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Abstract

Background: Landscape genomics integrates population genetics with 

landscape ecology, allowing the identification of the putative molecular 

determinants involved in plant environmental adaptation across their natural 

geographic and ecological range. Wild Phaseolus vulgaris, the progenitor of 

common bean (P. vulgaris), has a remarkably extended distribution from 

northern Mexico to northwestern Argentina. Earlier research has shown that 

this distribution represents a range expansion from Mesoamerica to the 

southern Andes through several discrete migration events and that the species 

colonized areas with different temperature and rainfall compared to its core 

area of origin. 

Results: In the current study, we applied a landscape genomics approach to a 

collection of 246 wild common bean accessions representative of its broad 

geographical and climatic distribution and genotyped for ~20K SNPs. We 

applied two different but complementary approaches for identifying loci 

putatively involved in environmental adaptation: i) an outlier-detection method 

that identifies loci showing strong differentiation between sub-populations; ii)  

an association method based on the  identification of loci associated with bio-

climatic variables. This integrated approach allowed the identification of 

several genes showing signature of selection across the different natural sub-

populations of this species, as well as genes associated with specific bio-

climatic variables related to temperature and precipitation.

Conclusions:  The  current  study  demonstrates  the  feasibility  of  landscape

genomics approach for a preliminary identification of novel candidate genes

involved  in  environmental  adaptation  in  P.  vulgaris. As  a  resource  for
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broadening the genetic diversity of the domesticated gene pool of this species,

the genes identified constitute potential molecular markers and introgression

targets for the breeding improvement of domesticated common bean.

Keywords: Landscape genomics; Crop Wild Relatives (CWRs); climate 

adaptation; GWAS; natural selection; domestication
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Background

Climate change represents one of the primary threats for food security 

worldwide, but especially in developing countries that rely heavily on 

agricultural production from smallholder farmers [1,2]. Indeed, several studies 

have highlighted a predominant role of climate change in reducing agricultural 

productivity and increasing inter-annual variability in crop yields, thus directly 

affecting food availability and stability [3,4].

The increase in average temperatures, along with the higher frequency and 

intensity of extreme weather conditions, will require the development of new 

plant varieties adapted to this changing environment in order to meet future 

food security needs [5,6]. However, the development of new varieties requires 

the introduction of genetic diversity into breeding programs to find the correct 

combinations of favorable alleles in a specific crop [7]. The genetic variability 

available in domesticated plants is generally low due to the bottleneck effect 

induced by domestication and subsequent selection during variety 

improvement (Zamir 2001; Ford-Lloyd et al. 2011; Gepts 2014), thus new 

sources of genetic diversity need to be introduced into breeding programs.

Crop Wild Relatives (CWRs) represent a large, and mostly unexploited, source 

of genetic diversity readily available for plant improvement under climate 

change [7,8,10,11]. However, the use of CWRs in breeding programs for 

improving stress resistance in domesticated species could be hindered by the 

lack of knowledge of the genetic determinants of resistance and also by 

difficulties in phenotyping a large number of individuals under agricultural 

conditions [11–13]. One possible solution for overcoming these difficulties is 

the integration of environmental and genotypic datasets to understand the 
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genetic basis of natural selection in wild populations, an approach known as 

‘landscape genomics’ [14,15]. In addition, this approach offers both theoretical 

and practical applications since it strengthens the understanding of plant 

natural adaptation but allows also the identification of molecular markers that 

could be readily applicable for breeding improvement of domesticated plants 

[16].

Several methods have been developed for identifying signature of natural 

selection (e.g., selective sweeps) in natural populations. These methods can be

divided mostly in outlier-detection methods, which identify hard-selection 

sweeps, and association methods, that identify soft-selection sweeps [14,17]. 

Outlier-detection methods are based on population differentiation analysis and 

aim at identifying loci with drastic differences in allele frequencies between 

populations, as measured by Fst [18,19]. Although based on the assumption 

that alleles fixed within sub-populations could confer an evolutionary 

advantage in the ecological niche occupied [20,21], these methods do not take 

directly into account climatic data and could be biased by complex population 

structure and/or demography [22]. On the other hand, association methods 

directly correlate genotypic with environmental data and rely on the 

assumption that variations of allele frequencies across environmental gradients

are possible signature of local adaptation [23]. The theory beneath 

environmental association methods are practically the same as that used in 

Genome Wide Association Studies (GWAS) [24] Both approaches employ mixed 

model association approaches for correcting for the confounding effects that 

could be introduced by population structure and relatedness in the sample 

[25].
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Common bean (P. vulgaris) is an essential staple crop providing most of 

