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INTRODUCTION 
 

Epigenetic changes are an important hallmark of aging 

[1–3]. DNA methylation analysis provided promising 

molecular biomarkers of aging [4], with several 

epigenetic aging clocks having been introduced and 

used by aging researchers in recent years [5–12]. Age-

adjusted epigenetic age estimates (referred to as  

 

epigenetic age acceleration) have been linked to a large 

number of age-related conditions [6, 7, 13–20]. 

 

Here we set out to investigate whether DNAm clocks 

possibly capture any dysfunction of the epigenetic 
maintenance system (EMS) of a cell [5, 13, 21]. Age is 

known to greatly increase the variability of DNA 

methylation levels and the epigenetic profiles of 
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ABSTRACT 
 

DNA methylation (DNAm) age estimators are widely used to study aging-related conditions. It is not yet 
known whether DNAm age is associated with the accumulation of stochastic epigenetic mutations (SEMs), 
which reflect dysfunctions of the epigenetic maintenance system. Here, we defined epigenetic mutation 
load (EML) as the total number of SEMs per individual. We assessed associations between EML and DNAm 
age acceleration estimators using biweight midcorrelations in four population-based studies (total n = 
6,388). EML was not only positively associated with chronological age (meta r = 0.171), but also with four 
measures of epigenetic age acceleration: the Horvath pan tissue clock, intrinsic epigenetic age acceleration, 
the Hannum clock, and the GrimAge clock (meta-analysis correlation ranging from r = 0.109 to 0.179). We 
further conducted pathway enrichment analyses for each participant’s SEMs. The enrichment result 
demonstrated the stochasticity of epigenetic mutations, meanwhile implicated several pathways: signaling, 
neurogenesis, neurotransmitter, glucocorticoid, and circadian rhythm pathways may contribute to faster 
DNAm age acceleration. Finally, investigating genomic-region specific EML, we found that EMLs located 
within regions of transcriptional repression (TSS1500, TSS200, and 1stExon) were associated with faster age 
acceleration. Overall, our findings suggest a role for the accumulation of epigenetic mutations in the aging 
process. 
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monozygotic twins diverge considerably with age [22, 

23]. Gentilini et al [24] proposed that stochastic 

epigenetic mutations (SEMs) increase exponentially 

with chronological age. The association of SEMs and 

aging was for the first time longitudinally assessed in 

the Swedish twin cohort [25] which confirmed that 

epigenetic mutations accumulate with age in an 

individual.  In addition, SEMs have recently been 

associated with hepatocellular carcinoma staging [26], 

exposure to endocrine-disrupting compounds [27], 

socioeconomic position, and lifestyle factors [28]. 

Despite extensive research in this field, to our 

knowledge, most previous studies focused on 

chronological age rather than epigenetic age and 

epigenetic age acceleration. One study found SEM 

counts to be positively associated with epigenetic age 

acceleration based on both the Horvath and Hannum 

clocks [27]. Another recent study focused on Hannum, 

GrimAge, and intrinsic epigenetic age estimators within 

the Generation Scotland and the Lothian Birth Cohort, 

and reported positive associations between SEM counts 

and all three epigenetic age measurements [29]. To 

address the complexity of the aging process and the 

biological mechanisms underlying different epigenetic 

clocks, it may be useful to systematically study multiple 

clocks at the same time. In addition, biologic pathway 

enrichment analysis may help us gain an understanding 

of the pathophysiology of accelerated aging. 

 

We pooled four population-based studies (total n = 

6,388) to systematically investigate whether SEM 

counts are associated with epigenetic age acceleration. 

We included four DNAm aging clocks that represent 

different manifestations of the epigenetic aging 

processes, including: the pan-tissue chronological age 

estimator by Horvath (2013, Horvath clock) [5]; an 

intrinsic epigenetic age measure derived from the 

Horvath clock by additionally regressing out cell 

compositions (intrinsic clock) [30]; the leukocyte-based 

chronological age estimator by Hannum et al. (2013, 

Hannum clock) [11]; and the epigenetic mortality risk 

predictor developed recently by Lu et al. (2019, 

GrimAge clock) [7]. Age-adjusted versions of these 

biomarkers are generally being referred to as measures 

of epigenetic age acceleration and denoted as 

AgeAccelHorvath, intrinsic epigenetic age acceleration 

(IEAA), AgeAccelHannum, and AgeAccelGrim, 

respectively. We also coined the new term “epigenetic 

mutation load (EML)” as representing the total number 

of SEMs observed for each individual. In this article, 

we will 1) relate EML to different epigenetic age 

acceleration measures; 2) functionally annotate mutated 

CpG sites; 3) conduct biological pathway enrichment 

analysis; 4) relate DNA region-specific EMLs to 

epigenetic measures of age acceleration; and 5) compare 

SEMs with the Shannon entropy measure as the latter 

can be interpreted as alternative measure for the decline 

of epigenetic maintenance. 

 

RESULTS 
 

Study population demographics 
 

Our study includes 6,388 individuals from 4 studies: the 

Framingham Heart Study (FHS) Offspring Cohort, the 

Women’s Health Initiative (WHI), the Jackson Heart 

Study (JHS), and the Parkinson’s Environment and 

Genes (wave 1) known as the PEG1 study. 

 

The main characteristics of the study populations are 

shown in Table 1. Briefly, FHS provided data for 2,326 

individuals, with nearly half of them male (n = 1077; 46%) 

and all are white. Of the 2,091 female participants from the 

WHI, 989 (47%) are non-Hispanic white, 431 (21%) 

Hispanic, and 671 (32%) African American. JHS 

investigated 1,734 African American individuals with a 

majority of female participants (n = 1086; 63%). The 237 

PEG1 control study participants were mostly non-Hispanic 

white (n = 207; 87%), and half were male (n = 126; 53%). 

The age ranges varied with the JHS having the largest 

range (22-93; mean = 56.2), and WHI the smallest (50-80; 

mean = 65.4). Mean ages of all populations ranged 

between 56.2 and 67.4. Additional details on cohorts and 

participant characteristics can be found in the Methods. 

 

Epigenetic mutation load is the number of SEMs 

 

All DNA methylation data was extracted from blood 

samples with the Illumina Infinium platform (450K 

array for PEG1, FHS, and WHI studies; EPIC array for 

WHI). Following a published and validated approach 

[24, 26, 31], a SEM is observed for a given person at a 

specific CpG site if an individual’s methylation level is 

more than three times the interquartile range (IQR) 

lower than the 25
th
 percentile (Q1 – 3 × IQR), or more 

than three times the IQR higher than the 75
th
 percentile 

(Q3 + 3 × IQR). The 25
th
 and 75

th
 percentile, and 

correspondingly the IQR, for each CpG locus was 

estimated across all samples. Furthermore, we defined 

the epigenetic mutation load (EML) of each study 

participant according to the total number of SEMs. 

 

EML was highly variable across people (Supplementary 

Table 1), with a mean value ranging from 1647 to 3401 

depending on the total number of CpGs measured on 

different arrays (FHS: 2433; WHI: 1647; JHS: 3401; 

PEG1: 2137). Since EMLs were not normally 

distributed, natural log-transformed EML values were 

used in all analyses. 
 

EML was not associated with microarray slides 

(ANOVA p = 0.135) or position on the array (ANOVA
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Table 1. Distribution of demographics and DNAm aging clocks. 

 

FHS (n = 2326) WHI (n= 2091) JHS (n= 1734) PEG 1 (n = 237) 

Age         

Min 40 50 22 35 

Max 92 80 93 92 

Mean (SD) 66.36 (8.94) 65.34 (7.10) 56.21 (12.30) 67.42 (12.82) 

Sex 
    

Male (%) 1,077 (46) 0 (0) 648 (37) 126 (53) 

Female (%) 1,249 (54) 2,091 (100) 1,086 (63) 111 (47) 

Race/Ethnicity 
    

White (%) 2,326 (100) 989(47) 0 (0) 207 (87) 

Hispanic (%) 0 (0) 431 (21) 0 (0) 19 (8) 

African American (%) 0 (0) 671 (32) 1734 (100) 0 (0) 

Native American (%) 0 (0) 0 (0) 0 (0) 11 (5) 

AgeAccelHorvath 
    

Min -16.03 -22.56 -16.57 -13.44 

Median -0.38 -0.07 -0.07 -0.13 

Max 41.62 29.35 22.81 22.98 

Mean (SD) -0.08 (4.81) 0.10 (5.18) 0.04 (4.45) 0.00 (5.31) 

IEAA 
    

Min -21.83 -21.46 -15.67 -12.17 

Median -0.17 -0.05 0.07 -0.13 

Max 26.93 24.89 22.40 20.28 

Mean (SD) -0.03 (4.59) 0.02 (4.88) 0.05 (4.34) 0.00 (4.92) 

AgeAccelHannum 
    

Min -19.25 -19.50 -11.59 -12.92 

Median -0.18 0.02 -0.15 -0.27 

Max 27.97 18.19 19.35 12.53 

Mean (SD) -0.02 (4.83) 0.02 (4.80) 0.03 (3.49) 0.00 (4.42) 

AgeAccelGrim 
    

Min -10.92 -10.03 -13.66 -8.74 

Median -0.76 -0.47 -0.81 -0.64 

Max 22.51 16.35 24.94 14.62 

Mean (SD) 0.02 (4.86) 0.01 (3.80) 0.01 (4.81) 0.00 (4.50) 

 

p = 0.458). Also, EML was not correlated with the 

average intensity of bisulfite conversion controls 

(Pearson r = -0.085, p = 0.194). Thus, we concluded 

that the EML was independent of batches or other 

technical aspects. 

 

Correlations among DNAm aging clocks 
 

We calculated all DNAm aging estimators including the 

Horvath clock, the Hannum clock, the GrimAge clock, 

the PhenoAge clock, the SkinBlood clock, as well as an 

epigenetic estimate of telomere length (DNAmTL) 

using the online DNA Methylation Age Calculator 

(https://dnamage.genetics.ucla.edu/).  

 

As expected, chronological age was strongly positively 

correlated with all epigenetic age estimators (Pearson r 

ranging from 0.79 to 0.93, Supplementary Figure 1), 

and these aging clocks were also strongly correlated 

with each other (Pearson r ranging from 0.73 to 0.90, 

Supplementary Figure 1). Meanwhile, the epigenetic 

estimate of telomere length, DNAmTL, was negatively 

correlated with chronological age and the epigenetic age 

estimates (Pearson r ranging from -0.63 to -0.72, 

Supplementary Figure 1). 

 

For each clock, we calculated DNA methylation-based 

age acceleration based on the residuals of the regression 

of DNA methylation age on each participants’ 

chronological age. Thus, due to this approach, none of 

the epigenetic measures of age accelerations are 

correlated with chronological age (Pearson r = 0) as can 

be seen from Figure 1 and Supplementary Figure 2. 

AgeAccelHorvath is highly correlated (Pearson r = 0.93) 

with IEAA because both are based on the Horvath pan 

tissue clock. AgeAccelHannum was moderately 

associated with both AgeAccelHorvath and IEAA 

(Pearson r = 0.48 and 0.4 respectively). AgeAccelGrim 

showed only weak correlations with the other epigenetic 

measures of age acceleration which reflects the fact that 

https://dnamage.genetics.ucla.edu/
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GrimAge clock is a mortality risk predictor as opposed to 

an age estimator. Overall, the moderate pairwise 

correlations between the DNAm based biomarkers reflect 

different properties: some are highly confounded by 

blood cell composition and capture immunosenescence 

(Hannum, GrimAge, DNAmTL) while others are not 

(Horvath pan tissue, IEAA) [13, 32]. 

 

Association between EML and DNAm aging clocks 

 

We estimated the association between EML, 

chronological age, cell composition, and DNAm age 

acceleration using biweight midcorrelation (bicor) for 

each dataset separately and calculated pooled statistics 

using Stouffer’s method. Bicor is a median-based 

measurement of correlation that is robust to outliers [33]. 

We adjusted for potential confounders including age, sex, 

race/ethnicity, and cell compositions (naïve CD8 cells, 

CD8+CD28-CD45RA- T cells, Plasma Blasts, CD4 T 

cells, and Granulocytes) by regressing out the effects of 

these factors and retaining the residuals only for analysis. 

Results for AgeAccelHorvath, IEAA, AgeAccelHannum, 

and AgeAccelGrim are shown in Table 2 and Figure 2, 

while other clocks can be found in Supplementary Table 

2. These analyses show that EML per study participant 

was positively correlated with chronological age (meta r = 

0.171, meta P-value = 1.64E-42). Furthermore, EML was 

negatively correlated with CD4+ T cells (meta r = -0.121, 

meta P-value = 4.24E-22), plasmablasts (meta r  =  -0.085, 

meta P-value = 1.14E-11), and granulocytes (meta r  =  -

0.064, meta P-value = 3.70E-07), but positively with 

exhausted CD8+ (defined as CD8+CD28-CD45RA-) T 

cells. These results are consistent with known age-related 

changes in blood cell composition [34, 35]. 

 

 
 

Figure 1. Heatmap of pairwise correlations of chronological age and epigenetic age accelerations. The heat map color-codes the 

pairwise Pearson correlations of chronological age and epigenetic age accelerations in the Framingham Heart Study (N=2326). Age represents 
the chronological age. AgeAccelHorvath, IEAA, AgeAccelHannum, and AgeAccelGrim represent measures of epigenetic age acceleration 
derived from the Horvath pan tissue clock, the intrinsic clock, the Hannum clock, and the GrimAge clock, respectively. The shades of color 
(blue, white, and red) visualize correlation values from -1 to 1. Each square reports a Pearson correlation coefficient. 
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Table 2. Biweight midcorrelation analysis of EML. 

