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The Molecular Twin artificial-intelligence 
platform integrates multi-omic data 
to predict outcomes for pancreatic 
adenocarcinoma patients

Arsen Osipov1,2,3,10, Ognjen Nikolic4,10, Arkadiusz Gertych    2,5,6,10, Sarah Parker2,7, 
Andrew Hendifar1,2, Pranav Singh4, Darya Filippova4, Grant Dagliyan2, 
Cristina R. Ferrone2,6, Lei Zheng3, Jason H. Moore2,8, Warren Tourtellotte2,5, 
Jennifer E. Van Eyk    2,5,7 & Dan Theodorescu    2,5,9 

Contemporary analyses focused on a limited number of clinical and 
molecular biomarkers have been unable to accurately predict clinical 
outcomes in pancreatic ductal adenocarcinoma. Here we describe a 
precision medicine platform known as the Molecular Twin consisting of 
advanced machine-learning models and use it to analyze a dataset of 6,363 
clinical and multi-omic molecular features from patients with resected 
pancreatic ductal adenocarcinoma to accurately predict disease survival 
(DS). We show that a full multi-omic model predicts DS with the highest 
accuracy and that plasma protein is the top single-omic predictor of DS.  
A parsimonious model learning only 589 multi-omic features demonstrated 
similar predictive performance as the full multi-omic model. Our platform 
enables discovery of parsimonious biomarker panels and performance 
assessment of outcome prediction models learning from resource-intensive 
panels. This approach has considerable potential to impact clinical care and 
democratize precision cancer medicine worldwide.

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggres-
sive malignancies. It accounts for 55,550 deaths in the United States 
and is expected to become the second-leading cause of cancer-related 
deaths nationally by 2030 (refs. 1,2). While only 30–40% of patients with 
PDAC present with localized disease and undergo potentially curative 
surgical resection after diagnosis or following neoadjuvant chemo-
therapy, most develop recurrence and succumb to their disease3–5.  

Despite advancements in molecular testing, serum carbohydrate anti-
gen 19-9 (CA 19-9), first discovered in 1979, is presently the only US Food 
and Drug Administration (FDA)-approved biomarker widely employed 
for diagnostic management and preoperative prognostication of 
PDAC6; however, CA 19-9 has limitations, with a high false-positive 
rate due to other pathologic conditions and can result in false nega-
tives in about 10% of the population7. Thus, there is an urgent need 
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Clinical and surgical pathology features influence outcomes
The 331 clinical features, including surgical pathology features and 
chemotherapy treatment (Supplementary Table 1), as well as comor-
bidities (Supplementary Table 2) were analyzed using multiple ML 
models. When trained with these features, the random forest (RF) was 
the top performing model in determining DS and achieved an accuracy 
of 0.70 (95% confidence interval (CI) 0.60–0.81) and positive predic-
tive value (PPV) of 0.71 (95% CI 0.60–0.82) (Table 1and Extended Data  
Fig. 1). The top features predicting outcome included comorbidities, 
such as hyperlipidemia, jaundice and pancreatitis, as well as surgical 
margin status (Supplementary Table 2), which are known in the PDAC 
field15–17. The model for DS was predominantly driven by comorbid 
conditions, which accounted for 306 of the 331 total features. The RF 
model was also trained using the remaining 25 features, which included 
known PDAC predictors such as previous chemotherapy and margin 
status. This model performed similarly to ones that included all clinical 
features (Supplementary Table 2). Notably, the top ten features of this 
model included surgical margin status, tumor grade and chemotherapy, 
which are known to influence patient outcome18,19.

DNA analysis reveals alterations with prognostic importance
Point mutations and insertion/deletion (INDEL) polymorphisms are 
common in established PDAC oncogenes and tumor suppressor genes20. 
Tissue samples were processed for 611 somatic single-nucleotide vari-
ants (SNVs), 648 copy-number variations (CNVs) and 126 INDELs. These 
features were then used in patient DS prediction models (Supplemen-
tary Table 3).

Using SNV features, the top-performing model to determine DS 
was RF, with accuracy of 0.64 (95% CI 0.53–0.75) and PPV of 0.66 (95% 
CI 0.55–0.77) (Table 1 and Extended Data Fig. 1). In models evaluating 
SNVs, we found that alterations in RAD51, IL6R, FGF20 and SOX2 genes 
were the top DS predictors (Supplementary Table 3) and their associ-
ated signaling pathways have important prognostic implications in 
PDAC21–23. In addition, we found genes, such as RIT1, that were top 
predictive DS markers identified by our model and not previously 
associated with PDAC prognosis or targetable pathways.

Using CNV features, the top-performing model to determine DS 
was an RF model with an accuracy of 0.65 (95% CI 0.57–0.80) and PPV of 
0.68 (95% CI 0.57–0.80) (Table 1and Extended Data Fig. 1). The top CNV 
features for DS are noted in Supplementary Table 3. Notably, we found 
that FOXQ1 and KDM5D were top predictors associated with DS. Both 
are markers for PDAC prognosis and potential therapeutic targets24–26. 
In our cohort, the four commonly mutated genes, KRAS, TP53, CDKN2A 
and SMAD4 (ref. 27), were included among a total of 126 specific INDEL 
features and were learned by multiple ML model types. The top model 
predicting DS was RF with an accuracy of 0.64 (95% CI 0.53–0.75) and 
PPV of 0.70 (95% CI 0.58–0.82) (Table 1 and Extended Data Fig. 1). The 
top features in the model included mutations of TP53, CDKN2A and 
SMAD4 (refs. 28,29), which have been shown to correlate with poor 
prognosis and more aggressive phenotypes of PDAC.

RNA signatures of drug resistance impact prognosis
Whole-transcriptome sequencing was performed on 72 of the 74 
formalin-fixed paraffin-embedded (FFPE) tumor tissue samples. To 
optimize the most predictive features, we first ran a differential expres-
sion analysis between cancer and noncancer samples from the GTex 
Consortium to select RNA gene transcripts for downstream mode-
ling30. The top-performing model to determine DS was L1-normalized 
RF, which yielded an accuracy of 0.68 (95% CI 0.56–0.80) and PPV of 
0.70 (95% CI 0.57–0.83) (Table 1 and Extended Data Fig. 1). In our top 
model for DS prediction the NFE2L2 and LRIG3 genes were the two top 
features (Supplementary Table 4). Recent investigations have shown 
that the NRF2 pathway through NFE2L2 regulates resistance to drugs 
and immunotherapy31,32. Additionally, a total of 29 RNA fusions were 
analyzed using multiple model types (Supplementary Table 4). The top 

for improvement in new markers aimed at identifying patients most 
likely to be cured by surgery and/or respond to systemic therapies8,9.

One approach that could lead to such improvements is combin-
ing comprehensive molecular evaluation of the tumor and host with 
machine-learning (ML) models. Studies in other tumor types have 
employed ML and utilized various molecular analytes to predict ther-
apy response and refine prognosis10–12. Most of these investigations, 
especially those on PDAC, have only focused on limited biological vari-
ables such as DNA and combined these with ML to determine whether 
findings can predict outcomes13. Multi-omic proteogenomic studies 
in PDAC have revealed unique phenotypes of PDAC, but they have 
shown limited ability to predict clinical outcomes14. Even if effective, 
the nature of such multi-omic analyses comes with high complexity 
and resource cost. Thus, an important consideration in the devel-
opment of new predictive biomarkers is how to utilize the power of 
multi-omics to develop parsimonious panels of markers that would be 
both cost-effective and deployable in clinical practice in both resource 
rich and limited countries.

Here we use a multi-omic analytic platform that incorporates 
advanced molecular profiling beyond the examination of common 
analytes. Molecular profiling data were collected from both tumor 
and host samples and included computational pathology features. 
Multiple ML models were developed and applied to this dataset to test 
the hypothesis that this approach can provide biomarker panels that 
accurately predict DS after surgery in patients with resectable PDAC. 
Through recursive feature/analyte elimination, our approach was also 
able to provide a parsimonious model employing a limited number of 
features/analytes, which maintains a high degree of performance in pre-
diction of DS compared to the full optimal models that we developed. 
Utilizing external samples/data from The Cancer Genome Atlas (TCGA), 
Johns Hopkins University ( JHU) and Massachusetts General Hospital 
(MGH), we independently validated the power of our full and parsimoni-
ous ML models to predict DS. Through this analysis, we also discovered 
that among all analytes available in the preoperative setting, plasma 
protein is the most critical biomarker with substantial predictive power 
for survival and superior to CA 19-9. This work is a proof of concept for 
our Molecular Twin platform; a virtual, bioinformatic computational 
replica of the patient that can be updated and enriched in space and time 
with additional analyte types obtained longitudinally. While we utilize 
PDAC here, this approach is tumor-type agnostic, allowing it to poten-
tially impact clinical care and scientific discovery across all cancers.