proteins and micronutrients in the diet of the majority of the population in 

several developing countries [26]. The regular consumption of this crop 

provides several health benefits, like reducing the risks of heart disease, 

obesity, and diabetes [27]. Its cultivation improves agricultural sustainability 

thanks to its nitrogen-fixing ability [28]. Common bean shows a surprisingly 

high genetic diversity, with the presence of at least three geographically 

isolated and divergent wild gene pools located in 1) Mesoamerica and the 

northern Andes (MW); 2) the Central Andes (Ecuador and northern Peru; PhI); 

and 3) the Southern Andes (southern Peru, Bolivia, and northwestern 

Argentina; AW) [29–31]. Common bean was domesticated independently in 

Mexico and the Southern Andes, producing locally-adapted varieties and 

landraces with specific characteristics [32–38].  The intermediate gene pool in 

the Central Andes was not domesticated [39,40]. This wild group has been 

recently identified as a cryptic sister species of P. vulgaris, named Phaseolus 

debouckii, which was disseminated from the center of origin of this species in 

Mesoamerica and remained geographically isolated from the other wild gene 

pools of this species [41,42].

Wild common bean is an annual vine plants that is found from the state of 

Chihuahua in northern Mexico (approx. 35° N. Lat.) to the Córdoba province in 

Argentina (approx. 35° S. Lat.), encompassing almost 70 latitudinal degree or 

about 10,000 km [43,44]. This species grows in both tropical and sub-tropical 

environments across the Americas at elevations between 500 and 2,000 m 

a.s.l. with annual rainfall from 500 to 1,800 ml [43,44,12]. This broad 

geographic and ecological distribution suggests the existence of genotypes 
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adapted to a wide variety of environmental conditions, which could be useful 

donors of abiotic stress resistance for improving domesticated common bean 

production under climate change [44,45].

Future projection of climate changes under different models predict a 

reduction of suitability for common bean production in areas where this plant is

an essential staple crop and also a source of household income, hence 

endangering food security and increasing rural poverty in already susceptible 

areas of the world [46]. For this reason, it is essential to understand the 

molecular mechanisms involved in wild common bean adaptation to different 

environments and to identify molecular markers that could be useful in 

breeding improvement of this crop. The application of landscape genomics 

approaches in wild common bean could help address these issues, as 

demonstrated previously in several other plant species like soybean, barley, 

Medicago truncatula, maize, and Brachypodium [16,47–50].

In the current study, we applied a landscape genomics approach to 

understand environmental adaptation to a dataset comprised of 246 wild 

common beans genotyped for ~20K previously developed SNPs [51]. A similar 

analysis was performed previously in this species using 148 SNPs located in 

genes putatively involved in adaptation to biotic or abiotic stresses [52]. 

However, the higher number of markers developed in this study and the 

broader and more even distribution across the genome of these markers, 

results in a more comprehensive and precise analysis of environmental 

adaptation in this species. In addition, the genes identified as associated with 

environmental variables can be validated and applied in the future for 

domesticated common bean breeding improvement.
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Materials and Methods

Plant material and genotype data

A panel of 246 wild P. vulgaris accessions, previously genotyped with a 

Genotyping-By-Sequencing (GBS) protocol using the CviAII restriction enzyme 

[51], was analyzed. The panel was representative of the ecological and 

geographic distribution of this species and included 157 genotypes of the 

Mesoamerican (MW), 77 of the Southern Andes (AW), and 12 of the Central 

Andes (Northern Peru-Ecuador; PhI) gene pools. The SNPs considered in this 

study were those with a Minor Allele Frequency (MAF) ≥ 0.05 and less than 

20% missing data. The list of the accessions sequenced, with gene pool 

information and geographic coordinates, is available in Additional File 1, while 

genotyping data in VCF format are available in Additional File 2. The seeds were

provided by the International Center of Tropical Agriculture (CIAT, Cali, 

Colombia) and the United States Department of Agriculture Western Regional 

Plant Introduction Station (Pullman, WA). 

