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ABSTRACT OF THE DISSERTATION 

 

Agent-Based Modeling for HIV Prevention 

 

By 

 

David Scott Boren 

Doctor of Philosophy in Biostatistics 

University of California, Los Angeles, 2015 

Professor Ronald S. Brookmeyer, Chair 

 

Progress in HIV (human immunodeficiency virus) prevention interventions has been 

made in recent years.  These developments have raised questions concerning the impact 

and optimal combination of biomedical and behavioral interventions.   Agent-based models offer 

a way to compare intervention combinations that could not be readily accomplished with large 

scale prevention trials because of cost and logistical considerations.  An agent-based model is a 

community of individuals whose behavior and interactions are simulated according to well-

defined rules. 

We describe two agent-based social network models and methods of calibration to sexual 

contact parameters relevant to MSM (men who have sex with men) in South Africa: a model 

with static partnerships and a novel model featuring self-reinforcing partnership edges.  We only 

have sexual contact summary statistics (i.e.  coarse network  statistics) and these models are 

calibrated to replicate these statistics.  A calibration approach was developed using recent 

advances in multi-objective optimization and applied to the self-reinforcing model. 
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We use these models to evaluate the varying impact of HIV prevention combinations by 

simulating community-randomized trials across realistic values of several parameters: ART 

(anti-retroviral therapy) uptake, PREP (pre-exposure prophylaxis) uptake, HIV testing uptake, 

and CAI (condomless anal intercourse) reduction.  For the static partnership agent-based model, 

we create a statistical model to describe quantitatively the effects of these parameters and 

variation. For the self-reinforcing model we model sensitivity across several key parameters. We 

develop sample size and power formula for community randomized trials that incorporate 

estimates of variation and effect sizes determined from the agent-based model.  We find that 

traditional sample size approaches that rely on binomial (or Poisson) models are inadequate and 

can lead to underpowered studies.    In our studies of variation and effect sizes, we identified 

important sensitivities to the network contact structure.  We conclude that agent-based models 

offer a useful tool in the design of HIV prevention trials.  
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Chapter 1: Introduction 

 

1.1 Motivations for the Work 

 

The subject of this dissertation was motivated originally by the Sibanye Health Project 

[1].  The project is part of the “Methods of Prevention Packages Program” (MP3) funded by the 

National Institute of Health.  It is a 4-phase prevention intervention project with the specific aim 

of testing combination HIV prevention interventions and services for men who have sex with 

men (MSM) in Southern Africa.  It will determine the acceptability as well as develop a rational 

and well-informed proposal for efficacy trials of a particular prevention package. The program 

has four phases, including: a comprehensive literature review to summarize the current body of 

knowledge regarding HIV prevention interventions for MSM, qualitative studies to obtain 

information regarding the acceptability and feasibility of the package, a mathematical model of 

HIV transmission in Southern African MSM, and finally a pilot study of 400 MSM at 2 locations 

in South Africa. Our contribution is the mathematical model of transmission.   

The project began in 2011. Our collaborators include Johns Hopkins University, 

the Desmond Tutu HIV Foundation, and the Human Sciences Research Council.  Currently HIV 

prevalence in South Africa among MSM stands at 25.5% [2], and the small number of clinical 

trials specific to this group means that the data at hand are minimal and incomplete.  In addition, 

it is only recently that it has been properly established that anti-retroviral treatment reduces the 

probability of HIV transmission. 
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1.2 Combinations of interventions 

 

One of the primary questions of interest in this work was the effect that multiple forms of 

HIV treatment might have in a South-African MSM scenario.  This project dealt with the recent 

field of biomedical HIV intervention.  There have been significant advances in HIV prevention 

interventions in recent years [3,4].  Trials have identified effective interventions to prevent 

acquisition of HIV infection including circumcision, antiretroviral therapy (ART) for HIV 

infected persons, and pre-exposure prophylaxis (PREP) for high risk uninfected persons [5,6].    

These recent successes were preceded by a number of earlier HIV prevention trials that failed to 

detect benefits of various interventions [7].  In some instances, the failures of earlier trials to 

detect significant effects were attributed to underpowered trials with inadequate sample sizes [8].  

It is with these issues in mind that simulation work was carried out and the results of the 

simulations were thoroughly analyzed to answer questions regarding power and sample size. 

 

1.3 Overview of Research 

 

In this dissertation we first examine the history of two forms of modeling that at first can 

seem quite disparate.  The first is what might be called a bottom up approach, known as agent-

based modeling, and focuses on the creation of an interactive system of agents (simulated 

individuals) with the aim of replicating the broad epidemic trends of the population of interest.  

The second, known as network regression, focuses on identifying the determinants of 

associations (sexual, social, or otherwise) between individuals.  Following these background 
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sections we discuss the work that we’ve done on our own agent-based model, including both the 

mechanistic portions and the analysis of results.  This portion describes our first attempt at 

developing a new agent-based model: the static partnership model, as well our recently 

developed self-reinforcing model.  Following this, we discuss our approach to calibrating these 

models and the complications that arise in this process.  For the calibration of our self-

reinforcing model we applied an advanced algorithm for calibrating to noisy data.  This method 

avoids the trade-offs that come from combining objectives for classical optimization [9, 10].  We 

discuss the results of the models and their significance in application to community-randomized 

trials.  Finally, we review some of the current limitations to this approach to agent-based 

modeling, and the further research that would help address these limitations and extend the 

overall model relevance.  
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Chapter 2: Background and History of Agent-Based Models 

 

2.1 A Quick History Lesson - The Reed-Frost Theory 

 

One of the earliest attempts at agent-based modeling was the Reed Frost theory of 

epidemics, which was derived from earlier work by Soper [11], and makes the following 

assumptions:  

 

1. Time of infectiousness is short relative to infection, meaning that the time that an 

infected person can infect others is minimal compared to the duration of the 

infection. 

2. All individuals have equal susceptibility to the disease 

3. All individuals have equal transmission capacity 

4. All individuals pass out of observation when this transmission period is finished, 

meaning that, for the purposes of the formula, individuals that are no longer 

infectious do nothing, they cannot infect anyone and they cannot be reinfected. 

5. It is a closed population, meaning no individuals leave or enter the population 

6. There is uniform mixing, meaning that the probability of transmission between 

any two individuals is the same for every pair of individuals 

 

Under these assumptions, one can produce the following formula for calculating the expected 

number of cases at a given time period given the state at the previous time period, 

 



5 

 

 
1 * (1 )tC

t tC S q+ = − .  (1) 

 

Here t represents a particular discrete interval of time, where all intervals in this model are 

equally wide. tC  stands for the expected number of contagious individuals at the end of interval 

t, tS stands for the number of susceptible individuals at the end of interval t, and q stands for the 

probability that an individual does not have contact with another individual over one iteration of 

time.  Consequently tCq  represents the probability that an individual does not have contact with 

all of the contagious individuals at time t and (1 )tC
q−  is the probability that at least one of the 

tC  contagious individuals has contact with this individual.   This is known as Soper’s equation.  

Under this model a given time step represents the average length of the incubation period, and it 

is precisely the assumption of short period of infectiousness relative to incubation period that 

allows the entire contagious population to pass out of observation before the next set of 

individuals becomes infectious.  In other words, the period of infectiousness is so short that by 

the time the newly infected individuals finish their incubation period, all previously infectious 

individuals are no longer infectious. Notably this model is deterministic, in that it ignores the 

random chance that may be associated with each step.  Reed and Frost further developed this 

model through the addition of this missing variation by assuming that the cases drawn in a given 

time step follow a binomial probability distribution, where (1 )tC
q− is the probability that one of 

tS  individuals becomes contagious and 1 (1 )t tC Cq q− − =  is the probability that one of tS  

individuals does not become contagious.  Given that there are tS individuals from which to 



6 

 

choose the next pool of contagious individuals, we can write the probability that there are 1tC +  

contagious individuals in the next time interval as  

 1 1

1

1 1

!
(

! !
) (1 ) ( )t t t tC C C St

t

t t

S
q q

C S
P C + +

+
+ +

= −  , (2) 

 

where 1 1t t tSS C+ −= − .  Thus an entire epidemic can be simulated through the successive draws 

from this binomial distribution, and the concept of an agent-based simulation was formalized, 

albeit in a restrictive, uniform sense, where all individuals are alike and all associations are 

equal. 

In a critique of this theory in 1952, Helen Abbey [12] outlined the particular situations where the 

assumptions of the model might be left intact.  The requirement of a closed population with 

uniform mixing might be found within families or institutions.  The short period of 

infectiousness might be found in certain diseases of childhood, such as measles or chickenpox.  

She took data from 19 well documented outbreaks that fit this criteria and, through careful 

consideration of sampling error (among susceptible agents), was able to remove some of the 

immediate biases, but even then she found some very large overall differences between observed 

and expected numbers, as measured by a chi-square test.  She postulates three potential sources 

of error: Miscounting of the at-risk population, changes in contact rate with time, and variation in 

contact rate among individuals. 

Computational progress since then has allowed for much more varied and complex agent-based 

models, where each agent is unique and parameters are subject to change over time, and the 

assumptions of uniform mixing and even closed population are no longer troublesome.  Dr. 
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Abbey’s other sources of error, however, remain relevant.  Correctly specifying both the at-risk 

population and the contact rate configurations are vital to an agent-based model’s usefulness. 

 

2.2 Agent-Based Modeling – Current 

 

So then, in simple terms how can one define an agent-based model?  Perhaps Dr. Joshua 

Epstein does this best by stating that agent-based models are in fact “artificial societies,” where 

every individual in the society of interest is represented as a distinct agent [13].  An agent-based 

model is a community of individuals whose behavior and interactions are simulated according to 

well-defined rules.  This means that the behavior and attributes of every agent can be unique and 

calibrated to the most accurate and knowable behavior of the real-life individual that he or she 

represents.  They may change their behavior in response to other agents or changes in the 

environment [14].   This means we eliminate most of the assumptions that are present in our 

earlier models, such as homogeneity and perfect mixing.  It also means, however, that the model 

is computation-limited, since each one of these distinct individuals requires computation, rather 

than just pools of individuals.  Indeed, it is only since the 1990s that agent-based models have 

become feasible on a useful scale. 

Recently, agent-based modeling has been applied to various fields including the social 

sciences [15], spatial patterns of health [16], and the spread and control of infectious diseases 

such as smallpox [17, 18] and pandemic influenza [19].  Agent-based models for the spread of 

infectious diseases depend on assumptions about the networks of contacts between persons [20], 

which we will discuss in detail later. 
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2.3 Features/Benefits of Agent-Based Models 

 

 

Often the “statistical” approach can be thought of as top-down, where certain regular 

trends are observed with a high degree of confidence.  Epstein [21], in his article “Agent-Based 

Computational Models and Generative Social Science,” asserts that, in the context of agent-

based models, the natural question that arises is: “How could the decentralized local interactions 

of heterogeneous autonomous agents generate the given regularity?”  Or, in other words, how 

can the interactions of extremely different individuals in a complex environment produce the 

strangely regular trends observed in statistics.   

 

He then argues that agent-based computational models are well suited to exploring this 

question, since they possess the following features: Heterogeneity- each agent can have 

completely unique behaviors and characteristics; Autonomy – each agent can make its own 

decisions independently of all other agents (though this not need be the case); Explicit Space – 

agents are defined spatially in relation to each other in some form: for example in the Reed-Frost 

Model they all occupy the same unit space, having equal probabilities of interacting with one 

another; Local Interactions – the uniform mixing of the Reed Frost model is not a common case 

in agent-based models, but rather individuals who are neighbors in the explicit space are more 

likely to interact; and Bounded Rationality- agent-based models represent finite numbers of 

actors that may be completely out of equilibrium, and thus offer insights into smaller systems 

where asymptotic behaviors may not be applicable. 
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Bonabeau [14] summarized the benefits of agent-based modeling in 3 ways: it allows for 

the natural description of a system, it is flexible, and it captures emergent phenomena.  Now, by 

“natural description,” Bonabeau refers to rules that make intuitive sense at the level of the agents 

or groups of agents, such as how often an individual interacts with another individual in his age 

group or how often he visits the doctor for a check-up.  The flexibility of the model lies in both 

the way that often simple agent-level rules have the propensity to drastically alter the system 

wide results, but also in how these agents can be fine-tuned to whatever behaviors, groupings, 

and interactions are required.  Emergent phenomena, on the other hand, is an interesting and 

somewhat vague concept.  Bonabeau describes emergent phenomena as the phenomena that 

result from the natural, low-level (individual or groups of individual) descriptions of the system. 

Indeed, by definition, they cannot be reduced to the system’s parts without losing some 

information.  It is the interactions between these parts that allow the whole to be more than the 

sum of the parts. In other words, an emergent phenomenon can have properties that are not 

apparent even from a detailed analysis of the parts, which is why a simulation of agents must be 

carried out to determine the effect of the low-level design. 