Results
Patient baseline demographics and specimen handling
Our Molecular Twin Pilot (MT-Pilot) cohort included 74 patients at 
clinical stage I (n = 47) and II (n = 27) with surgically resected PDAC 
between March 2015 and April 2019. Tumor specimens were collected 
at the time of surgery and plasma specimens were collected preopera-
tively. DS was recorded and treated as a binary end point at the time 
of analysis as of 21 October 2021. At this time, 45 (61%) patients were 
deceased. All demographic and clinical characteristics (Supplemen-
tary Table 1) were included as features for the clinical analyte in our 
multi-omic analysis. The surgical pathology information was obtained 
from a pancreas tumor resection. Tumor and plasma specimens were 
assessed for individual features by molecular profiling, including tar-
geted next-generation DNA sequencing (NGS), full-transcriptome RNA 
sequencing, paired (tumor and normal from the same patient) tissue 
proteomics, unpaired (tumor from patients and normal unrelated 
controls) plasma proteomics, lipidomics and computational pathology. 
Analyte profiling yielded features that we used to validate single- and 
multi-omic models for predicting DS; a leave-one-out cross-validation 
approach was applied to the MT-Pilot cohort, whereas the four inde-
pendent datasets: TCGA, JHU cohort 1, JHU cohort 2 and MGH were 
used to validate our ML models and feature panels developed based 
on the MT-Pilot data (Fig. 1).

http://www.nature.com/natcancer
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performing model featuring RNA fusions to determine DS, was support 
vector machine (SVM) with an accuracy of 0.75 (95% CI 0.64–0.87) 
and PPV of 0.74 (95% CI 0.62–0.87) (Table 1 and Extended Data Fig. 1).

Plasma proteins are critical biomarkers in survival prediction
Proteomics and lipidomics analysis initially generated 3,777 tumor 
tissue proteomic, 1,051 plasma proteomic and 939 lipidomic features 
(Supplementary Table 5).

Using tissue protein features, the top performing model to pre-
dict DS was RF model with accuracy of 0.73 (95% CI 0.61–0.86) and 
PPV of 0.76 (95% CI 0.63–0.89) (Table 1 and Extended Data Fig. 1). For 
plasma protein features, the top-performing model for DS was the 
five-hidden-layer-deep neural network model with an accuracy of 
0.75 (95% CI 0.63–0.86) and PPV of 0.80 (95% CI 0.68–0.90) (Table 1 
and Extended Data Fig. 1). Among DS predictive plasma proteins, we 
identified ANXA1, which is an important emerging player in pancreatic 
carcinogenesis and PDAC drug resistance33,34. The top performing 
model using plasma lipid features to determine DS was the RF model 
with an accuracy of 0.71 (95% CI 0.58–0.83) and PPV of 0.74 (95% CI 
0.61–0.87) (Table 1 and Extended Data Fig. 1). The top plasma lipidomics 
features for DS were driven by diacylglycerols and cholesteryl esters 
(Supplementary Table 5).

As discussed above, CA 19-9 is routinely utilized in clinical practice 
at PDAC diagnosis, pre- and postoperatively to assess disease biol-
ogy, treatment response and prognosis. CA 19-9 readouts obtained 
at diagnosis, before surgery and postoperatively, were learned by the 

RF model, but the DS prediction had a low accuracy (0.59–0.64, 95% CI 
0.47–0.76) and PPV (0.52–0.61, 95% CI 0.40–73) across all time points 
(Supplementary Table 6).

Predictive nuclear morphology via computational pathology
The 71 hematoxylin and eosin (H&E)-stained PDAC tissue whole-slide 
images (WSIs) were evaluated by a artificial intelligence (AI)-based 
computational pathology pipeline (Fig. 2). The pipeline included two 
convolutional neural network models: a model to mask-out cancer 
cells (Fig. 2a) and a model to delineate nuclei (Fig. 2b). When tested on 
images from an independent set of 40 PDAC cases, the cancer-masking 
model achieved 0.90 global accuracy, 0.784 mean intersection over 
union (mIoU) and mean F1-scores of 0.83 and 0.77 in identifying non-
tumor and tumor tissue pixels, respectively. Next, the pipeline was 
run on 2,908 regions (~41 ± 11 regions per case) randomly selected 
from the 71 WSIs in our cohort and automatically isolated 345,038 
tumor cell nuclei (~4,860 nuclei per case). Nuclear morphology and 
texture were quantitated by a panel of 63 characteristics. Distribution 
of characteristics in each case was further summarized by 13 order 
statistics, yielding 819 features per case (Fig. 2c and Supplementary 
Table 7). A uniform manifold approximation and projection (UMAP) 
plot revealed clusters of cases with similar outcome (Fig. 2d) suggest-
ing that some of the features in the panel bear prognostic potential. 
Using the leave-one-out approach and the 819 features per case, we 
cross-validated seven classification models for DS prediction. An RF 
with an accuracy of 0.66 (95% CI 0.55–0.77) and PPV of 0.76 (95% CI 
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Fig. 1 | Study classification methodology overview. a, Combined multi-omic 
dataset of 6,363 processed features spanning clinical and surgical pathology, 
SNV, CNV, INDEL, RNA, fusion, tissue proteins, plasma proteins, lipids and 
computational pathology analytes. b, Construction of all possible analyte 
combinations (n = 1,024) via a drop-column importance approach to simulate 
availability of various combinations of analytes. c, For each analyte combination, 
seven independent ML models were trained for model evaluation, including SVM, 
principal-component analysis (PCA) + logistic regression, L1-normalized SVM, 
L1-normalized RF, five-hidden-layer deep neural network, RFE logistic regression 

and RFE RF. d, Input analyte combinations (n = 1,024) with seven modeling 
strategies per analyte combination produced 7,168 resulting grid search runs 
that were subsequently analyzed for predictive power, analyte composition and 
feature contributions for DS prediction. e, Each unique analyte combination and 
ML strategy was trained via leave-one-patient-out cross-validation approach. 
Single-omic and multi-omic models for DS prediction were validated using 
testing sets from four separate cohorts, TCGA, JHU cohort 1, JHU cohort 2 and 
the MGH cohort. Clin. & surg. path., clinical and surgical pathology; comp. path., 
computational pathology; prot., protein.
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0.63–0.88) (Fig. 2e) performed the best. Throughout all validation 
steps, features learned by the top models were ranked based on the 
impact on predicting the outcome and the frequency of occurrence 
of impactful features measured. Impactful features that occurred in 
at least 10% of validation steps were considered top features. The 17 
out of 39 top features to predict survival in Fig. 2f originated from the 
same 10 out of 63 nuclear characteristics in Fig. 2c.

To assess whether the computational pathology-based prediction 
of DS could benefit from the inclusion of percent of stroma or cancer 
to stroma ratio in our samples, we applied our pipeline (Fig. 2b) to the 
cancer regions marked by our pathologist (W.T.) and measured the 
proportion of tumor pixels (pCA), stromal pixels (pST) and the ratio 
of these two (r = pCA/pST) in the regions (Extended Data Fig. 2a,b). 
No statistically significant difference in pCA (t-test P value = 0.3) and 
r (t-test P value = 0.257) was found when tumors associated with poor 
survival (DS = 1, n = 28) were compared to those with better survival 
(DS = 0, n = 43). As no difference was observed, we did not incorporate 
the above features into the computational pathology analyte. Regard-
less, we found that the percentage of stroma is significantly larger in tis-
sue after neoadjuvant therapy, which can occur following neoadjuvant 
therapy. Additionally, the percentage of cancer was smaller in tissue 
after neoadjuvant therapy, which is the intent of neoadjuvant therapy 
(Supplementary Table 8).

Multi-omic analysis suggests hierarchical complementarity
The 6,363 individual features from the single-omic sources were com-
bined and analyzed using seven independent ML models cross-validated 
with a leave-one-patient-out technique (complete multi-omic feature 
dataset: Table 1 and Source Data Fig. 1). Each single-omic source and 
multi-omic combinations were evaluated using all ML models. The 
hyperparameters of each model were fixed at the initial design of the 
study to prevent over-optimization and overfitting due to the small 
cohort size. The top model for prediction of DS was the multi-omic 
model, which had an accuracy of 0.85 (95% CI 0.73–0.96) and PPV of 
0.87 (95% CI 0.75–0.99), followed by single-omic analyte models that 
learned plasma protein, RNA fusions, tissue protein, plasma lipids, 
clinical and surgical pathology, RNA gene expression, computational 
pathology, DNA CNV, DNA INDELS and DNA SNV features in decreasing 
order of model prediction accuracy (Table 1 and Extended Data Fig. 1).