Spatial analysis

Spatial analyses were conducted within the R statistical environment (www.r-

project.org) using the dismo package and its dependencies (raster and sp). The

geographic coordinates of the individuals analyzed in this study were used for 

retrieving the 19 bio-climatic summary variables from the WorldClim database 

(http://www.worldclim.org/). The data were downloaded at a 30-second 

resolution (approximately 0.86 km2 at the equator). In order to identify a subset

of bio-climatic variables that best summarizes our dataset, we performed a 
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Principal Component Analysis (PCA) on the scaled and centered variables using 

the ChemometricsWithR package [53]. We then selected the first two variables 

with the highest positive and negative loading in the first four principal 

components (PC1 to PC4) (Additional File 3). Since some of the selected bio-

climatic variables showed a high correlation (Additional File 4), we decided to 

pick only one of the correlated variables for further analysis. The final bio-

climatic variables analyzed in this study were: bio_3 (Isothermality), bio_5 (Max

Temperature of Warmest Month), bio_6 (Minimum Temperature of Coldest 

Month), bio_7 (Temperature Annual Range), bio_12 (Annual precipitation), 

bio_14 (Precipitation of Driest Month), and bio_18 (Precipitation of Warmest 

Quarter). In addition to the above-mentioned bio-climatic variables, we 

included also annual Potential EvapoTranspiration (PET) downloaded from the 

Global Aridity and PET Database (http://www.cgiar-csi.org/data/global-aridity-

and-pet-database).

Genome scans for selection and association analysis

Genome scans for selection (i.e., hard selective sweeps) were performed on the

final set of SNPs using the pcadapt R package [54], an algorithm able to detect 

population structure and outlier loci by performing a PCA analysis on 

SNPgenotypic data. The best number of sub-populations was inferred by 

visually evaluating the scree plot of eigenvalues for the different principal 

components (K); the genomic scans for selection were performed for K in the 

range 2-5. The p-values obtained by this analysis were corrected using the 

Bonferroni method and only SNPs with a corrected p-value ≤ 0.001 were 

considered as significant. 
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Association analysis (i.e., soft selective sweeps) was performed separately for 

each of the seven selected bio-climatic variables and annual PET. For this 

analysis, we used the LFMM algorithm [55] implemented in the LEA R package 

[56]. This method was developed specifically for identifying signature of 

environmental selection in genomic data and is able to efficiently correct for 

population history and isolation-by-distance (IBD). In order to correct for 

spurious association determined by population structure or IBD, the number of 

latent factors (i.e., populations) needs to be decided a priori and subsequently 

evaluated using the genomic inflation factor parameter. Since LFMM is based 

on Monte Carlo Markov Chain (MCMC) sampling, we ran it multiple times for 

each association analysis and then averaged the p-values (as suggested in the 

software documentation). To identify the best number of populations (K) for 

association with each bio-climatic variable, we performed three runs of the 

program with K in the range 4-10 and estimated the inflation factor from these 

runs [57]. Plots of the inflation factor for different values of K (Additional File 5) 

showed that the best inflation factor for reducing False Discovery Rate (FDR) 

(i.e., closest to 1) was six for Bio12, Bio14, and Bio5, and 7 for Bio6, Bio18, 

Bio7, Bio3, and PET. Based on this preliminary screening, we re-ran the 

program with the best number of K for 10 times with 10,000 MCMC iterations 

and a burn-in period of 1,000. The p-values where then averaged across the 

different runs and corrected using the Bonferroni method. SNPs with a 

corrected p-value ≤ 0.05 were considered as significant.

Identification of putatively selected genes
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The distance between significant SNPs, identified by genome scans or 

association analysis based on the P. vulgaris v1.0 genome annotation 

(https://phytozome.jgi.doe.gov/pz/portal.html), was evaluated using the 

GenomicRanges/rtracklayer packages or R [58,59]. Only genes within 5 Kb of a 

significant SNPs were chosen as putatively selected genes. This 5 Kb upper 

limit was selected based on the genotyping approach used in this study (that 

did not allow a full coverage of the genome), but also took into account the 

presence of possible regulatory regions immediately adjacent to gene 

sequences [60].

Candidate genes evaluation across genetic groups

For clustering individuals based on genetic groups and visualize allele 

frequency variations across clusters, we applied a K-means clustering approach

using the first 5 PCs obtained from pcadapt analysis. As best number of 

clusters we selected K=5, as suggested by the scree plot of the eigenvalues 

obtained with pcadapt. The clustering analysis was performed using the python

scikit-learn library [61]. For each genetic cluster we calculate allele frequencies 

for SNPs tagging candidate genes using VCFtools [62], and plot them on 

genetic maps using R. 
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Results

Bio-climatic data analysis

The bio-climatic variables downloaded from the WorldClim database concern 

mostly temperature and rainfall during the year. These bio-climatic variables 

were developed for generating biologically informative variables useful for 

species distribution modeling and landscape genomics approaches. In our 

analyses, the 19 bio-climatic variables analyzed showed a great degree of 

correlation, in particular for similar variables like bio_14 (precipitation of the 

driest month) and bio_17 (precipitation of the driest quarter), or bio_13 

(precipitation of the wettest month) with bio_16 (precipitation of the wettest 

quarter) (Additional File 4).

