.6902

analysis SD 48.1452 27.991 18.61 16.3519 13.523 12.9549 13.2714

Count 200 181 101 49 14 13 13

TY B

M 88.0733 91.3186 89.9649 89.6405 87.066 86.6293 87.8933

SD 7.8325 11.0431 12.4464 13.5026 12.5627 12.5032 13.0288

Count 0 10 16 13 9 7 11

TF (AGLS)

M 1.0763 1.0997 1.0495 1.037 1.002 0.9962 1.0107

SD 0.234 0.2106 0.177 0.1718 0.1501 0.1464 0.1512

Count 10 25 18 17 11 7 11

ADF,

correlation TAGLS

structure M 93.8581 93.2639 90.4126 89.8608 87.2889 86.7243 87.917

analysis SD 13.2846 14.626 13.6436 13.9274 12.8717 12.5695 13.0521

Count 21 28 17 15 6 7 11

TY B

M 57.3142 67.521 76.3195 82.2958 84.2835 85.2157 87.1344

SD 4.9783 7.7565 9.7385 11.7018 11.979 12.1403 12.8153

Count 0 0 0 1 5 4 9

TF (AGLS)

M 0.4561 0.7018 0.8601 0.944 0.9688 0.9797 1.0019

SD 0.0646 0.1101 0.1298 0.1463 0.1429 0.142 0.1487

Count 0 0 0 3 5 4 9

Weight matrix condition numbers

ADF, M 43419.79 3212.517 929.9867 524.0417 344.056 305.9564 270.5049

covariance SD 28871.7 1190.623 245.5542 121.1078 50.25963 98.96762 23.26951

ADF, M 49475.99 3735.899 1064.594 584.8088 382.0124 337.7119 295.306

correlation SD 28964.63 1276.599 233.8229 134.9129 48.04584 108.9194 24.2551

M: means of statistics; SD: standard deviations of statistics; Count: rejection count at α=0.05 level.

All results are based on 200 replications unless two numbers are given in the Count box,

in which case the second number is the number of replications that converged,

and the results are based on only the converged replications.
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ter. However, correlational TAGLS is nowhere near as well performing as in Cases

1 and 3; instead, in Cases 5-7 the performance is similar to that of Case 2 where

there was substantial over rejection of the true model at the smaller sample sizes

although nowhere near as extremely as with covariance structures. These condi-

tions also have up to 3.5% of replications failing to converge with correlations. The

statistics and rejection rates of TY B and TF (AGLS) in covariance structure analysis

are generally similar to those of the corresponding independence cases, although

in Cases 5-7 their performance at the smaller sample sizes yields greater under

rejection. In correlation structure analysis with small sample sizes, these statistics

perform even worse. While in Cases 5-7, TY B and TF (AGLS) converge more rapidly

to their theoretical limits than in Cases 1, 3, and 4, in absolute terms the under

rejection is still very severe at the smaller sample sizes.

The condition numbers of weight matrices in Cases 5-7 are much larger and

more widely spread as compared with their corresponding independence cases.

Furthermore, the asymptotic coefficients of variation of the condition numbers is

4-5 times as large as the independence cases, and up to 10 times as large as those

observed under normality in Condition 1.

In summary, comparing to their covariance structure analysis counterparts,

the ADF method with TAGLS statistics performs surprisingly well in correlation

structure analysis with small sample sizes in terms of statistics and rejection

rates, but not in converging rates, while the ADF method with TY B and TF (AGLS)

statistics performs poorly in correlation structure analysis with small sample sizes.

With large sample sizes, the ADF methods with all 3 statistics in both covariance

structure analysis and correlation structure analysis are able to converge to their

corresponding theoretical limits.

As for condition numbers of weight matrices, the condition numbers decrease

as sample sizes increase. Moreover, violations of normality increase both the

means and standard deviations of the condition numbers but not their relative
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Table 4.5: Summary of simulation results for Case 5.