Outcome = log(EML)
 **

 
Meta

 *
 FHS (n = 2326) WHI (n= 2091) JHS (n= 1734) PEG 1 (n = 237) 

Meta r Meta P_value Bicor r P_value Bicor r P_value Bicor r P_value Bicor r P_value 
Age 0.171 1.64E-42 0.244 7.15E-33 0.104 1.73E-06 0.145 1.50E-09 0.176 6.45E-03 
DNAm Age Acceleration                      

AgeAccelHorvath 0.109 3.25E-18 0.106 3.11E-07 0.140 1.34E-10 0.079 9.68E-04 0.071 2.75E-01 
IEAA 0.112 4.04E-19 0.109 1.26E-07 0.144 3.85E-11 0.080 8.50E-04 0.073 2.63E-01 
AgeAccelHannum 0.179 2.43E-46 0.225 4.12E-28 0.156 6.55E-13 0.148 6.33E-10 0.095 1.46E-01 
AgeAccelGrim 0.162 2.25E-38 0.173 3.74E-17 0.180 9.91E-17 0.111 3.46E-06 0.224 5.23E-04 

Cell types                     
CD8.naive  -0.021 9.19E-02 -0.072 5.20E-04 0.020 3.66E-01 -0.011 6.58E-01 0.042 5.23E-01 
CD8pCD28nCD45RAn 0.077 9.23E-10 0.085 3.90E-05 0.086 8.16E-05 0.052 2.88E-02 0.082 2.07E-01 

PlasmaBlast -0.085 1.14E-11 -0.054 8.94E-03 -0.070 1.39E-03 -0.140 4.89E-09 -0.110 9.23E-02 
CD4T -0.121 4.24E-22 -0.146 1.68E-12 -0.113 2.17E-07 -0.096 6.79E-05 -0.118 6.95E-02 
Gran -0.064 3.70E-07 -0.075 2.72E-04 -0.016 4.74E-01 -0.091 1.60E-04 -0.170 8.67E-03 

*
Meta-analysis using Stouffer’s method with weights given by the square root of the number of (non-missing) samples in each 

data set. 
**

Adjusted for Age, Sex, Race/ethnicity, Cell types. 
 

EML was also positively correlated with 

AgeAccelHorvath, IEAA, AgeAccelHannum, and 

AgeAccelGrim, with AgeAccelHannum exhibiting the 

strongest correlation (meta r = 0.179; meta P-value = 

2.43E-46). 

 

We further distinguished between epigenetic age 

acceleration and deceleration to determine correlations 

with EML. The correlation between EML and age 

acceleration was largely the same as what we presented 

originally. Interestingly, the correlation between EML 

and age deceleration was much smaller in size and less 

statistically significant (see Supplementary Table 3). 

 

Sensitivity analyses 

 

We evaluated associations between EML, chronological 

age, cell compositions, and age accelerations in males 

and females separately (Supplementary Table 4). For 

both sexes, EML remained positively correlated with 

chronological age, exhausted CD8+ T cells, and age 

acceleration suggesting that EML and age acceleration 

are independent of sex. 

 

Several sensitivity analyses were conducted to ensure 

the reliability and reproducibility of the observed 

associations. To address a possibly non-linear 

relationship between epigenetic aging and chronological 

age, we additionally adjusted for a square term in age, 

(age
2
, Supplementary Table 5). Also, to assess the 

potential for additional confounding, we adjusted for 

body mass index (Supplementary Table 6). This led to 

qualitatively similar results. 

 

In order to explore whether the criteria used to define 

SEM will change results, we conducted another 

sensitivity analysis using two new SEM measures: 1) 

loose SEM: defined as a specific CpG site with its 

methylation level exceeding two times the interquartile 

range (IQR) of the first quartile (Q1 – 2 × IQR) or the 

third quartile (Q3 + 2 × IQR) across all subjects; and 2) 

stringent SEM: defined as a specific CpG site with its 

methylation level exceeding four times the interquartile 

range (IQR) of the first quartile (Q1 – 4 × IQR) or the 

third quartile (Q3 + 4 × IQR) across all subjects. We 

then calculated the total number of SEMs according to 

the loose and stringent definition for each person (loose 

or stringent EML, respectively). The biweight 

midcorrelations between loose or stringent EMLs and 

measures of epigenetic age accelerations were very 

similar to the original results (Supplementary Table 7). 

 

We also explored the effect of different normalization 

methods for the methylation data (Illumina background 

correction, functional normalization, Noob, and quantile 

normalization). We found that the association between 

EML and age acceleration was not influenced by the 

normalization method (Supplementary Table 8). 

 

Functional annotations  

 

To test whether individual SEMs were randomly 

distributed across the genome or were more likely to be 

found in certain genomic regions or biological 

pathways, we conducted enrichment analyses to assess 

whether SEMs were enriched in clock-CpGs (Horvath 

clock, PhenoAge clock, Hannum clock), genomic 

regions (transcription start sites (TSS1500, TSS200), 

untranslated regions (5’UTR, 3’UTR ), 1
st
 Exon, and 

gene body), or regulatory features (i.e., enhancers, 

DNase hypersensitive sites, open chromatin regions, 

transcription factor binding site, promoters). For each 

participant, we first annotated the probes and each 

mutation based on the location related to genes (i.e., 
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TSS1500, TSS200, 5’UTR, 1
st
 EXON, gene body, 

3’UTR), or regulatory features using the manifest 

provided by Illumina. Then we conducted 

hypergeometric tests for each region and each subject 

separately using a nominal significance threshold of 

0.05. Last, for each region, we summarized the number 

of individuals for which the test was significant 

(Supplementary Tables 9–11). 

 

 
 

Figure 2. Correlations between EML and epigenetic age accelerations. Scatter plots of DNAm age acceleration estimators (x-axis; 
AgeAccelHorvath, IEAA, AgeAccelHannum, and AgeAccelGrim in each column, respectively) versus natural log-transformed EMLs (y-axis). 
Data from FHS, WHI, JHS, and PEG1 are plotted in four rows respectively. Each panel reports a biweight midcorrelation coefficient and 
correlation test p-value. 
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The results show that for each clock-CpG set or region, 

only a small proportion of participants have their SEMs 

enriched which illustrating both the stochastic nature 

and inter-personal variation of SEMs. 

 

Pathway enrichment analysis 

 

Next, we examined whether, among study participants 

who exhibit faster age accelerations, SEMs are enriched 

in particular biological pathways. We first conducted 

KEGG pathway enrichment analyses for each study 

participant. Then for each KEGG pathway, we 

calculated the number of people with enriched SEMs 

for this particular pathway. Finally, we investigated the 

association between SEMs enrichment in a particular 

pathway and age accelerations using linear regression. 

Additional details can be found in the method section. 

 

Supplementary Tables 12–16 showed the top 10 

pathways that were commonly enriched in each study, 

and generally we found that SEMs enriched in these 

pathways were also statistically significantly associated 

with faster age accelerations (AgeAccelHorvath, IEAA, 

AgeAccelHannum, and AgeAccelGrim, respectively). 

 

Briefly, in all four study populations, we identified similar 

enrichment patterns, and SEMs enriched in signaling 

pathways, axon guidance, glutamatergic synapse, 

morphine addiction, glucocorticoid pathway (Cushing 

syndrome), or circadian rhythm pathways were associated 

with faster AgeAccelHorvath, AgeAccelHannum, and 

IEAA. Whereas the associations between pathway 

enrichment and AgeAccelGrim or AgeAccelPheno were 

less strong and not necessarily statistically significant. We 

only observed SEMs enriched in neuroactive ligand-

receptor interaction was associated with faster 

AceAccelGrim and AgeAccelPheno. 

 

Region-specific EML 

 

To address the functionality of SEMs on biological age 

acceleration, we calculated the number of SEMs co-

located with clock CpGs for each study participant (i.e., 

clock-specific SEMs) and assessed whether there were 

any clock-specific EMLs corresponding to age 

acceleration (Supplementary Table 17), but we  

observed no statistically significant association with the 

three clocks tested (Horvath clock: 353 CpGs; Hannum 

clock: 71 CpGs; PhenoAge clocks: 513 CpGs). 

 

Next, we divided CpGs into different genomics 

region/regulatory feature groups based on the 

annotations, and then calculated EMLs within each 

region for each study participant (i.e., genomic region-

specific EML; regulatory region-specific EML) (Table 

3 and Supplementary Table 18).  EMLs in TSS1500, 

TSS200, and the 1stExon regions were related to faster 

age accelerations. Also, EML in DNase hypersensitive 

regions was positively correlated with faster age 

accelerations. In contrast, 3’UTR specific-EML was 

associated with younger chronologic age and slower age 

acceleration. 

 

The direction of SEM  

 

Based on the direction of the mutation, we separated 

SEMs into hypomethylated SEM (Q1 – 3 × IQR) and 

hypermethylated SEM (Q3 + 3 × IQR) and calculated 

hypomethylated and hypermethylated EMLs 

respectively within FHS. We assessed the correlations 

between the newly calculated directional EMLs and 

epigenetic age acceleration. The results remained 

largely the same (See Supplementary Table 19). 

Furthermore, consistent with previous studies [29], 

hypermethylated SEMs were mainly located in CpG 

islands, while hypomethylated SEMs were enriched in 

the open seas (see Supplementary Tables 20, 21). 

 

Shannon entropy, EML, and DNAm age  

acceleration 

 

As an alternate measure for a well-functioning EMS 

that maintains genomic stability, we calculated the 

Shannon entropy of the whole methylome based on the 

450K or EPIC array. An increase in entropy means that 

the methylome becomes less predictable across the 

population of cells, i.e. when the methylation fractions 

(beta values) tend towards 50%. 

 

We found the Shannon entropy to be positively correlated 

with chronologic age (meta r  =  0.046, meta P-value = 

2.16E-04), EML (meta r  =  0.234, meta P-value = 7.71E-

78), and all four measures of age accelerations (meta P-

value: AgeAccelHorvath = 8.79E-09, IEAA = 6.56E-04, 

AgeAccelHannum = 1.80E-22, AgeAccelGrim = 1.67E-

22) (Table 4 and Supplementary Table 22).  

 

DISCUSSION 
 

It has previously been proposed that aging-related 

decline in epigenetic maintenance increases the 

occurrence of SEMs in individuals [24, 25]. Our data 

suggest that the EML per study participant are weakly 

but statistically significantly associated with several 

widely used measures of epigenetic age acceleration 

based on epigenetic clocks.  

 

It has been hypothesized that DNA methylation clocks 

may capture the imperfection of the EMS resulting in 
epigenetic instability [5, 13, 21]. Our study provides 

new evidence for this hypothesis showing that the 

accumulation of stochastic epigenetic mutations is 
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Table 3. Meta-analysis *: Biweight midcorrelation analysis of genomic region-specific EML. 

Outcome = log(Region-

EML) ** 

TSS1500  

(50999 CpGs) 

TSS200  

(41175 CpGs) 

5'UTR  

(23024 CpGs) 

1stExon  

(7669 CpGs) 

Gene Body  

(135960 CpGs) 

3'UTR  

(14010 CpGs) 

Meta 

r 

Meta 

P_value 

Meta 

r 

Meta 

P_value 

Meta 

r 

Meta 

P_value 

Meta 

r 

Meta 

P_value 

Meta 

r 

Meta 

P_value 

Meta 

r 

Meta 

P_value 

Age 0.103 1.42E-16 0.074 3.39E-09 -0.046 2.44E-04 0.126 7.86E-24 -0.122 1.81E-22 -0.085 1.38E-11 

DNAm Age Acceleration                          

AgeAccelHorvath 0.050 7.35E-05 -0.004 7.52E-01 -0.055 9.43E-06 0.074 4.13E-09 -0.060 1.96E-06 -0.064 3.35E-07 

IEAA 0.058 3.16E-06 -0.006 6.52E-01 -0.052 2.94E-05 0.067 9.83E-08 -0.063 4.04E-07 -0.064 2.66E-07 

AgeAccelHannum 0.098 5.06E-15 0.076 1.62E-09 -0.044 4.93E-04 0.154 1.00E-34 -0.140 4.87E-29 -0.111 6.74E-19 

AgeAccelGrim -0.001 9.40E-01 0.054 1.45E-05 -0.012 3.57E-01 0.082 6.30E-11 -0.053 1.94E-05 -0.073 5.52E-09 

Cell types                         

CD8.naive  -0.048 1.23E-04 -0.035 5.18E-03 -0.023 6.55E-02 -0.044 4.66E-04 0.053 1.96E-05 0.037 3.10E-03 

CD8pCD28nCD45RAn 0.043 5.51E-04 -0.032 1.07E-02 0.015 2.25E-01 -0.020 1.08E-01 0.016 2.06E-01 -0.018 1.41E-01 

PlasmaBlast 0.041 1.04E-03 -0.019 1.28E-01 -0.019 1.23E-01 -0.022 7.45E-02 -0.023 6.96E-02 -0.012 3.32E-01 

CD4T 0.043 5.19E-04 -0.066 1.34E-07 -0.013 2.91E-01 -0.095 2.97E-14 0.002 8.74E-01 0.024 5.09E-02 

Gran -0.008 5.43E-01 -0.082 5.17E-11 -0.039 1.85E-03 -0.113 1.82E-19 0.067 9.65E-08 0.065 1.72E-07 

*
 Meta-analysis using Stouffer’s method with weights given by the square root of the number of (non-missing) samples in 

each data set. 
**

 Adjusted for Age, Sex, Race/ethnicity, Cell types, Log(total EML). 
 

