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Abstract
Groups of surface gravity waves induce horizontally varying Stokes drift which drive con-
vergence of water ahead of the group and divergence behind, thereby driving water down-
ward in front of the group, and upward in the rear. This “Stokes pumping” creates a deep
Eulerian return flow. We assess the impact of stable density stratification on the deep
return flow. Our approach is to find solutions of the wave-averaged Boussinesq equations
in two (2D) and three dimensions (3D) forced by Stokes pumping at the surface. We
find that the shape of the return flow may be changed by vertical density stratification,
and if the stratification is sufficiently strong, internal gravity waves may be radiated from
the passing surface wave group. In the 2D case, the problem can be solved for arbitrary
stratification profiles, however, we find that realistic stratification is too weak to produce
internal waves. In the 3D case with constant stratification, internal waves are always
emitted by the passing surface wave group.

1 Introduction

As surface gravity waves propagate, they induce flow in the direction of propagation at the
crest of the waves, and backwards in the troughs. Following a neutrally buoyant particle,
or parcel of water, one finds circular orbits, that do not completely close, but rather drift
forward. The motion of these particles averaged over a wave period is called the Stokes
drift. Mathematically, the Stokes drift is formed by the surface displacement (ζ) dotted
into the gradient of the surface wave velocity (u), and averaged over the surface wave
period.

uS = ζ ·∇u (1)

where the overbar denotes an average over the wave phase. The leading order solutions
ζ1 and u1 =∇φ are well know (e.g. Phillips, 1977).

ζ1 = 1
2
a(x̃, 0) exp

[
ik (x− ct)

]
+ c.c. (2)

φ = −1
2
ic a(x̃, z) exp

[
ik (x− ct) + kz

]
+ c.c. , (3)

If we insert the well known linear wave solution for ζ and u we find that the Stokes drift
is second order in wave slope (ak = ε)

uS = (ak)2ce2kz (4)

where a is the wave amplitude, k is the horizontal wavenumber, and c is the wave phase
speed.

Now if we consider surface wave groups, the Stokes drift will vary in space and time,
that is a = a(x, t). Throughout this work we will use a gaussian envelope as an example,
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but the results apply more generally except where the gaussian functional form for a(x, t)
has been invoked. For an observer in a fixed position, as the wave group passes by, the
Stokes drift starts out very small, and increases as the peak of the envelope (wave group)
passes, decreasing thereafter. Since the Stokes drift represents the Lagrangian mass flux,
there is then a convergence of mass flux in the front of the wave group, and a divergence
behind. This surface convergence dipole drives downwelling in front of the group, and
upwelling aft of the group. We will refer to this Stokes induced surface boundary condition
as“Stokes pumping”, and to the ensuing circulation as the Eulerian return flow. Such
a return flow was first discussed by Longuet-Higgins and Stewart (1964), and later by
McIntyre (1981) and Van Den Bremer and Taylor (2015). In particular, McIntyre (1981)
noted that the interaction of the Eulerian return flow with stable stratification may incite
internal waves.

Here, we examine the changes to the Eulerian return flow and the details of internal
wave excitation by surface waves. Figure 1 shows the stream function for flow beneath the
surface wave group in an unstratified case (similar to figure 2 in McIntyre (1981)), and in
a stratified case in which internal waves are emitted. In figure 1 the flow is 2D, however
we consider 3D flows in the special case of constant stratification. Van Den Bremer and
Taylor (2015) consider the unstratified 3D return flow, and show that it decays with depth
as z−3 which, although more rapidly decaying than the 2D case (z−2), is still algebraic so
the return flow may be felt down to the bottom of the ocean. Therefore, in the 3D case,
when the return flow may pass partially around the side of the wave group, it is still felt
at the ocean floor.

