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Abstract

There is a growing debate among developmental theorists con-
cerning the perception of causality in young infants. Some the-
orists advocate a top-down view, e.g., that infants reason about
causal events on the basis of intuitive physical principles. Oth-
ers argue instead for a bottom-up view of infant causal knowl-
edge, in which causal perception emerges from a simple set
of associative learning rules. In order to test the limits of the
bottom-up view, we propose an optimal control model (OCM)
of infant causal perception. OCM is trained to find an optimal
pattern of eye movements for maintaining sight of a target ob-
ject. We first present a series of simulations which illustrate
OCM'’s ability to anticipate the outcome of novel, occluded
causal events, and then compare OCM’s performance with that
of 9-month-old infants. The implications for developmental
theory and research are discussed.

Introduction

How does the perception of causality develop? Do we per-
ceive cause-and-effect relations at birth, or are months of
experience necessary? Developmental researchers have ap-
proached these questions by studying infants’ perceptual re-
actions to causal events (e.g., Baillargeon, 1986; Keil, 1979;
Leslie, 1982; Oakes & Cohen, 1990). Much of this research
depends on the tendency for infants to anticipate the out-
comes of causal events, often showing surprise to unexpected
outcomes (as inferred by measures of attention).

Consider the pair of causal events presented in Figure 1.
The first (1a) is a simple, occluded movement display; by
age 6 months, infants will quickly learn to anticipate the
block’s reappearance (Bower, Broughton, & Moore, 1971;
Rutkowska, 1993). The second event (1b), however, is more
complex. A wall obstructs the path of the block; note that
the wall is partially occluded by the screen, revealing only
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Figure 1: Occluded causal events. In (a), the block passes be-
hind the occluding screen and reappears on the opposite side.
In (b), a partially-visible wall obstructs the path of the block;
after passing behind the screen, the block fails to reappear.
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the upper and lower portions of the wall. While both events
begin in a similar manner, they end differently, depending on
the presence of the wall.

Two broad theoretical views have been proposed to explain
infants’ reactions to events like those in Figure 1. First, sev-
eral researchers advocate a top-down view of infant causal
knowledge (Baillargeon, 1994; Spelke, 1998). According to
this view, infants use naive or intuitive physical principles to
predict, reason about, or deduce the outcomes of occluded
causal events. Two recent computational models help illus-
trate how the representations underlying this type of predic-
tion system might develop (Mareschal, Plunkett, & Harris, in
press; Munakata, McClelland, Johnson, & Siegler, 1997).

Alternatively, several infant causal perception studies have
drawn attention to the role of simple perceptual preferences
and associative learning rules (Bogartz & Shinskey, 1998;
Rivera, Wakeley, & Langer, in press; Schilling, 1997). These
researchers argue for a bottom-up view of causal perception.
According to this approach, prediction is not an a prieri goal,
nor is representation of hidden objects necessary for the per-
ception of causality in occluded events.

It is theoretically possible, if not likely, that both top-down
and bottom-up factors play a role in infants’ causal percep-
tion. How should the two views be reconciled? The strategy
that we propose is to construct a model based on the bottom-
up view, and then to test the extent of its perceptual “abilities”
when presented with causal events like those shown to young
infants. Any gaps or limitations in the performance of the
model could then be addressed, we assume, by using the top-
down approach.

Rather than simulating causal perception as a representa-
tional task (cf., Mareschal et al.,, in press; Munakata et al.,
1997), we model the phenomenon as an optimal control prob-
lem. The optimal control model (OCM) is a sensorimotor
model of infant causal perception. Unlike human infants,
OCM: (1) has no intuitive knowledge, (2) cannot generate
predictions, and (3) learns only by trial-and-error. OCM's
objective is to learn a sequence of eye movements that best
maintain a target object in view. After training OCM to track
a target, we then test OCM’s reactions to novel, occluded
causal events like the one presented in Figure 1b. We next
briefly describe OCM.,

The Optimal Control Model
The Tracking Display

Figure 2a presents a snapshot of the 2-dimensional tracking
display used to train OCM. During each trial, the block (rep-
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Figure 2: The OCM: (a) the tracking display (the target is represented by the solid black square, while the visual field is
indicated by the black frame); (b) OCM's visual input for the corresponding display.

resented by the black square) moves from left to right, at the
rate of 1 unit per timestep. At the start of the trial, OCM’s
visual field (the large, square frame) is positioned with the
block in the center of the field. Each trial lasts 50 timesteps.