 

2.3 Agent-Based vs Differential Equation models 

 

 

The moniker of “simulation’’ often is applied to two ostensibly different approaches: 

agent-based and differential equation-based models.  An agent-based model, as we have said, 

allows for heterogeneous agents to make individual decisions and have unique interactions with 

other agents, which allow for the propagation of the epidemic.  A differential equation model, on 
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the other hand models a compartment of individuals using differential equations.  One of the 

more notable examples is the Kermack McKendrick Model [22].  It is a SIR model, which is a 

model that keeps track of the numbers of susceptible individuals (S), infected individuals (I), and 

recovered individuals (R) as they change over time.  It also makes the following assumptions: 

 

1. Population size is fixed (i.e., no births, deaths due to disease, or deaths by natural causes) 

2. Incubation period of the infectious agent is instantaneous 

3. Duration of infectivity is same as length of the disease.  

4. A completely homogeneous population with no age, spatial, or social structure.   

 

The Kermack McKendrick Model assumes continuous time and consists of 3 nonlinear ordinary 

differential equations, each of which keep track of one the three components of SIR, 

  
S

SI
t

β∂ = −
∂

  (3) 

 
I

SI I
t

β γ∂ = −
∂

  (4) 

 
R

I
t

γ∂ =
∂

 , (5)   

where t is time, S(t), I(t), and R(t) are as defined by a SIR model, β is the infection rate, and γ is 

the recovery rate. 

 

Notice already that the homogenous population assumption already distinguishes the 

differential equation approach from that of an agent-based model in a very large way, but also 

every other assumption is not necessarily present in the implementation of an agent-based model.  
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Indeed, these assumptions are more akin to a Reed-Frost model.  They can become more 

complex, but the point remains that there are some very basic homogeneity assumptions that a 

differential equation model will never be able to escape, simply because it monitors 

compartments rather than individuals. 

 

So the question is: when should one use differential equations and when should one use 

agent-based models?  Bonabeau [14] believes that the entire dichotomization into two 

approaches is itself incorrect, “as a set of differential equations, each describing the dynamics of 

one of the system’s constituent units, is an agent-based model.”  Indeed, one can observe the 

differential equation model above and note that each of the three groups of individuals could be 

considered an “agent” that interacts with the other two agents, changing their counts. 

 

Less dismissive is Hazhir Rahmandad [23], whose work in Management Science delved 

specifically into the comparison of differential equation and agent-based models and gave the 

simple assessment that differential equation models are computationally efficient, but rely upon 

the assumptions of perfect mixing and homogeneity of individuals within compartments.  Agent-

based models, on the other hand, increase the need for computation, which in turn constrains the 

reach of sensitivity analyses, but also more easily establishes the relationships of individuals in a 

more realistic network form along with their attribute and contact heterogeneities.  Rahmandad 

goes on to specifically address types of heterogeneities in the context of epidemics, stating that 

“Heterogeneity in individual contact rates causes slightly earlier mean peak times as high contact 

individuals rapidly seed the epidemic, followed by lower diffusion levels as the high-contact 

individuals are removed, leaving those with lower average transmission probability and a smaller 
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reproduction rate…Such dynamics were also observed in the HIV epidemic, where initial 

diffusion was rapid in sub-populations with high contact rates.” Thus the decision of which 

simulation methodology to employ really does vary with the nature of the epidemic 

(heterogeneity of behavior, attributes, mixing) and the need for sensitivity analysis, which, 

computationally speaking, can be prohibitively expensive in a situation where your simulation 

produces wide distributions.   

 

 

2.4 Scaling up - Model properties to statistical properties 

 

So agent-based modeling does indeed appear to be the appropriate simulation tactic for 

HIV epidemiology, but the question then becomes to what extent does the model accurately, in 

practice, reflect the reality of the epidemic?  In a short article to The Bulletin of the Santa Fe 

Institute in 1994, Robert L. Axtell and Joshua L. Epstein [24] defined four levels at which a 

model might accurately reflect the population it claims to represent: 

 

Level 0: The model is a caricature of reality, as established through the use of simple  

graphical devices (e.g., allowing visualization of agent motion); 

Level 1: The model is in qualitative agreement with empirical macrostructures, as 

established by plotting, say, distributional properties of the agent population; 

Level 2: The model produces quantitative agreement with empirical macrostructures, as 

established through on-board statistical estimation routines; and finally, 
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Level 3: The model exhibits quantitative agreement with empirical microstructures, as 

determined from cross-sectional and longitudinal analysis of the agent 

population. 

 

 

Now, in the case of our South-African data, we currently have access to some very 

fundamental statistics, which we will cover in detail later.  This means that even with the most 

rigorous of calibration schemes we can hope at best to obtain a level 2 agreement with the 

empirical macrostructures, simply because many of the microstructures for our MSMs in South 

Africa are unknown.  So the goal might very well be to produce a model that has multiple 

parameter fits, such that all the fits accurately reflect the macrostructures, while at the same time 

cycling through different microstructures that might create such macrostructures. 

 

2.5 Agent-Based Models - Not Quantitatively Perfect 

 

In a small opinion piece in Nature entitled "Modeling to contain pandemics" Epstein [13] 

outlines some of the applications for agent-based models in an epidemiological context, even if 

these models are not “crystal balls.”  He gives an example of the process of epidemiological 

agent-based simulation, starting with the primary simulation.  This first simulation produced is 

not a prediction, but rather a base case, which by design is highly unrealistic, since it ignores 

“pharmaceuticals, quarantines, school closures and behavioral adaptations,” all of which might 

be relevant to the progress of an epidemic.  Nevertheless, this base case allows one to rerun the 

model, this time perturbing parameters that relate specifically to questions in which health 
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agencies might be interested.  Such questions in the face of a flu pandemic might take the form 

“What is the best way to allocate limited supplies of vaccine or antiviral drugs?” or “How 

effective are school or work closures?”  Thus, an agent-based model that accurately represents 

macrostructures might be able to accurately quantify comparative intervention plans.  This was 

one of our principle goals in this work, to give quantitative comparisons of various HIV 

intervention plans relevant to HIV among MSMs in South Africa. 
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Chapter 3: Modeling Considerations in Networks 

 

3.1 Early models  

 

Looking at an agent-based model approach, one might question how exactly it is 

organized.  Especially in a sexual contact modeling scenario, it would be improper to assume 

that agents simply make contact at random or haphazardly.  Rather sexual contacts are the result 

of a pre-existing network structure.  As a result, it would not be prudent to model HIV 

transmission as a series of random contacts.  Instead, it might be best to examine work in graph 

(network) theory to best establish the relationships that define these contacts.   

All the way back in 1981, Holland and Leinhardt [25] laid down much of the foundation 

for graph theory in the paper “An exponential family of probability distributions for directed 

graphs.”  Here they defined a graph as a specified set of nodes (agents or individuals) and a set of 

lines (edges or relationships) that connect certain pairs of these nodes.  They were also the first to 

model probability as an exponential family and defined their model as a group of independent 

dyads, meaning that the probability of an edge existing between two individuals i and j, is 

independent of their other edge statuses with other individuals (e.g., between i and k) as well as 

those between two unrelated individuals (e.g., between k and l). 

Since a graph is just a representation of pairwise relationships, it can be expressed in 

matrix form, known as the adjacency matrix.  If the graph is known as “undirected,” then all 

relationships are reciprocated, such that every edge from individual i to j encoded in the 
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adjacency matrix is accompanied by an edge from individual j to i and the adjacency matrix is 

symmetric. If there are g nodes in an undirected graph Y, then a symmetric adjacency matrix A 

is coded as 

 

1 1

1

1

0

0

0

j g

j jg

g gj

A A

A A

A A

… … 
 
 
 … …
 
 
 … … 

M M M M M

M M M M M

 , 

where 

1, if edge exists between nodes i and j

0, otherwise
ijA

= 


  . 

Notice here there are no self-ties ( 0iiA i= ∀ ) and, since the network is undirected, a tie from i to j 

is the same as that from j to i, or 
ij jiA A= .  This means there are

2

g 
 
 

 possible edges.  In our case 

the nodes would represent MSMs and the edges would represent sexual partnerships. 

In 1985 Fienberg and Meyer extended this p1 model to include block levels, where dyads 

were still independent, but the probabilities of edge existences varied with block-categorized 

relationships [26].  In 1986 Ove and Strauss introduced a dependence structure into graph 

relationships, such that that the probability of a tie 
ijA  existing was dependent not only on 

individual and block-level characteristics, but also dependent upon all other ties in the graph 

[27]. 
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3.2  The ERGM Framework 

 

More recently advances in MCMC have allowed the area of graph theory to move to the 

ERGM (exponential-family random graph models) framework.  In this framework the 

distribution of the adjacency matrix Y can be parameterized in the form [28] 

 
,

( ( ))
( ) ,

( , )

( , ) ( ( ) .)

T

T

z

exp g a
A a a

exp g z

Pη
η

κ η
κ η η

Ψ

∈Ψ

= = ∈ Ψ
Ψ

Ψ = ∑
 . (6) 

Here a is a particular form of the adjacency matrix A, η  is a vector of model coefficients, and 

g(a) is the vector of network statistics given the adjacency matrix a. These statistics could be the 

number of triangles in the network, the number of individuals of connected to k individuals, or 

simply the total number of edges in the network. Additional covariates X can easily be added to 

this network through inclusion in the function g, such that g = g(a,X).  The parameter ψ can be 

thought of as the set of all possible configurations of the adjacency matrix, while ( , )κ θ Ψ is the 

normalizing factor that makes this a probability distribution.  It might be apparent now that this 

normalizing factor is the sum of an exceedingly large space even for networks of a modest size.  

For example, a network of ten nodes has 2^(10*9/2)= 2^45 possible graphs.  As a result, the 

model is more intelligible when put into a pairwise probabilistic form, or in other words, the 

probability of edge formation given the rest of the network structure.  Under the ERGM 

framework takes the form [28] 
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 = =
= = = = − = =  

−=

. (7) 

 Here ( )g ijaδ , referred to as a change statistic, is the difference between the network statistics 

with (+) and without (-) the addition of edge ij.  The � vector then can be clearly interpreted as 

the increase in the conditional log-odds of tie-formation in the network per unit increase in the 

corresponding component of g(y).  Notice here that the probability of an edge between two 

individuals is conditional on the rest of the network aij
c.  Also of note is that under this 

framework when an edge is independent of the rest of the network the probability becomes a 

simple logit model. 

 So it is this ERGM model, which takes into account dependency among all ties, that 

would truly offer the best relationship format for our agent-based modeling.  Unfortunately, to 

utilize such a model, we would first need to have complete or nearly complete structural data of 

the South African network of MSM contacts.  Such information is lacking, and as a result, our 

simulation could not incorporate a dependent network structure. 

 Now, one additional thing that might be apparent is that these network forms are really 

non-temporal.  An ERGM defines the ties between nodes in a network, but does not define how 

these ties behave over time.  In order to do this one might use what is known as a STERGM [29], 

or a “Separable Temporal ERGM.”  The basic formulation of this model requires the addition of 

a time series aspect, where time is measured in discrete steps, and instead of looking at the 

probabilities of edges existing between pairs, one examines the probability of edge formation (+) 

and dissolution (-), such that at any given time-step you have these two different adjacency 
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matrices of ‘’changes’’: formation and dissolution, which are incorporated into the adjacency 

matrix at time-step t: ta  .  This turns equation 6 into 

 

,

,

| a a

| a

( ( ))
( ) , ( )

( , ( ))

( ( ))
( ) , ( )

( , ( ))

( , ) ) ,)( (
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P

P

η

η

η
κ η

η
κ η

κ η η

− +
+ + + +

Ψ + +

− −
− − − −

Ψ − −

∈Ψ

= = ∈ Ψ
Ψ

= = ∈ Ψ
Ψ

Ψ =∑

 . (8) 

Here we have the adjacency matrix at time t, at, the formation adjacency matrix a+, the 

dissolution adjacency matrix a-, the space of all possible edge formations at time t, ψ +(at), and 

the space of all possible edge dissolutions at time t, ψ -(at).  In addition, η +  and η −  are vectors 

of model coefficients for the formation and dissolution networks, respectively.  All other 

parameters are unchanged from the regular ERGM model. 