The loading plot on the first two PCs showed some correlations between 

bio-climatic variables and principal components, as well as strong correlations 

between some of the bio-climatic variables analyzed (Fig. 1A). In particular, 

bio_12 (annual precipitation) and bio_4 (temperature seasonality) showed a 

strong correlation with PC1. On the other hand, bio_5 (max temperature of the 

warmest month), bio_8 (mean temperature of the wettest quarter), and bio_10 

(mean temperature of the warmest quarter) showed a strong correlation with 

PC2. Interestingly, most of the variables related to precipitation (bio_12, bio_14,

bio_16, bio_17, bio_18, and bio_19) were positively correlated with PC1, the 

variables related to seasonal variation (bio_2, bio_4, bio_7, and bio_15) were 

negatively correlated with PC1, while the variables related to temperature 

(bio_1, bio_5, bio_8, bio_9, bio_10, and bio_11) were negatively correlated with 

PC2. 
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In addition, this PCA on the bio-climatic variables for the genotypes 

analyzed showed that the first two principal components (PC1 and PC2) 

explained 75% of the variance (Fig. 1), while PC1 to PC4 explained 

cumulatively > 90% of the variance (Additional File 6). A plot of PC1 vs. PC2 

showed some differences in the distribution of the different gene pools of wild 

common bean in the PC dimensional space. In particular, the majority of 

genotypes from the Mesoamerican (MW1 to MW3) and Intermediate (PhI) gene 

pools were distributed towards the positive part of PC1, while the Andean group

were located in the negative part of this axis (Fig. 1A). Given the origin of the 

genus Phaseolus in the Mesoamerican area (with local descendants 

represented by MW1 and MW2), three range expansions characterize this 

species: 1) PhI, which established wild populations on the western slope of the 

Andes in Ecuador and northern Peru; 2) AW, encompassing wild populations in 

the southern Andes; and 3) MW3, a more recent and perhaps ongoing 

dissemination to Central America and the eastern slope of the northern Andes 

[51]. Inspection of Fig. 1A and Additional File 3 shows that the distribution of 

the PhI group, which resulted from the earliest range expansion event, 

correlates - on bioPC3 - with Isothermality (bio_3), Temperature Seasonality 

(bio_4), bio_13 (Precipitation of the Wettest Month), and bio_18 (Precipitation of

the Warmest Quarter), consistent with a dispersal to an equatorial region. In 

contrast, the predominant distribution of the southern Andean accessions (AW) 

in the upper left quadrant of Fig. 1 is consistent with earlier observations that 

the populations of this gene pool are distributed in cooler and drier locations, 

as shown by correlations with bio_6 (Minimum Temperature of the Coldest 

Month), bio_9 (Mean Temperature of the Driest Quarter, bio_11 (Mean 
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Temperature of the Coldest Quarter) and bio_1 (Annual Mean Temperature). 

This dissemination occurred with a concomitant lower potential 

evapotranspiration [51]. Dispersal of the MW3 group (Fig. 1) increased 

Isothermality (bio_3) and decreased Seasonality (bio_4) and Precipitation 

Seasonality (bio_15); it also increased Precipitation during the Driest Month 

(bio_14) and Driest Quarter (bio_17). 

Genome scan of selection

An analysis of the scree plot of the PCA analysis conducted on SNP data 

showed that the majority of the variance could be explained by the first 

principal component (15%), even though PC2 to PC5 also explained a 

considerable amount of variance in the data (Fig. 2A). On the other hand, 

after PC5, no significant increase in the explained variance could be detected. 

This pattern of the scree plot is representative of a possible range expansion of 

this species across the Americas, as hypothesized by a prior evolutionary 

analysis of this same collection [51]. Visual inspection of p-value distribution for

genome scans for K=2 and K=3 showed a large proportion of low and high p-

values, while for K=4 and K=5 the distribution of p-values was more uniform, 

especially for K=5 (Additional File 7). For this reason, we selected K=5 for 

further genome scan analysis.