Other approaches to coupling surface gravity waves to internal waves have been con-
sidered before. One approach is that of resonant triad interaction between two surface
waves and one internal wave. Olbers and Eden (2016) present such a theory, and show
that the energy flux to internal waves is much smaller than the energy flux to internal
waves due to wind forcing. The surface wave group-internal wave interaction presented
here is a special case of the triad interaction. In this case, the surface wave group includes
two waves that are close in wavenumber k and k + δk, and to satisfy the resonance con-
dition, the internal wave must have wavenumber δk. Although the work presented here
is a special case of the triad interaction theories of Olbers and Eden (2016) and Olbers
and Herterich (1979), it elucidates the connection between radiated internal waves and
the eulerian return flow.

2 The Deep Return Flow

We begin from the Boussinesq equations

ut + u · ∇u +∇p = bẑ , (5)

bt + u · ∇b+ wN2 = 0 , (6)

∇·u = 0 . (7)

where u = ux̂ + vŷ + wẑ, b = g(ρ− ρ0)ρ−10 is buoyancy, and N =
√
∂zb is the buoyancy

frequency. The surface boundary conditions, correct to second order in wave steepness ε,
are

@z = 0 : ζt + (uζ)x = w , and (8)

@z = 0 : p+ ζpz = gζ +N2 1
2
ζ2 . (9)
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Figure 1: The stream function of the deep return flow beneath a gaussian wave group with an unstratified
interior (top; N = 0), and with constant stratification (bottom; N = 7× 10−3s−1). The dashed contours
indicate negative values of the stream function, and the contour interval is 0.05m2s−1. In both panels,
the surface wave group is moving to the right with speed c/2. The surface wave amplitude is exaggerated
by orders of magnitude in order to visualize the group; in this illustration `/h = 0.07.
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The bottom boundary condition is w(x,−h, t) = 0. We will only consider deep-water
waves (kh� 1) so that this bottom boundary condition is only relevant to the Eulerian
return flow. The leading order (ε1) solution is that which yields the surface waves them-
selves as discussed in the introduction and references therein. Now we proceed with the
second-order solution to reveal the form of the Eulerian return flow.

Retaining only the second-order terms and then applying a phase average yields the
following momentum equations

ū2t = $x , v̄2t = $y , w̄2t = −$z + b̄2 , b̄2t = −wN2 , (10)

where the second order pressure, $, is defined as

$
def
= p̄2 + 1

2
|u1|2. (11)

Combining (10) intro a single equation yields the vertical velocity equation for the return
flow [

∂2t ∆ +N2∆H

]
w = 0, (12)

where ∆ = ∂2x+∂2y +∂2z , and ∆H = ∂2x+∂2y . The second order surface boundary condition
is then

@z = 0 : w = (uζ)x , (13)

where, following e.g. Longuet-Higgins and Stewart (1964), we have neglected the set down
of the surface due to the passing group (ζ̄2t), since in deep water, this term is much smaller
than the remaining two. The term on the right hand side of (13) can be identified as the
mass flux per unit length per unit density. Using the known leading order solutions we
see that

M = uζ =

∫ 0

−∞
uS dz . (14)

The bottom boundary condition remains w = 0 at z = −h.
It will be convenient in the 2D case to consider the stream function defined by

ū2 = −ψz , w̄2 = ψx . (15)

Therefore the stream function equation for the return flow in 2D is[
∂2t
(
∂2x + ∂2z

)
+N2∂2x

]
ψ = 0 . (16)

Lastly, it will also prove convenient to move into the reference frame moving at the group
speed c/2. We define the group frame coordinate as

x̃
def
= x− 1

2
ct . (17)

Making this transformation, and integrating twice in x̃, the 2D stream function equation
becomes [

∂2x̃ + ∂2z + q2∗
]
ψ = 0 (18)

where q∗ = 2N/c is the critical wavenumber.
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3 Finite Depth Solutions with Vertically Varying Stratification in 2D

To solve (18) with vertically varying stratification we decompose the solution into vertical
modes φn(z) which solve the following eigenvalue problem

d2φn
dz2

+
(
q2∗ − q2n

)
φn = 0 . (19)

Once this problem is solved for a particular value of q∗, we project ψ and (18) onto these
modes which gives an equation for the modal amplitude ψn,(

∂2x̃ + q2n
)
ψn =

φ′nM

h
, (20)

where φ′n = dφn/dz, evaluated at z = 0. (20) can be solved analytically with Green’s
functions. When q2n > 0 we can see that the nth mode is an internal wave with horizontal
wavenumber qn.