The accuracy and PPV performance yielded by single-omic models 
suggest that each single-omic analyte in isolation carries some predic-
tive power and thus potential clinical utility. The best predictors of 

DS were plasma proteins leading to development of a model with an 
accuracy of 0.75 (95% CI 0.63–0.86) and PPV of 0.80 (95% CI 0.68–0.92). 
The model learning only presurgery CA 19-9 achieved an accuracy 
of 0.59 (95% CI 0.47–0.71) and PPV of 0.53 (95% CI 0.40–0.65) and 
it was considered the worst among all the single-omic models. As 
observed in the top two rows of the model performance (Table 1), 
the top multi-omic models outperformed the single-omic ones in 
accuracy (by 10–21%) and PPV (by 7–19%) in predicting DS, suggesting 
complementarity and information gain across analytes when com-
bined under the multi-omic analytical approach. On the other hand, 
the multi-omic models had a larger dispersion of accuracy and PPV, 
when compared to the single-omic models (Table 1 and Extended Data  
Fig. 1) likely resulting from the involvement of a much larger set of 
features available for training.

The 1,024 individual analyte combinations (single and multiple) 
with all seven modeling strategies per analyte combination resulted 
in 7,168 grid search runs (Fig. 1). To establish per-analyte importance, 
the drop-column importance strategy was utilized and adapted, where 
each analyte’s set of features were dropped in their entirety. Using 
results from the 7,168 runs, we evaluated the model’s predictive perfor-
mance, analyte composition and feature contributions (Fig. 3). Models 
trained with features from any 2–4 or 9–10 analytes were inferior in 
accuracy and PPV to the models trained with features from any 4–8 
analytes (Fig. 3a).

Additionally, with the drop-column importance approach, we 
were also able to quantify the importance of each analyte category 
(Supplementary Table 9) and showed that the exclusion of any one 
analyte from the study generally reduced but did not substantially alter 
the performance; where the accuracy and PPV for DS prediction were 
in the range of 0.85–0.83 and 0.84–0.83, respectively.

Next, we focused on the top 15 multi-omic models for DS predic-
tion (Fig. 3b), which were those with an accuracy >0.80 and PPV > 0.78. 
We plotted proportions of analyte’s features learned by each model 
(Fig. 3c) and observed that the top models had nearly similar accura-
cies and PPVs, however the proportions of contributing features varied 
across the top 15 models. The predominant feature contribution was 
from the plasma protein analyte (green bar, Fig. 3c).

Multi-omic models provide biological insights into PDAC
Given the relative paucity of predictive biomarkers and therapeutic 
advances in PDAC compared to other cancers, a notable explora-
tory objective of our study was to assess whether our platform can 

Table 1 | Top single-omic and multi-omic analytes for predicting disease survival in PDAC in the MT-Pilot cohort

Analytes No. of 
samples

No. of 
features

TP FP TN FN ACC (95% CI) PPV (95% CI) Sensitivity Specificity

Multi-omic 39 6,363 26 4 7 2 0.85 (0.73–0.96) 0.87 (0.75–0.99) 0.93 0.64

Plasma proteins 51 257 32 8 6 5 0.75 (0.63–0.86) 0.80 (0.68–0.92) 0.86 0.43

RNA fusions 57 29 35 12 8 2 0.75 (0.64–0.87) 0.74 (0.62–0.87) 0.95 0.40

Tissue proteins 49 1,130 32 10 4 3 0.73 (0.61–0.86) 0.76 (0.63–0.89) 0.91 0.29

Plasma lipids 51 406 34 12 2 3 0.71 (0.58–0.83) 0.74 (0.61–0.87) 0.92 0.14

Clinical and surgical pathology 74 331 47 19 5 3 0.70 (0.60–0.81) 0.71 (0.60–0.82) 0.94 0.21

RNA gene expressions 57 2,000 33 14 6 4 0.68 (0.56–0.80) 0.70 (0.57–0.83) 0.89 0.30

Computational pathology 71 819 34 11 13 13 0.66 (0.55–0.77) 0.76 (0.63–0.88) 0.72 0.54

DNA CNVs 72 648 43 20 4 5 0.65 (0.54–0.76) 0.68 (0.57–0.80) 0.90 0.17

DNA INDELs 72 126 39 17 7 9 0.64 (0.53–0.75) 0.70 (0.58–0.82) 0.81 0.29

DNA SNVs 72 611 45 23 1 3 0.64 (0.53–0.75) 0.66 (0.55–0.77) 0.94 0.04

CA 19-9 presurgery 63 1 17 15 20 11 0.59 (0.47–0.71) 0.53 (0.40–0.65) 0.61 0.57

Single and multi-omic analytes predicting DS are listed in decreasing order of predictive performance for DS, arranged by accuracy and PPV. For each analyte, the of number of samples 
available and features extracted for that respective analyte are shown. The predictive performance for each analyte is based on the best-performing model. TP, true positive; FP, false positive; 
TN, true negative; FN, false negative; ACC, accuracy. The bold ACC and PPV values indicates the best-performing analyte.
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identify potential pathways and targets of therapy. Using a differen-
tially expressed feature set, we were able to ascertain features to study 
objective Spearman correlations and the importance for all analyte 
features (Fig. 4a). By evaluating analyte contribution for each model, it 
was possible to generate ontology visualizations for protein, DNA and 
RNA as shown for the top multi-omic models for DS (Fig. 4b).

mTOR signaling, a known pathway in many tumors34,35 including 
PDAC, was found in the Gene Ontology network visualizations of the 
top multi-omic models36 (Fig. 4b). It has been targeted in PDAC alone 
and in combination with other agents37 with mixed results. Excluding 
mTOR, our Gene Ontology network visualizations revealed other clini-
cally and biologically relevant pathways in PDAC, including glycolysis 
and cellular metabolism38,39.

To examine the relationship of tumor to outcome heterogeneity, 
all 6,363 features across all analytes were used to create patient-level 
clustering based on multi-omic molecular signatures and labeled for DS 
(Fig. 4c). Cluster 1 represents patients homogeneous for their clinical 
outcome (all deceased). To better understand the association of the 
heterogenous clusters, (2 and 3), with other clinical and computational 
pathology features, we compared the expression of a feature in one 
cluster to that in the two other clusters combined using t-test or Fisher’s 
test. This analysis revealed proportions of relevant features (P < 0.05) 
in each analyte (Supplementary Table 10), where except for computa-
tional pathology, no other analyte contained features that were present 
in all three pair-wise comparisons. Subsequently, we used one-way 
analysis of variance, which identified eight differentially expressed 
computational pathology features (Supplementary Table 11). These 
eight features were then analyzed by the Tukey–Kramer test for mul-
tiple comparisons. No feature was significantly different between the 
three clusters, but there were features that differed between two clus-
ters. Furthermore, hierarchical clustering of 39 subjects characterized 
by the eight computational pathology features (Extended Data Fig. 3) 
suggested that they strongly contributed to the formation of clusters 

1, 2 and 3. Together, these findings suggest that with more patients and 
with prospective iterative analysis over time, our approach will result 
in progressively more accurate predictions especially for patients who 
fit membership in specific clusters (for example, cluster 1) and deeper 
insight into what features are critical to individual patient clusters.

The parsimonious multi-omic models for disease survival
The complementarity of analytes observed in multi-omic models in 
Table 1 and Fig. 3, suggested that a parsimonious multi-omic model 
offering similar predictive performance to models with larger and 
more complex analyte compositions could be developed. If true, the 
global public health and societal impact would be consequential as it 
would potentially begin the process of democratizing precision cancer 
medicine, especially to areas of the world with limited financial and 
technical healthcare resources. To test this hypothesis, we started with 
the complete multi-omic feature space of 6,363 features and trained an 
RF model for DS utilizing a recursive feature elimination (RFE) strategy 
such that at each step the least-informative features were eliminated 
from further model iterations (Fig. 5a). Most notably, Fig. 5a highlights 
the inflection point of the ‘parsimonious model’ location on the curve 
(accuracy of 0.85, PPV of 0.85) learning only 589 multi-omic features. 
Further, the contribution of respective analytes to the parsimonious 
model remains mostly stable across iterations after the inflection point, 
with plasma lipids and RNA being the most relevant; however, note 
that plasma (proteins or lipids) alone can provide accurate predic-
tion with fewer features. This opens the possibility that a screening 
of plasma could eventually be used for decision-making regarding 
pancreatic surgery.