A plot of genetic PCA analysis performed with the pcadapt algorithm was 

able to discriminate between the different wild gene pools of this species (Fig. 

2B). In particular, the MW1-MW3 and PhI groups were mostly localized on the 

positive part of PC1, while the AW gene pool was localized towards the 
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negative end of this PC. Interestingly, PC1 mostly differentiated MW vs. AW, 

while PC2 and PC3 clearly separated the MW+AW groups from the PhI (Fig. 3). 

The genome scan analysis with K=5 identified 84 significant variants 

(Bonferroni-corrected p-value ≤ 0.001) distributed throughout the 11 

chromosomes of common bean (Fig. 4), tagging 70 annotated genes. The 

highest number of tagged genes were identified on chromosomes Pv02 and 

Pv04 with 15 and 11 genes, respectively. The genes identified as selected by 

genome scan analysis were mostly related to plant development (17 genes), 

hormone response (10 genes), ion homeostasis (5 genes), and response to 

stress (9 genes) (Table 1). Among the genes identified, we found several of 

them related to drought and/or abscisic acid (ABA) response like 

Phvul.002G331700, a homolog of the Arabidopsis KUP6 involved in potassium 

uptake transporter and stomata movement; Phvul.002G143100, a glycine-rich 

domain protein (GRP) involved in auxin signaling and stress response; 

Phvul.004G102800, homologous to Arabidopsis SLAH3 involved in ABA 

response; Phvul.008G161000, homolog of Arabidopsis CAO, a gene related to 

chlorophyll biosynthesis and ABA signaling; and Phvul.009G050600, a gene 

annotated as an importin β protein involved in ABA and drought response in 

Arabidopsis.
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Genome-wide association analysis

A genome-wide association analysis identified 49 genes associated with the 

bio-climatic variables selected for this analysis. Except for the Bio18 

(Precipitation of Warmest Quarter) variable, for which no associations were 

detected, the other variables were associated with at least one gene. The bio-

climatic variables with the highest number of associated genes were Bio3 

(Isothermality) with 29 genes, and Bio12 (Annual precipitation) with 11 genes 

(Table 2). The associated genes were located in all 11 common-bean reference

genome chromosomes, except for chromosome Pv06 where there were no 

significantly associated SNPs. Interestingly, some of the genes were associated 

with more than one bio-climatic variables (Fig. 5), suggesting the possibility 

that they could be related to multiple environmental stimuli. Among the genes 

significantly associated with one or more bio-climatic variables, we found 

several of them related to hormone response, ion homeostasis, plant 

development, metabolism and response to stress, in particular drought (Table 

2). There was no overlap between the genes identified by genome scan and 

association analysis. Among the genes identified, we found some interesting 

candidates probably involved in stress resistance, like Phvul.001G034400, a 

homolog of Arabidopsis KEA6 involved in potassium homeostasis; 

Phvul.010G155000, homologous to an Arabidopsis phospholipase D α 1 

(PLDα1) involved in ABA signaling; Phvul.010G035200 homolog of a cytokinin 

responsive factor homologous of Arabidopsis; and Phvul.008G161700, 

homologous to an Arabidopsis thioredoxin involved in ROS signaling. 

Candidate gene allele distributions
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To evaluate the geographic distribution of alleles in candidate genes identified 

by genome scan and association analysis, we clustered the genotypes into 

groups with a K-means clustering approach on the molecular PCs calculated 

with pcadapt. The advantage of a K-means clustering approach, over a 

standard population structure analysis, is that it clearly assigns individuals to 

specific clusters. The K-means clustering approach identified three clusters for 

the MW group, with two clusters (MW1 and MW2) located in Mexico and 

another (MW3) in Central America and Colombia, plus one cluster each for the 

intermediate (PhI) and the Andean (AW) group (Additional File 8). Interestingly, 

the clustering results closely resembled those obtained in a previous study with

more advanced population structure approaches (Additional File 1) [51].

The allele frequency distribution of the candidate genes identified by genome 

scan showed drastic differentiation between the genetic groups identified (Fig. 