Table 4. Association between Shannon entropy and age, AgeAccel, EML. 

Outcome =Entropy ** 
Meta * FHS (n = 2326) WHI (n= 2091) JHS (n= 1734) PEG 1 (n = 237) 

Meta r Meta P_value Bicor r P_value Bicor r P_value Bicor r P_value Bicor r P_value 

Age 0.046 2.16E-04 0.001 9.55E-01 0.068 2.01E-03 0.071 2.92E-03 0.117 7.30E-02 

DNAm Age Acceleration                    

AgeAccelHorvath 0.072 8.79E-09 0.081 9.11E-05 0.160 1.76E-13 -0.039 1.02E-01 0.006 9.22E-01 

IEAA 0.043 6.56E-04 0.035 9.02E-02 0.131 1.70E-09 -0.052 3.16E-02 0.018 7.83E-01 

AgeAccelHannum 0.122 1.80E-22 0.155 6.23E-14 0.136 4.60E-10 0.063 9.10E-03 0.096 1.41E-01 

AgeAccelGrim 0.122 1.67E-22 0.077 1.89E-04 0.228 3.86E-26 0.043 7.17E-02 0.164 1.14E-02 

EML 0.234 7.71E-78 0.089 1.63E-05 0.294 6.87E-43 0.325 7.22E-44 0.281 1.10E-05 

*
Meta-analysis using Stouffer’s method with weights given by the square root of the number of (non-missing) samples in each 

data set. 
**

Adjusted for Age, Sex, Race/ethnicity, Cell types. 
 

associated with epigenetic age acceleration according to 

four clocks: the Horvath, the intrinsic, the Hannum, and 

the GrimAge clock. The first three clocks have been 

built to predict chronological age while the GrimAge 

clock was designed as a mortality risk predictor that 

explicitly uses chronological age as one of its 

predictors. We observed statistically significant 

associations between EML and age acceleration 

measured by all four clocks, with the AgeAccelHannum 

and AgeAccelGrim being most strongly associated with 

EML. One explanation might be that these clocks have 

different relationships to blood cell composition. While 

measures of epigenetic age acceleration based on 

Horvath's pan tissue clock, AgeAccelHorvath and 

IEAA, are at best weakly related to changes in blood 

cell composition, AgeAccelHannum and 

AgeAccelGrim correlate more strongly with blood cell 

counts and markers of immunosenescence. Therefore, 

similar to the Hannum and GrimAge clocks, EML also 

reflects changes in blood cell composition i.e. the 

immune system. Previously, studies showed that DNAm 

biomarkers of aging that capture altered immune cell 

composition are better predictors of mortality [7, 13]. 

Thus, not only the intracellular accumulation of 

epigenetic mutations we investigated here, but also 

changes in cell composition contribute to EML as part 

of the biological aging processes that diverge from 

chronological age. This finding is also consistent with 

several previous studies [25, 27, 29]. 

 

It is worth noting that only the intracellular 

accumulation of epigenetic mutations suggests that an 

insufficient EMS may be involved in increasing the 

EML, thus we ascribe greater weight and importance to 

the correlations with the Horvath clock and IEAA. The 

relatively weak correlations between EML and 

AgeAccelHorvath or IEAA indicate that these DNAm 

age estimators also capture other hallmarks of the aging 

process apart from a dysfunctional EMS [3]. The size 

of the correlations for these age acceleration measures 

and EML are comparable to those reported for many 

other known risk factors of aging. For example, in the 
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WHI cohort, the correlation between BMI and 

AgeAccelGrim is 0.14; the correlation between 

exercise and AgeAccelGrim is -0.1; and the 

correlations for many other risk factors are below +/- 

0.3 (See Lu et al) [7]. Correlations between risk factors 

and IEAA are even smaller (r between 0.08 and -0.06, 

see Quach et al. Figure 1) [36]. Nevertheless, the fact 

that associations between EML and AgeAccelHorvath 

or IEAA are, at best, weak reminds us that other 

mechanisms and factors apart from EMS also play 

important roles in the ageing process. Indeed, future in 

vivo or in vitro studies are needed to better understand 

the causal relationship between EML and epigenetic 

aging.  

 

EML exhibited much stronger correlations with age 

acceleration than deceleration. This result suggests that 

epigenetic age acceleration and deceleration may have 

different biological mechanisms, and that the 

maintenance of epigenetic stability plays more of a role 

in the acceleration of epigenetic age than the 

deceleration.  

 

Our finding that EML is statistically significantly albeit 

weakly correlated with various measures of epigenetic 

age acceleration is consistent with several previous 

studies [27, 29]. In order to understand the biological 

foundation for EML contributions to the epigenetic 

aging process, we conducted several functional and 

pathway enrichment analyses. Functional annotation 

and pathway enrichment analysis showed no 

predominant regions or biological pathways as being 

enriched with SEMs. This is in line with previous 

observations that a majority of SEMs are randomly 

distributed across the genome and that the locations 

necessarily differ between individuals as the name 

suggests [27]. Despite this inherent inter-individual 

variation, we found that individuals with SEMs 

enriched in signaling pathways, neurogenesis, 

neurotransmission, glucocorticoid, or circadian rhythm 

pathways were more likely to show age acceleration as 

measured by AgeAccelHorvath, IEAA, and 

AgeAccelHannum. These non-random patterns – if 

confirmed – may very well reflect the accumulation of 

SEMs in pathways related to biological mechanisms 

that are involved in aging. For example, some signaling 

pathways such as oxytocin signaling and MAPK/ERK 

signaling pathway have been associated with age-

related muscle maintenance and regeneration [37], 

while excess glucocorticoid levels may reflect a lifelong 

accumulation of stressors and this pathway plays a key 

role in frailty [38] and the aging process [21]. 

Furthermore, some clock-CpGs are located in 

glucocorticoid response elements [39]. We also found 

SEMs enriched in several neurogenesis or 

neurotransmission-related pathways that may be 

contributing to the ticking rate of clocks. This is 

consistent with the previous finding that DNAm age 

acceleration is linked to neuropathology [18, 40], 

especially Parkinson’s disease [16] and Down syndrome 

[15]. Moreover, our finding of SEM enrichment in the 

circadian entrainment pathway supports the hypothesis 

that the DNAm age estimators are related to the 

oscillation of the circadian rhythm [13]. Interestingly, 

although patterns were similar, we found less evidence 

for pathway enrichment with SEMs and age 

acceleration based on the GrimAge and PhenoAge 

clocks. This may again underscore that different clocks 

indeed capture different aspects of the aging process. 

 

EMLs within TSS1500, TSS200, and especially the 

1stExon regions were found to be associated with faster 

age accelerations, and for these regions methylation 

levels have been shown to be related to gene expression 

[41, 42]. Therefore, our result may suggest that the 

accumulation of random epigenetic mutations in these 

regions may influence biological aging processes 

through gene expression regulation. Interestingly, even 

though we would also have expected this, we did not 

observe such associations for promoter regions. Further 

studies are needed to investigate the biologic 

consequences of region-specific effects of epigenetic 

mutations on aging. 

 

The Shannon Entropy measure reflects higher levels of 

entropy such that the methylome becomes less 

predictable across the population of cells due to the 

failure of DNAm maintenance [11]. Epigenetic 

Shannon entropy as well as this measure’s variability 

increase with age [10, 11, 43, 44]. In our study, EML 

and Shannon entropy was strongly correlated, 

confirming that both measure aspects of the EMS, even 

though EML and entropy capture different aspects of 

epigenetic stability. SEM represents rare methylation 

value extremes at a site due to the accumulation of 

maintenance failures whereas entropy reflects an 

ongoing ‘smoothing’ of the epigenetic landscape such 

that beta values tend towards 50% [45]. 

 

There are limitations of our study. First, it is possible 

that some unmeasured confounders biased our results. 

Sensitivity analyses, however, showed that the SEM 

measure was not affected by potential technical artifacts 

or poor sample quality, and the association between 

EML and age acceleration was independent of potential 

confounders including chronological age, sex, 

race/ethnicity, and BMI. Hence, although technical 

effects and confounding are hard to avoid, the observed 

associations between EML and age accelerations were 

robust to adjustments for a number of covariates. 

Second, from all four studies, we only had cross-

sectional data available. Therefore, we were unable to 
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investigate the accumulation of epigenetic mutations 

over time within individuals. Finally, DNA methylation 

was measured in blood samples only. Therefore, 

pathway results need to be interpreted with caution as 

many of the identified pathways listed above have no 

direct relevance to the function of the blood tissue. 

While this seems to support the inherent randomness of 

SEMs, stochastic epigenetic mutations may still 

accumulate in a non-random pattern within certain 

biological pathways if repair mechanisms fail 

systematically due to properties related to these 

pathways across different tissues. Also, it has been 

shown that epigenetic changes in blood may indeed 

reflect epigenetic fingerprints of other target tissues [46, 

47]. Nevertheless, tissue- and cell-specific analyses are 

needed to better understand the relationship between 

stochastic epigenetic mutations and aging processes in 

different tissues. 

 

In summary, using large datasets from multiple 

population-based studies, we were able to show that 

EML per study participant is associated with different 

epigenetic aging markers (aging clocks) and importantly 

with epigenetic age acceleration. Moreover, epigenetic 

mutations enriched in particular biological pathways or 

genomic regions related to gene expression were 

associated with accelerated aging and these may 

contribute to the ticking of the epigenetic clock. Our 

findings from pathway enrichment analyses also suggest 

some interesting biological mechanisms that may 

influence the ticking of the epigenetic aging clocks and 

drive the acceleration of the biological aging process. 

 

MATERIALS AND METHODS 
 

Study population 

 
Our study is based on data from four studies: the 

Framingham Heart Study (FHS) Offspring Cohort, the 

Women’s Health Initiative (WHI), the Jackson Heart 

Study (JHS), and the Parkinson’s Environment and 

Genes (wave 1) known as the PEG1 study. 

 

We used 2,326 individuals from the FHS Offspring cohort 

[48]. The FHS cohort is a large-scale longitudinal study 

started in 1948, initially investigating the common factors 

of characteristics that contribute to cardiovascular disease 

(CVD) (https://www.framinghamheartstudy.org/index. 

php). The study at first enrolled participants living in the 

town of Framingham, Massachusetts, who were free of 

overt symptoms of CVD, heart attack, or stroke at 

enrollment. In 1971, the study started FHS Offspring 

Cohort to enroll a second generation of the original 
participants’ adult children and their spouses (n= 5124) 

for conducting similar examinations. The FHS Offspring 

Cohort collected medical history and measurement data, 

immunoassays at exam 7, and blood DNA methylation 

profiling at exam 8. Participants from the FHS Offspring 

Cohort were eligible for our study if they attended both 

the seventh and eighth examination cycles and consented 

to have their molecular data used for the study. We used 

the 2,326 participants from the group of Health/ 

Medical/Biomedical (IRB, MDS) consent and available 

for both Immunoassay array DNA methylation array data. 

The FHS data are available in dbGaP (accession number: 

phs000363.v16.p10 and phs000724.v2.p9). 

 

The WHI is a national study that enrolled 

postmenopausal women aged 50-79 years into the 

clinical trials (CT) or observational study (OS) cohorts 

between 1993 and 1998 [49, 50].
 
We included 2,091 

WHI participants with available phenotype and DNA 

methylation array data from “Broad Agency Award 23” 

(WHI BA23). WHI BA23 focuses on identifying 

miRNA and genomic biomarkers of coronary heart 

disease (CHD), integrating the biomarkers into 

diagnostic and prognostic predictors of CHD and other 

related phenotypes, and other objectives can be found in 

https://www.whi.org/researchers/data/WHIStudies/Stud

ySites/BA23/Pages/home.aspx. 

 

The JHS is a large, population-based observational 

study evaluating the etiology of cardiovascular, renal, 

and respiratory diseases among African Americans 

residing in the three counties (Hinds, Madison, and 

Rankin) that make up the Jackson, Mississippi 

metropolitan area [51]. The age at enrollment for the 

unrelated cohort was 35-84 years; the family cohort 

included related individuals >21 years old. Participants 

provided extensive medical and social history, had an 

array of physical and biochemical measurements and 

diagnostic procedures, and provided genomic DNA 

during a baseline examination (2000-2004) and two 

follow-up examinations (2005-2008 and 2009-2012). 

Annual follow-up interviews and cohort surveillance are 

ongoing. In our analysis, we used the visits at baseline 

from 1,734 individuals as part of project JHS ancillary 

study ASN0104, available with both phenotype and 

DNA methylation array data. 

 

The PEG1 study was conducted during 2000-2007 to 

investigate the causes of Parkinson's disease (PD) in 

agricultural regions of the California central valley. We 

analyzed blood samples from 238 healthy controls 

enrolled from Kern, Tulare, or Fresno counties. 