Sample size

Method Statistics 150 250 500 1000 2500 5000 10000

ADF,

covariance TAGLS

structure M 209.9947 140.4924 108.1344 99.5106 90.6292 90.0573 88.372

analysis SD 36.0421 23.1144 15.3194 14.1865 12.1619 12.602 13.517

Count 200 188 85 44 15 14 8

TY B

M 86.5444 89.2643 88.6157 90.346 87.4046 88.4338 87.5801

SD 6.2016 9.3792 10.3345 11.6987 11.3179 12.1515 13.2708

Count 0 3 4 10 4 11 8

TF (AGLS)

M 1.0206 1.0571 1.0287 1.0453 1.0059 1.0173 1.007

SD 0.1752 0.1739 0.1457 0.149 0.135 0.1424 0.154

Count 2 10 7 13 5 11 8

ADF,

correlation TAGLS

structure M 115.8832 100.3471 93.8847 92.6419 88.6876 89.0765 87.7855

analysis SD 29.0865 20.8819 18.0115 14.0728 12.869 13.3677 13.9243

Count 109/196 59 27 24 8 15 7

TY B

M 64.2154 70.9137 78.6472 84.6288 85.5887 87.4836 87.0026

SD 8.9876 10.2931 12.293 11.7609 11.9808 12.8942 13.6712

Count 0/196 0 2 3 5 11 7

TF (AGLS)

M 0.5632 0.755 0.8932 0.9732 0.9843 1.0063 1.0003

SD 0.1414 0.1571 0.1713 0.1478 0.1428 0.151 0.1587

Count 0/196 1 4 6 5 13 7

Weight matrix condition numbers

ADF, M 306730.2 22284.95 5149.106 2125.579 1247.086 866.5005 530.0225

covariance SD 798649.8 56694.84 11658.51 3998.007 3932.683 1303.571 323.2938

ADF, M 285996.8 22360.56 5508.089 2252.228 1369.207 881.9237 556.9175

correlation SD 662600.5 44623.85 12794.05 4061.555 4743.763 1193.424 317.2301

M: means of statistics; SD: standard deviations of statistics; Count: rejection count at α=0.05 level.

All results are based on 200 replications unless two numbers are given in the Count box,

in which case the second number is the number of replications that converged,

and the results are based on only the converged replications.
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Table 4.6: Summary of simulation results for Case 6.

Sample size

Method Statistics 150 250 500 1000 2500 5000 10000

ADF,

covariance TAGLS

structure M 209.6036 139.3892 107.8177 98.7268 90.4895 89.6663 88.8373

analysis SD 33.9494 23.2638 14.5975 13.48 12.2549 12.3921 13.5384

Count 200 180 88 41 11 16 11

TY B

M 86.5356 88.7991 88.4246 89.7113 87.2737 88.0575 88.0373

SD 5.9368 9.5043 9.8825 11.1461 11.4059 11.9533 13.2873

Count 0 2 2 11 5 10 8

TF (AGLS)

M 1.0187 1.0488 1.0257 1.0371 1.0043 1.0129 1.0123

SD 0.165 0.175 0.1389 0.1416 0.136 0.14 0.1543

Count 1 12 4 14 6 10 8

ADF,

correlation TAGLS

structure M 123.012 101.7469 94.4171 92.4639 88.8611 88.67 88.2718

analysis SD 31.0884 20.8587 16.6102 13.7616 14.2385 13.1088 13.9074

Count 126/195 60/199 32/199 24 10 17 12

TY B

M 66.3465 71.6239 79.0739 84.4863 85.7377 87.0922 87.4806

SD 9.2147 10.301 11.5273 11.5162 13.1721 12.6444 13.6489

Count 0/195 0/199 2/199 3 6 11 11

TF (AGLS)

M 0.5978 0.7656 0.8982 0.9713 0.9862 1.0017 1.0059

SD 0.1511 0.1569 0.158 0.1446 0.158 0.1481 0.1585

Count 0/195 0/199 2/199 4 6 11 11

Weight matrix condition numbers

ADF, M 448858.5 35152.88 6894.126 2635.108 1473.717 1214.176 645.8547

covariance SD 911396.6 96209.51 14815.99 4828.256 3727.372 2788.326 440.7358

ADF, M 440517 37361.53 7195.832 2620.814 1551.541 1272.651 673.7769

correlation SD 784565.3 102924.1 14857.71 3925.581 3964.034 3042.005 443.1857

M: means of statistics; SD: standard deviations of statistics; Count: rejection count at α=0.05 level.

All results are based on 200 replications unless two numbers are given in the Count box,

in which case the second number is the number of replications that converged,

and the results are based on only the converged replications.
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Table 4.7: Summary of simulation results for Case 7.