Trying to examine the potential of this approach for eventual glo-
balization of precision oncology, we assessed specific limited analyte 
combinations and feature sets that could be applied to our parsimoni-
ous model. These analytes were selected based on criteria of standard 
availability (pathology specimens or clinical data including surgical 
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pathology) or easily obtained (plasma lipids or proteins) as part of 
the diagnostic workup. Using this approach, we identified accurate 
parsimonious models that learned features from clinical, surgical 
pathology and computational pathology analytes (Fig. 5b), all plasma 
analytes (lipidomics and protein) (Fig. 5c) and clinical, combined with 
computational pathology and plasma analytes (Fig. 5d) and which had 
similar accuracy and PPV to the models that learned features from the 
entire set of 6,363 features in Fig. 5a.

Validation of RNA markers as predictors of survival
Whole-transcriptome sequencing and analysis was performed 
on 57 samples from our pilot cohort (Supplementary Table 4). 

Employing L1-normalized RF modeling, RNA gene transcripts signifi-
cantly (P ≤ 0.05) predicting survival (n = 79) were used to develop gene 
signatures for improved (positive Pearson and Spearman rho for sur-
vival, n = 40 genes) and for poor (negative Pearson and Spearman rho 
for survival, n = 39 genes) survival (Supplementary Table 12). These 
two signatures were evaluated in an independent dataset of 177 PDAC 
patients40 for their ability to stratify DS. High score of the signature com-
posed of genes whose expression was associated with poor prognosis 
in our data (n = 39) was also associated with poor DS in this set (haz-
ard ratio (HR) = 2.17, (1.28–3.66), log-rank P = 0.0031) (Extended Data  
Fig. 4a), whereas that of genes whose expression was defined as a 
good prognostic in our data (n = 40), had a trend toward improved DS 
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(HR = 0.74 (0.49–1.12), log-rank P = 0.15) (Extended Data Fig. 4b). We also 
performed gene set enrichment analysis on the RNA transcripts used in 
the two signatures above (n = 79). Enrichr41 found numerous significant 

pathways (Supplementary Table 13) implicated in PDAC resistance and 
treatment-targeting, including interferon signaling, AMP-activated 
protein kinase (AMPK) and CXCR4 signaling pathways42–45.  
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Together, these data independently validate the clinical relevance of 
our RNA expression discoveries.

Validation of multi-omic models as predictors of survival
To further validate our single-omic, multi-omic and parsimonious 
analytes for DS prediction, we evaluated their predictive performance 
on the TCGA dataset, containing 157 evaluable samples that had at least 
one analyte type (Supplementary Table 1)46. As TCGA has data only 
on DNA, RNA, digital H&E slides and clinical analytes, our modeling 
had a reduced set of 3,423 total features compared to the 6,363 in 
our MT-Pilot cohort (Table 1 and Fig. 1e). The full 3,423 analyte model 
had an accuracy and PPV of 0.94 (95 CI 0.83–1.00) and 0.95 (95% CI 
0.84–1.00) (Table 2 and Supplementary Table 14) for DS prediction 
with computational pathology, DNA SNVs and RNA gene expressions 
performing strongly in single-omic validation of DS (Table 2 and Sup-
plementary Table 14).

Next, we examined the validity of our multi-omic parsimonious 
model on the TCGA dataset. Because this cohort had an overall reduced 
analyte set, we used an RFE strategy to retrain a RF model for DS on 
our cohort (MT-Pilot) and determined that the optimal (top of peak) 
parsimonious model employed 202 features out of 3,423 and had 
accuracy and PPV of 0.74 (0.63–0.85) and 0.77 (0.65–0.89), respectively 
(Extended Data Fig. 4c). Notably, when the model was applied to these 
same 202 features (Supplementary Table 15) in the TCGA dataset, it 
yielded an accuracy of 0.88 and PPV of 0.95 for DS prediction. Further-
more, in both our MT-Pilot cohort and the TCGA cohort, computational 
pathology and RNA gene expression were found to be primary analytes 
learned by the DS predicting models, with CNV and the clinical analyte 
providing minor additional improvement (Extended Data Fig. 4c).  

The signal dominance of RNA is not driven by expression of any single 
gene, but by a specific set of genes.

As TCGA lacked tissue proteomic level data, we sought an external 
dataset with tissue protein data, along with other critical single-omic 
informative analytes such as DNA, RNA and clinical data. We found 
an independent publicly available dataset14 named JHU cohort 1 that 
met these criteria. With DNA, RNA, clinical data and tissue protein 
analytes from our MT-Pilot cohort serving as the training set, we 
trained an L1-normalized RF model and applied it to this validation 
test set. This model predicted DS with an accuracy and PPV of 0.89 
(95% CI 0.83–0.95) and 0.91 (95% CI 0.85–0.98), respectively (Table 2  
and Supplementary Table 14). While a model trained on the tissue pro-
tein as a single-omic analyte had an accuracy and PPV of 0.56 (95% CI 
0.50–0.63) and 0.53 (95% CI 0.47–0.60) in the JHU cohort 1 (Table 2 and 
Supplementary Table 14), addition of DNA, RNA and clinical analytes 
improved the predictive performance of the model and validated the  
multi-omics approach.

Validation of plasma proteins as a preoperative biomarker
Through our multi-omic and parsimonious modeling of the MT-Pilot 
cohort, we discovered that plasma protein is an analyte that provides 
not only accurate prediction of DS in PDAC, but does so with the fewest 
features compared to other analytes. As a result of these findings, as 
well as the poor performance of CA 19-9 as a preoperative marker for 
decision-making regarding the benefit of surgery, we next sought to 
validate our findings solely on analytes that would be available to the 
clinical practitioner before surgery.

Besides the TCGA and JHU cohort 1, we utilized two more 
cohorts; JHU cohort 2 and the MGH cohort (Supplementary Table 1).  
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features and full dataset. The blue dotted line box indicates the parsimonious 
model at the inflection point. b, Clinical and surgical pathology and 
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They included similar stage I/II resected PDAC with clinical and demo-
graphic data collected longitudinally and preoperative plasma sam-
ples, including CA 19-9 obtained and analyzed as described above. 
Application of the L1-normalized RF model trained on the MT-Pilot data 

on the two cohorts showed that plasma proteins remained highly pre-
dictive of DS in both validation cohorts, with accuracy and PPV of 0.98 
(95% CI 0.83–1.00) 0.92 (95% CI 0.79–1.00), respectively in JHU cohort 
2 and 0.89 (95% CI 0.76–1.00) 0.80 (95% CI 0.69–0.91), respectively in 

Table 2 | Top single-omic and multi-omic performance for predicting disease survival in PDAC: study validation cohorts

Analytes No. of 
training 
samples

No. of 
validation 
samples

No. of 
features

ACC (95% CI) PPV (95% CI) Sensitivity Specificity

TCGA

Clinical and surgical pathology, DNA (SNVs, INDELs and 
CNVs) and RNA gene expressions,

45 109 3,024 0.96 (0.88–1.00) 0.98 (0.90–1.00) 0.95 0.98

Clinical and surgical pathology, DNA (SNVs, INDELs and 
CNVs), RNA gene expressions and computational pathology

45 33 3,423 0.94 (0.83–1.00) 0.95 (0.84-1.00) 0.95 0.92

DNA SNVs 72 126 351 0.94 (0.85-1.00) 0.96 (0.86-1.00) 0.95 0.94

Computational pathology 71 33 819 0.79 (0.68–0.89) 0.89 (0.78–0.99) 0.76 0.83

RNA gene expressions 57 152 1,974 0.76 (0.67–0.85) 0.80 (0.71–0.89) 0.76 0.76

DNA INDELs 56 120 43 0.72 (0.60–0.84) 0.82 (0.70–0.94) 0.68 0.77

Clinical 74 157 15 0.66 (0.57–0.75) 0.71 (0.63–0.80) 0.68 0.63

DNA CNVs 72 156 645 0.47 (0.40–0.54) 0.56 (0.49–0.63) 0.42 0.55

JHU cohort 1

Clinical and surgical pathology, DNA (INDELs, CNVs and 
SNVs), RNA gene expressions and tissue proteins

39 81 3,270 0.89 (0.83–0.95) 0.91 (0.85–0.98) 0.84 0.93

Clinical and surgical pathology, RNA gene expressions and 
tissue proteins

40 81 2,480 0.75 (0.69–0.82) 0.72 (0.66–0.79) 0.76 0.74

RNA gene expressions and tissue proteins 46 81 2,466 0.72 (0.66–0.79) 0.69 (0.63–0.76) 0.71 0.72