ψn(x̃) = − φ′n
hqn

∫ ∞
x̃

M(x′) sin [qn(x̃− x′)] dx′ . (21)

When q2n < 0 the nth mode is evanescent, and contributes to the Eulerian return flow
discussed in the unstratified case.

ψn(x̃) = − φ′n
2hβn

∫ ∞
−∞
M(x′)e−βn|x̃−x

′| dx′ (22)

The exponent β is defined such that β2
n = −q2n > 0. An example of ψ in uniform

stratification is plotted in the lower panel of figure 1 using (21) - (22).
It is illustrative to consider the uniform stratification case. Although (19) applies to

general stratification profiles N(z), the problem is analytically solvable and tractable for
constant N (recall q∗ = 2N/c). In this case, φn(z) = sin(mz), where m = nπ/h. From
(19) we can then obtain the horizontal wavenumber of the mode n internal wave simply
by inserting φn(z).

q2n = q2∗ −m2 (23)

Re-inserting the definition of q∗ we see that this gives a resonance condition relating the
surface wave group speed to the internal wave phase speed

N√
q2n +m2︸ ︷︷ ︸

IW phase speed

=
c

2︸︷︷︸
SW group speed

(24)

Now, assuming a large horizontal length scale (qn → 0) we see that this puts a lower
bound on the stratification required to radiate internal waves.

N >
nπ

2ch
(25)

Although the resonance condition and bound on N have assumed constant stratification,
several profiles of observed ocean stratification were tested with (21) - (22), and the lower
bound was similar. We found that most regions of the ocean are not sufficiently stratified
to produce emission of internal waves from passing surface gravity wave groups through
this 2D mechanism. In section 4, we show that in 3D, with constant stratification, internal
waves are always radiated, at every vertical wavenumber.
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Figure 2: A schematic of the wake of internal waves behind the surface wave group as seen from above.
The waves propagate to the right at the group speed c/2 while the internal waves propagate at oblique
angles at their phase speed ω/|q|. The shape of the wake depends on the strength of the stratification
and speed of the surface waves as in (35). Stronger stratification and slower surface waves imply wider
wakes up to the 2D limit where θ = 180◦. The widest wake for a given stratification and surface wave
group speed is created by the mode one internal wave. For a group of 8s waves, the stratification in most
of the world’s oceans puts m∗ between 1.5 and 2.5.

4 The 3D Wake of Internal Waves

If the return flow, and therefore the radiated internal waves are allowed to be 3D the
strict requirement of very fast internal waves (whose phase speeds match the surface wave
group speed) need not be met. In 3D the internal waves can propagate obliquely to the
surface wave propagation direction just as the waves of a boat wake propagate obliquely
to the direction of propagation of the boat. A schematic of this situation is depicted in
figure 2.

The increased complexity of the third dimension precludes solutions with variable
stratification using the methods in section 3. Nevertheless, we can compute the shape of
the wake, and the energy flux from surface to internal waves with uniform stratification.
To compute the energy flux from surface to internal waves we solve (16) with constant
N . To do so, we move to the wave group frame as in section 3, and we assume that the
source of energy (the surface waves) is slowly.

w(x, y, 0, t) = eγt∂xM(x̃, y) (26)

γ is the slow growth rate which will later be taken to be infinitesimal. The radiative flux
is defined as

R =

∫∫
$(x, y, 0, t)w(x, y, 0, t) dxdy , (27)

The slow growth of the surface waves is assumed to avoid a singularity in the integrand
of (27). This method is described in greater detail in Lighthill (1978). First we apply the
same modal projection for constant N as in section 3 on (16) to obtain[

∂2t
(
∂2x + ∂2y −m2

n

)
+N2

(
∂2x + ∂2y

)]
wn =

√
2
h
mn∂

2
t ∂x eγtM . (28)
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Next, we solve (28) via Fourier transform to find

ŵn = −
√
2
h
mn

iq(q + iη)2M̂(q, s)

(q + iη)2(q2 + s2 +m2
n)− q2∗(q2 + s2)

, (29)

where η2γ/c, and (̂·) indicates Fourier transform in x̃ and y to spectral space in q and s
respectively. Using this result, we can solve for the pressure $ at the surface by relating
the two through the vertical momentum equation.