Sample size

Method Statistics 150 250 500 1000 2500 5000 10000

ADF,

covariance TAGLS

structure M 207.4921 138.9543 107.7686 98.6843 90.4124 89.7547 88.928

analysis SD 34.1429 22.1298 14.7087 13.6724 12.3778 12.2541 13.5543

Count 200 184 86 36 14 14 12

TY B

M 86.1429 88.6714 88.3882 89.6724 87.201 88.1434 88.1264

SD 6.1423 9.0729 9.9485 11.2993 11.5234 11.8189 13.3027

Count 0 2 2 10 5 8 8

TF (AGLS)

M 1.0084 1.0455 1.0252 1.0367 1.0035 1.0139 1.0134

SD 0.1659 0.1665 0.1399 0.1436 0.1374 0.1384 0.1545

Count 0 8 4 13 5 9 10

ADF,

correlation TAGLS

structure M 125.8541 103.7095 95.3557 93.1508 88.9243 89.0635 88.3685

analysis SD 32.5554 23.1856 18.0662 14.7465 14.7668 13.0089 13.926

Count 129/193 68 39/199 28 9 13 11

TY B

M 67.1289 72.4905 79.6824 85.0405 85.7908 87.4726 87.5755

SD 9.4418 11.1433 12.4123 12.3014 13.6751 12.5443 13.667

Count 0/193 1 2/199 6 8 11 9

TF (AGLS)

M 0.6116 0.7803 0.9071 0.9785 0.9869 1.0061 1.007

SD 0.1582 0.1745 0.1719 0.1549 0.1639 0.147 0.1587

Count 0/193 2 2/199 6 8 11 10

Weight matrix condition numbers

ADF, M 498903.4 42058.49 9841.297 3632.087 2299.307 1567.962 1072.239

covariance SD 871533.2 82849.18 22723.32 4972.402 5452.845 2549.437 806.0849

ADF, M 504899.2 43326.45 9876.272 3776.686 2485.859 1618.726 1105.31

correlation SD 1073513 87457.93 20975.29 5525.001 6581.523 2850.889 834.1139

M: means of statistics; SD: standard deviations of statistics; Count: rejection count at α=0.05 level.

All results are based on 200 replications unless two numbers are given in the Count box,

in which case the second number is the number of replications that converged,

and the results are based on only the converged replications.
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ratio, although violation of independence conditions greatly increases the mean

and even more greatly increases the standard deviation of condition numbers,

causing the condition numbers to be more widely spread.
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CHAPTER 5

Discussion

The behaviors of the asymptotically distributed free (ADF) methods in covari-

ance and correlation structure analysis were studied for three test statistics, two

of which are referred to the χ2 distribution for evaluation, and one of which is

referred to the F distribution. The main statistic studied is the statistics TAGLS

originally developed by Browne [Bro84a] for covariance structure analysis, but

adaptable to correlation structures through the results of Steiger and Hakstian

[SH82] or de Leeuw [Lee83]. The secondary statistics studied, TY B and TF (AGLS),

are based on TAGLS and are meant to improve model evaluation with small sam-

ples. Results for TAGLS in covariance structures essentially replicate those obtained

previously by [HBK92], while those for TY B and TF (AGLS) are consistent with those

of their developers. Specifically, TY B results are consistent with those of [YB97]

and TF (AGLS) results are consistent with those of [YB99]. Thus for covariance

structures, the simulations are largely confirmatory.

Little is known about the empirical performance of TAGLS in correlation struc-

ture analysis. The most thorough available studies are those of Fouladi [Fou00]

and Mels [Mel00], which provided somewhat contradictory results. Fouladi com-

pared 8 covariance structure analysis techniques and 4 correlation structure anal-

ysis techniques, among which 2 covariance and 2 correlation structure analysis

techniques are asymptotically distribution free methods, including TAGLS for co-

variance and correlation structures, and TY B for covariance structures. Fouladi

tested each method over a variety of cases, including different covariance matrix
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structures, non-normalities, and sample sizes. Her results on asymptotically dis-

tribution free statistics are consistent with our results, showing that at less than