It is this structure that would be ideal for an agent-based model, if the data for the 

calibration of such a network existed to such an extent that a STERGM regression could be 

performed.  Since the data we have are insufficient, however, we recognize that such a regression 

(and its subsequent use in calibrating our agent-based model) is unreachable at this time. 
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Chapter 4: Network Epidemic Models for HIV Prevention 

 

4.1 Available Data 

 

Our methodological work grew out of the Sibanye Health Project which is an HIV 

prevention project to develop and test combination HIV prevention interventions among men 

who have sex with men (MSM) in Southern Africa. To contribute to this project we had to rely 

upon broad descriptive statistics, what we call “coarse” network data: very basic partnership 

distribution statistics obtained through surveys that pertain to a particular period of time.    These 

statistics include the mean unique partners in 6 months, % individuals with >5 unique partners in 

6 months, mean CAI contacts in 2 months,  and the ratio of the mean number of unique partners 

an individual belonging to a main partnership has in twelve months to that of an individual who 

does not belong to a main partnership.  Many other parameters have been incorporated into the 

model and a full list of these parameters and their values is in Table 1. 

Table 1 classifies inputs into 3 categories: attributes assigned to each person at start, daily 

updates, and prevention interventions.  For example, the attributes assigned to each person at 

start section includes the probability that an individual is assigned a positive HIV serostatus at 

the start of the simulation, P(HIV+)=0.255.  The daily updates section includes the decrease in 

CD4 count, which is linearly interpolated from the equation for the yearly decrease, Yearly CD4 

Decrease = 4.26 4CD .  Finally the prevention interventions section describes the four 

interventions that are implemented in the agent-based models.
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Table 1: Main characteristics of agent-based model for combination HIV prevention among 

MSM in peri-urban South Africa (additional information and specific parameter values are in the 

Supporting Information) 

Attributes assigned to each person at start   Value (if applicable) 

Frequency of sexual activity        

HIV status at start     P(HIV+)=0.255 

CD4 count at start if HIV +    ln (CD4) ~ N(6.2, 0.81),  

Knowledge of HIV status at start (yes, no)   P(Has knowledge)=0.25 

Sexual role preference (insertive, receptive, versatile)  P(Role Preference)=1/3 for all 

HIV testing frequency (3 levels: moderate, low, never)  P(Test in 6-mon period) =0.17, 0.085,0 

Some assigned a main partner     P(Has Main Partner) = 0.46 

Proportion of sexual contacts that are CAI (2 levels)  P(Accepts contact as CAI)=0.4,1 

Sexual networks of regular partners (with allowance  Varied 

for sero-sorting)   

Daily updates 

Daily sexual contacts depends on type of partnership                     Likelihood of contact (in decreasing  order):   main, regular, casual, have other main 

partners 

HIV testing possible 

CAI rate adjusted if learns knowledge of HIV status  Reduction of CAI = 1/3 

CD4 levels updated for HIV positive Yearly CD4 Decrease = 4.26 4CD   

Infection status updated 

Prevention Interventions 

ART for eligible HIV positives 

Eligible: HIV test within 6 months and CD4<350 

Considered varying levels of coverage 

PREP for eligible HIV negatives 

Eligible: in last 6 months had both HIV test and >12 

CAIs or in sero-discordant main partnership. 

Considered varying levels of PREP acceptance 

with two levels of adherence (low and high) 

Reduction in CAI frequency (considered varying levels) 

Increase in HIV testing:  convert 50% of the never testers 

to low frequency testers  
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Each simulated run of the agent-based model consists of 1000 persons (agents) whose 

interactions and infection status are simulated over 5 years of whom an expected N=745 persons 

were initially uninfected.  We randomly assign covariates based on distributions of the covariates 

from the South African setting [2].  Each person is assigned:  a level of sexual activity based on 

the distribution of reported numbers of partners in 6 months among South African MSMs:  

predominant type of sexual activity(e.g., primarily the receptive or insertive partner in anal 

intercourse (the risk of transmission depends on the sexual role[30]); and frequency of HIV 

antibody test screening, all of which are assumed to be independent.   

 

4.2  Static Partnership Model: Description 

 

Our original work focused on the creation two networks of individuals: a main and 

regular partnership network and a daily sexual contact network.  The partnership network is 

created at the time of agent initialization.  Persons are assigned into networks of regular sexual 

partners; one of those regular partners may also be assigned to be the person’s main sexual 

partner (46% of MSMs in South Africa are estimated to be in main partnerships [2]).  Partners 

who are not in each others’ network of regular partners are potentially “casual” partners. On 

every time-step of the simulation a sexual contact network is formed, where a sexual contact 

between two persons depends on whether the partnership is between main partners (most likely), 

regular partners (somewhat less likely) or casual partners (least likely). 
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Figure 1:  A schematic demonstrating the two types of networks present in the model.  The 

partnership network is created upon initialization of the agents.  The daily sexual contact 

network is formed at every time-step during the simulation, and is influenced by the structure of 

the first network. 

 

 

 

Figure 1 depicts a simple implementation of this static network agent-based model.  It 

consists of a partnership network and a sexual contact network formed at every time-step (here a 

day).  Main partnerships are more likely to experience sexual contact on a given day, regular 

partnerships slightly less so, and unconnected agents even less so. 
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4.3 Static Partnership Model: Model Specification and Notation 

 

A main partnership not only illustrates a higher probability of contact on any given day, but also 

the exclusivity of this partnership against other regular partnerships to which the two individuals 

might belong.  As previously stated, structural network data was not available for MSMs in south 

Africa, and as a result there is no way to produce an extensive ERGM regression for use in our 

agent-based model.  Instead, a simplified network format was used, such that there is complete 

dyadic independence between pairs of individuals, or

( ( 1&  1)  1) * (  1)ij jk ij jkP Y Y P Y P Y= = = = = , where i, j, k, and l are all unique individuals. So 

our original ERGM equation 7 reduces to a dyad-independent ERGM, which removes the 

conditioning upon the rest of the network, c

ija [28].  Prior to network formation we assign each 

individual an activity value, which represents the person’s level of sexual activity, and is drawn 

from a distribution that possesses the mean, median, and percent with greater than five unique 

partners in six months.  We then create the network using our dyad-independent network 

structure, where the probability that persons i and j are regular sexual partners, rij, is  

 
0 1 1 2 2logit( )ij ij ijr X Xα + α + α=   (9) 

where Xij1 is the sum of sexual activity levels for persons i and j,  and Xij2 indicates whether the 

infection status of the two partners are the same or not at baseline.  Due to independence of 

dyads, this network can be formed through a series of Benoulli trials.  This partnership network 

is established before any sexual contact simulation occurs.  Once it is established, main 

partnerships are randomly selected, while all other connections are considered regular 

partnerships.  This model allows for overlapping networks of variable size and a degree of 
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assortative mixing because persons with the same infection status (sero-concordant) are assigned 

a higher probability of being regular partners than sero-discordant persons.   

A daily dyad-independent ERGM network for sexual contacts occurring is constructed as 

follows. The probability, cij, that persons i and j have sexual contact on a given day is time-

invariant under this model and given by  

 
0 31 2logit( ( ))ij ij ij i jR Hc M Hβ β β β= + + − +   (10) 

where Mij = 1 if persons i and j form a main partnership, Rij = 1 if persons i and j form a regular 

partnership, and Hi = 1 if person i is in a main partnership with anyone.  Once again, due to 

dyadic independence this dynamic network can be established via simple Bernoulli trials.  We 

now define our vector of unknown parameters, 0 1 2 0 1 2 3( , , ,, ), ,η α α α β β β β= .  These are the 

elements of the two networks that must be found through calibration, which will be detailed in 

chapter 5. 

 

4.4  Self-Reinforcing Model: Description 

 

Many previous agent-based models of HIV among MSM, and indeed our original model 

described in the previous sections, typically classify partnerships into main, regular, and casual. 

However, the distinction between these types of partnerships is not always clear and 

unambiguous.  Some relationships may begin as casual partnerships and then evolve into main 

partnerships. Furthermore, previous models have assumed that the durations of partnerships are 

independent, and unrelated to ongoing frequency of sexual contact.  In this section we describe 
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our recent work: an alternative model for sexual partnerships and contacts for use in HIV agent-

based modeling.  The proposed model allows for the strength of the relationships between 

partners to evolve over time based on their prior history of contacts and thereby incorporates 

feedback loops that allow relationships to reinforce, diminish or even spontaneously dissolve.    

 

The key idea of our proposed self –reinforcing model for sexual networks is that the 

probability of sexual contact between two persons in a given time step depends on the prior 

history of contacts between the partners.  A related idea has recently been used to model message 

sending behavior in corporate e-mail networks [31].  In what follows we describe specific model 

structure for application to sexual networks and contacts in the context of HIV transmission. We 

take the time step to be a single day.   

 

We assume that the probability of contact between two individuals on a given day increases 

by each prior contact but decreases with increasing duration of the absence of contacts between 

the partners. In this way, prior contacts reinforce or strengthen the relationship while lack of 

contact will ultimately diminish the strength of the relationship.  Relationships may also 

spontaneously dissolve. The specific model assumptions are as follows: 

 

1. The log odds of an initial sexual contact between persons i and j is 
0ijγ , which may 

depend on characteristics of persons i and j 

 

2.   A first contact between two individuals increases the log-odds of a future contact by 1γ . 

3.   A subsequent contact after the initial contact increases the log-odds of a future contact 

by 2γ . 

        4.  A day without contact decreases the log-odds of a future contact by 3γ . 
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        5.  The mean time from first contact until dissolution is λ  years and is exponentially 

distributed. 

 

With the above model assumptions, each relationship begins with a baseline log-odds of a 

contact intrinsic to the particular pair of individuals.   If an initial contact does occur, then the 

log-odds of a subsequent contact increases.  The log odds of each subsequent contact then 

increases and is reinforced by the prior number of contacts. If no contact occurs, then the log-

odds decays.  In addition, on any given day there is a chance that the relationship will 

spontaneously dissolve such that it will be reset back to baseline log-odds.  It should be noted 

that this model assumes a maximum of one contact per pair of individuals per time-step, and thus 

the time-step should be scaled appropriately.  Figure 2 is a schematic illustration of the self-

reinforcing model. 

 

Figure 2:   A schematic demonstrating the self-reinforcing nature of the model.  Each line 

represents the strength of the link between the two connected individuals (Darker = a stronger 

connection).  The stronger the current connection the more likely a contact will occur on the 

subsequent day.  Contacts that occur strengthen the connection, while contacts that do not occur 

weaken it. For example pair (e,f) starts out with a strong connection.  On day 1 this pair 

experiences a contact, which strengthens the connection (darkens it).  On day two, however, (e,f) 

does not experience a contact, and thus it’s connection is subsequently weakened. 
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4.5  Self-Reinforcing Model: Model Specification and Notation 

 

Our network is a representation of pairwise edges and thus can be expressed in matrix 

form, tA , the adjacency matrix, where 

 

 
1, if edge exists between individuals  and  at timestep 

0, otherwise
tij

i j t
A

= 


 . 

 

This model can be expressed as an ERGM, with the specification that an edge represents a 

contact at a particular time-step rather than an entire relationship [28]  Once again, we use a 

dyad-independent ERGM to represent the probability of a contact on a given day, 

 

( 1)
ij

T

tij tlogit P Aγ η δ = =  .   (11) 

 

Here η is a vector of unknown parameters and 
jtiδ , referred to as a vector of change statistics, is 

the difference between the network statistics at time t with and without the addition of edge ij.  

This
jtiδ  includes historical contact data (all the prior contact matrices that have occurred up until 

time t).  Notice that here we are not making an assumption of complete partnership 

independence, as we did in the case of the static network, but only the weaker assumption of 

independence conditional on the contact history. 

From this point on we will not refer to the vectors γ and
tijδ , but to their individual 

components.  To completely specify this model, we define the following terms: 
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number of individuals in the simulated population

dissolution parameter

total number of timesteps

( 1) probability of a contact between  and  at timestep 

number of timesteps sinc

ijijt t

ijt

N

p P A i j t

d

γ

λ
τ

=
=
=

= = =

= e first contact between  and  at timestep 

0 if i and j have had any prior contact

1 otherwise

matrix of contacts of dimension 

1 if there is a contact between  and  at timestep 

0 ot

ijt

ijt

i j t

f

C N N

i j t
c

τ

= 


= × ×

=
herwise





  

C is simply an archive defined here separate from each daily network tA  merely for convenience 

and consistency of notation.  Each slice tC⋅⋅ is equal to its respective realized daily network, 

which in classic ERGM notation would be written ta . 

The dissolution parameter, λ , is assumed to be the constant rate of spontaneous 

dissolution of a partnership per day.  We will assume that spontaneous dissolution will reset the 

log odds of contact back to
0ijγ .   We can thus write the probability of contact at time-step t for 

two individuals as 

 

               
1 1

0 1 2 3

0 0

( ) * ( * ( ) * )
t t

ijt ij ijt ijk ijt ijk

k k

logit p f c d cγ γ γ γ
− −

= =

= + + − −∑ ∑   .                (12) 

 

 The above equation also holds for a new relationship between a couple who had previously 

experienced a dissolution between them of  past relationship provided 
ijkc  refers only to contacts 
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in the current ongoing relationship and not contacts in their previously dissolved relationship.  