The display is 100 units wide and 20 units high. OCM’s
visual field covers a 20-unit square region of the display, per-
mittung only lateral eye movements. The block is an 8-unit
square, while the screen (when present) is 20 units wide and
12 units high.

Objects in OCM’s visual field activate corresponding in-
put units on 1ts retina (see Figure 2b). Because the block is
OCM s target object, its activation on the retinais 1 (i.e., max-
imum salience). The background has an activation of 0, while
the wall and screen’s activation levels are 0.6 and 0.2, respec-
uvely.

Model Architecture

OCM'’s sensonmotor “knowledge” is represented by a multi-
layer, artificial neural network. There are two input sys-
tems. First, OCM receives visual input from its 20-by-20
unit retina. Figure 2b illustrates a typical visual input pattern.
OCM also receives an additional input indicating the position
of the visual field with respect to the display, normalized from
Oto 1.

There are 20 hidden units, and 5 output (motor) units. The
network is fully connected, with only feedforward connec-
tions. Each of the motor units controls one of 5 possible
eye movements: <-4, -1, 0, 1, 4>. On each timestep, the
movement corresponding to the most active motor unit is per-
formed.

Learning Algorithm

OCM is rewarded for generating eye movements which keep
the block within the visual field; OCM learns by trial-and-
error to find a pattern of eye movements which optimize sight
of the block (i.e., maximize the total reward). Any movement
which is followed by sight of the block is rewarded; the re-
ward ranges from O to 1, as a function of the proportion of the
block in the visual field after the eye movement (e.g., 1 when
fully visible, 0.5 when half visible, etc.).

The output of each motor unit is an estimate of the value
(i.e., probability of reward) for performing the corresponding
eye movement. We employed the Sarsa learning algorithm,
an unsupervised, online version of reinforcement learning
methods (see Sutton & Barto, 1997) to train OCM. Using
standard gradient descent methods, the Sarsa algorithm at-
tempts to minimize the difference between the estimated and
observed rewards after each eye movement.
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Consequently, the direction and magnitude of the weight
changes for the output layer depend on the eye move-
ment chosen, and the corresponding reward, during a given
umestep. These weight changes are then propagated back-
wards to the hidden layer (see Lin, 1991, for a discussion of
reinforcement learning and back-prop hybrid models).

Simulation Overview

We conducted a series of simulation studies which assess
OCM's ability to learn to track visible and occluded targets.
In each study, OCM was first trained to track a target during
two types of events. In the occluded event, the block passed
behind a screen and reappeared on the other side. In the other
(fully visible) event, the block encountered a wall and then
remained in place. After OCM learned to optimally track
the block during these events, we then tested OCM's tracking
during a novel, occluded causal event which included both the
screen and the wall. In Studies 1 and 2, the wall was partially
occluded by the screen, while it was completely occluded in
Study 3.

Study 1: Tall Wall

Study 1 addresses the question of how OCM will respond to a
partially occluded causal event. Figure 3 displays the events
used to train and then test OCM.

Method

Training. During training, OCM was presented with two
causal events. On Screen trials, a screen occluded the cen-
tral portion of the display. On Wall trials, an obstacle was
positioned in the center of the display; the block remained in
place after making contact with the wall.

Screen and Wall trials alternated randomly. Training con-
tinued until OCM'’s total rewards during both Screen and
Wall trials were at least 95% optimal over 10 consecutive
trials (i.e., maximum total rewards were 30 and 50 points
for Screen and Wall trials, respectively). If criterion was not
reached by 300 trials, the run was terminated, the data were
discarded, and a new set of random initial weights were gen-
erated.

Testing. After training, all weights in the network were
frozen (i.e., learning was turned off'). OCM was then pre-
sented with 10 Wall-Screen trials. During Wall-Screen trials,
the wall was positioned behind the screen; when the block
passed behind the screen, its path was obstructed by the wall

'This was done to prevent OCM'’s responses during early test
trials from contaminating later trials.
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Figure 3: Training and test events presented to OCM in Study 1. Note that the Screen trial type was identical during training

and testing.