$̂n = c
2

√
2
h

q(q + iη) [q2∗ − (q + iη)2] M̂(q, s)

(q + iη)2(q2 + s2 +m2
n)− q2∗(q2 + s2)

(30)

Now we can insert (30) and the surface boundary condition into the radiation integral
(27), and take the limit η → 0 to find the radiation for each mode.

Rn = −4π 1
2
c
2
2
h
m2
nq

2
∗

∫∫
(q,s)>0

q2|M̂ |2

(q2 + s2 +m2
n)2

δ(q − q∗ sinϑn)
dqds

(2π)2
(31)

where

sinϑn
def
=

√
q2 + s2

q2 + s2 +m2
n

, and cosϑn
def
=

√
mn

q2 + s2 +m2
n

(32)

Notice that the integrand of (31) is only nonzero along curves for which q− q∗ sinϑn = 0.
These curves are the radiation conditions between the horizontal and vertical wavenum-
bers which define the shape of the wake (discussed in the next section). It is clear from
these same curves (not shown) that Rn > 0 for all vertical mode numbers, and that the
mode number determines the shape of the wake for that mode, and the magnitude of the
radiation into that mode.

4.1 The Wake Angle

The internal waves in the wake must be traveling slower than the surface waves, and
therefore they must propagate obliquely to the surface wave propagation direction. This
implies that there is some maximum angle for the wake width given a stratification and
surface wave group speed. This angle is defined as θ = 2 arctan(q/s). We can determine
this angle as a function of stratification and surface wave group speed from the delta
function in (31), which can be written more simply as

(Q2 + S2 +m2
∗)− (Q2 + S2) = 0 . (33)

where Q = q/q∗, S = s/q∗, and m∗ = mn/q∗. Note that we are interested in the widest
possible angle of the wake, so we will find where q/s is maximized. Plots (not shown) of
(33) reveal that dq/ds is maximized near q = s = 0. We take the derivative of (33) with
respect to s to find that as q, s→ 0

dq

ds
≈ 1√

m2
∗ − 1

. (34)

Then the wake angle is given by

θ = 2 arctan

[
1√

m2
∗ − 1

]
. (35)
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This angle is shown for a few values of m∗ in figure 2. Note that θ becomes undefined
when m∗ < 1. This is the case in which the stratification is very strong, so the fastest
radiated internal waves are moving at the surface wave group speed (i.e. the 2D limit).
Choosing even smaller values of m∗ (larger N or smaller c/2) does not change the wake
angle beyond π, but rather allows for higher vertical modes to be radiated.

5 Conclusions

Groups of surface gravity waves produce a convergent Stokes drift in front of the group
that drives water downward, and divergent Stokes drift aft of the group bringing water
upward. This Stokes pumping drives a deep Eulerian return flow that decays algebraically
with depth. The Eulerian return flow shakes the stable stratification below the mixed
layer to produce internal gravity waves. In 2D, in order to radiate internal gravity waves,
the stratification must be very strong (N > π/2ch) so that the internal wave phase
speed matches the surface wave group speed. Solutions for radiating internal waves in
nonuniform stratification are obtained, however, the 2D case is unrealistic for the ocean
due to the strong stratification requirement. In the 3D case the internal waves may
radiate obliquely to the surface wave propagation direction, and therefore need not travel
as quickly. This loosens the restriction on stratification. Instead, stronger stratification
results in a wider v-shaped wake than weaker stratification. We have shown solutions
for the internal wave radiation, and the shape of the wake in the 3D case with uniform
stratification.
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