The parameter 
0ijγ performs the important role of incorporating predispositions to contact for 

pairs of individuals. It could be expressed as 

 

                                                        0 0

T

ij ijZγ γ β= +    ,                                     (13) 

 

where β  is a vector of unknown parameters, and  
ijZ  is a vector of covariates that characterize 

the partnership.  For example,  
ijZ  can include an ethnicity matching indicator variable ( 

0I ( )i jEthnEthnicit icityy = ), a difference in age variable ( ( )i jabs ge AgeA − ), a measure of 

sexual activity, or a measure of degree separation. Degree separation in particular refers to the 

idea that “friends of friends” are more likely to have contact with one another. 

 

4.6 Self-Reinforcing Model: Application to HIV transmission 

 

Our first extension for our HIV-specific agent-based model lies in the specification of 

baseline parameter
0ijγ  . For the entries of 

ijZ we use a measure of overall sexual activity: 

( )i ja a+ .  Since there is no true measure of activity available to us, we use a surrogate 

measurement drawn from the distribution of unique six-month partners.  Essentially, we assume 

that this activity level is directly proportional to the number of unique partners an individual 
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might have contact with over six months.  We draw an activity parameter iα  for every individual

i , resulting in the re-definition of 
0ijγ  =

0 *( )i ja aγ β+ + . 

 

We also extend the model to allow partnerships to evolve into main partnerships. Main 

partnership classification modifies the model in two ways: first, a partnership reaching a 

threshold value of log-odds can be classified as a ''Main'' partnership, and second, the concept of 

partial monogamy can now be included as in our static partner model, whereby the presence of a 

main-classified relationship decreases the likelihood of contacts outside of this relationship [2].  

This introduces the following new terms into the model:  

 

 

4

ijt

log-odds threshold at which a main partnership is formed

decrease in log odds of a contact due to main partnership exclusivity

1 if logit(c ) T

0 otherwise

 

ijt

n

ijt ikt

k j

T

M

e M

γ

≠

=
=

>= 


=∑

 . 

 

Exclusivity can be applied in various ways, one of which is a simple additive application, 

whereby the exclusivity term in the log-odds equation becomes  

 

 
4 *( )ijt jite eγ− +  . 
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Notice here that, because of the greater complexity of this model, we use a different notation for 

main partnership membership than in the static model (
ijte  and 

jite  vs iH  and 
jH ).   Our main 

partnerships here are time dependent and only look at partnerships outside of the pair i and j, 

while our static model included i and j main partnership membership in iH  and 
jH , and simply 

compensated by increasing 1γ .  As is the case in the static partnership model, 4 0γ ≥ by 

definition. 

 

An important case to consider, especially in the case of sexual contact networks, is the 

existence of an exclusivity-independent subpopulation, to which the concept of exclusivity might 

not apply (e.g. sex-workers), in which case every individual i in this subpopulation should have 

exclusivity term 

 

 0 ,ijte j t= ∀  . 

 

It is easy to assign this class based on a threshold value of the ''activity'' levels used in the re-

parameterization of
0ijγ , but for our current work we have not implemented this subpopulation. 

 

Relationship dissolution can also be made specific to each pair of individuals, such that 

instead of one λ  that describes all pairs, the time until dissolution can then be drawn from the 

exponential distribution with a parameter λ .  If one has access to a population-level estimate of 

the mean relationship duration, λ̂ , one option is to use the surrogate ''activity'' values used in the 

re-parameterization of 
0ijγ  to re-parameterize 

ijλ  .  This is reasonable if one believes that a 
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higher activity level correlates (either positively or negatively) with relationship duration. If one 

assumes that higher activity inversely correlates with relationship duration, one can parameterize 

ijλ  as 

 

 
1

[ ]
1

ij

i j

E λ θ
α α

=
+ +

 . (14) 

 

This allows for a simple estimate of the proportionality constantθ : 

 

 
ˆ

ˆ
1 1

( 1) 1i j i jN N

λθ

α α≠

=

− + +∑
 . (15) 

 

Of course, much like the inclusion of the exclusivity-independent subpopulation, one could argue 

that a similar (or even the same) subpopulation of high-activity individuals might have their own 

dissolution rate, such that individual in this subpopulationij sλ λ= ∀ .  We do not go so far as to 

assume this population exists in our HIV model, but we do re-parameterize λ̂ withθ̂ . 

 

Finally we decided for our model to utilize an alternative form of relationship decay, where the 

additive decay term 

1

3

0

( ) *
t

ijt ijk

k

d c γ
−

=

− −∑  

is removed and replaced with a sequential decay term: 
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1

3([ )]1 *
ij

t

ijk

k r

c γ
−

=

−− ∑ , 

where 
ijr  represent the most recent day of contact.  This term then states that the relationship 

decays with the most recent sequence of non-contacts.  Or, in other words, every day that goes 

by without a contact contributes to the decay of the relationship, but if a contact occurs this slate 

is wiped clean and sequential decay begins anew.  For simplicity we have kept the notation 3γ , 

since we include only one decay type in simulation in order to limit the number of required 

unknown parameters. 

Our final equation used in our HIV simulation then becomes  

                                  

1

0 1 2

0

1

3 4

( ) * ( ) *[ *

[ )]* *(( ]1 )
ij

t

ijt i j ijt ijk

k

t

ijk ijt jit

k r

logit p f

e ec

cγ β α α γ γ

γ γ

−

=

−

=

= + + +

− − +

+

−

∑

∑
,             (16)  

and for this model we define the vector of unknown parameters, 0 1 2 3 4, ,( , , , ,T)η γ β γ γ γ γ= .   
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Chapter 5: Calibration 

5.1  Coarse Network Statistics 

 

The lack of a detailed network structure of MSM (men who have sex with men) 

relationships, makes the simulation of a true ERGM difficult if not impossible.  In places where 

slightly more detailed MSM network data is available, groups have taken to simulating an 

ERGM structure for “main partnerships” only, and a random contact structure for “casual 

contacts” between other individuals where sexual contacts  [30].  Our approach differs in that we 

do not attempt to extrapolate an underlying partnership structure from our survey data, or coarse 

network statistics, but rather attempt to replicate survey data through our simulation while 

allowing for smooth growth and decay of relationships. 

    

Since MSM in South Africa are comprised of a stigmatized and difficult to reach group 

of individuals and detailed survey data is lacking, we are often left with an incomplete idea of the 

network structure of this group [4].  We have access instead to what we refer to as “coarse 

network statistics.”  These take the form of published survey statistics, including the “mean 

number of unique partners in 6 months,” “the percent with greater than 5 unique partners in 6 

months,” “the percent of individuals currently in a main partnership,” and “the ratio of the mean 

number of unique partners an individual belonging to a main partnership has in twelve months to 

that of an individual who does not belong to a main partnership [2, 32].”  The target values for 

these coarse network statistics are given in Table 2 of section 5.4. 
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This brings us to an interesting difference between other agent-based models and our own 

work.  Often if an agent-based model is developed with complete network data, one can use 

snapshots of the network taken at different times to create formation and dissolution networks 

needed for an STERGM (see section 3.2).  Our coarse network data are not snapshots of the 

network at different points in time, but rather summaries of contact behavior over time (e.g. 

unique partners contacted over six months).  If we condense them into an instantaneous network 

we make the assumption that these partners are all concurrent (partners within a relationship at 

the same time).  We do not make this assumption, but rather calibrate our model so that the 

simulated coarse network statistics match the data that we have.  This requires a great deal of 

computation time because agent-based model simulations are required in the calibration process.  

 

Thus, instead of attempting to determine an instantaneous network structure from survey 

statistics that are themselves representative of a history of sexual contact interactions, rather than 

a snapshot of a current network, we calibrate to the history itself. Here, calibration refers to the 

process of identifying values for the unknown parameter vectors,η , which are the inputs into our 

agent-based models and defined for the static partnership and self-reinforcing models on pages 

25 and 34, respectively. For every point in parameter space (value of η ), a series of simulations 

can be run and the coarse network statistics found for each.  Objective functions measuring 

closeness to the goal coarse network statistics can then help determine how to progress further 

through the parameter space.  This is a very high computational burden with only N=1000 agents 

modeled.  Even with highly parallelized processing on a cluster, this difficult task requires an 

efficient search algorithm.  In addition, because of the stochastic nature of these simulations, 
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there is noise accompanying these statistics.  Thus it is a problem of multi-objective optimization 

with noisy data.   

 

5.2  Static Partnership Model: Unified Objective Function 

 

With the static partnership model we took a simplified approach to model calibration.  

Our vector of unknown parameters is defined as 0 1 2 0 1 2 3( , , ,, ), ,η α α α β β β β= .  We now constrain 

it so that we have the following operational definitions for partner types: a main partner is a 

partner with which an individual makes a sexual contact (not necessarily a CAI) on average once 

every two days; a regular partner is a partner with which an individual makes a sexual contact on 

average once a week, and the log-odds of two individuals being in each other’s regular partner 

network increases by 3 when they are the same serostatus ( 2 3α = ).   This reduces the 

dimensionality of η  to a four-dimensional space and allows us to perform a grid search over the 

entire parameter space, minimizing the unified objective function 
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where each
vy  is a coarse network statistic, p is the total number of coarse network statistics, 

)( vwg η  is the simulated coarse network statistic v for replicate w, m is the number of simulation 

replicates, and minη is the value of the unknown parameter vector η  that minimizes this objective 

function.  The simulated coarse network statistic requires an agent-based model simulation.  We 
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chose this objective function because of its simplicity.  It was possible to find our minimizer minη

for this function using a simple grid search of the parameter space because of the constraints that 

we had placed onη . For our more recent, self-reinforcing model, we wished to eliminate these 

constraints.  We desired a technique that was already well established and robust for calibrating a 

high-dimensional unknown parameter vector to multiple and noisy objectives.  The noise here 

refers to the stochastic variability associated with each simulated coarse network statistic. 

 

5.3  Self-Reinforcing Model: Multi-Objective Evolutionary Algorithms 

 

Multi-objective evolutionary algorithms are a subset of stochastic methods of 

optimization that are ideal for the scenario of calibrating to noisy simulated objectives for two 

reasons.  First, they are derivative-free, which is necessary since our output is a stochastic 

simulation (each simulated coarse network statistic )( vwg η  is not differentiable with respect to η  

).  Second, they are not as prone to getting trapped in local minima as other methods [33], which 

is a necessary requirement because the number of local minima in ( )f η  is unknown.  Recently, 

multi-objective optimizers have been developed to address the challenge of noisy optimization 

[34].  These multi-objective evolutionary algorithms are highly varied in their methodology but 

almost always make use of the following concepts: the Pareto frontier, crossing over, and 

mutation, all of which is explained in detail later in this section.  Noisy optimization here simply 

refers to the act of minimizing objective functions when each evaluation of these functions is 

accompanied by noise, which in our application is synonymous with the stochastic variance of 

simulated coarse network statistics.   
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For the self-reinforcing model we define the unknown parameter vector 

0 1 2 3 4, ,( , , , ,T)η γ β γ γ γ γ= .  We elected to use the “Rolling Tide Evolutionary Algorithm” for our 

parameter search.  This algorithm has been shown to have good convergence properties in the 

face of noise that changes as a function of the parameter space [35].  Figure 3 demonstrates how 

the variance of something as simple as the mean number of daily contacts can be highly 

dependent upon the position in the parameter space (the current value of unknown parameter 

vector η ).  We describe this algorithm in detail later in this section. 
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Figure 3:   Mean number of daily contacts across individuals versus the simulation time-step, 

which here is one day. Each line represents a simulation from an agent-based model initialized 

with no prior contacts, with 0 13.5γ = −  , 0.2β =  ,  2 0.9γ =  , 3 0.5γ =  , 4 14.3γ = , and 0.1T = − ,  

corresponding to the best calibration of the HIV model.  The solid lines correspond to 1 5γ =  and 

show quick convergence and small final variance relative to the dotted lines, which correspond 

to 1 25γ = .  Both the number of time-steps to convergence as well as the variance of converged 

coarse network statistics are shown to vary within the parameter space.  