asymptotic samples sizes the performance of TAGLS in correlation structures is

better than that of TAGLS in covariance structures. She also verified the gener-

ally good performance of TY B in covariance structures, but did not evaluate the

parallel performance in correlation structures. In some ways, Mels [Mel00] ob-

tained results similar to those of Fouladi and this study, showing that in a CFA

model with 12 non-normal variables, a correlation structure ADF methodology

with an adjusted asymptotic covariance matrix yielded a two-stage test statistic

TTAGLS that performed much better at small and intermediate sized samples than

the corresponding TAGLS from covariance structure analysis. Elements of the ad-

justed asymptotic covariance matrix of correlations used by Mels are given by

our (2.11) with least-squares model-based estimates of correlations ρij instead of

sample correlations as used here and by Fouladi. In fact, Mels also reported on

the test TAGLS using (2.11) with sample correlations and fourth-order moments,

i.e., a statistic that used the same asymptotic covariance matrix of correlations as

used by Fouladi and this study. Hence, Mels’ results for this statistic should be

consistent with Fouladi’s and our results. However, he found that this test per-

formed very poorly. We have two reasons to suspect that there is a problem with

Mels’ results on this statistic. First, his statistic does not behave correctly asymp-

totically, as it should. For example, at N = 5000 the mean of the test statistic

across simulation replications is nowhere near its expectation, the degrees of free-

dom of the model. Second, in large samples under the correct model the adjusted

weight matrix used in his two-stage ADF test statistic (his eq. (4.15)) should

be essentially identical to that of the ordinary ADF correlation weight matrix,

since sample based and model based estimates of ρij both converge to the popu-

lation value. Hence, his one-stage ADF test (his eq. (4.13)) should have behaved

essentially identically to that of his two-stage test in large samples, yet it did not.
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In this paper, we studied parallel ADF statistics for covariance and correlation

structure analysis and made direct comparisons between their performances under

various conditions (different sample sizes, normality and non-normality, and/or

dependence conditions). Results show that, compared to the ADF method in

covariance structure analysis, TAGLS in correlation structure analysis performed

surprisingly well at small sample sizes. More specifically, compared with their

covariance structure analysis counterparts, with small sample sizes the means

of the TAGLS statistics of ADF correlation structure analysis are closer to the

theoretical values, and the rejection rates of the correlational TAGLS statistics

under the model are closer to nominal levels as well.

As for statistics TY B and TF (AGLS), Bentler and Savalei [BS10] proposed that

these two statistics could be adapted to use in correlation structure analysis, and

in fact the methodology has been available in the EQS program for a decade

[Ben06]. However, they noted that the conditions utilized in the derivations of

these statistics for covariance structure analysis are less well met in correlation

structures. For example, TY B arises from a substitute computation for the asymp-

totic covariance matrix of covariances that does not have a parallel in correlation

structures, and the Hotelling T 2 rationale for TF (AGLS) seems less well justified.

Nonetheless, they expected these statistics to perform well in practice although

they provided no evidence in this regard. The results observed in this study are

quite contradictory to these expectations. Speaking generally, TY B and TF (AGLS)

based on correlations perform much worse than their covariance structure coun-

terparts. As an explanation for these differences, we note that TAGLS rejects the

true model with smaller samples with covariance structure analysis, and TY B and

TF (AGLS) substantially reduce excessive model rejections. With covariance struc-

tures, this reduction is generally quite good. In contrast, in correlation structures,

TAGLS already performs quite well without any corrections. The further reduction

in test values obtained via TY B and TF (AGLS) thus overcorrect, leading to model
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acceptance far beyond nominal levels.

Some graphs provide a convenient way to compare an aspect of the perfor-

mance of the various test statistics. Figure 5.1 shows the means of TAGLS across

replications at different sample sizes for both covariance and correlation structure

analysis under the various distributional conditions of our simulation. The solid

lines give results from covariance structures, and the dashed lines give the results

from correlation structures. The results of both covariance and correlation struc-

tures under the same condition are plotted in the same color. Figure 5.2 shows the

means of TY B at different sample sizes in both covariance and correlation struc-

ture analysis using the same notation as in Figure 5.1, while the same notation is

also used in Figure 5.3 that shows the means of TF (AGLS) at different sample sizes

in both covariance and correlation structure analysis.

From the figures we can see that the means of test statistics in correlation

structure analysis are generally lower than the means of corresponding statistics

in covariance structure analysis. When the sample sizes are small, the TAGLS test

statistics in covariance structure analysis are very far away from the theoretical

value. Under these conditions, the lower values of means of TAGLS statistics in

correlation structure analysis are closer to their theoretical values, thus making

the correlation structure analysis ADF method a better choice than its covariance

structure analysis counterpart, especially at smaller sample sizes. On the other

hand, while the means of TY B and TF (AGLS) test statistics in covariance structure

analysis are close to their theoretical values at most sample sizes, in correlation

structure analysis their lowered means compared to TAGLS taken them further

away from their expected values.