6), as expected from the assumptions of the genome scan approach, with some

alleles being private for just one of the genetic group (like the alternative 

alleles for GRP and CAO that are present only in the AW group). On the other 

hand, the genes identified by association analysis showed a wide variety of 

allele frequencies distribution across the different genetic groups (Fig. 7), even

though some genes had only a single allele in some of the populations (like the 

reference allele for PLD and TRX in the PhI and AW group). In general, the 

genes identified by association analysis showed a higher variation of allele 

frequencies in the different MW groups.
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Discussion

Wild common bean (P. vulgaris) grows in several areas of Mexico and Central 

and South America, from northern Mexico to northwestern Argentina across 

~70 latitudinal degrees, in different environments with a wide range of 

altitudes, average temperatures, and rainfall regimes [12,43,44]. Thanks to this

exceptional geographic distribution, its complex evolutionary history, and high 

levels of genetic diversity, this species represents an extraordinary resource for

evolutionary studies [29–31,41,42,63,64], but can be also a conceptual 

framework for testing and validating landscape genomics approaches in wild 

plant populations and its feasibility for breeding improvement of domesticated 

crops [16].  In the current study, we identified several genes that could be 

involved in environmental adaptation in wild common bean by combining 

genome scan and association analysis. If validated, the genes identified could 

be useful candidates for improving stress resistance in domesticated common 

bean.

Genome scan of selection

Genetic PCA analysis clearly separated the three groups of this species, as 

observed in previous research. In particular, the Intermediate gene pool was 

shown again to diverge from the Mesoamerican and Andean gene pools, 

especially along the PC2 and PC3, further supporting the hypothesis that this 

gene pool is actually a distinct species of Phaseolus [41,42]. A genome scan 

based on genetic PCA analysis identified several genes with a strong signature 

of selection (hard-selection sweep) that could be involved in environmental 

adaptation across the geographical range of this species. The identification of 
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several genes involved in plant development and hormone and stress 

response, suggests that the different populations of this species adapted to 

their environment by integrating and adjusting to developmental, hormonal 

and environmental cues. There are several genes among those identified that 

could be of interest for improving stress resilience in common bean, like the 

KUP6 potassium (K+) transporter located on chromosome Pv02 

(Phvul.002G331700). This gene has been directly linked to drought stress by 

regulating ABA response and stomata movements in Arabidopsis [65]. A 

homolog of this gene located on chromosome Pv03 (Phvul.003G052900) 

showed a higher genetic and transcriptional diversity in Mesoamerican 

domesticated beans than in wild ones [66,67]. Due to the possible role of KUP-

like genes in response to drought stress and their identification as selected 

genes in both wild and domesticated populations of common bean, further 

studies should focus on the evolution and diversity of this gene family in this 

species.

Another gene identified in the current study and possibly involved in 

adaptation to drought response in wild common bean is Phvul.004G102800, 

homolog of SLAH3 of Arabidopsis, which was annotated as an S-type anion 

channel. This type of channels is rapidly regulated by ABA and stimulate 

stomata closure by inhibiting inward K+ channels, thus reducing K+ influx into 

guard cells [68,69]. In addition to being involved in drought stress response, 

this same gene has been recently identified also as related to salinity stress 

response in Arabidopsis by regulating ion homeostasis between root and shoots

[70]. 
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The chlorophyll alpha oxygenase (Phvul.008G161000), identified as a gene 

under selection (and a homolog of Arabidopsis CAO), has a primary role in the 

biosynthesis of chlorophyll b [71]. However, Arabidopsis mutants for this gene 

showed a reduction of antioxidant compounds (specifically glutathione) in 

guard cells and an increased ABA sensitivity in comparison to wild type plants 

[72], suggesting a possible involvement of this gene in adaptive response to 

stressful environments.

Phvul.002G143100, identified as selected within the different sub-

populations of P. vulgaris, is annotated as a glycine-rich domain protein, 

homologous of Arabidopsis GRDP2 gene. GRP are a multi-gene superfamily 

present in several organisms, including plants [73]. This gene family has been 

associated in plants with several developmental processes and in responses to 

both biotic and abiotic stresses [74]. A recent study focusing on the 

characterization of the direct Arabidopsis homologs of this gene (ATGRDP2) 

demonstrated that this gene regulates plant growth and flowering by 

accumulating higher level of indole-3-acetic acid and improves abiotic stress 

response [75]. In particular, the over-expression of this gene in transgenic 

plants increased growth rate and reduced days to flowering. It also increased 

salt tolerance in comparison to wild-type plants.