 

 

 

Figure 3 shows the behavior of a simple example coarse network statistic, the mean 

number of contacts across individuals, over time and for two different values of 1γ . The model is 

initialized with zero previous contacts and each line represents a distinct starting network with 

randomized agents.  Burn in here is considered to be the initial vertical climbs of the coarse 

network statistics.  In Figure 3, for example, the burn in for the simulations corresponding to 
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1 25γ = is accomplished by day 200, while for 1 5γ = it is accomplished nearly immediately and is 

not visible to the naked eye.  This does not mean, however, that there will be no drift in coarse 

network statistic values over simulation time.  Looking at the two highest lines in Figure 3, we 

can see that they experience a slight downward trend over time after day 200, while one of the 

lower dashed lines experiences a sharp incline after day 250.  Because this is a stochastic 

simulation where we allow partnership strengths to form, dissolve, strengthen, and diminish over 

time, we expect a certain amount of drift to occur.  No matter how long the simulations are run, 

they will always differ in their final coarse network statistic values by some amount.  As we can 

see by comparing the 1 25γ = simulations to those of 1 5γ = , this variance is dependent upon the 

value taken by the vector of unknown parameters, η  (here [ 13.5,0.2,5.0,0.9,0.5,14.3, 0.1]η −= −  

for 1 5γ = and [ 13.5,0.2,25.0,0.9,0.5,14.3, 0.1]η −= −  for 1 25γ = ).   

 

This dependence of the variance of the simulated coarse network upon the value of η  is 

addressed by the Rolling Tide Algorithm, which was specifically designed to work in the context 

of variance changing as a function of the parameter space [35]. To ensure convergence of the 

coarse network statistics within individual simulations, we found that a 1000 time-step burn-in 

was more than sufficient for all simulated coarse network statistics used in our calibration.    

 

Here we briefly review the main ideas of the Rolling Tide algorithm. To use this 

algorithm we first create an objective function, ( )vf η , for each coarse network statistic defined as 
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where )( vwg η is once again the wth replicate of the vth coarse network statistic simulated at 

parameter vector valueη , p is the total number of coarse statistics, vy  is the desired value for the 

vth coarse network statistic as determined from literature and survey data, and m  is the number 

of simulation replicates performed at η . Each objective function then corresponds to the distance 

from ''true'' coarse network statistics and our goal is thus to minimize each element of the vector 

 

 1( ) [ ( ), , ( )]pf f fη η η= …  , 

 

and we define the result of this minimization as 

 

arg min ( )
min

f
η

η η= . 

 

Additional constraints can and should be placed on the η  vector to lessen the computational 

burden.  For our purposes we refer to these constraints as the parameter window sizes. 
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Figure 4: Value of 1( )f η  = Objective function 1 = Distance to “Mean Unique 

Partners over 6 months” vs 2 ( )f η  = Objective function 2 = Distance to objective 

“Proportion in Main Partnerships.”   This graph shows a simplified Pareto frontier 

achieved between these two objectives at the end of the HIV model calibration. 

The true calculated Pareto frontier exists across all objectives and is much more 

difficult to visualize. 

 

 

 

The algorithm makes use of the concept of the Pareto frontier, which was first introduced 

in the 1800s [36]. A solution is said to be a member of the Pareto frontier if it is not dominated 

by any other solution, which means that no solution exists that is superior for at least one 

objective function and equal or superior for all other objective functions.  Another way to think 

of the Pareto frontier is as the set of solutions for which performance on one objective cannot be 

improved without reducing performance on at least one other objective.  Thus, all solutions 
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within the Pareto frontier can be considered globally optimal solutions.  It is an alternative to the 

option of aggregating solutions into a single objective function for minimization, which requires 

that one combine objectives that exist on different scales, with different boundaries, into a single 

measurement, as we did with our static partnership calibration.  Figure 4 is a visualization of a 

simple two-objective Pareto frontier extracted from the simulated dataset after calibration to our 

HIV model.  In practice it is difficult to visualize this frontier in more than two to three 

dimensions.  

 



45 

 

Figure 5: Schematic of the Rolling Tide Algorithm 
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Figure 5 is a schematic illustration of the Rolling Tide algorithms. This algorithm 

requires the following parameters for execution: 

 

Number of random locations to initially sample

Probability of a crossover occuring

mutation window size

Total number of function evaluations

Number of archive resamples per iteration

Proportion

p

s

g

k

z

r

=

=

=

=

=

=
 of run to be spent solely refining the archive

 

 

It begins by evaluating r points chosen randomly over the parameter space, Γ , and then 

calculating the Pareto frontier.  It continuously both re-evaluates points (values of the vectorγ ) 

at this frontier in addition to generating new potential points by mixing these members of the 

Pareto frontier.  It is in this mixing portion that the “evolutionary algorithm” aspect comes into 

play.  In order to mix two points from the frontier it employs both “crossing-over” and 

“mutation.”  When generating new points, crossing-over occurs with probability p and in our 

setting is simply the act of taking a random proportion of elements from the parameter vector of 

one member of the frontier and combining it with the remaining elements of another member of 

the frontier.  For example, 2γ  and 3γ might be taken at random from one member and the 

remainder from the other member of the frontier.   

 

Mutation in our setting is taking each element of the parameter vector and altering it 

within a fixed mutation window size s.  We run our algorithm with s =  1/10th parameter window 

size, a value suggested by previous multi-objective optimization literature [37].  For example, if 
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our search uses an acceptable parameter window of ( 1, 21)− −  for element 0γ  and we wish to 

mutate it from a value of -6.25, we would add to -6.25 a random variable drawn from a uniform 

distribution over interval ( 1,1)− , since our mutation window has width 0.1*20 2.=  It is in this 

manner that members of the Pareto frontier are mixed and modified over the course of the 

algorithm.  

  

Next, the total number of function evaluations, g, refers to the total number of 

simulations that we choose to run over the course of the calibration. The archive resamples, k, 

refers to the number of times in a calibration loop that a member of the Pareto frontier will be re-

evaluated with an additional simulation replicate.  The refining proportion, z, refers to the 

proportion of calibration loop devoted only to these re-evaluations. It is there essentially to 

ensure that all points on the final Pareto frontier have enough replicates to compensate for their 

variances. 

 

5.4   Self-Reinforcing Model:  Multi-Objective Optimization Calibration 

Results 

   

The Rolling Tide Algorithm was implemented with parameter windows designed to be as wide 

as possible while still reflecting the structure of the model, which predetermines sign.  The 

values of these windows are given in the description of Table 5 in section 5.5. We performed 

5000 iterations of the Rolling Tide Algorithm to calibrate this HIV model.  In order to quantify 

the improvement of the Pareto frontier over the course of the calibration, we combine objective 
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functions into the metric
1

( )p
j

j j

f

y

η
=
∑ , normalizing each objective function by its target coarse 

network statistic.   

 

Figure 6: Iterations of the Rolling Tide Algorithm: Mean sum of normalized distance (= 

1

( )p
j

j j

f

y

η
=
∑  ) for closest ten members of the Pareto frontier vs. iteration number.  As the calibration 

progresses, it is more difficult to improve this total distance, representing an expected 

diminishing returns aspect of the calibration process. 
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Figure 6 looks at the mean of the ten smallest values of this metric found within the 

Pareto frontier at each iteration.  It shows that there are clear diminishing returns as more 

iterations are added to the Rolling Tide process.    

 

Table 2: Coarse Network Statistics: The coarse network statistics available to the South-African 

MSM HIV agent-based model along with the value from the final best fit parameter set (Seen in 

Table 3).  Notably the statistic that is most difficult to calibrate is the Ratio of Unique Partners. 

 

Coarse Network Statistic Target Value Calibrated Value 

Mean Unique Partners in 6 mo. 4.10 4.46 

Percent in Main Partnerships 46 59.20 

Median Unique Partners in 6 mo. 2 2.11 

Percent w/ > 5 Partners in 6 mo. 17.7 14.50 

Ratio of # of Unique Partners for 

someone in a Main Partnership vs 

someone not in a Main Partnership 

over 12 mo. 

2.71 1.48 

Yearly HIV Incidence % 7 5.60 

 

 

 

Table 2 demonstrates the coarse network output for our best-case calibration, by which 

we mean the member of the final Pareto frontier with the minimum value of 
1

( )p
j

j j

f

y

γ
=
∑ , 

performed on a network of N=1000 agents.  This table gives the coarse network statistics used in 
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our HIV model, the post-calibration average values obtained from the simulation, and the target 

value obtained from literature.  In this “best-case” calibration, the two largest trade-offs are given 

by the percent of individuals in main partnerships, which here is 59% rather than 46%, and the 

ratio of unique 12-month partners for someone not in a main partnership vs someone in a main 

partnership, which is under-shot by the model as 1.48 instead of 2.71, making it the largest 

model discrepancy.   

 

Table 3: Descriptive statistics for the number of Unique Partners for N=1000 

agents over various time-frames given in months, (time-step equals 1 day).  Given 

within the parentheses next to each statistic is the standard deviation of said 

statistic.  These results were obtained over 100 replicates at the best calibrated 

value for the parameter set. 
 

 Months 

 2 6 12 24 

Mean 1.7 (0.4) 4.4 (0.83) 7 .9(1.3) 14 (2) 

%tile     

25th 0.01 (0.1) 0.93 (0.33) 2.2 (0.54) 5.1 (0.86) 

50th 0.73 (0.44) 2 (0.47) 4.1 (0.69) 8 (1.1) 

75th 1.5 (0.5) 3.8 (0.56) 6.8 (0.1) 12 (1.4) 

 

 

In Table 3 we expand upon the concept of unique partners over additional time windows.  

We characterize the distribution of unique partners over 2, 6, 12, and 24 month periods, looking 

at mean as well as 25th, 50th, and 75th percentiles, accompanied by their respective standard 

deviations.  Each of these could potentially serve as a coarse network statistic, should the 
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pertinent survey data be made available, but here it simply serves to describe the distributional 

shape of the relationships formed over time.  By calibrating to 6 and 12 month coarse network 

statistics, the model also influences 2 and 24 month coarse statistics, and it is important to at 

least be aware of these effects when calibrating an agent-based model. 
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5.5   Self-Reinforcing Model: Sensitivity Analyses 

  

In order to examine the sensitivity of both our Self-Reinforcing model as well as our approach to 

calibration, we performed independent Rolling Tide Calibrations across several key parameters: 

N, λ, and δ. The term δ has been mentioned but not introduced formally, and represents the log-

odds increase due to two individuals having a degree separation of 1, which means that both 

individuals have had sexual contact with the same individual in the past.  It seemed prudent to 

produce a variation of our model which included this aspect of human interaction.  In Table 4 we 

present the six combinations of these parameter values at which we produced our simulations. 

 

Table 4: The six combinations of parameter values at calibration of the remaining parameters 

was performed over 20000 iterations of the Rolling Tide Algorithm. 

Parameter Combinations 

N λ � 

1000 3 0 

2000 3 0 

5000 3 0 

1000 1 0 

1000 5 0 

1000 3 1 
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Table 5: Parameter set resulting in best fit of coarse network statistics after calibration via the 

Rolling Tide Algorithm for N=1000, N=2000, and N=5000 agents.  Each was calculated 

independently over 3000 iterations, and was selected by being the member of the Pareto frontier 

with the smallest value of 
1

( )p
j

j j

f

y

η
=
∑ .  These parameters were calibrated using the following 

bounds: 0 ( 20, 3)γ ∈ − − , (0.01, 2)β ∈ , 1 (0.5,20)γ ∈ , 2 (0.001,1)γ ∈ , 3 (0.001,1)γ ∈ , 4 (0,20)γ ∈ , 

(1,3650)λ ∈ , and ( 6,3)T ∈ −  

 Calibrated Value 

Parameter N=1000 N=2000 N=5000 

0γ  -13.458 -14.007 -14.000 

β  0.183 0.169 0.121 

1γ  13.995 14.517 12.96 

2γ  0.880 0.538 0.431 

3γ  0.498 0.311 0.116 

4γ  14.275 6.135 4.88 

T   -0.100 0.222 -2.369 

 

In Table 5 we show the actual parameter values obtained for different size networks, once 

again using the smallest value of 
1

( )p
j

j j

f

y

η
=
∑  as the metric for selection.  Here we show that all 

three are structurally very similar, with the N=5000 network showing an interesting downward 

shift in the threshold requirement for main partnership status T.  We should, however, note that 

these are simply representative of the “best” parameter sets as selected by our simple normalized 

sum metric.  In practice, every member of the Pareto frontier is a potential minimizer of our 
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group of objective functions, and thus an examination of the three “best” solutions according to 

our metric does not yield much more than a superficially interesting comparison.  Instead, one 

might be better off choosing those parameter sets that produce similar patterns in the coarse 

network set, so as to ensure like behavior among networks of different sizes when running 

sensitivity analyses across network size.  This is indeed what we have done, choosing the 5 

“best” Pareto-optimal solutions for each parameter combination.  Our simulation results are then 

an average over these 5 solutions. 

 

Table 6: Mean coarse network statistics (over 200 total replicates) by parameter designation 

along with target coarse network statistics.   

  N 

Coarse Network 

Statistic 

Target 1000 2000 5000 

Mean 6 mo. Partners 4.10 3.37 (0.85) 3.25 (0.67)    3.88 (0.73) 

Percent in Main  46 71.4 (3.0) 56.3 (15) 71.5 (2.4) 

Median 6 mo.  Partners 2 2.15 (0.63) 1.76 (0.49) 1.65 (0.55) 

Percent w/ > 5 Partners 

in 6 mo. 