Controls were required to be over the age of 35, having 

lived within one of the counties for at least 5 years prior 

to enrollment, and do not have a diagnosis of 

Parkinsonism. Demographic information, lifestyle 

factors, and medication use were collected in 

standardized interviews, including lifetime information 

of cigarette smoking and coffee/ tea consumption. 

https://www.framinghamheartstudy.org/index.php
https://www.framinghamheartstudy.org/index.php
https://www.whi.org/researchers/data/WHIStudies/StudySites/BA23/Pages/home.aspx
https://www.whi.org/researchers/data/WHIStudies/StudySites/BA23/Pages/home.aspx
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For PEG1, FHS, and WHI, peripheral blood samples 

were collected, and bisulfite conversion using the 

Zymo EZ DNA Methylation Kit (Zymo Research, 

Orange, CA, USA) as well as subsequent hybridization 

of the HumanMethylation450k Bead Chip (Illumina, 

San Diego, CA), and scanning (iScan, Illumina) were 

performed according to the manufacturer’s protocols 

by applying standard settings. For JHS, DNA 

methylation quantification was conducted using 

HumanMethylation EPIC Bead Chip (Illumina, San 

Diego, CA). 

 

Preprocess 

 

For PEG1 samples, raw signal intensities were retrieved 

using the function read.metharray.exp of the R package 

minfi from the Bioconductor open-source software 

(http://www.bioconductor.org/), followed by  linear dye 

bias correction, noob background correction, and 

functional normalization  using the same R package 

[52–55]; -value was used for all the analyses. One 

sample was identified as low quality due to low 

median methylated and unmethylated signal intensities 

across the entire array and thus removed from the 

study population. Detection p-values were derived 

using the function detectionP as the probability of the 

total signal (methylation + unmethylated) being 

detected above the background signal level, as 

estimated from negative-control probes. All in all,  

845 probes with a detection p-value above 0.05 in at 

least 5% of samples were removed. Also, 645 probes 

with a bead count <3 in at least 5% of samples; 11,334 

probes on the X or Y chromosome; 7,306 probes 

containing a SNP at the CpG interrogation site and/or 

at the single nucleotide extension for 5% maf; and 

27,332 cross-reactive probes were also removed. In 

total, 438,050 probes were included for downstream 

analyses. 

 

For FHS and WHI samples, 11,334 probes on the X or 

Y chromosome; 7,306 probes containing a SNP at the 

CpG interrogation; and 27,332 cross-reactive probes 

were also removed. In total, 439,540 probes were 

included for downstream analyses. 

 

For JHS samples, 19,532 probes on the X or Y 

chromosome; 53,435 probes containing a SNP at the 

CpG interrogation and cross-reactive were also 

removed. In total, 793,869 probes were included for 

downstream analyses. 

 

SEM calculation 

 
The calculation of SEM was consistent with a 

previously published and validated approach [24, 26, 

31]. CpG with methylation levels three times the 

interquartile range above the third quartile or below 

the first quartile was identified as a SEM. Toward this 

end, we calculated the IQR for each of the 438,050 

probes in each dataset (for PEG1, FHS, and WHI) or 

the 793,969 probes (for JHS). Then, SEMs were 

identified based on extreme methylation levels. 

Finally, we summed across the count of all SEMs per 

sample and defined the total number of SEMs of each 

study participant as epigenetic mutation load (EML). 

EML was not normally distributed; therefore, we used 

the natural log of the number of SEMs for all 

regression analyses. 

 

In FHS, we separated SEMs into hypermethylated and 

hypomethylated SEMs based on the direction of the 

mutation. We also defined consistently hypermethylated 

or hypomethylated SEMs as a CpG mutated in the same 

direction in more than 10 participants.  

 
In order to assess whether the criteria used for SEMs 

will change the results, we defined loose SEM and 

stringent SEM as described above. We then calculated 

the total numbers of loose and stringent SEMs for each 

person. 

 
DNA methylation age 

 
We included eight different DNAm aging biomarkers in 

this study. Utilizing our online DNA Methylation Age 

Calculator (https://dnamage.genetics.ucla.edu/), we 

calculated DNA methylation-based ages and the age 

accelerations based on the residuals of the regression of 

DNA methylation age on each participants’ 

chronological age for each clock. 

 

Four types of DNA methylation-based biomarkers 

were included in the main analyses. Briefly, Horvath 

clock was calculated using a linear combination of 353 

CpGs that have previously been shown to predict 

chronological age in multiple tissues [5]; and the 

intrinsic clock was derived from the Horvath clock by 

additionally regressing out cell compositions [30]; 

Hannum clock was calculated using a linear 

combination of 71 CpGs to predict chronological age 

in blood [11]; and GrimAge clock) was calculated 

from a linear combination of 7 DNAm plasma protein 

surrogates and a DNAm-based estimator of smoking 

pack-years designed to predict mortality [7]. 

 

Other DNAm aging biomarkers were included in the 

Supplementary analyses, including: the extrinsic clock 

[30], PhenoAge clock [6], SkinBlood clock [56], 

DNAm based estimator of telomere length [57], each of 
the 7 DNAm protein surrogates underlying the 

definition of the  GrimAge clock [7], as well as DNAm 

based estimate of smoking pack-years. 

http://www.bioconductor.org/
https://dnamage.genetics.ucla.edu/
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Cell composition 

 

White blood cell composition was imputed for each 

study participant using our online published DNA 

Methylation Age Calculator, https://dnamage.genetics. 

ucla.edu/. The following imputed blood cell counts 

were included in downstream analyses: CD4+ T,  

naïve CD8+ T, exhausted cytotoxic CD8+ T cells 

(defined as CD8 positive CD28 negative CD45R 

negative, CD8+CD28-CD45RA-), plasmablasts, and 

granulocytes. Naïve CD8+ T, exhausted cytotoxic 

CD8+ T cells, and plasmablasts were calculated based 

on the Horvath method [58]. The remaining cell types 

were imputed using the Houseman method [59].  

 

Shannon entropy 

 
The formula of Shannon entropy is: 
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where βi represents the methylation beta value for the i
th
 

probe (CpG site) in the array, N represents the total 

number of probes included in the formula [11]. 

 

Statistical analysis 

 

All analyses were conducted using R v3.6.1. We used 

Pearson correlations to assess the relations between 

different DNAm ages and age accelerations. We 

evaluated potential batch effects by assessing the 

difference of EMLs in microarray slides or position on 

the array with the ANOVA test. To eliminate the 

possibility that SEMs are driven by incomplete bisulfite 

conversion, Pearson correlations between EMLs and the 

average intensity of bisulfite conversion controls were 

also calculated. Average intensity of bisulfite 

conversion controls was derived using the ENmix R 

package [60]. 

 

To assess the association between EML and age/age 

accelerations/cell compositions, we applied biweight 

midcorrelation (bicor) implemented in the WGCNA R 

package. We adjusted for potential confounders 

including age, sex, race/ethnicity, and cell compositions 

(naïve CD8 cells, CD8+CD28-CD45RA- T cells, 
Plasma Blasts, CD4 T cells, and Granulocytes) by 

regressing out the effects of these factors and retaining 

the residuals of log(EML)only for analysis. 

We also conducted stratified analyses to evaluate the 

associations between EML, chronological age, 

epigenetic estimates of cell composition, and 

epigenetic age acceleration in males and females 

separately for the PEG1, FHS, and JHS studies. To 

ensure the reliability and reproducibility of the 

associations, several sensitivity analyses were 

conducted. In addition to the potential confounders 

mentioned above, we adjusted for a quadratic term in 

age (age^2) to account for non-linear relationships and 

body mass index.  

 

To evaluate the effect of data preprocessing steps,  

we repeated the analysis using four different 

normalization methods (Illumina background 

correction, noob, functional normalization, and quantile 

normalization implemented in the minfi package) in the 

PEG dataset. 

 

We analyzed each dataset separately, therefore in order 

to obtain an overall p-value across all four studies, we 

conducted meta-analyses using Stouffer’s method for 

meta-analysis estimates of the correlation coefficient 

(meta r), and the corresponding two-sided p-values 

(meta p-value). 

 

Functional annotation, region-specific SEMs, and 

pathway enrichment analysis 
 

For each participant, we annotated the probes and SEMs 

based on the location in relation to genes (TSS1500, 

TSS200, 5’UTR, 1
st
 Exon, gene body, and 3’UTR), or 

regulatory features (enhancer region, DNase 

hypersensitive region, open chromatin region, 

transcription factor binding site, and promoter region) 

using the manifest provided by Illumina. To test  

for region specific enrichment, we conducted 

hypergeometric tests for each region and each subject 

separately. A p-value less than 0.05 was considered 

statistically significant. For biological pathway 

enrichment analysis, the enrichKEGG function 

implemented in the ClusterProfiler package [61] was 

used to assess whether study participant’s SEMs were 

enriched in particular KEGG pathways (P-value 

threshold = 0.05). For each genomic region or KEGG 

pathway, we then summarized how many study 

participants had their SEMs enriched. We also 

investigated the association between SEMs enrichment 

in each KEGG pathway and age accelerations using 

linear regression, adjusted for the total number of SEMs 

per study participant: 
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where AgeAccel stands for age accelerations 

(AgeAccelHorvath, IEAA, AgeAccelHannum, 

AgeAccelGrim); Enrich stands for enrichment for 

pathway j (significant: 1, non-significant: 0); Total 
EML stands for log transformed total EML for 

participant i. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. Heatmap of pairwise correlations of chronological age and epigenetic ages. The heatmap color‐codes 

the pairwise Pearson correlations of chronological age and epigenetic age in the Framingham Heart Study (N=2326). Age represents the 
chronological age. HorvathAge, HannumAge, GrimAge, PhenoAge, SkinBloodAge represent measures of epigenetic age derived from the 
Horvath pan tissue clock, the Hannum clock, the GrimAge clock, the PhenoAge clock, and the SkinBloodAge clock, respectively. DNAmTL 
represent DNAm‐based surrogate markers of telomere length. The shades of color (blue, white, and red) visualize correlation values from ‐1 
to 1. Each square reports a Pearson correlation coefficient. 
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Supplementary Figure 2. Heatmap of pairwise correlations of chronological age and epigenetic age accelerations. The 

heatmap color-codes the pairwise Pearson correlations of chronological age and epigenetic age accelerations in the Framingham Heart Study 
(N=2326). Age represents the chronological age. AgeAccelHorvath, AgeAccelHannum, IEAA, EEAA, AgeAccelGrim, AgeAccelPheno, and 
AgeAccelSkinBlood represent measures of epigenetic age acceleration derived from the Horvath pan tissue clock, the Hannum clock, the 
intrinsic clock, the extrinsic clock, the GrimAge clock, the PhenoAge clock, the SkinBloodAge clock, respectively. DNAmTLAdjAge represents 
age adjusted DNAm-based surrogate markers of telomere length. The shades of color (blue, white, and red) visualize correlation values from -
1 to 1. Each square reports a Pearson correlation coefficient. 
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Supplementary Tables 
 

 

Supplementary Table 1. Distribution of EML for each dataset. 

 
FHS (450K) WHI (450K) JHS (EPIC) PEG1 (450K) 

min(EML) 264 213 1194 603 

max(EML) 52783 43768 56691 11645 

mean(EML) 2433 1647 3401 2137 

sd(EML) 4183 3937 4512 1953 

% of probes as SEM 86% 85% 77% 45% 

 

Supplementary Table 2. Biweight midcorrelation analysis of EML. 

Outcome = log(EML) ** 
Meta *   FHS (n = 2326)   WHI (n= 2091)   JHS (n= 1734)   PEG 1 (n = 237) 

Meta r Meta P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value 

Age 0.171 1.64E-42   0.244 7.15E-33   0.104 1.73E-06   0.145 1.50E-09   0.176 6.45E-03 

BMI 0.005 7.94E-01   0.017 4.23E-01   -0.009 6.91E-01   
  

  
  

DNAm Age Acceleration                              

AgeAccelHorvath 0.109 3.25E-18   0.106 3.11E-07   0.140 1.34E-10   0.079 9.68E-04   0.071 2.75E-01 

IEAA 0.112 4.04E-19   0.109 1.26E-07   0.144 3.85E-11   0.080 8.50E-04   0.073 2.63E-01 

EEAA (Unadjusted for cell types) 0.236 5.82E-79   0.297 1.12E-48   0.212 1.31E-22   0.166 3.09E-12   0.211 1.05E-03 

AgeAccelHannum 0.179 2.43E-46   0.225 4.12E-28   0.156 6.55E-13   0.148 6.33E-10   0.095 1.46E-01 

AgeAccelGrim 0.162 2.25E-38   0.173 3.74E-17   0.180 9.91E-17   0.111 3.46E-06   0.224 5.23E-04 

DNAmADMAdjAge 0.068 4.75E-08   0.121 4.58E-09   0.070 1.41E-03   -0.017 4.71E-01   0.157 1.58E-02 

DNAmB2MAdjAge 0.143 3.47E-30   0.189 4.69E-20   0.129 3.44E-09   0.074 2.05E-03   0.287 7.20E-06 

DNAmCystatinCAdjAge 0.153 3.02E-34   0.119 8.71E-09   0.241 6.48E-29   0.081 7.30E-04   0.183 4.64E-03 

DNAmGDF15AdjAge 0.148 3.64E-32   0.167 6.09E-16   0.127 5.80E-09   0.142 3.01E-09   0.162 1.27E-02 

DNAmLeptinAdjAge -0.025 4.65E-02   -0.021 3.19E-01   -0.035 1.11E-01   -0.031 2.03E-01   0.063 3.34E-01 

DNAmPACKYRSAdjAge 0.161 8.96E-38   0.166 7.99E-16   0.172 2.23E-15   0.137 1.10E-08   0.150 2.13E-02 

DNAmPAI1AdjAge 0.031 1.47E-02   0.024 2.49E-01   -0.004 8.59E-01   0.061 1.07E-02   0.173 7.56E-03 

DNAmTIMP1AdjAge 0.028 2.35E-02   0.070 7.04E-04   0.010 6.41E-01   -0.001 9.72E-01   -0.010 8.80E-01 

AgeAccelPheno 0.123 7.28E-23   0.178 4.45E-18   0.106 1.13E-06   0.078 1.20E-03   0.042 5.22E-01 

DNAmTLAdjAge -0.065 1.91E-07   -0.080 1.17E-04   -0.033 1.36E-01   -0.082 6.05E-04   -0.082 2.11E-01 

DNAmAgeSkinBloodClockAdjAge 0.047 1.93E-04   0.102 8.32E-07   0.022 3.17E-01   0.019 4.27E-01   -0.080 2.22E-01 

Biweight midcorrelation analyses of EML with chronological age, BMI, AgeAccelHorvath, IEAA, extrinsic epigenetic age 
acceleration (EEAA) derived from the Hannum clock by up-weighting the contribution of age-related blood cell counts, 
AgeAccelHannum, AgeAccelGrim, age adjusted DNAm-based surrogate markers of adrenomedullin (DNAmADMAdjAge), beta-
2 microglobulin (DNAmB2MAdjAge), cystatin C (DNAmCystatinCAdjAge), growth differentiation factor 15 
(DNAmGDF15AdjAge), leptin (DNAmLeptinAdjAge), plasminogen activation inhibitor 1 (DNAmPAI1AdjAge), tissue inhibitor 
metalloproteinase 1 (DNAmTIMP1AdjAge), smoking pack-years (DNAmPACKYRSAdjAge), AgeAccelPheno, age adjusted 
DNAm-based surrogate markers of telomere length (DNAmTLAdjAge), and age adjusted SkinBlood clock.