In addition to the previous genes identified as selected by genome scan 

analysis and putatively involved in environmental response in plants, was 

Phvul.009G050600, which is annotated as an importin β-protein homologous to

Arabidopsis KPNB1. This gene mediates the import of proteins and protein 

complexes between the cytoplasm and the nucleus and is essential in 

regulating signal transduction pathways in response to environmental and 
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developmental stimuli [76]. In particular, the Arabidopsis homolog of 

Phvul.009G050600 (AtKPNB1) has been directly related to ABA and drought 

response previously [77].

Genome wide association analysis

Association analysis between genotypic data and bio-climatic variables 

identified several genes significantly associated with one or more bio-climatic 

variables, putatively involved in plant development, ion homeostasis, and 

stress response. Among these genes, several could be useful as potential 

molecular markers for improving abiotic stress in domesticated common bean. 

As examples, we identified a gene related to potassium homeostasis and 

annotated as a K+ efflux antiporter (KEA) gene associated with Bio12 (Annual 

Precipitation) and Bio7 (Temperature Annual Range). Potassium is an essential 

macronutrient involved in several physiological and developmental processes 

in all living organism, and in plants this cation is also essential in maintaining 

plant osmotic potential, cytosolic pH, and stomata movement [78,79]. In 

addition, variation in K+ homeostasis is one of the first response to several 

abiotic and biotic stresses in plants, allowing the plants to rapidly respond to 

stressful conditions [80] and making the KEA gene identified in the current 

study an interesting candidate gene for further analysis.

Another gene, significantly associated with Bio14 (Precipitation of Driest Month)

is Phvul.010G155000, which is annotated as a phospholipase (PLDα1). These 

genes are involved in the biosynthesis of phosphatidic acid (PA), which is an 

important signaling molecule in response to several stresses in plants [81]. In 

particular, PA is involved in the ABA signaling cascade and regulates stomata 
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closure in plants by directly interacting and blocking ABI1, an inhibitor of ABA 

response in plants [82]. This gene regulates stomatal closure and ABA-

dependent hydrogen peroxide (H2O2) production in Vicia faba as well [83], 

making this gene an interesting candidate for improving drought response in 

common bean.

An additional gene, significantly associated with Bio5 (Max Temperature of 

Warmest Month), is Phvul.010G035200, annotated as a cytokinin response 

factor homologous of Arabidopsis CRF4. Cytokinin is an essential plant 

hormone involved in growth and developmental processes [84,85], but in 

recent years it has also been implicated in the response and adaptation to 

different environmental stresses [86,87]. CRF genes are a class of plant 

transcription factors responsive to cytokinin that integrate hormonal and 

environmental signals for adapting plant growth and development in response 

to the environment [88,89]. The Arabidopsis homolog of this gene has been 

previous related to acclimation to cold temperatures [90]. Since this gene has 

been associated with temperature variables in wild common bean, it could also 

be involved in adaptation to temperature variation in this species.

Another gene of interest, Phvul.008G161700, is significantly associated with 

Bio3 (Isothermality) and is annotated as a thioredoxin protein. These proteins 

are involved in the regulation of oxidative stress response and in scavenging 

reactive oxygen species (ROS) in plants [91]. Other than being simple 

byproducts of cellular metabolism, ROS molecules has been recognized as 

important signaling molecules that regulate the response to several 

environmental stresses in plants [92,93]. Due to their ability to control the 

redox state of the cell, thioredoxin represents a key component of the ROS 
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signal transduction pathways in plants and in the response to environmental 

stress [94]. Thus, this gene could constitute another interesting candidate gene

for improving stress resistance in domesticated common bean.

Comparison of genes identified by genome scan and GWAS

Even though the genes identified by outlier-detection methods (hard-selection 

sweeps) and association methods (soft-selection sweeps) are involved in 

similar processes, there is no overlap between the candidate genes identified 

by the two approaches. This could be the direct results of the different 

assumptions underlying these methods. Indeed, genome scan analysis identify 

genes that shows drastic variations of allele frequencies between natural 

subpopulations [14,17]. This approach is independent from bio-climatic 

variables, thus the SNPs identified as under selection by this analysis could be 

the results of selective mechanisms not taken into account by association 

analysis, like soil composition, pathogen pressure and/or competition with other

plants. On the other hand, association analyses identify SNPs showing slight 

variations in allele frequencies across environmental gradients that can 

increase environmental adaptation in natural populations [14,17]. This 

selection process usually acts on natural standing variations and favor the 

presence of multiple alleles and haplotypes, instead of allele fixation within 

populations [95].

