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Abstract

Despite the high prevalence and poor outcome of patients with metastatic lung cancer, the 

mechanisms of tumour progression and metastasis remain largely uncharacterized. We modelled 

human lung adenocarcinoma, which frequently harbours activating point mutations in KRAS1 and 

inactivation of the p53-pathway2, using conditional alleles in mice3–5. Lentiviral-mediated 

somatic activation of oncogenic Kras and deletion of p53 in the lung epithelial cells of 

KrasLSL-G12D/+;p53flox/flox mice initiates lung adenocarcinoma development4. Although tumours 

are initiated synchronously by defined genetic alterations, only a subset become malignant, 

suggesting that disease progression requires additional alterations. Identification of the lentiviral 
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integration sites allowed us to distinguish metastatic from non-metastatic tumours and determine 

the gene expression alterations that distinguish these tumour types. Cross-species analysis 

identified the NK-2 related homeobox transcription factor Nkx2-1 (Ttf-1/Titf1) as a candidate 

suppressor of malignant progression. In this mouse model, Nkx2-1-negativity is pathognomonic of 

high-grade poorly differentiated tumours. Gain-and loss-of-function experiments in cells derived 

from metastatic and non-metastatic tumours demonstrated that Nkx2-1 controls tumour 

differentiation and limits metastatic potential in vivo. Interrogation of Nkx2-1 regulated genes, 

analysis of tumours at defined developmental stages, and functional complementation experiments 

indicate that Nkx2-1 constrains tumours in part by repressing the embryonically-restricted 

chromatin regulator Hmga2. While focal amplification of NKX2-1 in a fraction of human lung 

adenocarcinomas has focused attention on its oncogenic function6–9, our data specifically link 

Nkx2-1 downregulation to loss of differentiation, enhanced tumour seeding ability, and increased 

metastatic proclivity. Thus, the oncogenic and suppressive functions of Nkx2-1 in the same 

tumour type substantiate its role as a dual function lineage factor.

We developed lentiviral vectors that express Cre-recombinase (Lenti-Cre)10 and determined 

the dose that results in 5 to 20 lung tumours per KrasLSL-G12D/+;p53flox/flox mouse after 

intratracheal administration. These mice lived 8–14 months after tumour initiation and 

developed macroscopic metastases to the draining lymph nodes, pleura, kidneys, heart, 

adrenal glands, and liver (Supplementary Fig. 1). Because lentiviruses integrate stably into 

the genome, the integration site was a unique molecular identifier that unambiguously linked 

primary tumours to their related metastases (Fig. 1a). We used linker-mediated PCR (LM-

PCR) to determine the genomic sequence directly 3′ of the integrated lentiviral genome 

followed by a specific PCR for the lentiviral integration site (Fig. 1b). To have samples of 

sufficient quantity and purity for our analyses, we derived cell lines from primary tumours 

and metastases. Cell lines were pure tumour cells as determined by recombination of the 

p53floxed alleles (data not shown). The clonal relationship of these cell lines was established 

using LM-PCR or Southern blot analysis for the lentiviral genome (Fig. 1c and data not 

shown). We termed cell lines derived from verified metastatic primary lung tumours TMet.

Gene expression profiling was performed on cell lines from twenty-three lung tumours and 

metastases (nine metastases, seven TMet primary tumours, and seven potentially non-

metastatic primary tumours). Using unsupervised consensus clustering11, we identified four 

cell lines from likely non-metastatic tumour samples that had highly concordant gene 

expression and were separate from all TMet and metastasis (Met) samples (Supplementary 

Fig. 2). Therefore, we surmised that these could represent non-metastatic primary tumours 

and classified them as TnonMet. These TnonMet cell lines consistently formed fewer tumour 

nodules in the liver after intrasplenic injection despite equivalent proliferation rates in cell 

culture (Fig. 1d–e and Supplementary Fig. 2).

Significant gene expression alterations distinguished TnonMet from TMet and Met-derived 

cell lines (Fig. 1f and Supplementary Table 1), many of which were validated by qRT-PCR, 

flow cytometry, and western blotting (data not shown). A gene expression signature 

generated by comparing TnonMet to TMet/Met samples predicted patient outcome in human 

lung adenocarcinoma gene expression datasets12,13, suggesting the possibility of 
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evolutionarily-conserved molecular mechanisms of tumour progression (Supplementary Fig. 