17.7 15.1 (5.9) 13.5 (4.4) 13.7 (3.0) 

Ratio  2.71 1.82(0.40) 2.51 (0.53) 2.76 (1.09) 

Incidence 7 5.56 (2.5) 4.95 (1.8) 6.76 (1.97) 
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Table 7: Mean coarse network statistics (over 200 total replicates) by parameter designation 

along with target coarse network statistics.   

  δ 

Coarse Network 

Statistic 

Target 0 1 

Mean 6 mo. Partners 4.10 3.37 (0.85) 4.01 (0.72) 

Percent in Main  46 71.4 (3.0) 51.9 (10) 

Median 6 mo.  Partners 2 2.15 (0.63) 2.14 (0.56) 

Percent w/ > 5 Partners 

in 6 mo. 

17.7 15.1 (5.9) 18.0 (4.5) 

Ratio  2.71 1.82 (0.40) 2.14 (0.55) 

Incidence 7 5.56 (2.5) 4.74 (2.8) 
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Table 8: Mean coarse network statistics (over 200 total replicates) by parameter designation 

along with target coarse network statistics.   

  λ 

Coarse Network 

Statistic 

Target 1 3 5 

Mean 6 mo. Partners 4.10 3.67 (0.92) 3.37 (0.85) 3.46 (1.2) 

Percent in Main  46 59.6 (5.1) 71.4 (3.0) 55.1 (13) 

Median 6 mo.  Partners 2 1.83 (0.50) 2.15 (0.63) 1.98 (0.75) 

Percent w/ > 5 Partners 

in 6 mo. 

17.7 15.8 (6.0) 15.1 (5.9) 14.7 (7.2) 

Ratio  2.71 2.46 (0.51) 1.82 (0.40) 1.86 (0.59) 

Incidence 7 5.60 (3.3) 5.56 (2.5) 5.45 (3.1) 

 

Tables 6, 7, and 8 display the mean coarse network statistics across N, δ, and λ, 

respectively.  Notice that even at 20,000 iterations there is no guarantee that the calibration will 

produce identical coarse network results across these parameters.  It is unknown whether there 

even exists a solution within the parameter space that outputs coarse network statistics that 

perfectly matches target values, so it is logical that some of these structural changes that we 

make to the model involving N, δ, and λ might result in models that are more or less difficult to 

calibrate.  In particular we notice that obtaining a stable main partnership percent of 46% appears 

to be difficult with this model, which we will address a bit further in our discussion. 

  



57 

 

Chapter 6: Simulation Results 

 

After calibration, both agent-based simulations proceed day by day. On each day, an 

uninfected person who has sexual contact with an infected person has a transmission probability 

of becoming infected, and Bernoulli trials with the transmission probability simulate whether or 

not infection occurs.  The transmission probability is determined by the type of sexual contact 

and the presence of any prevention interventions, such as antiretrovirals treatments, which would 

modify the transmission probabilities.  We considered four prevention interventions and 

combinations of those interventions.  The first intervention was treatment of HIV infected 

persons with ART.   HIV infected persons with a CD4<350 who had an HIV test within the 

preceding 6 months were eligible to receive ART.   

For the stationary network we considered an array of values for our four interventions.  

The first intervention indicated the proportion (λ1) of eligible persons who actually receive  ART 

(λ1=0.05, 0.25, 0.5, 0.75, and 0.95).  The second intervention was prophylactic treatment of high 

risk HIV uninfected persons to reduce risk of acquisition of HIV infection (PREP).  HIV 

uninfected persons who had an HIV test within the preceding 6 months and were at  high risk 

(defined as either  >12 acts of condomless anal intercourse ( CAI) in the preceding 6 months or 

having  a main partner who is HIV infected) were eligible to receive PREP.  We considered 

various values for the proportion (λ2) of eligible persons who are offered and accepted PREP 

(λ2=0.05, 0.25, 0.5, 0.75, and 0.95).   Persons on PREP were classified as either a low or high 

adherer (the effectiveness of PREP depends on level of adherence).  The third intervention was a 

counseling and condom promotion program to reduce condomless sexual contacts. We 

considered the impact of an intervention that could reduce the proportion of  CAI  contacts  by   λ 
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3x 100%  (λ 3=.05, .25, .50, .75 and .95).   The fourth intervention was a program to increase HIV 

antibody testing. We considered an intervention that decreases by one half the proportions of 

persons who never receive an HIV antibody test, from 1/3 to 1/6. We will indicate that this 

intervention by the indicator λ 4=1. 

We ran simulations of the agent-based model for most combinations of these four 

interventions over a 5 year period, including all combinations of interventions with increase in 

ART, PREP, and CAI reduction, yielding 162 distinct combinations.  We performed multiple 

replications for each combination. The mean number of replicates performed for each 

combination was 13 with a minimum of  5 replicates always performed. We performed 60 

replicates for the control setting of no intervention.   These simulations produced a data set of 

2157 runs of the agent-based models corresponding to the 162 distinct combinations of the 

prevention interventions. 

For our self-reinforcing network these interventions were reduced simply to the baseline 

intervention (where all intervention parameters equal zero) and a single intervention of interest 

where λ 1, λ 2, λ 3, and λ 4 take on values 0.5, 0.5, 0.075, and 1, respectively. 

 

 

6.1 Static Partnership Model:  Analysis of Agent-Based Simulation Results 

 

We analyzed the dataset of the results from 2157 simulation runs of our static partnership 

driven agent-based model.  The goal was to determine a model for ( )ˆvar P | θ , the variance of the 
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proportion who became infected over 5 years where the vector   θ= (λ 1, λ 2, λ 3, λ 4) defines the 

prevention interventions that are in place. We fit a generalized linear model for the mean of 

structure ˆ | ] )[ (E P Pθ θ=  and ultimately decided, after model fitting and regression diagnostics, 

on a logistic link of the form  

  

 2 3

0 1 1 2 2 3 3 4 3 5 3 6 2 4( ( ))logit P θ β β λ β λ β λ β λ β λ β λ λ= + + + + + +   (19) 

 

We modeled the variance ( )ˆvar P | θ using the empirical sample variances of P̂ as the observed 

dependent variable.  After model fitting and regression diagnostics, we ultimately decided that it 

was adequate to model the variance as a function only of ( )P θ using a cubic polynomial model, 

 
2 3

1 2 3
ˆ( | ) ( ) ( ) ( )var P P P Pθ β θ β θ β θ= + +   (20) 

To estimate the parameters in equations 19 and 20, we used iteratively reweighted least squares 

whereby updated  estimates of the parameters were obtained from fitting equation 19 by 

weighting by the inverse variances obtained from equation 20 at the previous step [38].  The 

parameter estimates from equation 20 were determined by least squares weighted by the inverse 

of the current estimate of ( )P θ .
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Table 9: Regression coefficients for model of combination HIV 

prevention packages among MSM in peri-urban South Africa. The 

modeled percentages infected over five years is given by 

( )100 1Z ZP e e= + where 

2 3

0 1 1 2 2 3 3 4 3 5 3 6 2 4Z λ λ λβ β λ λ β λβ β λβ β= + + + + + +  and the λ’s are 

the covariates that define the components of the combination HIV 

prevention package (λ 1 is percentages of eligible persons receiving 

ART1; λ 2 is percentages of eligible persons accepting PREP2; λ 3 is 

percentage reductions in CAIs3;  λ 4 is set to 1 if the percentage of 

persons who never received an HIV test is reduced in half4. 

 

 

Model component                 coefficients (β)        Standard error (β)   

Intercept    -1.086   0.01263 

λ1     -0.000936  0.00018 

λ 2    -0.00266  0.000185 

λ 3    -0.04137  0.00155 

λ 3
2      0.000642  0.0000461 

λ 3
3    -0.0000087     0.00000034 

λ 2 λ 4         -0.00119   0.000469              

 

 

1 λ 1is the percentage eligible person receiving ART. Persons eligible to receive 

ART are those persons with a CD4<350 and HIV test within the preceding 6 

months. 

2 λ 2
 is the percentage of eligible persons who are offered and accept PREP. 

Persons eligible for PREP are HIV uninfected persons who had an HIV test 

within the preceding 6 months and are at high risk(high risk is defined here as 

either >12 acts of condomless anal intercourse (CAI) in the preceding 6 months, 

or having a main partner who is HIV infected.) 

3 λ 3is the percentage reduction in the probability a sexual contact is a CAI. 

4 λ 4 is set to 1 if an intervention reduces the percentage of persons who never 

receive an HIV antibody test by one half, from 33.3% to 16.7% 



Now, the quantity we are most interested in is not the proportion infected, but rather the 

proportion of infections prevented by the intervention, 2

1

( )
1

( )

P

P

θ
θ

= −ò , where 1( )P θ  and 2( )P θ are 

the proportion infected for the control group and the treatment groups, respectively.  Let Σ   be 

the covariance matrix for the vector of parameters β̂ .  Define 1 2( , )θ θΛ =  as a matrix combining 

our intervention parameters. Also define 1 1
ˆ ˆb βθ=  and 2 2

ˆ ˆb βθ= , where 1θ is the control 

intervention and 2θ  is the treatment intervention.  Also define a vector composite of the two 

1

2

B
b

b

= 
 
 

   Then B would be distributed according to ˆ ~ ( , )TB Nβ βΛ = Λ Λ ΣΛ .  Call this 

covariance between estimates TC = Λ ΣΛ .  The quantity we are interested in is a function of both 

b1 and b2.  Call this function h and define it as  
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 For the delta method we first establish the gradient of this function and find that it can be 

expressed in terms of probabilities rather than the pre-transformed estimates (see appendix for 

details), 
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"  , (22) 

and utilize the delta method to find our new variance of proportion prevented v*, 
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 *

1 2 1 2( , ) ( , )Th b b hv b bC=" "  . (23) 

We then used this variance to create confidence intervals for the proportion prevented using 

standard methods so that the interval is represented by: 
*

1.96* v±ò .  This is then multiplied by 

100 to produce intervals for the percent prevented. 

Table 10: Contribution of four components of an HIV prevention package to 

percent infections prevented.  Components include ART (50% ART coverage of 

eligible persons); PREP (50% acceptance of PREP among eligible persons); CAI 

reduction (15% reduction), and HIV testing increase (50% reduction of persons 

who never have an HIV test) 

 

Prevention package component                                                       percent infections  

prevented due                                                                                                                       

to addition of component  (95% CI) 1 

 

ART         3.812 (2.65, 4.98) 

PREP        14.6 (11.87, 17.33) 

CAI reduction       20.86 (19.85, 21.87) 

HIV testing increase      4.828 (1.81, 7.84) 

                                                                                                                         ________________ 

Total2            34.16 (31.79, 36.53) 

Prediction Interval for Total                 (-12.60, 80.93) 

 

Table 10 illustrates the estimated percentage of infections prevented by the various 

components of the chosen combination intervention package, along with the confidence interval 

for each of this estimates. These intervals were derived from the variance obtained via the delta 

method shown above.  The effects seen here are far from additive, and show the difficulty to be 

found in eliminating larger proportions of the epidemic.   
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The last interval, shown below the confidence interval for the total, is the prediction 

interval for the total percent prevented.  Prediction intervals were derived for the total through 

the use of our variance equation created for our iterative glm.  Using this variance equation we 

can get the variance ˆ( | )var P θ  estimated for our prevention package component in Table 8.  

This variance is then used in a simple normal approximation to obtain a confidence interval: 

ˆ1.96* var( | )P θ±ò .  The variance of the estimate is ignored here due to the fact that the 

predictive variance is much larger.   It is important to note here that the prediction interval covers 

zero.  Even though there is, on average, a 34% decrease in the size of the epidemic, it is very 

possible that in the comparison of two communities this difference would not be present due to 

the high variability of the individual trials.   
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Figure 7:  HIV infections prevented over 5 years from combination prevention 

interventions with four components:  early ART, PREP with 50% acceptance 

(dotted lines), 15% CAI reduction (blue lines; no CAI change are in red) and 

increase in HIV testing (black triangles). See Table 1 for further details about the 

components of the prevention interventions. 