 

*
Meta-analysis using Stouffer’s method with weights given by the square root of the number of (non-missing) samples in each 

data set. 
**

All analyses except EEAA were adjusted for Age, Sex, Race/ethnicity, Cell types; EEAA was not adjusted for cell types. 

  



 

www.aging-us.com 17883 AGING 

Supplementary Table 3. Biweight midcorrelation analysis of EML in FHS, stratified by the direction of acceleration. 

Outcome = log(EML)
 *
 

Acceleration   Deceleration 

Bicor r P_value   Bicor r P_value 

AgeAccelHorvath 0.178 3.81E-09 
 

-0.039 1.71E-01 

IEAA 0.150 4.09E-07 
 

-0.064 2.66E-02 

EEAA (Unadjusted for cell types) 0.299 4.74E-25 
 

0.089 2.20E-03 

AgeAccelHannum 0.239 3.96E-16 
 

0.085 3.12E-03 

AgeAccelGrim 0.136 1.64E-05 
 

0.060 2.77E-02 

DNAmADMAdjAge 0.149 5.88E-07 
 

0.029 3.14E-01 

DNAmB2MAdjAge 0.130 1.90E-05 
 

0.070 1.34E-02 

DNAmCystatinCAdjAge 0.135 8.79E-06 
 

-0.026 3.54E-01 

DNAmGDF15AdjAge 0.149 1.61E-06 
 

0.078 4.90E-03 

DNAmLeptinAdjAge 0.015 6.04E-01 
 

0.068 2.26E-02 

DNAmPACKYRSAdjAge 0.077 2.43E-02 
 

0.049 6.15E-02 

DNAmPAI1AdjAge 0.075 1.33E-02 
 

-0.035 2.25E-01 

DNAmTIMP1AdjAge 0.092 2.17E-03 
 

-0.058 4.30E-02 

AgeAccelPheno 0.206 4.49E-12 
 

0.036 2.08E-01 

DNAmTLAdjAge 0.064 2.51E-02 
 

-0.127 2.27E-05 

DNAmAgeSkinBloodClockAdjAge 0.168 1.40E-08   -0.023 4.17E-01 

* Adjusted for Age, Sex, Cell types. 
 

Supplementary Table 4. Stratification analysis: biweight midcorrelation analysis of EML, stratified by sex. 

  PEG 1   FHS   WHI   JHS 

Outcome = 

log(EML) * 

Male (n = 126) 
 

Female  

(n = 111) 
  

Male  

(n = 1077)  

Female  

(n = 1249) 
  

Femal  

(n= 2091) 
  

Male  

(n = 648)  

Female  

(n = 1086) 

Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value 

Age 0.201 2.40E-02 
 

0.200 3.53E-02   0.225 7.53E-14 
 

0.259 1.54E-20   0.104 1.73E-06   0.134 5.98E-04 
 

0.150 7.24E-07 

BMI 
     

  0.026 3.90E-01 
 

0.025 3.75E-01   -0.009 6.91E-01   
     

DNAm Age 

Acceleration       
  

     
  

  
  

     

AgeAccelHorvath 0.105 2.43E-01 
 

0.041 6.71E-01   0.086 4.69E-03 
 

0.126 7.67E-06   0.140 1.34E-10   0.068 8.27E-02 
 

0.082 6.87E-03 

IEAA 0.110 2.21E-01 
 

0.033 7.32E-01   0.108 4.02E-04 
 

0.116 4.06E-05   0.144 3.85E-11   0.076 5.19E-02 
 

0.086 4.63E-03 

EEAA (Unadjusted 

for cell types) 
0.205 2.13E-02 

 
0.245 9.45E-03   0.305 1.27E-24 

 
0.315 3.35E-30   0.212 1.31E-22   0.180 4.20E-06 

 
0.155 2.90E-07 

AgeAccelHannum 0.080 3.73E-01 
 

0.106 2.66E-01   0.215 9.77E-13 
 

0.257 3.02E-20   0.156 6.55E-13   0.158 5.16E-05 
 

0.144 2.05E-06 

AgeAccelGrim 0.192 3.13E-02 
 

0.299 1.43E-03   0.218 4.20E-13 
 

0.167 2.71E-09   0.180 9.91E-17   0.082 3.79E-02 
 

0.134 9.43E-06 

DNAmADMAdjAge 0.100 2.67E-01 
 

0.223 1.88E-02   0.207 6.85E-12 
 

0.091 1.35E-03   0.070 1.41E-03   -0.024 5.37E-01 
 

0.011 7.06E-01 

DNAmB2MAdjAge 0.300 6.40E-04 
 

0.230 1.50E-02   0.238 2.16E-15 
 

0.147 1.94E-07   0.129 3.44E-09   0.063 1.08E-01 
 

0.077 1.13E-02 

DNAmCystatinCAdj

Age 
0.195 2.86E-02 

 
0.187 4.89E-02   0.181 2.42E-09 

 
0.075 7.81E-03   0.241 6.48E-29   0.039 3.25E-01 

 
0.105 5.43E-04 

DNAmGDF15AdjAg

e 
0.129 1.49E-01 

 
0.172 7.03E-02   0.211 2.85E-12 

 
0.134 2.06E-06   0.127 5.80E-09   0.097 1.37E-02 

 
0.167 2.91E-08 

DNAmLeptinAdjAge -0.073 4.19E-01 
 

0.138 1.49E-01   0.071 1.94E-02 
 

-0.037 1.89E-01   -0.035 1.11E-01   0.043 2.75E-01 
 

0.046 1.27E-01 

DNAmPACKYRSAd

jAge 
0.184 3.89E-02 

 
0.120 2.10E-01   0.161 1.06E-07 

 
0.179 2.09E-10   0.172 2.23E-15   0.113 4.05E-03 

 
0.147 1.19E-06 

DNAmPAI1AdjAge 0.026 7.70E-01 
 

0.362 9.25E-05   0.028 3.66E-01 
 

0.039 1.65E-01   -0.004 8.59E-01   0.053 1.76E-01 
 

0.065 3.21E-02 

DNAmTIMP1AdjAg

e 
-0.038 6.72E-01 

 
0.031 7.50E-01   0.100 1.07E-03 

 
0.060 3.41E-02   0.010 6.41E-01   -0.031 4.27E-01 

 
0.016 5.97E-01 

AgeAccelPheno 0.123 1.68E-01 
 

-0.080 4.02E-01   0.211 2.66E-12 
 

0.152 6.90E-08   0.106 1.13E-06   0.079 4.47E-02 
 

0.080 8.40E-03 

DNAmTLAdjAge -0.052 5.64E-01 
 

-0.166 8.26E-02   -0.061 4.61E-02 
 

-0.101 3.63E-04   -0.033 1.36E-01   -0.088 2.56E-02 
 

-0.069 2.21E-02 

DNAmAgeSkinBloo

dClockAdjAge 
-0.029 7.45E-01 

 
-0.141 1.40E-01   0.105 5.37E-04 

 
0.102 2.90E-04   0.022 3.17E-01   -0.010 7.99E-01 

 
0.032 2.88E-01 

Cell types 
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CD8.naive  0.043 6.32E-01 
 

0.044 6.47E-01   -0.076 1.27E-02 
 

-0.068 1.62E-02   0.020 3.66E-01   -0.008 8.30E-01 
 

-0.010 7.32E-01 

CD8pCD28nCD45R

An 
0.018 8.44E-01 

 
0.179 6.00E-02   0.076 1.26E-02 

 
0.096 7.00E-04   0.086 8.16E-05   0.068 8.43E-02 

 
0.030 3.28E-01 

PlasmaBlast -0.089 3.19E-01 
 

-0.125 1.92E-01   -0.012 6.90E-01 
 

-0.088 1.81E-03   -0.070 1.39E-03   -0.148 1.60E-04 
 

-0.139 4.57E-06 

CD4T -0.134 1.35E-01 
 

-0.133 1.65E-01   -0.150 7.97E-07 
 

-0.143 4.03E-07   -0.113 2.17E-07   -0.049 2.17E-01 
 

-0.120 7.55E-05 

Gran -0.182 4.18E-02   -0.128 1.80E-01   -0.065 3.37E-02   -0.084 2.81E-03   -0.016 4.74E-01   -0.065 9.80E-02   -0.111 2.57E-04 

*
 All analyses except EEAA were adjusted for Age, Sex, Race/ethnicity, Cell types; EEAA was not adjusted for cell types. 

 

Supplementary Table 5. Sensitivity analysis: biweight midcorrelation analysis of EML, additionally adjusted for age2. 

  PEG 1 (n = 237)   FHS (n = 2326)   WHI (n= 2091)   JHS (n= 1734) 

Outcome = log(EML) 
Model 1 * 

 
Model 2**   Model 1 * 

 
Model 2**   Model 1 * 

 
Model 2**   Model 1 * 

 
Model 2** 

Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value 

AgeAccelHorvath 0.071 2.75E-01 
 

0.089 1.72E-01   0.106 3.11E-07 
 

0.106 3.08E-07   0.140 1.34E-10 
 

0.141 9.63E-11   0.079 9.68E-04 
 

0.100 2.84E-05 

IEAA 0.073 2.63E-01 
 

0.091 1.61E-01   0.109 1.26E-07 
 

0.109 1.23E-07   0.144 3.85E-11 
 

0.144 3.19E-11   0.080 8.50E-04 
 

0.102 2.18E-05 

EEAA (Unadjusted for cell 

types) 
0.211 1.05E-03 

 
0.225 4.80E-04   0.297 1.12E-48 

 
0.298 7.40E-49   0.212 1.31E-22 

 
0.210 2.35E-22   0.166 3.09E-12 

 
0.168 2.13E-12 

AgeAccelHannum 0.095 1.46E-01 
 

0.111 8.81E-02   0.225 4.12E-28 
 

0.225 3.79E-28   0.156 6.55E-13 
 

0.156 8.30E-13   0.148 6.33E-10 
 

0.158 3.69E-11 

AgeAccelGrim 0.224 5.23E-04 
 

0.219 7.01E-04   0.173 3.74E-17 
 

0.173 3.87E-17   0.180 9.91E-17 
 

0.180 1.09E-16   0.111 3.46E-06 
 

0.118 8.87E-07 

DNAmADMAdjAge 0.157 1.58E-02 
 

0.156 1.63E-02   0.121 4.58E-09 
 

0.121 4.65E-09   0.070 1.41E-03 
 

0.069 1.56E-03   -0.017 4.71E-01 
 

-0.019 4.34E-01 

DNAmB2MAdjAge 0.287 7.20E-06 
 

0.288 6.61E-06   0.189 4.69E-20 
 

0.188 4.84E-20   0.129 3.44E-09 
 

0.128 4.33E-09   0.074 2.05E-03 
 

0.072 2.75E-03 

DNAmCystatinCAdjAge 0.183 4.64E-03 
 

0.182 4.96E-03   0.119 8.71E-09 
 

0.119 8.84E-09   0.241 6.48E-29 
 

0.240 8.64E-29   0.081 7.30E-04 
 

0.075 1.69E-03 

DNAmGDF15AdjAge 0.162 1.27E-02 
 

0.162 1.26E-02   0.167 6.09E-16 
 

0.167 6.12E-16   0.127 5.80E-09 
 

0.126 7.40E-09   0.142 3.01E-09 
 

0.143 2.11E-09 

DNAmLeptinAdjAge 0.063 3.34E-01 
 

0.061 3.46E-01   -0.021 3.19E-01 
 

-0.021 3.23E-01   -0.035 1.11E-01 
 

-0.034 1.20E-01   -0.031 2.03E-01 
 

-0.031 2.02E-01 

DNAmPACKYRSAdjAge 0.150 2.13E-02 
 

0.144 2.64E-02   0.166 7.99E-16 
 

0.166 8.60E-16   0.172 2.23E-15 
 

0.173 1.67E-15   0.137 1.10E-08 
 

0.148 6.41E-10 

DNAmPAI1AdjAge 0.173 7.56E-03 
 

0.170 8.84E-03   0.024 2.49E-01 
 

0.024 2.48E-01   -0.004 8.59E-01 
 

-0.001 9.57E-01   0.061 1.07E-02 
 

0.067 5.03E-03 

DNAmTIMP1AdjAge -0.010 8.80E-01 
 
-0.008 9.08E-01   0.070 7.04E-04 

 
0.070 7.11E-04   0.010 6.41E-01 

 
0.008 7.01E-01   -0.001 9.72E-01 

 
-0.002 9.42E-01 

AgeAccelPheno 0.042 5.22E-01 
 

0.051 4.36E-01   0.178 4.45E-18 
 

0.178 4.22E-18   0.106 1.13E-06 
 

0.107 9.47E-07   0.078 1.20E-03 
 

0.083 5.33E-04 

DNAmTLAdjAge -0.082 2.11E-01 
 
-0.087 1.84E-01   -0.080 1.17E-04 

 
-0.080 1.16E-04   -0.033 1.36E-01 

 
-0.033 1.30E-01   -0.082 6.05E-04 

 
-0.093 1.08E-04 

DNAmAgeSkinBloodClockAdj

Age 
-0.080 2.22E-01   -0.045 4.91E-01   0.102 8.32E-07   0.102 7.97E-07   0.022 3.17E-01   0.024 2.79E-01   0.019 4.27E-01   0.047 5.25E-02 

* Adjusted (Age, Sex, Race/ethnicity, Cell types) 
** Adjusted (Age, Age2, Sex, Race/ethnicity, Cell types) 
 

Supplementary Table 6. Sensitivity analysis: biweight midcorrelation analysis of EML, additionally adjusted for BMI. 