We can also compare the results across different cases. For example, the TAGLS

results in cases 1, 3, and 4 are quite similar with both covariance and correlation

structure analysis. The differences between cases 1, 3, and 4 involve whether nor-

mality of factors or errors is violated. These types of non-normality create little
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Figure 5.1: The means of TAGLS of covariance structure analysis and correlation

structure analysis of all 7 cases as a function of sample sizes. Note that the

theoretical limit of Case 2 should be 93.
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Figure 5.2: The means of TY B of covariance structure analysis and correlation

structure analysis of all 7 cases as a function of sample sizes. Note that the

theoretical limit of Case 2 should be 93.
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Figure 5.3: The means of TF (AGLS) of covariance structure analysis and correlation

structure analysis of all 7 cases as a function of sample sizes.
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trouble for either ADF method, which is to be expected from the distribution-free

nature of ADF statistics. On the other hand, the TAGLS results in cases 1, 3, and

4 (independence conditions) are better than those of cases 5, 6, and 7 (dependence

conditions) in correlation structure analysis, while the opposite occurs in covari-

ance structure analysis. In other words, violation of the independence assumption

creates a larger problem for TAGLS in correlation structures at small sample sizes

while the same violation has little effect in the corresponding covariance structure

analysis. In contrast, the results for cases 5, 6, and 7 are slightly better than the

results of case 1, 3, and 4 in terms of statistics and rejection rates with TY B and

TF (AGLS) in correlation structure analysis. This differential performance implies

the use of different statistics in practice, but it is hard to make recommendations

for practice that depend on conditions, since practical methods for evaluating in-

dependence versus dependence of observations are not available. Nonetheless, the

figures imply that when the independence assumption is not violated, TAGLS is

a better choice than TY B and TF (AGLS) in correlation structure analysis at small

sample sizes; when the independence assumption is violated, TY B and TF (AGLS

statistics produce better results than TAGLS. This is quite different than covari-

ance structure analysis, where in all cases TY B and TF (AGLS) perform better than

TAGLS at small sample sizes.

Finally, we turn to the condition numbers of the weight matrices. Those as-

sociated with correlational and covariance structure analysis behaved remarkably

similarly. At small sample sizes, the condition numbers were far larger and had

substantially greater variability than at the largest sample sizes. A decline in the

size of the condition numbers with increasing sample size is to be expected since it

is known that sample eigenvalues are more extreme than their population counter-

parts. However, we were surprised that in some conditions the average condition

numbers for the smallest sample size could be hundreds of times as large as those

for the largest sample size (see e.g., Table 4.6). Similarly, since condition num-
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bers become less extreme with larger sample sizes, one might expect standard

deviations of condition numbers across replications to decrease with increasing

sample size. Nonetheless, the tremendous variation in condition numbers within

any case or condition, with hugely increased variability at the smallest sample

sizes compared to the largest, was unexpected. For example, in Table 4.6, the

SD for condition numbers in covariance structures at the smallest sample size is

over 2000 times larger than that at the largest sample size. These observations

suggest that some of the poor behavior of ADF test statistics may be associated

with excessively extreme condition numbers of estimates of the population weight

matrix, and that research might be directed at methods to robustify these weight

matrices with an eye to improved condition numbers. Among new approaches

that might be considered are those that create the weight matrix as a convex

combination of the usual weight matrix and the identity, similar to a methodol-

ogy proposed in another context by Yuan [Yua]; those that shrink the eigenvalues

of a sample weight matrix towards their geometric mean, similar to a methodol-

ogy proposed by Dey [Dey88], or estimate all the eigenvalues more effectively as

proposed by Ledoit and Wolf [LW13]; or, since a weight matrix is just a covariance

matrix, those that robustify the weight matrix by downweighting extreme cases,

e.g., using Campbell’s methodology [Cam80] or any other as reviewed by Maronna,

Martin & Yohai [MMY06]. Of course, the field of covariance matrix estimation

under difficult conditions is a huge and expanding one (e.g., [LW12, XMZ12]), so

a lot of research remains to be done to adapt this work to structural modeling

with ADF.
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