 

 

 

Figure 7 illustrates the iteratively reweighted model estimates for the % infections 

prevented under various plausible conditions.  The most striking effect seen is that of an across-

the-board CAI decrease, which, although realistically minimal in its intervention value of a 15% 

reduction in CAIs across the community, produces the greatest overall effect on prevention.  It 

can be seen here, however, that a modest combination intervention of 50% PREP acceptance, 

75% ART acceptance, 15% CAI, and greater testing penetration into the non-testing group can 

have an impactful effect on the epidemic rates within a community.  
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Figure 8: Empirical variances of proportions infected in 5 years ( P̂ ) for a given 

�, versus fitted proportions (from equation 19). Also shown is the fitted variance 

function from equation 20 [ 3ˆ( | ) 0.05205 ( ) 0.1127 ( )var P P Pθ θ θ= − ] and the 

naïve binomial variance. The fitted proportions are based on equation 8 with     

β0=-1.086,  β1=-0.000936, β2=-0.00266,  β3= -0.04137, β4 =0.000642, β5=-

0.0000087, β6=-0.00119 

 

 

 

Figure 8 shows the empirical sample variances of P̂ .  Each data point is the result of 

simulated replications of the agent-based model for a specific combination of interventions.  We 

have plotted the empirical sample variance versus the fitted values of P (θ) obtained from fitting 

of equation 12.   We found a small but significant decreasing (with increasing proportion 

infected) trend in the coefficient of variation, which ranged from 0.196 to 0.155. Figure 8 also 

shows the fitted curve for ˆ( | )var P θ  obtained from fitting equation 13 along with the naïve 
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binomial variance, ( ) ( )( )1P P Nθ θ− .  The figure illustrates that the naive binomial variance 

significantly underestimates the variance induced by the agent-based model by at least 50%.  

 

6.2 Self-Reinforcing Model: Results 

 

For our Self-Reinforcing Model we took a more direct approach to Prevention Package analysis, 

choosing to focus on one feasible combination intervention.  For each sensitivity designation we 

performed 200 simulations of baseline (no prevention package) and 200 simulations at the 

prevention package combination: 50% ART acceptance, PREP with 50% acceptance, 15% CAI 

reduction, and increase in HIV testing. This is the same package featured in Table 10. 

 

 

Table 11: Yearly mean percent incidence of HIV (standard deviation) for 

baseline and intervention prevention packages (based on 500 replicates each) as 

well as the corresponding percent prevented for each pair of packages, given 

across levels of N. 

 

N Baseline  

Percent Incidence 

Package 

Percent Incidence 

Percent Prevented 

1000 5.56 (2.54) 5.31 (2.80) 4.51 

2000 4.95 (1.76) 4.51 (1.58) 8.92 

5000 6.76 (1.97) 6.05 (1.75) 10.5 
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Table 11 gives both the raw percent incidence for each sensitivity designation across 

baseline and prevention packages as well as the resulting percent prevented across values of N.  

Notice that, although the package implementation is identical to that implemented with the linear 

model of the static partnership simulation shown in Table 10, the percent prevented effect is 

much lower here.  Additionally, there appears to be a small upward trend in percent prevented 

with larger N.  However, keeping in mind that each level of N was calibrated independently, it is 

probably beneficial not to read too much into this trend.   

In fact over the next two tables it is important to emphasize not the direction of the effect 

across the sensitivity-analysis parameters, but rather the consistency with which this self-

reinforcing model diverges from the static partnership model in estimating a much lower percent 

prevented, even though each calibration of the model is entirely independent.  This suggests that 

lower package efficacy is indeed a property of networks that exhibit self-reinforcing behavior. 

 

 

Table 12: Yearly mean percent Incidence of HIV (standard deviation) for baseline and 

intervention prevention packages as well as the corresponding percent prevented for each pair of 

packages, given across levels of δ. 

δ Baseline  

Percent Incidence 

Package 

Percent Incidence 

Percent Prevented 

0 5.56 (2.54) 5.31 (2.80) 4.51 

1 4.74 (2.77) 4.38 (2.70) 7.43 

 

 

Table 12 demonstrates once again a consistently lower percent prevented across 

independent calibrations.  As in the case of the sensitivity analysis across N, we do not purport to 

make any assumptions about the meaning of increased percent prevented with the addition of the 

parameter δ (a log-odds increase of 1 for individuals with a first contact degree-separation of 2). 
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Table 13: Yearly Incidence Across λ : Yearly mean percent Incidence of HIV 

(standard deviation) for baseline and intervention prevention packages as well as 

the corresponding percent prevented for each pair of packages, given across levels 

of λ. 

 

λ Baseline  

Percent Incidence 

Package 

Percent Incidence 

Percent Prevented 

1 5.60(3.25) 5.25(3.30) 6.23 

3 5.56 (2.54) 5.31 (2.80) 4.51 

5 5.44(3.06) 5.06(2.99) 7.02 

 

Finally, Table 13 displays the results across λ (mean time to random dissolution).  

Illustrated here is a case where there is no obvious trend across the sensitivity parameter.  The 

percent prevented, however, are consistently at the same rough level as they were across other 

sensitivity parameters, indicating that our calibration efforts yielded similar-behaving 

simulations independently. 

By far the most surprising result is that our flagship intervention of 50% ART 

acceptance, 50% PREP acceptance, 15% reduction in CAI, and 50% reduction in non-testers is 

not nearly as effective under this model.  Where previously our Percent Prevented under the 

static partnership model lay at 34%, we see here a range of roughly 4.5% to 10.5%.  It is also 

worth noting that the standard deviation of our percent infected is roughly twice that of the static 

partnership model. 

Because this deviation from our original static partnership model was so great, we went 

to additional lengths to verify that this much lowered percent prevented was a model-dependent 
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feature rather result than of a single static partnership calibration or worse yet, a programming 

error.  To this end we created a simple random-contact model calibrated only by incidence and 

constructed a table showing the raw intervention results across model types.  This random 

contact model only features parameter γ0, such that contacts between all pairs of individuals have 

exactly the same probability of occurring 0

0

exp

1 exp

γ
γ

 
 + 

.   
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Table 14: Yearly mean percent Incidence of HIV (standard deviation) for 

baseline and intervention prevention packages as well as the corresponding 

percent prevented for each pair of packages, shown across models. 

 

Model Baseline  

Percent Incidence 

Package 

Percent Incidence 

Percent Prevented 

Static Partnership 5.27(0.75) 3.70(0.64) 29.8 

Self-Reinforcing 5.56 (2.54) 5.31 (2.80) 4.51 

Random-Contact 5.82(0.64) 4.35(0.62) 25.2 

 

Table 14 shows incidences and percent-prevented across our three models.  The first 

model shown is the static-partnership model.  Note here that, because these are the raw values, 

they differ from the values produced by our linear model   (shown in Table 10).  The second 

model is our self-reinforcing model and the third is the random-contact, identical log-odds 

model.  We can clearly see that the random-contact model is much more similar in percent-

prevented to the static-partnership model than the self-reinforcing model. These models are so 

complicated, however, that we don’t make any assumptions about why the percent-prevented of 

the random-contact model lies between that of the self-reinforcing model and the static 

partnership model. 

So what we have seen is that the self-reinforcing model assumptions dramatically change 

the expected efficacy of interventions in an MSM population.  As you know, our static-

partnership model featured unchanging partnerships over the 5-year period and did not assume 

that a contact between individuals predicted future contacts.  In this way it was similar to the 

random-contact network, even though it had many more complex layers to each relationship. Of 

course, it is largely unknown to what degree sexual contact solidifies a relationship in this MSM 

population, and thus it should not be taken for granted that our self-reinforcing model lies 
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quantitatively closer to the truth in its estimates of incidence and percent-prevented. However, 

our self-reinforcing model serves as precautionary warning that the assumption of “one-off” 

contacts, where individuals do not increase the likelihood of future sexual contacts through their 

first sexual contact, might result in an overestimation of intervention efficacy.   
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Chapter 7: Implications for the Design of Community Level HIV 

Prevention 

 

7.1 Static  Partnership Model: Power and Sample Size Considerations 

 

Sample size and power calculations for HIV prevention trials rely on critical assumptions 

about HIV incidence, effect sizes of interventions, and participant attrition rates.  They also rely 

on assumptions about the stochastic variation in numbers of incident infections. While binomial 

or Poisson models for the variance are often used, the assumptions that justify those models do 

not automatically apply in epidemic settings for several reasons.  First, there is variation in both 

behavioral (e.g., numbers and types of sexual contacts) and biological (e.g., circumcision) risk 

factors that are not accounted for by these models.  Second, infections are not independent 

events.  A person is more likely to become infected if he/she  is in the same sexual network as 

another infected person.  Epidemics may burn through a community rapidly if infections are 

introduced into large inter-connected sexual networks, or alternatively, slowly if infections are 

introduced into small more isolated networks.  The objective of this work is to understand and 

quantify sources of variation in the spread of HIV in communities induced by the complexities of 

overlapping sexual networks, and biological or behavioral heterogeneities in populations.  Our 

approach utilizes  agent-based models.  We show how the approach can help design of 

community (or cluster) randomized HIV prevention trials [39, 40]. 

Sample size and design considerations of community randomized trials have received 

considerable attention in the literature [41-44].  Hayes and Bennet derive sample size formula for 
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the numbers of clusters and individuals per cluster in two arm trials [45].  Those formulas are 

expressed   in terms of the between-cluster coefficient of variation, (i.e.,  the standard deviation 

of the incidence rates between clusters divided by the mean incidence rate averaged over 

communities).  However, as noted by Hayes and Bennet, a critical problem is that adequate 

information on between community variations is seldom available at the design stage of trials.  

The lack of information on between community variation is an especially acute problem in HIV 

prevention because of the challenges in obtaining reliable estimates of HIV incidence rates.  

While data on HIV prevalence rates are more readily available, variation in current prevalence 

rates between communities is not a reliable surrogate for the variation in future HIV incidence 

rates between communities.  

 

7.2 Static Partnership Model: Variation in Community-Randomized Trials 

 

In this section we describe a framework for assessing the sources of variation in incidence of 

infection between communities in randomized community prevention trials, and then show its 

application to the simulation dataset for our static partnership model. Suppose a prevention trial 

consists of two arms.  Each arm includes k communities, and each community consists of N 

uninfected persons and M infected persons.  Random samples of n persons from the N uninfected 

persons in each community are enrolled in the study and followed for a fixed duration.  We 

observe the number of incident infections that occur over the follow-up period, xi, and the 

proportion who become infected, ˆ
i ip x n=

 
among the enrolled samples of n uninfected persons 

in the ith community. The number and proportion that become infected in the entire ith  
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community of N uninfected persons are Xi and ˆ
i iP X N= , respectively.  While xi and pi are 

observed, Xi and Pi are not observed.  Each of our simulations provides a single iX .   

We decompose the variance of p̂  into three sources. To simplify notation we will drop 

the subscript i indexing the community in the following development.  The first source arises 

from differences in community attributes that are associated with HIV incidence rates.  These 

attributes may include distributions of numbers of sexual partners, circumcision rates, condom 

usage rates, availability of HIV counseling and frequencies of HIV testing in the community.  

Once again, we call the vector of these community attributes that affect HIV incidence, θ.    

The second source arises from the stochasticity of epidemics.  By this term we are 

referring to the notion that X and P̂  in the community (and not just the study sample of n enrolled 

persons) will vary between communities even if all the attributes (θ) are the same for each 

community.  The conditional variance of P̂ given θ, ( )ˆvar P | θ , quantifies this source of 

variation.  A challenge is  how to determine this variance.   Naive models, such as the binomial 

(i.e., ( ) ( ) ( )( )ˆ ˆ ˆvar 1P E P E P N| θ = | θ − | θ  ) or the Poisson (i.e., ( ) ( )ˆ ˆvar P E P| θ = | θ ), do not 

automatically apply because underlying assumptions required to justify these models do not hold 

in complex epidemic settings where the virus is spread through sexual networks of 

heterogeneous populations.    For example, some epidemics may be more explosive than others, 

if by chance, the virus is introduced into a large, highly inter-connected sexual network as 

opposed to an isolated network.   Further, the individuals in the community are not identical but 

rather are heterogeneous with respect to risks for acquisition of HIV infection.  As such, the 

conditional variance ( )ˆvar P | θ depends on a multitude of factors such as the size and overlap of 



75 

 

sexual networks and variation among individuals in risks for HIV acquisition. We use our agent-

based models to aid in assessing ( )ˆvar P | θ . 