(as during Wall trials), and consequently did not reappear. In
addition, OCM was also presented with 10 Screen trials, in
order to assess OCM’s ability to track an occluded, unob-
structed object.

Results

Training. Figure 4a presents the average number of trials
to criterion in Study 1, averaged across 50 runs (36 additional
runs were discarded). OCM reached criterion on Wall and
Screen trials after 65.5 and 93.2 training trials, respectively.
The difference is statistically significant (#(98) = 1.78, p <
.05). Like human infants, OCM learns to track a fully visible
target before it learns to track an occluded target. However,
an average of 148.8 trials were necessary before reaching cri-
terion on both trial types concurrently.

Study 1: Tall Wall

Study 2: Back Wall Study 3: Short Wall
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Figure 4: Trials to criterion during training in Studies 1, 2,
and 3. See text for details.

Testing. Our analyses of the test trials focus on OCM’s
tracking behavior once the block disappears behind the
screen, and how the presence or absence of the wall affects
this behavior. In particular, we are interested in whether or
not OCM moves its visual field to the right edge of the screen
before or after the block reappears, during Screen trials. Con-
sequently, we define tracking latency as the difference in time
between OCM’s first fixation of the right edge of the screen,
and the block’s reappearance at the right edge during Screen
trials. Although the block does not reappear during Wall-
Screen trials, we can use the same temporal index to compute
OCM'’s tracking latency (i.e., assuming reappearance of the
block, had it not been obstructed). A positive latency (or de-
lay) means that OCM fixates the right edge of the screen after
the block has (or would have) reappeared, while a negative
latency means that OCM anticipates the reappearance of the
block.
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Figure 5 presents OCM’s tracking latencies during the test
phase of Study 1. During Screen trials, OCM anticipated the
block’s reappearance, fixating the right edge of the screen 8.9
timesteps sooner than the reappearance of the block (#(49)
=7.03, p < .01). In contrast, OCM’s average tracking la-
tency was significantly delayed by the presence of the tall
wall during Wall-Screen trials; on average, OCM fixated the
right edge of the screen 18.9 timesteps after an unobstructed
block would have reappeared (#(49) = 4.21, p < .01).
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Figure 5: Mean tracking latencies in the test phase of Study
1, for Wall-Screen and Screen trials. OCM anticipated the
reappearance of the block during Screen trials, while tracking
was delayed during Wall-Screen trials.

Discussion

OCM'’s learning trajectory parallels that of human infants.
OCM learns to track a fully visible object before it learns to
track the movements of an occluded object. After training,
OCM appears to react as if it “knows” when the occluded
path of the block will, or will not be obstructed. OCM antic-
ipates the reappearance of the occluded object during Screen
trials, but not Wall-Screen trials.

It is tempting to conclude that OCM learns to use the pres-
ence of the wall as a cue for tracking the occluded block.
However, there is more than one way to explain OCM’s be-
havior. One explanation is that OCM learns nothing about
the wall when training on Wall trials; rather, it only learns to
hold the visual field in place when the block stops moving.
According to this explanation, the presence of the partially
visible wall, during Wall-Screen trials, simply disrupts the
tracking pattern learned during Screen trials. Alternatively,
we might argue that OCM learns to associate the sight of the
wall with its effect on the block.

These two explanations can be tested by placing the wall
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Figure 6: Training and test events presented to OCM in Study 2. Unlike Study 1, a thinner wall was included in the display,
representing a wall which has been moved back relative (o its position in Study 1. During Wall and Wall-Screen trials, the block

passed in front of the wall.

“back” (from the perspective of OCM), beyond the path of the
block. Thus, the movement of the block is identical during
Screen and Wall-Screen trials. If sight of the wall is used
as a cue, OCM should anticipate the block on both Screen
and Wall-Scieen trials; otherwise, if the wall disrupts tracking
during Wall-Screen trials, then OCM should only anticipate
the block during Screen trials. Study 2 tests these alternative
hypotheses.