  FHS (n = 2326)   WHI (n= 2091) 

Outcome = log(EML) 
Model 1

 *
 

 
Model 2

 **
   Model 1

 *
 

 
Model 2

 **
 

Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value 

AgeAccelHorvath 0.106 3.11E-07 
 

0.110 1.16E-07   0.140 1.34E-10 
 

0.144 4.13E-11 

IEAA 0.109 1.26E-07 
 

0.113 4.37E-08   0.144 3.85E-11 
 

0.148 1.36E-11 

EEAA (Unadjusted for cell types) 0.297 1.12E-48 
 

0.298 1.29E-48   0.212 1.31E-22 
 

0.216 2.92E-23 

AgeAccelHannum 0.225 4.12E-28 
 

0.226 3.19E-28   0.156 6.55E-13 
 

0.157 5.85E-13 

AgeAccelGrim 0.173 3.74E-17 
 

0.172 8.56E-17   0.180 9.91E-17 
 

0.181 1.02E-16 

DNAmADMAdjAge 0.121 4.58E-09 
 

0.123 2.93E-09   0.070 1.41E-03 
 

0.074 7.79E-04 

DNAmB2MAdjAge 0.189 4.69E-20 
 

0.190 2.84E-20   0.129 3.44E-09 
 

0.130 2.44E-09 

DNAmCystatinCAdjAge 0.119 8.71E-09 
 

0.117 1.51E-08   0.241 6.48E-29 
 

0.244 1.31E-29 

DNAmGDF15AdjAge 0.167 6.09E-16 
 

0.165 1.37E-15   0.127 5.80E-09 
 

0.127 7.21E-09 

DNAmLeptinAdjAge -0.021 3.19E-01 
 

-0.021 3.21E-01   -0.035 1.11E-01 
 

-0.029 1.93E-01 

DNAmPACKYRSAdjAge 0.166 7.99E-16 
 

0.164 1.88E-15   0.172 2.23E-15 
 

0.169 1.09E-14 

DNAmPAI1AdjAge 0.024 2.49E-01 
 

0.021 3.16E-01   -0.004 8.59E-01 
 

0.007 7.34E-01 

DNAmTIMP1AdjAge 0.070 7.04E-04 
 

0.068 1.03E-03   0.010 6.41E-01 
 

0.016 4.71E-01 
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AgeAccelPheno 0.178 4.45E-18 
 

0.180 2.10E-18   0.106 1.13E-06 
 

0.111 4.26E-07 

DNAmTLAdjAge -0.080 1.17E-04 
 

-0.079 1.47E-04   -0.033 1.36E-01 
 

-0.033 1.35E-01 

DNAmAgeSkinBloodClockAdjAge 0.102 8.32E-07   0.104 5.72E-07   0.022 3.17E-01   0.024 2.71E-01 

* 
Adjusted (Age, Sex, Race/ethnicity, Cell types) 

** 
Adjusted (Age, Sex, Race/ethnicity, Cell types, BMI) 

 

Supplementary Table 7. Sensitivity analysis: Biweight midcorrelation analysis of EML in FHS using different SEM 
cutoffs in FHS. 

Outcome = log(EML)
 *
 

EML (3IQR)   EML (2IQR)
 **

   EML (4IQR)
 ***

 

Bicor r P_value   Bicor r P_value   Bicor r P_value 

Age 0.244 7.15E-33   0.223 1.02E-27   0.247 1.13E-33 

BMI 0.017 4.23E-01   0.006 7.60E-01   0.019 3.49E-01 

DNAm Age Acceleration    

 

    

 

    

 AgeAccelHorvath 0.106 3.11E-07   0.073 4.38E-04   0.112 5.44E-08 

IEAA 0.109 1.26E-07   0.077 2.00E-04   0.135 5.28E-11 

EEAA (Unadjusted for cell types) 0.297 1.12E-48   0.281 1.89E-43   0.293 2.46E-47 

AgeAccelHannum 0.225 4.12E-28   0.224 5.97E-28   0.204 1.98E-23 

AgeAccelGrim 0.173 3.74E-17   0.147 1.03E-12   0.180 1.75E-18 

DNAmADMAdjAge 0.121 4.58E-09   0.084 4.41E-05   0.133 1.31E-10 

DNAmB2MAdjAge 0.189 4.69E-20   0.178 3.79E-18   0.180 2.28E-18 

DNAmCystatinCAdjAge 0.119 8.71E-09   0.116 2.03E-08   0.111 6.85E-08 

DNAmGDF15AdjAge 0.167 6.09E-16   0.157 2.52E-14   0.161 4.38E-15 

DNAmLeptinAdjAge -0.021 3.19E-01   -0.019 3.62E-01   -0.027 1.97E-01 

DNAmPACKYRSAdjAge 0.166 7.99E-16   0.142 5.64E-12   0.176 1.05E-17 

DNAmPAI1AdjAge 0.024 2.49E-01   0.005 8.17E-01   0.037 7.75E-02 

DNAmTIMP1AdjAge 0.070 7.04E-04   0.068 9.46E-04   0.071 6.02E-04 

AgeAccelPheno 0.178 4.45E-18   0.173 3.96E-17   0.164 1.37E-15 

DNAmTLAdjAge -0.080 1.17E-04   -0.068 1.04E-03   -0.073 4.37E-04 

DNAmAgeSkinBloodClockAdjAge 0.102 8.32E-07   0.072 5.20E-04   0.116 1.77E-08 

Cell types 
  

  
  

  
  

CD8.naive  -0.072 5.20E-04   -0.038 6.97E-02   -0.084 4.77E-05 

CD8pCD28nCD45RAn 0.085 3.90E-05   0.112 6.64E-08   0.038 6.37E-02 

PlasmaBlast -0.054 8.94E-03   -0.096 3.13E-06   -0.021 3.10E-01 

CD4T -0.146 1.68E-12   -0.176 9.14E-18   -0.149 5.34E-13 

Gran -0.075 2.72E-04   -0.074 3.37E-04   -0.066 1.52E-03 

*
 Adjusted for age, sex, cell types. 

**
 SEMs (2IQR) were defined as DNA methylation mutations that were greater than 2 times the IQR above the upper quartile 

of a given CpG or less than 2 times the IQR below the lower quartile of a given CpG. 
***

 SEMs (4IQR) were defined as DNA methylation mutations that were greater than 4 times the IQR above the upper quartile 
of a given CpG or less than 4 times the IQR below the lower quartile of a given CpG. 
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Supplementary Table 8. Sensitivity analysis: biweight midcorrelation analysis of EML derived from methylation data 
with various normalization methods (Illumina, Noob and Quantile normalization). 

  PEG 1 (n = 237) 

Outcome = log(EML) 
Illumina   Functional   Noob   Quantile 

Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value 

Adjusted (Age, Sex, 

Race/ethnicity, Cell types) 
                      

AgeAccelHorvath 0.075 2.49E-01   0.070 2.82E-01   0.077 2.40E-01   0.021 7.50E-01 

IEAA 0.080 2.17E-01   0.067 3.07E-01   0.074 2.59E-01   0.029 6.55E-01 

AgeAccelHannum 0.109 9.29E-02   0.093 1.52E-01   0.104 1.10E-01   0.036 5.86E-01 

AgeAccelGrim 0.203 1.71E-03   0.213 9.69E-04   0.241 1.82E-04   0.134 3.93E-02 

Cell types                       

CD8.naive  0.070 2.84E-01   0.042 5.23E-01   0.029 6.52E-01   0.066 3.10E-01 

CD8pCD28nCD45RAn 0.063 3.34E-01   0.082 2.07E-01   0.097 1.36E-01   0.074 2.58E-01 

PlasmaBlast -0.104 1.11E-01   -0.110 9.23E-02   -0.111 8.91E-02   -0.068 2.98E-01 

CD4T -0.080 2.20E-01   -0.118 6.95E-02   -0.115 7.66E-02   0.018 7.85E-01 

Gran -0.152 1.90E-02   -0.170 8.67E-03   -0.163 1.21E-02   -0.013 8.48E-01 

 

Supplementary Table 9. SEMs enriched within clock CpGs. 

  FHS (n = 2326)   WHI (n= 2091)   JHS (n= 1734)   PEG 1 (n = 237) 

Clock N   N   N   N 

HorvathClock (353 CpGs)               

Significant 46   34   22   4 

Non-Significant 2280   2057   1712   233 

PhenoClock (513 CpGs)               

Significant 151   97   121   19 

Non-Significant 2175   1994   1613   218 

HannumClock (71 CpGs)               

Significant 26   10   19   5 

Non-Significant 2300   2081   1715   232 

 

Supplementary Table 10. SEMs enriched within gene regions 

  FHS (n = 2326)   WHI (n= 2091)   JHS (n= 1734)   PEG 1 (n = 237) 

Genomic region N   N   N   N 

TSS1500               

Significant 545   110   229   23 

Non-Significant 1781   1981   1505   214 

TSS200               

Significant 908   385   372   142 

Non-Significant 1418   1706   1362   95 

5'UTR               

Significant 213   71   64   8 

Non-Significant 2113   2020   1670   229 

1stExon               

Significant 595   346   322   84 

Non-Significant 1731   1745   1412   153 

Gene Body               

Significant 296   693   357   24 

Non-Significant 2030   1398   1377   213 

3'UTR               

Significant 110   276   179   6 

Non-Significant 2216   1815   1555   231 
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Supplementary Table 11. SEMs enriched within regulatory regions. 

  JHS (n= 1734) 

Genomic region N 

Enhancer from FANTOM5   

Significant 54 

Non-Significant 1680 

DNase hypersensitive from ENCODE 

Significant 284 

Non-Significant 1450 

Open chromatin from ENCODE  

Significant 436 

Non-Significant 1298 

Transcription factor binding site from ENCODE 

Significant 383 

Non-Significant 1351 

Promoter from Methylation Consortium 

Significant 165 

Non-Significant 1578 

 

Supplementary Table 12. Top SEMs enriched KEGG pathways significantly associated with faster AgeAccelHorvath. 