The third source of variation of p̂ results from the random sampling of n study 

participants from among N persons in the community.  We do not determine the infection status 

on all persons in the community but only a randomly selected sample and that introduces 

additional variation into p̂ .  We formalize the three sources of variation discussed above as 

follows.  First, we consider the variance of  p̂  conditional on the community attributes θ.  We 

designate the expected proportion that becomes infected in a community with attributes θ as

( ) ( )ˆ |E P Pθ θ= .  Then,  

 

 ( ) ( ) ( )ˆ ˆˆ ˆ ˆvar var , var ,p E p P E p Pθ θθ =  +   . (24) 

 

If the n study participants are a random sample of the N persons in the community then it 

follows from results in survey sampling [46] that  

 

 ( ) ( )
1

ˆ ˆ1ˆˆvar ,
P P

p P f
n

− θ =  , (25) 
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where  1
1

N n
f

N

− =  − 
 is a finite population correction factor. From equations 17 and 18 and 

( )ˆ ˆˆ ,E p P Pθ =  we have 

                              

 ( ) ( ) ( )( ) ( )1 2

1
ˆˆvar var

P P
p f f P

n

θ θ−
| θ = + | θ  , (26) 

                                                                                                          

where 
( )

( )2

1

1

N n
f

n N

−
=

−
.   Equation 19 decomposes the variance of p̂ conditional on θ into two 

components.  The first component on the right side of equation 19 accounts for variation from 

random sampling and  the second component accounts for variation from the stochasticity of 

epidemics. If n=N then  f1=1 and equation 19 reduces to ( ) ( )ˆˆvar varp Pθ| = | θ .  If N is large 

and n is small (n<<N), then  f1≈1 and f2≈1 and ( )ˆvar pθ is approximately the sum of the usual 

binomial variance of a proportion and ( )ˆvar P | θ  .We use our agent-based model simulations 

and subsequent weighted iterative model to obtain both the P(theta) and ( )ˆvar P | θ  for this 

equation.  
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Figure 9: The variance of the proportion in the study sample that become infected, ˆ( | )var p θ , 

plotted versus fitted proportions (from equation 12). The variance is shown decomposed into the 

random sampling and stochastic epidemic components with sampling sizes n=50, 100 and 200. 

 

 

Figure 9 shows the decomposition of the variance ˆ( | )var p θ  (from equation 19) into 

random sampling component and the stochastic epidemic component with sample sizes n=50, 

100 and 200.  The figure illustrates that the stochastic epidemic component ( ˆ( | )var P θ ) can be 

an important source of the total variance of ˆ( | )var p θ .  

 

7.3 Static Partnership Model: Power and Clusters 

 

In this section, we consider the implications of our results for the design of community 

randomized trials. We consider testing the null hypothesis that the expected proportions infected 
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over the course of the trial in the control and intervention arms, called P1 and P2 respectively, are 

equal.  The test statistic is based on the mean proportions infected among the k communities in 

each arm. We calculated the power under the alternative hypothesis that ( )1 2 1P P P ε− = , where 

ε  can be interpreted as the proportion of infections prevented by the intervention.   We find (for 

a two sided test with type 1 error= α)  
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where V1 = ( )1
ˆ|var p θ  for the control arm and V2 = ( )2

ˆ|var p θ for the intervention arm; these 

variances are obtained by substituting ˆvar( | )P θ from equation 19 into equation 27.  When we 

solve for the number of clusters per arm necessary to obtain a power of 1-β we obtain  
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Figure 10: Power by Percent Prevented: Power versus percent of infections 

prevented (ε x 100) with α=.05, sample size n=50, 100 and 200 and k= 5 and 10.  

 

 

 

Figure 10 illustrates the relationship of power to ε, k, and sample size n.  For example, the 

power to detect a significant effect with a baseline incidence of P1=0.264 in the control arm, a 

true effect size ε =0.35, sample size n=200 and α=0.05 for k=5 and 10 are  .87 and  .99, 

respectively.  
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Figure 11: Clusters by Number Sampled: Number of clusters per arm (k) needed 

to obtain 90% power versus sample size n with α=.05 for percent infections 

prevented (ε x 100) = 25%, 35% and 50% 

 

 

 

 

Figure 11 shows the numbers of communities per arm (k)  versus sample size (n) to detect 

various effect sizes with power of .90;  for example, the number of clusters per arm needed to 

detect effect sizes of ε =0.35 and ε =0.50 are 9 and 5, respectively.   

We should note that we do not tabulate the expected power and required k-clusters for 

our self-reinforcing model.  This is due to the fact that our intervention of interest (50% ART 

acceptance, 50% PREP acceptance, 15% reduction in CAI, and 50% decrease in nontesters) 

surprised us with a much lower effect size than we saw in our static-partnership model.  This, 

combined with the much higher standard deviations predicted by the self-reinforcing model, 
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ensures that power will never be adequately achieved with that particular intervention and 

reasonable cluster sizes (less than 256).  
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Chapter 8: Discussion 

 

8.1 Review 

 

An objective of this work was to assess the stochastic variation of epidemics induced by 

sexual networks and heterogeneities in populations.   Our approach was based on simulations of 

two unique agent-based models. We created a database of simulation results and used the 

simulated data to jointly model the mean and variance of the incidence of infection.  We show 

how those results can be used to inform sample size and power calculations for community 

randomized HIV prevention trials. Failure to account for variation induced by risk factor 

heterogeneities and sexual networks in populations can lead to underpowered trials.  

We implemented a simple static-edge agent-based model for our original work, and then 

augmented this transmission model with our self-reinforcing model of relationship development.  

This work has been published in both Statistics in Medicine [47] and PLOS One [48].  In 

comparing the intervention efficacy of the two models, we noted that there can exist a large 

disparity in percent-prevented estimates depending upon the model for sexual netowrks and 

contacts.  We saw that our self-reinforcing model predicted an appreciably lower percent 

prevented. 

The computation requirements for running large scale agent-based models can be 

enormous. In our models, because every individual had the potential for contact with every other 
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individual,    N2 =1,000,000 Bernoulli trials were performed each day , and over 5 years 1.825 x 

109  Bernoulli trials were simulated  for each simulation in both the static and self-reinforcing 

model.  

This computational demand makes the calibration process difficult.  For our static model 

we employed simplistic grid search over a limited parameter space.  For our self-reinforcing 

model we implemented a recent algorithm from multi-objective optimization literature and 

calibrated over a series of 20000 iterations.  Due to the huge number of iterations required, we 

implemented our agent-based models in R with the aid of the Hoffman2 cluster for both 

calibration procedures. 

There are a number of limitations to our results and approaches that we hope to address in 

the future.  The first limitation is that our numerical results on power in community randomized 

trails did not account for additional variation in baseline community attributes which could 

potentially be important source of variability.   While matched designs where communities are 

matched on key attributes could help minimize that source of variation, it is very unlikely that 

perfect community matches could be achieved across all key baseline community attributes.   

The second obvious limitation is the homogeneous behavior of the main partnerships in 

the self-reinforcing model.  Main partnerships are reached at identical log-odds thresholds across 

individuals, while this threshold might be different for every pair of individuals.  In addition 

choosing the log-odds as a threshold for main partnership formation was a subjective decision.  

As an alternative, the number of recent contacts could be used as a threshold, and this threshold 

itself could vary with other covariates (Age, ethnicity, or SES matching). 
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Another limitation lies in the calibration procedure.  Each calibration across different 

values of fixed parameters N, λ, and δ requires an independent calibration using the Rolling Tide 

algorithm.  It would be preferable to incorporate information from prior calibrations into 

calibrations of future models with additional parameters, or new values of these same 

parameters.  However, there is no obvious way to incorporate these previous calibrations, as each 

parameter addition (or new parameter value of a fixed parameter) has an unknown effect on 

coarse network statistic output.  It may be possible, however, to narrow the parameter calibration 

windows using previous calibration data.  In our experience, we found that multiple, independent 

calibrations gave consistent and similar results, and thus the need for this improved calibration 

stems merely from its high computational demands. 

A key assumption of the self-reinforcing model is that prior contacts influence the 

strength of the current relationship. While we applied the idea to sexual relationships in the 

context of HIV transmission, the self-reinforcing idea may have applicability to other social 

relationships. Social relationships may strengthen or weaken based on previous patterns of 

contacts.  We considered one way of modeling the strength of relationships based on the past 

history of contacts. However, other models forms could be considered including adding linear, 

quadratic and higher order terms. 

In addition, advances in HIV biomedical interventions might indicate that some of our 

assumptions regarding adherence should soon change.  Given prophylactic measures that require 

less daily commitment, such as monthly injections, adherence levels might increase significantly.  

This would result in higher efficacy for PREP and is a variation worth exploring in future 

simulations. 
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8.2  Future Work 

 

Uncertainty in Agent and Community Attributes 

 

One issue in the work presented here is that we have taken population parameters that 

very well might vary among the different communities that we propose to simulate, and have 

used them as fixed parameters in the distributions from which we draw community properties. 

This most likely is not an accurate reflection of reality.  For example, one could imagine that six-

month partner distributions might vary considerable from one community to the next.  A simple 

solution would be to introduce a “prior” distribution on this parameter, such that each 

community might have a different underlying distribution. 

Unfortunately, such a method might overlook the correlation that would accompany such 

variation.  A simple example of such a correlation might be the link between the sexual contact 

frequency parameters and the initial HIV prevalence, where higher frequency of contact should, 

in theory, lead to higher prevalence rates.  If one simply drew the HIV prevalence and sexual 

contact frequency from two disparate distributions, one would actually be introducing more 

variability into the system than actually exists.  This is an interesting conundrum, since often in 

agent-based modeling one imagines that there is always more variability than accounted for by 

the simple system of agent parameters. 
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Main Partnership Variation 

 

In order to incorporate heterogeneity in main partnership formation as well as exclusivity, 

one of two things are required.  Either, first, additional more detailed information relevant to 

South-African MSM regarding main partnership behaviors (such as heterogeneity of frequency 

of contact and exclusivity) must be made known.  Or, second, this heterogeneity must be re-

parameterized according to some variable we currently simulate (such as our activity attribute).  

One could assume that the more active someone is the weaker their tendency toward exclusivity 

or the higher their log-odds requirement for main partnership formation  We have not included 

this re-parameterization up to this point specifically because we do not wish to create an over-

dependency on this activity attribute, which is already incorporated into our baseline log-odds 

and dissolution parameter. 

 

Refining Calibration 

 

As we have stated, the calibration process would benefit from incorporation of prior 

calibration knowledge.  If, however, one started with narrower calibration windows around 

previously calibrated members of the Pareto frontier, it would be necessary to incorporate a 

window-widening calibration procedure.  A simple way to do this is to widen the parameter 

search window by a fixed amount whenever a member of the Pareto frontier appears within a 

predetermined width of the window-edge.  Our primary efforts in this work, however, relied 
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upon the incorporation of a ready-made and simulation-tested algorithm, so that we would not 

have to perform these algorithm-quality tested ourselves. 

 

Sampling Methodologies 

 

One aspect of our power and cluster analyses that warrants further consideration is the 

assumption of random sampling.  Such a thing will not occur in practice.  Respondent-Driven 

Sampling is one option that can be used.  RDS is similar to snowball sampling in that patient 

referrals are used to progressively sample deeper into the hidden population [49].  Our 

simulation already offers a solid framework for performing this sampling methodology.  Those 

in recent testing or enrolled in an intervention of ART or PREP can be considered seeds and 

refer recent partners according to some probability distribution, and the variance can be 

empirically sampled from our simulation results.  Of course, the variability assessed from 

respondent-driven sampling can be much greater than that from random sampling [50], so it will 

be interesting to see the effect on power and cluster estimation.   

Another option is venue-based sampling.  This would require more effort to simulate, but 

offers perhaps a more realistic approach to obtaining an unbiased estimate than respondent-

driven sampling [51]. We recognize the important issues and caveats associated with these 

alternative sampling methods.  Agent-based modeling offers an approach to help further quantify 

these issues. 
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8.3  Closing Thoughts 

 

An important issues with agent-based models is the question of verification.  Will we 

ever have enough data to verify completely all MSM distributions?  Sexual network data is 

exceedingly difficult to obtain, and that which we do obtain is not complete network data.  We 

do, however, have macroscopic trends and statistics, and can at least corroborate these large 

effects.  So we know that our models produce these macroscopic epidemic trends because we’ve 

calibrated them to do so.  But the work we have done produces a cautionary warning:  that the 

variability we produce from community to community under both models far exceeds that 

estimated with a binomial variance assumption.  The fact that both models support a higher 

variance suggests that the true variance is higher than a simplistic binomial model.  It is difficult 

to say, however, whether we have overestimated the true variance.  Usually we build all the 

variability into a system that we can account for at the time, but there are always things to miss, 

and consequently we often tend to underestimate the total variability.   

We are never going to run enough clinical trials among MSM in South Africa to obtain a 

true variance between communities, so it is important that we prod our models further.  This 

means exploring more of the parameter and model spaces.  One important thing to note is that 

both of our models are somewhat unique in their approaches and other agent-based models have 

taken other routes in HIV epidemic modeling.  We would stress that this is not a weakness, but 

rather a strength in that agent-based models, especially in the context of the HIV epidemic 

among hard-to-reach MSM, which must make many assumptions and simplifications in order to 

reach a useable simulation.  It is precisely the lack of verification that necessitates that a 

multitude of approaches be examined.  Agent-based modeling addresses exploratory questions 
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that cannot be answered through any other method, short of actually carrying out large-scale 

interventions.  We conclude that agent-based models offer useful estimates and bounds on novel 

scenarios that can inform policy and influence the design of future HIV prevention trials. 
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APPENDIX 
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