Study 2: Back Wall

Study 1 was repeated, replacing the tall wall which obstructs
the block’s movement with a wall placed “back™ (i.e., farther
from the observer’s point of view), beyond the path of the
block. Because the display is a 2-dimensional projection of
a 3-dimensional world, we represented the perceptual effect
of moving the wall back by decreasing its width (from 4 to
2 units). Consequently, the block passed in front of the wall
during both Wall and Wall-Screen trials (see Figure 6).

Results

Training. Figure 4b presents the mean number of trials to
criterion, during training in Study 2, across 50 runs (28 ad-
ditional runs were discarded). Compared to Study 1, fewer
trials were needed to independently reach criterion on Wall
and Screen trials (41.0 and 61.3, respectively).

Testing. Figure 7 presents OCM’s mean tracking latencies,
during testing, for the Wall-Screen and Wall events. Placing
the wall back significantly reduced OCM's tracking latency
during Wall-Screen trials, compared to the tall-wall condition
in Study 1 (-3.12 versus 18.9 timesteps; 1(98)=4.11, p < .01).
However, OCM’s anticipatory tracking was slightly slower on
Wall-Screen trials, than during Screen trials (see Figure 7).

A closer analysis revealed that during 6 of the 50 runs,
tracking of the block was in fact completely interrupted by the
partially visible back wall, during Wall-Screen trials. How-
ever, when the remaining 44 runs are analyzed, OCM’s av-
erage tracking latencies during Wall-Screen and Screen trials
are -10.37 and -10.5 timesteps, respectively. During the ma-
jority of the runs in Study 2, therefore, sight of the wall did
not disrupt OCM’s anticipatory tracking.

Discussion
Study 2 replicates and extends the findings of Study 1. In both

studies, OCM spontaneously learns to anticipate the reap-
pearance of the occluded block. Further, when the wall is
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Figure 7: Mean tracking latencies in the test phase of Study 2,
for Wall-Screen and Screen trials. OCM anticipated the reap-
pearance of the block during both Screen and Wall-Screen
trials.

positioned so as to have no effect on the movement of the
block, it does not disrupt OCM’s anticipatory tracking. Taken
together, the results of Studies 1 and 2 support the conclusion
that OCM learns to use both the screen and the wall as cues
for perceptual action.

In contrast to Studies 1 and 2, a number of infant causal
perception studies present perceptual cues to infants prior to,
rather than during the occlusion event (e.g., occluded colli-
sion events, studied by Baillargeon, 1986; Lucksinger, Co-
hen, & Madole, 1992). Because the pairs of test events are
identical in these studies, infants must remember and recruit
information made available to them before each occluded
event is presented.

We can simulate this type of causal event by reducing the
height of the wall; when occluded, a short wall is no longer
visible. While Studies 1 and 2 presented OCM with partially
occluded causal events, Study 3 simulates OCM’s reaction to
a completely occluded causal event,

Study 3: Short Wall

Figure 8 presents a display of the training and test events used
in Study 3. Three modifications were made to the method em-
ployed in Study 1. First, the height of the wall was reduced
from 16 to 10 units. Second, 20 new input units were added
to OCM’s neural network. These “context” units were ac-
tivated via recurrent connections from OCM'’s hidden layer,
providing a functional memory of past internal states (Elman,
1990).

Third, each trial was preceded by a preview. During the
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Figure 8: Training and test events presented to OCM in Study 3. Unlike Study 1, a short wall was included in the display,
which was fully occluded by the screen during Wall-Screen trials. Note that after the preview, Screen and Wall-Screen trials
are perceptually identical; past state information is necessary to differentiate these two trial types.

preview, OCM's visual field was held at the center of the dis-
play for 10 timesteps. During Screen and Wall-Screen trials,
the screen was not included in the preview (i.e., OCM saw
what was “behind” the screen). Learning was turned off dur-
ing the preview. After the preview, each trial proceeded as in
Studies | and 2.

Results

Training. Figure 4c presents the mean trials to criterion,
during training in Study 3, across 50 runs (21 additional runs
were discarded). When compared with Study 1, there were
no significant differences in training time after changing the
tall wall to the short wall.