RNA gene expressions 57 81 1,963 0.68 (0.62–0.75) 0.67 (0.61–0.74) 0.63 0.72

Clinical and surgical pathology, DNA (INDELs, CNVs  
and SNVs) and tissue proteins

45 81 1,307 0.65 (0.59–0.72) 0.63 (0.57–0.70) 0.63 0.67

Clinical and surgical pathology, DNA (INDELs, CNVs  
and SNVs) and RNA gene expressions

45 81 2,767 0.60 (0.54–0.67) 0.57 (0.51–0.64) 0.63 0.58

Tissue proteins 49 81 503 0.56 (0.50–0.63) 0.53 (0.47–0.60) 0.53 0.58

DNA (INDELs, CNVs and SNVs) 56 81 790 0.51 (0.45–0.58) 0.47 (0.41–0.54) 0.45 0.56

Clinical 74 81 14 0.38 (0.32–0.45) 0.35 (0.29–0.42) 0.37 0.4

JHU cohort 2

Clinical and plasma proteins 41 47 255 0.98 (0.83–1.00) 0.92 (0.79–1.00) 1.00 0.97

Plasma proteins 51 47 251 0.98 (0.83–1.00) 0.92 (0.79–1.00) 1.00 0.97

Clinical, plasma proteins and plasma lipids 51 47 619 0.79 (0.63–0.94) 0.57 (0.44–0.69) 0.67 0.83

CA 19-9 presurgery 63 48 1 0.69 (0.57–0.81) 0.17 (0.04–0.40) 0.08 0.86

Plasma proteins and plasma lipids 51 47 615 0.55 (0.41–0.69) 0.30 (0.16–0.44) 0.58 0.54

Clinical 74 49 5 0.43 (0.29–0.57) 0.14 (0.02–0.26) 0.25 0.49

Clinical and plasma lipids 51 47 369 0.32 (0.20–0.44) 0.12 (0.00–0.25) 0.25 0.34

Plasma lipids 51 47 365 0.23 (0.12–0.35) 0.15 (0.03–0.27) 0.42 0.17

MGH cohort

Clinical and plasma proteins 51 35 259 0.91 (0.77–1.00) 0.84 (0.71–0.97) 1.00 0.84

Plasma proteins 51 35 250 0.89 (0.76–1.00) 0.80 (0.69–0.91) 1.00 0.79

Plasma proteins and plasma lipids 51 35 614 0.74 (0.61–0.87) 0.68 (0.54–0.82) 0.81 0.68

CA 19-9 presurgery 63 32 1 0.62 (0.51–0.73) 0.60 (0.52–0.68) 0.60 0.65

Clinical, plasma proteins and plasma lipids 51 35 623 0.51 (0.41–0.62) 0.47 (0.33–0.61) 0.44 0.58

Plasma lipids 51 35 365 0.49 (0.36–0.62) 0.46 (0.30–0.62) 0.69 0.32

Clinical 74 35 10 0.40 (0.29–0.51) 0.37 (0.26–0.48) 0.44 0.37

Clinical and plasma lipids 51 35 374 0.37 (0.22–0.52) 0.35 (0.20–0.49) 0.44 0.32

Detailed results table for top survival models for each validation test cohorts TCGA, JHU cohort 1, JHU cohort 2 and MGH cohort. Single and multi-omic analytes predicting DS are listed in 
decreasing order of predictive performance for DS, arranged by ACC and PPV. For each analyte, the of number of samples available, trained and features extracted for that respective analyte 
are shown. The predictive performance for each analyte is based on the best-performing model. Analytes within each validation set are listed in decreasing order of survival accuracy. Bold 
ACC and PPV values indicate the best-performing analyte within each cohort.
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the MGH cohort (Table 2 and Supplementary Table 14). The addition 
of clinical data to plasma protein improves the multi-omics model 
for DS prediction. Overall, preoperative plasma protein was highly 
predictive of DS among three separate independent datasets and 
provided a unique preoperative biomarker with significantly better 
predictive performance than routinely utilized CA 19-9 (Table 2 and 
Supplementary Table 14).

Discussion
Here we demonstrate a ‘proof-of-principle’ Molecular Twin platform 
that incorporates multiple molecular, histopathological and clinical 
features from both host and tumor and a comprehensive machine 
learning-based multi-omic analysis to provide accurate clinical out-
come prediction (Fig. 6). The Molecular Twin platform has allowed 
us to develop predictive multi-omic models and led to the discovery 
that plasma proteins are a highly predictive analyte for DS prediction 
in PDAC. Most notably, validation of the approach on four independ-
ent datasets have confirmed its value in predicting DS and revealed 
its superiority to CA 19-9. This approach has potential to substantially 
impact how we develop biomarkers in the future and in the case of 
preoperative markers, may have provided enough rationale to initiate 
clinical development and large-scale testing to determine its value in 
treatment decision-making. Finally, this platform, by virtue of its ability 
to generate parsimonious models has laid a foundation for the future 
democratization of precision oncology and thus reduce national and 
global disparities in its use.

Our study reveals that the multi-omic analytes incorporat-
ing individual single-omic sources are the most accurate clinical 

predictors of DS. We also show that multi-omic models with lim-
ited, but highly predictive analytes, perform just as well as the top 
multi-omic models with higher number of individual single-omic 
analytes. None of the top multi-omic models consisted of all ten avail-
able analytes. This reinforces the concept of complementarity and 
highlights the overlap of signal across analytes, suggesting that it may 
not be necessary to carry out the comprehensive ten-analyte workup 
to obtain accurate predictions. A strength of this platform is its resil-
ience, allowing interchangeability and complementarity among ana-
lytes. This observation also suggests flexibility in analyte selection to 
approximate optimal predictive performance, with patient burden, 
efficiency, ease of testing, time and cost of analyte acquisition being 
other notable considerations. Many analytic techniques, especially 
comprehensive genomics, can be expensive as well as time and labor 
intensive; however, our study reveals single-omic sources employed 
in this platform, such as computational pathology-based features 
or plasma proteins which offer the opportunity to circumvent these 
challenges using near-term practical solutions with clinical implica-
tions in resource-poor geographies. In computational pathology 
analysis, features of nuclear architecture can predict survival47–49 in 
many cancer types, and our results were consistent with these reports. 
To extract features, computational pathology uses only H&E slides 
prepared to obtain routine pathology reports. As no special tissue 
processing or chemical reagents are necessary, the cost of measuring 
a feature through this platform is low. In addition, digital H&E slides 
can be sent for analysis through the cloud and results sent back to 
the requester as a multi-omic score generated by combining all other 
information on the patient electronically.
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Fig. 6 | The Molecular Twin platform. The Molecular Twin platform ‘proof of 
principle’ applied to PDAC. Plasma and tissue samples from 74 patients with 
stage I/II resectable PDAC were subjected to targeted NGS DNA and whole-
transcriptome RNA sequencing, tissue proteomics, plasma proteomics, plasma 
lipidomics and computational pathology to produce individual omics analytes. 

The 6,363 features were combined and served as input for seven different types 
of ML models to generate multi-omic biomarker models to predict clinical 
outcomes, provide patient-level clustering data and insight into possible 
therapeutic targets. EHR, electronic health record.
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Studies employing smaller cohorts, for example one study with 
14 patients, has shown that certain predefined plasma proteins can 
predict early recurrence50. Our study is more comprehensive, includes 
74 patients and identifies more plasma proteins as critical predictors of 
DS. Plasma proteins within multi-omic panels also represent a unique 
opportunity for efficient, informative and clinically impactful testing 
as this specific analyte can be obtained quickly and preoperatively in 
a non-invasive manner. Although preoperative antigen testing, such 
as CA 19-9, continues to be routinely utilized in predicting tumor biol-
ogy and survival51, we demonstrated that plasma proteins alone, and 
even more so when combined with other preoperative analytes such as 
clinical data, is superior to CA 19-9 alone. These results are not surpris-
ing as it is well appreciated that preoperative CA 19-9 has limitations 
that may contribute to its poor performance as a tool predicting DS6. 
Unlike CA 19-9, plasma proteins have the potential to inform subse-
quent therapeutic decisions involving surgery and chemotherapy. Our 
approach provided insight into molecular drivers and clinically useful 
markers of survival in PDAC; the latter findings helping to validate the 
value of our approach.