Conclusions

In conclusion, landscape genomic analysis of wild common bean genotypes 

allowed us to identify several genes showing a signature of presumed selection
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in this species. It is likely that two methods – genome scan and GWAS -  are 

indeed complementary for understanding local adaptation in wild plant 

populations, as observed previously in other species [49,96] and are a feasible 

approach for the preliminary identification of novel candidate genes for 

adaptation to climatic differences along the exceptionally broad habitat of wild 

common bean. Further corroboration of the actual role of the candidate genes 

in adaptation will come from introgression of these genes from wild to 

domesticated beans and a concurrent phenotypic analysis showing improved 

performance under stress conditions.
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Figure legends

Figure 1 Bio-climatic data analysis. (A) Loading plot of the PCA analysis. (B) 

Principal Component Analysis (PCA) of the bio-climatic data. Groups are colored

according to the K-mean clustering analysis conducted in this study, which 

gave results very similar to the STRUCTURE analysis conducted by Ariani et al. 

(2016): MW1, MW2, and MW3: Mesoamerican wild gene pools; AW: Andean wild

gene pool; PhI: Intermediate wild gene pool.

Figure 2 PCA analysis on molecular data. (A) Screeplot of the PCA explained 

variance. (B) PCA plot based on molecular data of the different genotyped 

analyzed in the current study. MW: Mesoamerican Wild; AW: Andean Wild; PhI: 

Intermediate gene pool.

Figure 3 Three-dimensional plot of the PCA analysis on molecular data. Points 

are colored as in Figure 2A. 

Figure 4 Manhattan plot of the genome scan data with 5 sub-populations (K). 

The blue dashed line represents the significance threshold (Bonferroni p-value 

≤ 0.001).

Figure 5 Chromosome ideogram of the genes identified as associated with the

bio-climatic variables analyzed. Only chromosomes with significantly 

associated variants are shown. Each circle represents a different bio-climatic 

variable. When available, gene annotations are shown. The centromeric regions

shown are based on the results from [97].

Figure 6 Allele frequency distribution across different genetic groups for 

candidate genes identified by genome scan analysis.  P. vulgaris v1.0 genes 

annotation and ID: (A) Potassium uptake transporter (Phvul.002G331700); (B) 

Glycine-rich domain protein (Phvul.002G143100); (C) ABA response 
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(Phvul.004G102800); (D) Chlorophyll biosynthesis and ABA signaling 

(Phvul.008G161000); (E)  ABA and drought response (Phvul.009G050600). For 

panel (E) the PhI group was removed due to complete missing data on the 

SNPs. REF: Reference allele, ALT: Alternative allele, according to the P. vulgaris 

v1.0 gene version.

Figure 7 Allele frequency distribution across different genetic groups for 

candidate genes identified by association analysis. P. vulgaris v1.0 genes 

annotation and ID: (A) Potassium efflux antiporter (Phvul.001G034400); (B) 

Phospholipase D α 1 (Phvul.010G155000); (C) Cytokinin responsive factor 

(Phvul.010G035200); (D) Thioredoxin (Phvul.008G161700). Reference and 

Alternative alleles are colored as in Figure 6.

Additional Files

Additional File 1 (Additional_File_1.csv): List of the P. vulgaris accessions 

sequenced in the current study, with gene pool information, geographic 

coordinates, gene pools and genetic group information.

Additional File 2 (Additional_File_2.vcf): Genotypic data of the P. vulgaris 

accessions analyzed in the current study

Additional File 3 (Additional_File_3.csv): Eigenvalues of the different 

bioclimatic variables along the first four principal components.

Additional File 4 (Additional_File_4.pdf): Correlation graphs between bio-

climatic variables for the different P. vulgaris accessions analyzed. Correlation 

coefficients are rendered using circles (upper-right part) or by showing directly 

the value (lower-left part). Color are based on color-bar in the right side of the 

graph.

41

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903



Additional File 5 (Additional_File_5.pdf):  Plots of the inflation factor for 

different values of K across the climatic variables selected for association study

 Additional File 6 (Additional_File_6.pdf): Cumulative variance explained 

by the different PCs when performing a PCA on bio-climatic variables

Additional File 7 (Additional_File_7.pdf): P-values distibution for genome 

scans with 2 (A), 3 (B), 4 (C) or 5 (D) sub-populations.

Additional File 8 (Additional_File_8.pdf): Plot of geographic distribution of 

the wild P. vulgaris analyzed in the current studies. Genotypes are colored 

based on the different clusters identified by K-means clustering (Additional File 

1).
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