Testing. OCM appears to “forget’” about the short wall once
it is occluded by the screen. As Figure 9 indicates, OCM’s
tracking latencies during Screen and Wall-Screen trials were
identical; regardless of whether or not the short wall was
present, OCM anticipated the reappearance of the block by
7.34 timesteps (1(49) = 4.12, p < .01).
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Figure 9: Mean tracking latencies in the test phase of Study
3, for Wall-Screen and Screen trials. Unlike Study 1, OCM
anticipated the reappearance of the block during both Screen
and Wall-Screen trials.

Discussion
In contrast to the results of Study 1, OCM'’s tracking behavior
was not affected by the presence of a short wall. The findings
from Study 3 suggest that OCM relied on its immediate per-
ceptual input, while ignoring or failing to use its memory of
the short wall.

However, it is important to remember that there was no
pressure on OCM during training to learn to use memory.

First, during the fully visible wall trials, memory is unnec-
essary. Second, during the Screen trials, OCM learns to use
the sight of the screen (rather than an internal representation
of the occluded block) as a perceptual cue for anticipating the
block’s reappearance. Thus, the task constraints operating
during training make the use of memory redundant.

General Discussion

The results from the three sets of simulations highlight both
the strengths and limitations of the optimal control model of
infant causal perception. There are two major findings. First,
OCM quickly learns a set of optimal tracking strategies for
following a moving object. Second, when presented with a
novel causal event, OCM appropriately anticipates the out-
come of partially occluded, but not fully occluded, versions
of the event.

We can evaluate the performance of the model by directly
comparing the results with data obtained from young infants.
Berthier et al. (in preparation) conducted a series of experi-
ments with 9-month-old infants, corresponding to Studies 1
through 3. Figure 10 presents a summary of the test results
for OCM, and the comparable average tracking latencies (in
seconds) for three groups of 9-month-olds. Across all three
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Figure 10: Mean tracking latencies in the test phase of Studies
1-3 for the OCM (top panel) and 9-month-old infants (bottom
panel; from Berthier et al., in preparation).
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studies, the performance of OCM provides a close qualitative
fit to the pertormance of human infants. Like OCM, 9-month-
old infants also use the partially visible wall as a cue, but not
the fully occluded wall, to guide their tracking of the occluded
target.

When taken together, the human and simulation findings
carry a number of implications for developmental theory and
research on the perception of causality in young infants. First,
many causal perception researchers: (1) assume that infants
explicitly predict the outcomes of the events they watch, and
(2) infer, on the basis of looking-time measures, when in-
fants’ predictions are confirmed or violated. While the results
from OCM are not intended to provide a reductionist account,
they suggest that learning during the habituation or familiar-
ization phase may drive the process of anticipation, helping to
shape infants’ causal expectations (see Rivera et al., in press;
Schilling, 1997).

A second implication concerns the role of internal repre-
sentations of occluded objects and events. Again, it is often
assumed that infants must operate on mental representations,
rather than direct perceptions, when the critical objects are
occluded or out of sight. However, when tracking an occluded
target, OCM relies on sensorimotor rather than representa-
tional strategies for anticipating the target.

For example, the results from Study 1 demonstrate that an-
ticipatory behavior can emerge as a consequence of learning
an optimal tracking strategy, without the need for memory or
prediction. Indeed, having memory does not seem to facili-
tate OCM’s learning to track the block during Screen train-
ing trials (compare Figures 4a and 4c), although there were
fewer discarded runs when OCM was trained with a recurrent
network (i.e., in Study 3). We suspect that in many causal
perception studies, infants employ some combination of sen-
sorimotor and representational strategies. Simulations with
models like OCM help to determine if and when the senso-
rimotor strategies are sufficient to account for the perceptual
phenomenon.

This point echoes a question raised in the introduction:
what are the performance limits of OCM? On the one hand,
there is surprisingly close agreement between the perfor-
mance of OCM and the recent findings of Berthier et al. Nev-
ertheless, this fit may in part be due to the specific constraints
of learning to track, and the way in which this task favors an
optimal control solution (e.g., like learning to reach or gener-
ate saccades). Thus, two current weaknesses of a bottom-up
view in general, and an optimal control approach in particu-
lar are: (1) that some tasks may necessarily require predictive,
representational strategies, and (2) that OCM may not be able
to account for infants’ perceptual behavior in other contexts
(e.g., preference for “surprising” or impossible events). We
are currently exploring an elaborated version of the model
which addresses these issues.
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