  
KEGG 

Pathway 
Description 

Number of 

people with 

SEMs enriched 

AgeAccel

_Coef
 *
 

AgeAccel_Pv

alue 

FHS 

 (n = 2326) 

hsa05165 Human papillomavirus infection 355 1.664 7.62E-07 

hsa04360 Axon guidance 347 1.726 8.53E-07 

hsa05032 Morphine addiction 346 2.138 1.13E-11 

hsa04713 Circadian entrainment 341 1.796 4.97E-08 

hsa05033 Nicotine addiction 339 2.239 4.33E-13 

hsa04510 Focal adhesion 332 1.684 1.25E-06 

hsa04080 Neuroactive ligand-receptor interaction 326 2.487 2.84E-15 

hsa04724 Glutamatergic synapse 300 2.412 7.38E-13 

hsa04934 Cushing syndrome 297 2.041 1.15E-08 

hsa04727 GABAergic synapse 294 2.419 7.00E-13 

WHI  

(n= 2091) 

hsa00053 Ascorbate and aldarate metabolism 312 0.800 1.88E-02 

hsa04514 Cell adhesion molecules (CAMs) 237 1.255 8.19E-04 

hsa04724 Glutamatergic synapse 231 1.220 5.95E-03 

hsa04360 Axon guidance 229 2.071 8.38E-06 

hsa04713 Circadian entrainment 208 2.083 4.77E-06 

hsa05166 Human T-cell leukemia virus 1 infection 193 -1.660 5.10E-05 

hsa05032 Morphine addiction 189 2.541 1.45E-08 

hsa04934 Cushing syndrome 171 1.504 3.23E-03 

hsa04921 Oxytocin signaling pathway 167 1.445 6.29E-03 

hsa04020 Calcium signaling pathway 165 2.235 8.79E-06 

JHS  

(n= 1734) 

hsa05032 Morphine addiction 402 1.167 9.84E-04 

hsa04713 Circadian entrainment 395 0.830 2.73E-02 

hsa04921 Oxytocin signaling pathway 372 0.798 3.33E-02 

hsa04020 Calcium signaling pathway 327 1.258 8.01E-04 

hsa04512 ECM-receptor interaction 317 1.032 1.44E-02 

hsa04727 GABAergic synapse 282 1.093 9.28E-03 

hsa04934 Cushing syndrome 249 1.370 1.00E-03 

hsa04014 Ras signaling pathway 245 0.957 3.90E-02 

hsa05412 
Arrhythmogenic right ventricular 

cardiomyopathy (ARVC) 
227 1.690 1.44E-04 

hsa04261 Adrenergic signaling in cardiomyocytes 226 1.006 2.95E-02 
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PEG 1  

(n = 237) 

hsa04360 Axon guidance 59 0.319 9.06E-01 

hsa04713 Circadian entrainment 52 0.226 9.06E-01 

hsa05224 Breast cancer 46 0.586 8.45E-01 

hsa05165 Human papillomavirus infection 45 2.202 3.04E-01 

hsa05032 Morphine addiction 44 0.182 9.21E-01 

hsa05226 Gastric cancer 44 0.868 7.78E-01 

hsa04934 Cushing syndrome 43 0.907 7.78E-01 

hsa04390 Hippo signaling pathway 39 0.916 7.78E-01 

hsa04724 Glutamatergic synapse 39 1.630 5.97E-01 

hsa04015 Rap1 signaling pathway 37 -0.390 8.94E-01 

* 
Age acceleration residual as dependent variable, significant enrichment as independent variable, adjusted for nlog(EML) 

 

Supplementary Table 13. Top SEMs enriched KEGG pathways significantly associated with faster AgeAccelHannum 

  
KEGG 

Pathway 
Description 

Number of 

people with 

SEMs enriched 

AgeAccel_Co

ef
 *
 

AgeAccel_Pval

ue 

FHS  

(n = 2326) 

hsa05165 Human papillomavirus infection 355 1.143 1.14E-03 

hsa04360 Axon guidance 347 0.792 3.98E-02 

hsa05032 Morphine addiction 346 2.222 1.67E-12 

hsa04713 Circadian entrainment 341 1.959 2.24E-09 

hsa05033 Nicotine addiction 339 2.083 1.69E-11 

hsa04510 Focal adhesion 332 1.074 3.35E-03 

hsa04080 Neuroactive ligand-receptor interaction 326 2.262 1.13E-12 

hsa04724 Glutamatergic synapse 300 2.029 1.84E-09 

hsa04934 Cushing syndrome 297 2.283 1.57E-10 

hsa00053 Ascorbate and aldarate metabolism 296 0.917 5.61E-03 

WHI  

(n= 2091) 

hsa04724 Glutamatergic synapse 231 1.461 5.59E-04 

hsa04360 Axon guidance 229 1.477 1.19E-03 

hsa04713 Circadian entrainment 208 1.987 7.57E-06 

hsa05166 Human T-cell leukemia virus 1 infection 193 -1.133 5.13E-03 

hsa05032 Morphine addiction 189 2.373 5.72E-08 

hsa04934 Cushing syndrome 171 2.160 9.38E-06 

hsa04921 Oxytocin signaling pathway 167 1.330 9.42E-03 

hsa04020 Calcium signaling pathway 165 1.844 1.77E-04 

hsa04510 Focal adhesion 145 -1.175 4.02E-02 

hsa04024 cAMP signaling pathway 137 2.147 3.52E-05 

JHS  

(n= 1734) 

hsa04360 Axon guidance 451 0.630 3.43E-02 

hsa05032 Morphine addiction 402 0.927 5.24E-04 

hsa04713 Circadian entrainment 395 0.582 3.85E-02 

hsa04020 Calcium signaling pathway 327 0.898 1.62E-03 

hsa04512 ECM-receptor interaction 317 0.841 6.33E-03 

hsa04727 GABAergic synapse 282 1.503 4.07E-08 

hsa05165 Human papillomavirus infection 277 0.685 3.43E-02 

hsa04934 Cushing syndrome 249 1.445 9.84E-07 

hsa04024 cAMP signaling pathway 239 0.906 7.88E-03 

hsa05412 
Arrhythmogenic right ventricular 

cardiomyopathy (ARVC) 
227 0.865 1.91E-02 

PEG 1  

(n = 237) 

hsa04360 Axon guidance 59 0.418 8.86E-01 

hsa04713 Circadian entrainment 52 1.182 7.74E-01 

hsa05224 Breast cancer 46 -0.554 8.86E-01 

hsa05165 Human papillomavirus infection 45 0.654 8.68E-01 

hsa05032 Morphine addiction 44 0.060 9.81E-01 

hsa05226 Gastric cancer 44 0.345 8.86E-01 

hsa04934 Cushing syndrome 43 0.820 8.66E-01 



 

www.aging-us.com 17889 AGING 

hsa04390 Hippo signaling pathway 39 0.524 8.86E-01 

hsa04724 Glutamatergic synapse 39 1.877 6.22E-01 

hsa04015 Rap1 signaling pathway 37 -0.117 9.61E-01 

* 
Age acceleration residual as dependent variable, significant enrichment as independent variable, adjusted for nlog(EML) 

 

Supplementary Table 14. Top SEMs enriched KEGG pathways significantly associated with faster IEAA. 

  KEGG Pathway Description 

Number of 

people with 

SEMs enriched 

AgeAccel_

Coef
 *
 

AgeAccel_Pvalu

e 

FHS  

(n = 2326) 

hsa05165 Human papillomavirus infection 355 0.887 2.56E-02 

hsa05032 Morphine addiction 346 1.055 3.76E-03 

hsa04713 Circadian entrainment 341 0.939 1.50E-02 

hsa05033 Nicotine addiction 339 1.560 3.24E-06 

hsa04080 Neuroactive ligand-receptor interaction 326 1.678 1.16E-06 

hsa04724 Glutamatergic synapse 300 1.392 2.08E-04 

hsa04934 Cushing syndrome 297 1.055 1.22E-02 

hsa04727 GABAergic synapse 294 1.400 2.06E-04 

hsa04020 Calcium signaling pathway 292 1.850 7.65E-07 

hsa05224 Breast cancer 291 1.021 1.53E-02 

WHI  

(n= 2091) 

hsa04724 Glutamatergic synapse 231 1.048 1.74E-02 

hsa04360 Axon guidance 229 1.439 2.09E-03 

hsa04713 Circadian entrainment 208 1.645 2.88E-04 

hsa05166 Human T-cell leukemia virus 1 infection 193 -1.187 4.08E-03 

hsa05032 Morphine addiction 189 2.108 3.21E-06 

hsa04921 Oxytocin signaling pathway 167 1.072 4.54E-02 

hsa04020 Calcium signaling pathway 165 1.789 3.44E-04 

hsa04015 Rap1 signaling pathway 163 1.306 1.63E-02 

hsa04024 cAMP signaling pathway 137 2.296 1.60E-05 

hsa05033 Nicotine addiction 135 2.201 1.11E-05 

JHS  

(n= 1734) 

hsa05032 Morphine addiction 402 0.884 3.66E-02 

hsa04934 Cushing syndrome 249 1.005 4.40E-02 

hsa05412 
Arrhythmogenic right ventricular 

cardiomyopathy (ARVC) 
227 1.322 8.85E-03 

hsa05033 Nicotine addiction 222 1.367 3.57E-03 

hsa05226 Gastric cancer 166 1.293 2.91E-02 

hsa04080 Neuroactive ligand-receptor interaction 164 2.127 2.41E-05 

hsa05414 Dilated cardiomyopathy (DCM) 155 1.893 2.23E-04 

hsa04721 Synaptic vesicle cycle 115 2.110 2.54E-04 

hsa05410 Hypertrophic cardiomyopathy (HCM) 108 2.627 1.26E-05 

hsa04950 Maturity onset diabetes of the young 81 1.958 8.00E-03 

PEG 1  

(n = 237) 

hsa04360 Axon guidance 59 -0.324 9.32E-01 

hsa04713 Circadian entrainment 52 -0.461 9.10E-01 

hsa05224 Breast cancer 46 -0.076 9.81E-01 

hsa05165 Human papillomavirus infection 45 2.479 1.66E-01 

hsa05032 Morphine addiction 44 -0.302 9.32E-01 

hsa05226 Gastric cancer 44 0.063 9.81E-01 

hsa04934 Cushing syndrome 43 0.413 9.32E-01 

hsa04390 Hippo signaling pathway 39 0.472 9.10E-01 

hsa04724 Glutamatergic synapse 39 1.412 7.33E-01 

hsa04015 Rap1 signaling pathway 37 -1.111 8.06E-01 

* 
Age acceleration residual as dependent variable, significant enrichment as independent variable, adjusted for nlog(EML) 
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Supplementary Table 15. Top SEMs enriched KEGG pathways significantly associated with faster AgeAccelGrim. 

  
KEGG 

Pathway 
Description 

Number of 

people with 

SEMs enriched 

AgeAccel_C

oef
 *
 

AgeAccel_Pval

ue 

FHS  

(n = 2326) 

hsa04360 Axon guidance 347 -0.798 4.97E-02 

hsa04510 Focal adhesion 332 -0.855 3.24E-02 

hsa04080 Neuroactive ligand-receptor interaction 326 -0.742 4.31E-02 

hsa04390 Hippo signaling pathway 284 -1.431 5.72E-04 

hsa04151 PI3K-Akt signaling pathway 265 -0.956 2.56E-02 

hsa05205 Proteoglycans in cancer 263 -1.454 8.02E-04 

hsa05226 Gastric cancer 256 -1.399 1.04E-03 

hsa04512 ECM-receptor interaction 252 -0.865 3.81E-02 

hsa04550 

Signaling pathways regulating pluripotency 

of stem cells 249 
-1.598 1.57E-04 

hsa04010 MAPK signaling pathway 240 -1.168 9.80E-03 

WHI  

(n= 2091) 

hsa04510 Focal adhesion 145 -1.069 2.69E-02 

hsa04010 MAPK signaling pathway 135 -1.251 1.37E-02 

hsa05033 Nicotine addiction 135 0.969 2.45E-02 

hsa04080 Neuroactive ligand-receptor interaction 130 1.157 8.32E-03 

hsa04072 Phospholipase D signaling pathway 129 -1.556 1.20E-03 

hsa04310 Wnt signaling pathway 117 -1.251 1.72E-02 

hsa04152 AMPK signaling pathway 111 -1.792 4.40E-04 

hsa04911 Insulin secretion 102 1.178 1.86E-02 

hsa04014 Ras signaling pathway 95 -1.463 1.03E-02 

hsa04144 Endocytosis 91 -1.763 1.12E-03 

JHS  

(n= 1734) 

hsa04724 Glutamatergic synapse 573 -0.148 9.05E-01 

hsa04360 Axon guidance 451 0.254 8.92E-01 

hsa04725 Cholinergic synapse 437 0.164 9.05E-01 

hsa04510 Focal adhesion 413 -0.163 9.07E-01 

hsa05032 Morphine addiction 402 0.352 7.97E-01 

hsa00053 Ascorbate and aldarate metabolism 400 0.093 9.38E-01 

hsa04713 Circadian entrainment 395 0.240 8.92E-01 

hsa04015 Rap1 signaling pathway 391 0.228 8.95E-01 

hsa00040 Pentose and glucuronate interconversions 374 -0.038 9.62E-01 

hsa04080 Neuroactive ligand-receptor interaction 164 1.793 9.56E-03 

PEG 1  

(n = 237) 

hsa04360 Axon guidance 59 -0.468 9.20E-01 

hsa04713 Circadian entrainment 52 -0.521 9.20E-01 

hsa05224 Breast cancer 46 -2.263 4.84E-01 

hsa05165 Human papillomavirus infection 45 -1.114 8.36E-01 

hsa05032 Morphine addiction 44 -0.895 9.20E-01 

hsa05226 Gastric cancer 44 -1.497 6.67E-01 

hsa04934 Cushing syndrome 43 0.378 9.20E-01 

hsa04390 Hippo signaling pathway 39 -0.786 9.20E-01 

hsa04724 Glutamatergic synapse 39 0.526 9.20E-01 

hsa04015 Rap1 signaling pathway 37 -1.882 6.67E-01 

* 
Age acceleration residual as dependent variable, significant enrichment as independent variable, adjusted for nlog(EML) 
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Supplementary Table 16. Top SEMs enriched KEGG pathways significantly associated with faster AgeAccelPheno. 