Multi-omic analysis across tumor types has been undertaken 
before, but not to this extent. One study employed a smaller number 
of analytes13, identified hurdles in multi-omic analyses and highlighted 
the high cost of genomic signatures in clinical practice. In our study, 
we sought to address the cost of data generation and technical sophis-
tication, which are two of the major issues impeding the global use 
of precision therapy in cancer care. As a solution, we employed an 
RFE strategy to identify optimal features across analytes and devel-
oped the parsimonious model, which achieved an accuracy and PPV of 
0.85 with 589 features, which was similar to the full multi-omic model 
trained with 6,363 features. We also found that plasma analytes were the 
dominant feature type of the parsimonious panel. The parsimonious 
model uncovered highly informative features, while simultaneously 
minimizing the number of required analytes without compromising 
performance.

A strength of our study is that we validated our findings in inde-
pendent datasets of PDAC, including the TCGA cohort, two separate 
cohorts from JHU and a cohort from MGH. In our validation approach, 
we recognize that no single multi-omic model contains all ten 
single-omic analytes concurrently. This is an inherent shortcoming 
of our validation datasets as well as many currently available datasets, 
where none contain complete data of all ten single-omic sources that 
our original MT-Pilot cohort provided. Regardless, we externally vali-
dated our multi-omic panels with available and complete data where 
it was possible. Of note, for the potential democratization aspects of 
this work, the 202 highly predictive features learned from the MT-Pilot 
cohort data by the parsimonious model were sufficient to accurately 
predict DS in the TCGA cohort. Additionally, models learning single- 
and multi-omic panels incorporating plasma proteins were validated 
in two separate prospective test cohorts. This further supports the 
development of plasma proteins as a potentially clinically usable assay 
in PDAC.

Despite evaluating a larger number of patients and use of more 
comprehensive analyte panels, our study has several limitations. First, 
specific features of certain analytes have outcome relationships that 
are contradictory to published literature, likely a reflection of the sam-
ple size of our MT-Pilot cohort. Second, despite comprehensive panels, 
it still does not incorporate all accessible analyte sources. These include 
radiomic features extracted from preoperative computed tomography 
scans and microbiome features as just two examples; however, our plat-
form is flexible so integration of additional sources of data is facile and 
has already begun. We also recognize that our molecular profiling of 
tissue was conducted on bulk tissue, which provides limited insight into 
tumor heterogeneity, but single-cell analysis may address this issue. 
Similarly, dissection of the tumor microenvironment with techniques 
such as multiplex immunohistochemistry (IHC) can provide further 

understanding into disease biology and improve the performance of 
our models. We also recognize the single time point multi-omic analysis 
as a potential shortcoming, and hence future iterations will incorpo-
rate longitudinal analyses to enhance the predictive potential of the 
platform, as well as discover additional markers for minimal residual 
disease or treatment response prediction. We are exploring these issues 
in upcoming iterations of the Molecular Twin.

This proof-of-concept, yet externally validated study, examined 
an aggressive malignancy, PDAC, that lacks robust predictive and 
prognostic biomarkers. The Molecular Twin represents the way forward 
for the discovery of promising predictive and clinically meaningful 
biomarkers, targets for treatment and ultimately tools to democratize 
and reduce national and global health disparities in the use of precision 
medicine across all of types of cancer.

Methods
Sample collection, processing and classification
Specimens were obtained from consented patients enrolled in the 
ethically approved study by Cedars-Sinai Institutional Review Board 
STUDY00000806 MT-Pilot study ‘Feasibility of extensive molecular 
profiling of pancreatic tumors: lessons for Molecular Twin’ and stored 
onsite in the Cedars-Sinai Medical Center Biorepository. Tissues were 
procured from surgical specimens as part of the standard of care. Blood 
samples were collected with routine blood work. The dates in which 
these samples were collected ranged from April 2015 to May 2019. 
Follow-up data were completed based on the standard of care. All cases 
were pancreatic cancer with the diagnosis of ductal adenocarcinoma. 
This was chosen based on the availability of FFPE and frozen tissue, 
buffy coat and plasma. FFPE and frozen tissues were collected following 
tumor resection and stored in the biorepository for future research use.

The Cedars-Sinai Medical Center Biobank and Pathology Shared 
Resource reviewed in-house cases and histologically confirmed PDAC 
from an initially assembled list. Specifically, fresh frozen tissue (tumor 
and adjacent normal) and FFPE tissues (tumor and adjacent normal) 
were identified. The biobank prepared each sample for genomic analy-
sis (ten unstained slides per sample and one H&E). These slides were 
de-identified and sent to Tempus via overnight shipping for genomic 
and transcriptomic analyses as well as H&E slide digitization.

The following set of samples were sent to Tempus:

•	 93 FFPE tumor samples (ten unstained slides and one H&E)
•	 93 FFPE normal samples (ten unstained slides and one H&E)
•	 93 blood samples (buffy coat at 500-μl aliquots)

Clinical data variables for the cohort
Cedars-Sinai Medical Center Proteomics and Metabolomic Proteomics 
Core analyzed:

•	 60 frozen tissue normal
•	 60 frozen tissue tumor
•	 61 tumor plasma samples with 81 unpaired normal samples. Nor-

mal samples were provided by IRB-approved study 00001316.

Stage III and IV patients were excluded. Due to the limited number 
of samples in this pilot cohort, we trained models in an LOO fashion 
for every analyte separately. During the train phase, we performed 
feature selection, missing data imputation and normalization; the same 
transformations were then applied to the validation sample (the LOO 
sample) using the means and variance learned on the train data. For 
certain analytes, we performed preliminary, analyte-specific transfor-
mations and feature selection. We utilized binary end points at the time 
of our analysis, 21 October 2021: DS, deceased at the time of analysis.

Clinical data analysis
We collected 74 plasma and tissue samples of patients with clinical stage 
Ia, Ib, IIa and IIb, resectable pancreatic adenocarcinoma. We obtained 
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clinical characteristics and longitudinal clinical and surgical pathol-
ogy information for each patient whose sample was analyzed for our 
multi-omic analysis (Supplementary Table 1). Our baseline model for 
the clinical and surgical pathology analytes included general features 
such as self-reported sex, age, body mass index/weight/height, tumor 
stage/size, histological grade, pathological variable (margin status, 
grade, pathological staging, perineural invasion and lymphovascular 
invasion), treatment duration and type, family history and personal 
history of comorbid conditions, including other cancers.

NGS targeted genomics
Bulk tissue samples were processed via NGS Tempus xT oncogene 
panel, specifically a v4 xT assay covering 648 genes, spanning ~3.6 Mb 
of genomic space at 500× coverage. An industry-standard bioinformat-
ics pipeline was run on the NGS data for alignment, quality control and 
calling of somatic SNVs, INDELs and CNVs. SNVs were counted per gene 
in the target panel, generated via Freebayes snp calling pipeline with 
matched tumor–normals, resulting in 611 gene-level SNV features. 
INDELs were counted per gene in the target panel, with INDEL calling 
via the Pindel pipeline using matched tumor–normals, resulting in 126 
gene-level INDEL features. Additionally, called CNVs were counted per 
gene in the target panel, resulting in 648 CNV features. Upon obtaining 
gene-level somatic SNVs, INDELs and CNV features, further feature 
preprocessing was performed, specifically univariate normalization, 
pruning of low-variance features (with variance threshold <0.05) and 
dropout of highly correlated features (Spearman correlation coef-
ficient <0.95). Processed genomic features consisted of 337 somatic 
SNV, 219 CNV and 72 INDEL gene-level features, respectively considered 
for predictive patient survival outcome models.

RNA sequencing
Whole-transcriptome sequencing (RNA-seq) was performed on 72 
tumor tissue samples. In addition, we used 204 (out of 382 total) 
RNA-seq pancreatic tissues samples from the GTex consortium as 
controls. The GTex samples were selected using the following criteria: 
participant did not have a cancer diagnosis and participant’s age was 
matched to the age range of the pilot cohort. We then derived two types 
of RNA-seq features:

	1.	 Gene-level estimated read counts for a set of genes that we 
found to be differentially expressed between cancer and non-
cancer samples.

	2.	 Read counts per gene for a set of fusion genes.

We obtained estimated transcript read counts by running Kallisto 
tool (v.0.46.1) on the fastq files for cancer and noncancer samples. We 
aggregated transcript-level read counts to gene-level counts using 
tximport R package (v.1.14.2, Bioconductor v.3.10); this step reduced 
the number of features from 169,000 transcripts to 30,427 genes.