  
KEGG 

Pathway 
Description 

Number of people with 

SEMs enriched 

AgeAccel_C

oef
 *
 

AgeAccel_Pv

alue 

FHS  

(n = 2326) 

hsa05165 Human papillomavirus infection 355 0.003 1.00E+00 

hsa04360 Axon guidance 347 -1.074 2.14E-01 

hsa05032 Morphine addiction 346 0.409 8.14E-01 

hsa04713 Circadian entrainment 341 0.078 9.62E-01 

hsa05033 Nicotine addiction 339 0.300 8.43E-01 

hsa04510 Focal adhesion 332 0.049 9.74E-01 

hsa04080 Neuroactive ligand-receptor interaction 326 0.120 9.13E-01 

hsa04724 Glutamatergic synapse 300 -0.022 9.84E-01 

hsa04934 Cushing syndrome 297 -0.255 8.99E-01 

hsa00053 Ascorbate and aldarate metabolism 296 0.168 9.02E-01 

WHI  

(n= 2091) 

hsa04940 Type I diabetes mellitus 493 -0.525 4.15E-01 

hsa05330 Allograft rejection 337 -0.167 8.74E-01 

hsa05332 Graft-versus-host disease 313 -0.344 6.60E-01 

hsa00053 Ascorbate and aldarate metabolism 312 0.285 7.38E-01 

hsa00040 Pentose and glucuronate interconversions 305 0.127 9.19E-01 

hsa05416 Viral myocarditis 299 -0.086 9.67E-01 

hsa00860 Porphyrin and chlorophyll metabolism 272 0.048 9.81E-01 

hsa05320 Autoimmune thyroid disease 272 -0.228 8.32E-01 

hsa04612 Antigen processing and presentation 257 -0.228 8.32E-01 

hsa00980 
Metabolism of xenobiotics by cytochrome 

P450 
253 -0.017 9.88E-01 

JHS  

(n= 1734) 

hsa04724 Glutamatergic synapse 573 0.029 9.58E-01 

hsa04360 Axon guidance 451 0.290 8.08E-01 

hsa04725 Cholinergic synapse 437 0.150 8.98E-01 

hsa04510 Focal adhesion 413 -0.604 5.25E-01 

hsa05032 Morphine addiction 402 0.785 3.30E-01 

hsa00053 Ascorbate and aldarate metabolism 400 0.464 5.82E-01 

hsa04713 Circadian entrainment 395 1.052 1.57E-01 

hsa04080 Neuroactive ligand-receptor interaction 164 2.014 3.77E-02 

hsa05414 Dilated cardiomyopathy (DCM) 155 2.054 3.77E-02 

hsa05410 Hypertrophic cardiomyopathy (HCM) 108 2.306 4.22E-02 

PEG 1  

(n = 237) 

hsa04360 Axon guidance 59 -0.606 9.29E-01 

hsa04713 Circadian entrainment 52 0.351 9.53E-01 

hsa05224 Breast cancer 46 -1.177 9.29E-01 

hsa05165 Human papillomavirus infection 45 0.292 9.62E-01 

hsa05032 Morphine addiction 44 -0.684 9.29E-01 

hsa05226 Gastric cancer 44 0.589 9.29E-01 

hsa04934 Cushing syndrome 43 0.075 9.86E-01 

hsa04390 Hippo signaling pathway 39 -2.425 7.03E-01 

hsa04724 Glutamatergic synapse 39 1.064 9.29E-01 

hsa04015 Rap1 signaling pathway 37 -0.464 9.29E-01 

* 
Age acceleration residual as dependent variable, significant enrichment as independent variable, adjusted for nlog(SEM)    
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Supplementary Table 17. Association between Clock region-specific EML and corresponding DNAm AgeAccel. 

Outcome = log(clock EML) PEG 1 (n = 237)   FHS (n = 2326)   WHI (n= 2091)   JHS (n= 1734) 

Model
 *
 Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value 

HorvathClock (353 CpGs) v. AgeAccel 0.008 9.07E-01   0.020 8.35E-01   0.034 1.23E-01   0.180 4.16E-14 

PhenoClock (513 CpGs) v. AgeAccelPheno 0.008 9.03E-01   0.013 5.29E-01   0.058 8.26E-03   0.064 7.57E-03 

HannumClock (71CpGs) v. AgeAccelHannum 0.071 2.77E-01   -0.030 1.51E-01   0.017 4.28E-01   0.044 6.84E-02 

* 
Adjusted for Age, Sex, Cell types, Race/ethnicity, Log(total EML) 

 

Supplementary Table 18. Biweight midcorrelation analysis of regulatory region-specific EML in JHS. 

Outcome = log(Region 

EML)
 *
 

Enhancer  

(CpGs = 26395) 
  

DNAse  

(CpGs = 

466862) 

  

Open 

Chromatin 

(CpGs = 

108758) 

  

TFBS  

(CpGs = 

122647) 

  

Promoter 

(CpGs = 

110008) 

Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value   Bicor r P_value 

Age -0.045 6.01E-02   0.169 1.24E-12   0.019 4.34E-01   -0.065 7.11E-03   -0.027 2.58E-01 

DNAm Age Acceleration  

  

  

  

  

  

  

  

  

  AgeAccelHorvath -0.027 2.66E-01   0.129 6.75E-08   0.026 2.73E-01   -0.012 6.14E-01   -0.003 8.94E-01 

IEAA -0.027 2.64E-01   0.132 3.26E-08   0.025 3.04E-01   -0.023 3.34E-01   -0.002 9.32E-01 

AgeAccelHannum -0.059 1.36E-02   0.236 2.08E-23   0.002 9.26E-01   -0.089 1.94E-04   -0.029 2.35E-01 

AgeAccelGrim 0.022 3.66E-01   0.098 4.01E-05   0.018 4.56E-01   -0.038 1.17E-01   -0.013 5.99E-01 

Cell types 

  

  

  

  

  

  

  

  

  CD8.naive  -0.004 8.69E-01   -0.101 2.40E-05   0.029 2.20E-01   0.027 2.67E-01   -0.029 2.23E-01 

CD8pCD28nCD45RAn 0.016 5.10E-01   0.073 2.33E-03   -0.004 8.57E-01   -0.024 3.21E-01   0.038 1.12E-01 

PlasmaBlast -0.020 3.98E-01   -0.011 6.41E-01   0.038 1.11E-01   0.016 4.99E-01   -0.040 9.44E-02 

CD4T -0.012 6.05E-01   -0.090 1.79E-04   0.086 3.33E-04   0.109 5.20E-06   0.016 5.03E-01 

Gran -0.067 5.15E-03   -0.181 3.39E-14   0.106 8.95E-06   0.151 2.47E-10   -0.049 4.21E-02 

*
 Adjusted for Age, Sex, Cell types, Log(total EML). 

 

Supplementary Table 19. Biweight midcorrelation analysis of EML in FHS, stratified by the direction of SEM. 

Outcome = log(EML)
 *
 

All EML   Hypermethylated EML   Hypomethylated EML 

Bicor r P_value   Bicor r P_value   Bicor r P_value 

Age 0.244 7.15E-33   0.271 1.81E-40   0.139 1.53E-11 

BMI 0.017 4.23E-01   0.016 4.49E-01   0.012 5.53E-01 

DNAm Age Acceleration    

 

    

 

    

 AgeAccelHorvath 0.106 3.11E-07   0.101 1.19E-06   0.092 9.46E-06 

IEAA 0.109 1.26E-07   0.100 1.34E-06   0.107 2.22E-07 

EEAA (Unadjusted for cell types) 0.297 1.12E-48   0.268 1.20E-39   0.286 7.07E-45 

AgeAccelHannum 0.225 4.12E-28   0.225 3.85E-28   0.192 1.05E-20 

AgeAccelGrim 0.173 3.74E-17   0.167 5.80E-16   0.125 1.29E-09 

DNAmADMAdjAge 0.121 4.58E-09   0.121 4.26E-09   0.076 2.62E-04 

DNAmB2MAdjAge 0.189 4.69E-20   0.197 7.10E-22   0.088 2.26E-05 

DNAmCystatinCAdjAge 0.119 8.71E-09   0.125 1.39E-09   0.031 1.29E-01 

DNAmGDF15AdjAge 0.167 6.09E-16   0.181 1.58E-18   0.093 7.75E-06 

DNAmLeptinAdjAge -0.021 3.19E-01   -0.003 8.74E-01   -0.047 2.23E-02 

DNAmPACKYRSAdjAge 0.166 7.99E-16   0.142 5.10E-12   0.172 7.31E-17 

DNAmPAI1AdjAge 0.024 2.49E-01   0.056 6.70E-03   -0.053 1.12E-02 

DNAmTIMP1AdjAge 0.070 7.04E-04   0.083 5.69E-05   0.021 3.06E-01 

AgeAccelPheno 0.178 4.45E-18   0.168 3.52E-16   0.133 1.14E-10 

DNAmTLAdjAge -0.080 1.17E-04   -0.088 1.99E-05   -0.057 5.93E-03 
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DNAmAgeSkinBloodClockAdjAge 0.102 8.32E-07   0.127 7.26E-10   0.044 3.36E-02 

Cell types 
  

  
  

  
  

CD8.naive  -0.072 5.20E-04   -0.071 5.91E-04   -0.040 5.38E-02 

CD8pCD28nCD45RAn 0.085 3.90E-05   0.045 2.83E-02   0.104 5.07E-07 

PlasmaBlast -0.054 8.94E-03   -0.043 3.92E-02   -0.060 3.98E-03 

CD4T -0.146 1.68E-12   -0.138 2.08E-11   -0.096 3.89E-06 

Gran -0.075 2.72E-04   -0.106 3.10E-07   -0.017 4.15E-01 

*
Adjusted for age, sex, cell types. 

 

Supplementary Table 20. FHS: Distribution of hype- and hypomethylated SEMs in relation to CpG island. 

 
Constantly Hypermethylated SEM

 *
 Constantly Hypomethylated SEM

 **
 

Open Sea 8403 41533 

Island 45807 5366 

N_Shelf 711 5101 

N_Shore 11205 6769 

S_Shelf 619 4913 

S_Shore 8483 5233 

*
 Constantly hypermethylated SEMs were defined as DNA methylation mutations identified in more than 10 participants that 

were greater than three times the IQR above the upper quartile of a given CpG. 
**

 Constantly hypomethylated SEMs were defined as DNA methylation mutations identified in more than 10 participants that 
were less than three times the IQR above the lower quartile of a given CpG. 
 

Supplementary Table 21. FHS: Distribution of hype- and hypomethylated SEMs in relation to genomic region. 

 

Constantly Hypermethylated SEM
 *
 Constantly Hypomethylated SEM

 **
 

TSS1500 11769 5841 

TSS200 13399 1639 

5'UTR 4536 3350 

1st Exon 2160 628 

Gene body 12757 26197 

3' UTR 559 3442 

*
 Constantly hypermethylated SEMs were defined as DNA methylation mutations identified in more than 10 participants that 

were greater than three times the IQR above the upper quartile of a given CpG. 
**

 Constantly hypomethylated SEMs were defined as DNA methylation mutations identified in more than 10 participants that 
were less than three times the IQR above the lower quartile of a given CpG. 
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Supplementary Table 22. Association between Shannon entropy and age, AgeAccel, EML. 

Outcome =Entropy
 *
 

FHS (n = 2326) WHI (n= 2091) JHS (n= 1734) PEG 1 (n = 237) 

Bicor r P_value Bicor r P_value Bicor r P_value Bicor r P_value 

Age 0.001 9.55E-01 0.068 2.01E-03 0.071 2.92E-03 0.117 7.30E-02 

DNAm Age Acceleration      
  

    
  

AgeAccelHorvath 0.081 9.11E-05 0.160 1.76E-13 -0.039 1.02E-01 0.006 9.22E-01 

IEAA 0.035 9.02E-02 0.131 1.70E-09 -0.052 3.16E-02 0.018 7.83E-01 

EEAA (Unadjusted for cell types) 0.038 6.39E-02 0.090 3.60E-05 0.017 4.73E-01 0.123 5.93E-02 

AgeAccelHannum 0.155 6.23E-14 0.136 4.60E-10 0.063 9.10E-03 0.096 1.41E-01 

AgeAccelGrim 0.077 1.89E-04 0.228 3.86E-26 0.043 7.17E-02 0.164 1.14E-02 

DNAmADMAdjAge 0.001 9.62E-01 0.205 2.80E-21 -0.022 3.49E-01 0.075 2.53E-01 

DNAmB2MAdjAge 0.033 1.12E-01 0.057 9.76E-03 -0.019 4.19E-01 0.157 1.59E-02 

DNAmCystatinCAdjAge 0.110 9.87E-08 0.422 5.62E-91 0.075 1.67E-03 0.200 1.93E-03 

DNAmGDF15AdjAge 0.095 4.70E-06 0.226 1.53E-25 0.230 2.54E-22 0.076 2.45E-01 

DNAmLeptinAdjAge -0.023 2.68E-01 -0.060 6.11E-03 0.031 2.01E-01 -0.034 6.05E-01 

DNAmPACKYRSAdjAge 0.091 1.17E-05 0.125 9.64E-09 0.054 2.46E-02 0.112 8.44E-02 

DNAmPAI1AdjAge -0.036 8.02E-02 0.009 6.68E-01 -0.007 7.78E-01 0.099 1.30E-01 

DNAmTIMP1AdjAge 0.015 4.73E-01 -0.041 5.96E-02 -0.085 4.17E-04 -0.113 8.17E-02 

AgeAccelPheno 0.079 1.35E-04 0.069 1.68E-03 -0.008 7.47E-01 -0.018 7.88E-01 

DNAmTLAdjAge 0.002 9.36E-01 0.042 5.41E-02 0.017 4.78E-01 0.010 8.80E-01 

DNAmAgeSkinBloodClockAdjAge -0.025 2.35E-01 -0.063 4.18E-03 -0.001 9.81E-01 -0.072 2.67E-01 

SEM 0.089 1.63E-05 0.294 6.87E-43 0.325 7.22E-44 0.281 1.10E-05 

*
 Adjusted for Age, Sex, Race/ethnicity, Cell types. 