To further reduce the feature space and retain only the most prom-
ising features, we ran a differential expression analysis between cancer 
and noncancer samples. First, we removed all counts below 2 and then 
removed any genes (separately for cancer and noncancer datasets) for 
which fewer than 25% of samples in the set had nonzero values. This 
left us with 16,470 genes for the cancer set and 10,478 genes for the 
noncancer set. We then only kept genes in the intersection of noncancer 
and cancer gene sets, leaving us with 10,185 genes in total. We selected 
2,000 genes with the lowest adjusted P values using the default analysis 
in DESeq2 package (v.1.26.0). Finally, we trained our classifiers using 
log10 estimated read counts for these 2,000 genes as features. Unpaired 
differential expression was conducted via Mann–Whitney U-test with P 
value < 0.05, from which the 2,000 most differentially expressed RNA 
gene transcripts were selected.

Fusion gene derivation from RNA-seq data was another category 
of omic features considered in the study to capture translocations, 
interstitial deletions or chromosomal inversions of two distant, 

independent genes. Fusion gene features were derived from RNA-seq 
data using an alignment-free algorithm52. The number of reads mapping 
to each fusion gene was aggregated, then limited to known COSMIC 
fusion pairs. In total 29 fusion gene features were derived from tumor 
tissue RNA-seq data.

Proteomics and lipid analysis
Proteomics analyses were performed on 58 patients with paired tumor–
normal tissue samples, via resection of tumor and normal samples from 
the same frozen tissue block and on 61 tumor plasma samples with 
81 unpaired normal samples (Supplementary Table 16). Proteomics 
data were generated using data-independent acquisition mass spec-
trometry (DIA-MS) technology, with post-processing bioinformatics 
pipelines performing quality control, peak picking, retention time 
alignment, scoring and false discovery rate identification, normaliza-
tion and quantitation53. MS2 peak areas at both protein and peptide 
levels were computed as proteomics features, using a 3,777-protein 
panel for paired tumor–normal tissue samples and a 1,052-protein panel 
for unpaired plasma samples. Similarly, lipidomics analysis using the 
Lipidyzer Platform kit with internal lipid class standards for quantifica-
tion reference was performed on plasma samples to obtain composition  
and concentrations for lipid species, lipid classes and fatty acids.

Further pre-processing steps for all proteomics and lipidomics 
data included filtering out proteins and lipids with more than 25% 
missing data not meeting quality control criteria, removing proteins 
with a low variance <0.1 threshold, followed by imputation of remain-
ing missing values using halved median values for each column and 
univariate normalization of each column. Alternative strategies for 
imputation of missing proteomics values, specifically column mean 
and k-nearest neighbor imputation, were deemed too sensitive to 
outliers due to the small sample size.

Differential expression analysis was performed on the 58 paired 
tumor–normal tissue samples. A Wilcoxon rank-sum test was per-
formed between the dependent tumor–normal proteomics sam-
ples, with a two-tailed P value < 0.05 threshold applied to further 
remove tumor tissue protein distributions similar to their respective  
paired normals.

Differential expression analysis was performed on the 61 tumor 
plasma samples with unpaired 81 plasma samples. A Mann–Whitney 
U-test was performed between unpaired tumor–normal protein distri-
butions, with a two-tailed P value < 0.05 threshold applied to remove 
plasma tumor protein distributions similar to the unpaired normals.

Overall, proteomics and lipidomics analysis generated 3,777 tumor 
tissue proteomic, 1,051 plasma proteomic and 939 lipidomic features. 
Plasma proteomic features were reduced to 257 via tumor–normal 
plasma protein differential expression analysis (Mann–Whitney U-test, 
P value < 0.05). Redundancy was reduced by elimination of highly 
correlated features (Spearman correlation, rho < 0.95, P value < 0.05) 
leaving 406 lipidomic features. Tumor tissue proteomic features were 
pruned to 1,130 by eliminating those not expressed at higher levels in 
tumors compared to normal pancreas (Wilcoxon signed-rank test,  
P value < 0.05).

Plasma proteomics methods
Aliquots from plasma samples were depleted of 14 highly abundant 
proteins using the High Select Top 14 Abundant Protein Depletion 
Camel Antibody Resin (ThermoFisher Scientific) according to the 
manufacturer’s protocol. Proteins from 5 μl depleted and undepleted 
plasma were then processed separately for tryptic digestion on the Pro-
tifi S-Trap columns according to the manufacturer’s protocol (Protifi). 
Mass spectrometry data were acquired on an Evosep HPLC system in 
line with an Orbitrap Exploris 480 (ThermoFisher) instrument, oper-
ating in data-independent acquisition (DIA) mode, separately for the 
depleted and undepleted plasma samples. Full LC–MS instrument 
settings are provided with raw data in the public repository.
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Peptide identification and quantification was performed as 
described previously54 using the OpenSWATH workflow and searched 
against the Human Twin population plasma peptide assay library. 
Proteotypic peptides were aggregated into quantitative protein abun-
dance estimates using mapDIA software55. To generate a single table 
of quantified plasma proteins from each sample, we appended only 
unique proteins (for example, not seen in undepleted) from depleted 
runs to the undepleted plasma protein table.

Plasma lipidomics methods
Sample processing and lipid extraction. Lipids were extracted from 
plasma using the Bligh-Dyer method as previously described56. The 
extracted dry lipids were resuspended in 250 µl running buffer (10 mM 
ammonium acetate and 50:50 methanol:dichloromethane). Lipids were 
analyzed on a Sciex Lipidyzer Platform with a standardized workflow 
for the simultaneous analysis of 1,153 lipids representing 13 lipid class. 
Samples were loaded by direct infusion from a Shimadzu LC-30AD LC 
system equipped with a SIL-30AC auto sampler. Lipid concentrations 
were determined by the Lipidyzer software using the ratio of the endog-
enous lipid to internal standard. Data are reported for each individual 
lipid species as an aggregated value for lipid classes and as the relative 
composition compared to all other measured lipid classes.

Tissue proteomics methods
Sample processing and lysis. Tumor and nontumor tissue sections 
were homogenized in 8 M urea with 5% SDS and 100 mM glycine. Follow-
ing sonication and centrifugation (1,500g) to pellet debris, the protein 
concentration was determined using a Pierce BCA assay (ThermoFisher 
Scientific). A total of 30 μg from each sample were then processed and 
digested using the S-TRAP micro-elution tips (Protifi) according to the 
manufacturer’s protocol. Peptides were analyzed using a ThermoFisher 
Ultimate3000 HPLC system in line with a Fusion Lumos Orbitrap mass 
spectrometer operating in DIA mode. Full MS details are provided with 
raw files in the public repository. Data were analyzed using our estab-
lished openSWATH-based57 workflow using the pan-human library58 as 
previously described54,59. The mapDIA software55 was used to perform 
protein-level quantification from proteotypic peptides.

Computational H&E slide analysis
Slides and computational pipeline overview. The 71 cases in our 
MT-Pilot cohort had available FFPE tumors that we used to prepare 
H&E slides for computational analysis. After slide digitization (Aperio 
GT450 scanner with ×40 objective), the resulting WSIs (n = 71) were 
loaded up to the slide viewer (ImageScope, Leica Biosystems) for a 
pathologist to box-outline random regions of interest (ROIs) with 
cancer cells for the analysis. Our goal was to extract architectural 
features of cancer cell nuclei and assess their fitness and contribu-
tion as an analyte in single- and multi-omic ML-based DS prediction 
models. The ROIs marked (n = 2,908) and exported from WSIs were 
subsequently analyzed by two semantic neural network models. The 
first (DeepLabV3Plus) provided a mask of cancer cells and the second 
(StarDist) provided a mask of all nuclei in the ROI (Fig. 2).

DeepLabV3Plus was trained and tested for the tumor cell masking 
task using biobanked digital H&E and IHC slides with PDAC. StarDist, a 
model that predicts cell nucleus instance using star-convex polygons, 
was already available60. The intersection of the masks yielded by these 
two models was the mask of cancer cell nuclei that we overlaid onto 
the ROI images.

Training and evaluation of DeepLabV3Plus model. Data for the 
DeepLabV3Plus training were obtained from ten slides (biobanked 
PDAC tumors at Cedars-Sinai) that we sequentially stained with H&E, 
digitized, destained, restained with IHC (pan-cytokeratin and DAB) and 
digitized again61,62. By overlaying the H&E WSIs onto the corresponding 
IHC WSIs, we obtained the ground-truth of cancer cells in the H&E WSIs. 

Matching ROIs with tumor cells were extracted from the corresponding 
H&E and IHC WSIs and aligned by image registration61,62. The aligned 
ROIs (n = 416) were divided into non-overlapping 256 × 256-pixel tiles. 
To generate the ground-truth mask for cancer cells in the tiles, the DAB 
staining image was digitally deconvoluted and thresholded, and the 
resulting cancer cell mask was smoothened by mathematical mor-
phology operators. The tiles were then augmented 15 times63 and a 
set of paired H&E and tumor cell mask tiles (n = 39,840) was prepared 
for DeepLabV3Plus training. Training hyperparameters such as the 
minibatch, initial learning rate, momentum and L2-regularization for 
stochastic gradient descent optimizer were set to 12 tiles, 0.005, 0.9 
and 0.001, respectively. At the end of 75 training epochs, the overall 
accuracy of 97.5% was observed.

The trained DeepLabV3Plus was tested for the tumor cell detec-
tion ability on a PDAC tissue microarray (TMA) (PA483e, TissueArray). 
To prepare H&E and IHC WSIs from the TMA, the slides underwent the 
same staining/restraining/digitization protocol as for the training 
slides. The H&E and IHC TMA WSIs provided 80 H&E cancer mask ROI 
pairs to measure the accuracy, mIoU and F1-scores (tumor and nontu-
mor) of the DeepLabV3Plus.

Nuclear features. Nuclear feature extraction was preceded by color 
deconvolution64 of the ROI to digitally separate the image of hema-
toxylin staining from eosin. Subsequently, the cancer cell nuclei mask 
was overlaid onto the hematoxylin image and features of morphology 
(size and shape) and hematoxylin staining texture were quantitated 
for each nucleus under the mask by means of the 63-feature library 
(Source Data Fig. 2 and Supplementary Table 7) that we assembled from 
available resources65,66. Nuclear features from tumor cell nuclei across 
all regions in the case were aggregated by means of order statistics: 
maximum, minimum, average, s.d. and 1st, 5th, 10th, 25th, 50th, 75th, 
90th, 95th and 99th percentiles, thereby yielding 819 (13 × 63) unique 
features for each case. The z-scored case-level features were used to 
develop ML models for survival prediction. All features in the library 
were image rotation invariant.

For validation in the TCGA cohort, 33 diagnostic WSIs with PDAC 
(1 WSI per case) that closely corresponded to WSI specifications (×40 
scanning magnification and compression quality of 70) of the MT-Pilot 
WSIs were downloaded. The TCGA WSIs were annotated for cancer ROIs 
(624 total, 20 ROIs per WSI) and tumor cell nuclei (137,617 total, 4,170 
nuclei per WSI) automatically identified and delineated in the ROIs 
by our pipeline. Subsequently, features (n = 819) were extracted from 
tumor cell nuclei in the ROIs, z-scored and classified by the ML models 
predicting DS that we developed using features extracted from the 
MT-Pilot WSIs. Before feature extraction, the H&E staining coloration 
in the ROIs was digitally matched to that in the MT-Pilot WSIs.

Statistics and reproducibility
There was no a priori power analysis for this study. We had 93 patient 
samples available, of which 74 patients had their samples pass quality 
control, where samples from patients were both; viable for comprehen-
sive molecular testing across all analytes and patients had stage I and 
II resected PDAC. No statistical method was used to predetermine the 
study sample size. The experiments were not randomized. We applied 
LOO in-pilot cross-validation and independent dataset validations. 
The investigators who conducted the full multi-omic analysis were 
not blinded to allocation during experiments and outcome assess-
ment; however, investigators who conducted molecular analysis of the 
feature sets for each analyte were blinded to the outcomes of patients. 
Data distributions were not formally tested; however, we have provided 
clinical data distributions (Supplementary Table 1).

Development of machine-learning models
The goal of our study was to train an ensemble of ML classification mod-
els, ranging from simple linear models (SVMs) to more sophisticated 
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random forests and neural networks. The ensemble of the predeter-
mined models’ approach was used to assess the level of dependence 
of multi-omic features and the extent to which subtle, nonlinear, 
cross-feature dependencies would provide additional signal and pre-
dictive power for nonlinear models. Additionally, the model archi-
tecture and model hyperparameters were prespecified and fixed for 
the study due to the limited sample size in the study and sample size 
to feature imbalance. This was carried out to prevent overfitting and 
over-tuning of models on the study dataset, instead showing relative 
performance across classification techniques and demonstrating 
directional performance of each approach. The architecture and hyper-
parameters for each classification model, optimization technique and 
hyperparameters used in the study were implemented in the Python 
programming language listed in code availability. Depending on the 
validation scenario (internal MT-Pilot cohort or external cohorts), 
developed models were validated using either the LOO cross-validation 
(internal MT-Pilot cohort only) or using analyte combinations depend-
ing on their availability in the validation cohorts (TCGA, JHU cohort 1, 
JHU cohort 2 and MGH cohort).

Validation cohorts
Four validation cohorts were utilized in the study. The TCGA, JHU 
cohort 1 and cohort 2 and MGH cohort. The TCGA and JHU cohort 1 are 
publicly available datasets14,46. JHU cohort 2 is an independent prospec-
tive cohort employing identical proteomic and lipidomic analysis as 
our MT-Pilot and whose raw data was analyzed utilizing the Molecular 
Twin ML model pipeline by the JHU team for validation.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Transcriptomic, genomic and clinical data used in this study are 
available under National Center for Biotechnology Information/
National Institutes of Health BioProject ID PRJNA889519 and the 
associated SRA database. Proteomic data used in this study were 
submitted and are available in the proteomics Identification Data-
base (PRIDE) as ‘Profiling of pancreatic adenocarcinoma using 
artificial intelligence-based integration of multi-omic and compu-
tational pathology features’ under project accession no. PXD037038. 
Lipidomic data used in this study are submitted and are available 
in the MassIVE Dataset Repository project under accession no. 
MSV000093118. The human pancreatic adenocarcinoma genomic 
data were derived from the TCGA Research Network at http://can-
cergenome.nih.gov/. Previously published data from TCGA and 
JHU cohort 1 (refs. 14,46) that were re-analyzed here are available at 
https://doi.org/10.1038/s43018-023-00697-7 and serve as source 
data for Table 2. The complete multi-omic MT-Pilot dataset utilized 
for Table 1 is provided and is identical to the source data for Fig. 1. 
Source data are provided with this paper. All other data supporting 
the findings of this study are available from the corresponding author 
upon reasonable request.

Code availability
Software resources utilized in this study are included in the reporting 
summary and associated code, as well as the architecture and hyper-
parameters for each classification model is available at https://doi.
org/10.5281/zenodo.8423595.
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Extended Data Fig. 1 | Top Single-omic and Multi-omic Performance for 
Disease Survival Prediction. Asymmetric violin plots showing accuracy and 
PPV distributions per analyte for predicting PDAC disease survival in decreasing 

order of accuracy (left to right) for multi-omic and single-omic analytes. 
PPV, Positive Predictive Value. Surg path, Surgical Pathology. Comp Path, 
Computational Pathology.
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Extended Data Fig. 2 | AI Modeling of Tumor and Stroma. (a) H&E slide with  
the tumor area and regions of interest (ROIs) marked by pathologist (WT). 
Frames of selected regions were box-outlined and saved in a database file to 
assure reproducibility of the experiment.; b) Same area with the cancer cells 

mask (cyan) predicted by our AI model. Segmentation of cancer mask by 
DeepLabV3Plus was performed 10 times. Each time the exact same mask was 
outputted. Scale bar is 1mm.
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Extended Data Fig. 3 | Hierarchical co-clustering of 8 features extracted 
from tumor cell nuclei. Cluster labels correspond to those in Fig. 4c. Cluster #1 
represents patients homogeneous for their clinical outcome (all deceased) and 
multi-omic features. Cluster #2 represents a heterogeneous population with 

regards to clinical outcome while cluster #3 represents a more homogenous 
population compared to cluster #2. Notably, in cluster #3, patients noted to be 
alive at the time of analysis were strongly predicted to be deceased by the model.
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Extended Data Fig. 4 | Validation of the Single-omic and Multi-omic and 
Parsimonious Models on TCGA. Validation of RNA gene signatures for disease 
survival: (a) 39 gene signature of poor survival (HR = 2.17, [1.28-3.66], logrank 
p = 0.0031) (b) 40 gene signature of improved survival (HR=0.74 [0.49-1.12], 
logrank p = 0.15) (c) Parsimonious model of clinical, DNA (CNV, INDEL, SNV), 
RNA gene expression and computational pathology in the original cohort 
used to select optimal 202 analytes (peak) for validation in TCGA. Multi-omic 

model performance across feature reduction steps by restricting the maximum 
selectable features during model training. Left y axis - Accuracy and PPV score: 
multi-omic model performance across feature reduction steps by restricting 
the maximum selectable features during model training. X axis – number of 
maximum features at each reduction step. Right y axis - Analyte Percent (%) 
Contribution: each analyte’s aggregated absolute feature weight contribution at 
each feature reduction step.
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