2). Thus, we integrated mouse and human data by comparing the differences in expression 

between TnonMet and TMet/Met samples with the association of human gene expression and 

patient survival (Fig. 2a). Two genes were particularly notable from this analysis: the NK-

related homeobox transcription factor Nkx2-1 and the Nkx2-1 target gene surfactant protein 

B (Sftpb; Fig. 2a). Nkx2-1 regulates lung development and is expressed in Type II 

pneumocytes and bronchiolar cells in the adult14–16. Nkx2-1 expression was >10-fold 

higher in TnonMet samples, and higher NKX2-1 expression in human tumours correlated with 

longer survival. Of note, NKX2-1 is focally amplified in ~10% of human lung 

adenocarcinoma, with functional data supporting oncogenic activity6–9,17. Conversely, 

most immunohistochemical analyses of NKX2-1 in this disease suggest an association 

between NKX2-1-negative tumours and poor patient outcome17,18. Thus, we focused on 

validating and characterizing the function of this transcription factor in suppressing tumour 

progression and metastasis.

We confirmed reduced Nkx2-1 mRNA and protein in TMet and Met cell lines without 

evidence of focal genomic loss of this region (Fig. 2b, Supplemental Fig. 4, and data not 

shown). Nkx2-1 was consistently downregulated in high-grade poorly differentiated tumours 

from our mouse model (Fig. 2c–e and Supplementary Fig. 3). Nkx2-1 expression was also 

reduced in advanced KrasG12D-driven lung adenocarcinomas with p53R270H or p53R172H 

point mutations4,19. Using our LM-PCR assay, we identified three primary lung tumours as 

metastatic based on the presence of metastases with the same lentiviral integration site (Fig. 

1b and data not shown). These tumours each contained poorly-differentiated areas that were 

Nkx2-1neg (Supplementary Fig. 6). Interestingly, Nkx2-1 expression was low/absent in 

almost all lymph node and distant macrometastases, though some micrometastases were 

Nkx2-1pos or Nkx2-1mixed (Supplementary Fig. 3). Whether certain micrometastases were 

seeded by Nkx2-1pos cells or reverted to an Nkx2-1pos phenotype due to cues from their new 

environment is unknown.

In human lung adenocarcinoma12,13 the expression of NKX2-1 correlated with a mouse 

TnonMet gene expression signature (Supplementary Fig. 3). Additionally, the TnonMet 

signature was anti-correlated with an embryonic stem cell signature, supporting the notion 

that TMet/Met cells have transitioned to a less differentiated and more stem-like state20 

(Supplementary Fig. 3).

The correlative mouse and human data were consistent with Nkx2-1 being either a marker or 

a functional regulator of tumour progression. Nkx2-1 expression in a TMet cell line greatly 

suppressed tumour formation after intravenous transplantation (Fig. 3a, 3b, and 

Supplementary Fig. 5). Moreover, of the tumours that formed after injection of TMet-Nkx2-1 

cells, many were either Nkx2-1neg or Nkx2-1mixed (Fig. 3c). In general, tumours that 

continued to express Nkx2-1 were well-differentiated, while Nkx2-1neg tumours often 

displayed solid architecture or areas of poorly-differentiated cells (Fig. 3d and 

Supplementary Fig. 5). Intrasplenic transplantation unveiled a similar diminution of tumour 

formation by TMet–Nkx2-1 cells (Supplementary Fig. 5). Nkx2-1 expression did not alter 

proliferation or cell death in cell culture, or affect established tumour proliferation in vivo 

(Supplementary Fig. 5 and data not shown), but dramatically reduced the ability of these 
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cells to grow in anchorage-independent conditions and initiate tumours after subcutaneous 

transplantation (Fig. 3e and Supplementary Fig. 5)

To further elucidate the function of Nkx2-1, we knocked-down Nkx2-1 in TnonMet cell lines 

(Supplementary Fig. 7). Nkx2-1 knockdown allowed the formation of more liver nodules 

after intrasplenic injection and more lung nodules after intravenous transplantation (Fig. 3f). 

Nkx2-1 knockdown did not alter proliferation or cell death in cell culture (Supplementary 

Fig. 7) but enhanced the cells’ ability to form colonies under anchorage-independent 

conditions and tumours after subcutaneous transplantation (Fig. 3f and Supplementary Fig. 

7). Reexpression of an shRNA-insensitive Nkx2-1 cDNA (Nkx2-1*) reverted the phenotypic 

alterations elicited by shNkx2-1 confirming that the effects of the shNkx2-1 were specifically 

due to Nkx2-1 knockdown (Supplementary Fig. 7). Finally, we induced tumours in 

KrasLSL-G12D/+;p53flox/flox mice with either Lenti-Cre or a lentiviral vector expressing both 

Nkx2-1 and Cre (Lenti-Nkx2-1/Cre). Expression of exogenous Nkx2-1 limited tumour 

progression resulting in fewer tumours of advanced histopathological grades (Fig. 3g).

To discover Nkx2-1 regulated genes, we compared gene expression in TnonMet and TnonMet–

shNkx2-1 cells. Overlapping this gene list with the genes expressed at different levels in 

TnonMet versus TMet/Met cells uncovered high priority candidate genes (Supplementary Fig. 

8). We elected to focus on Hmga2 given its role in altering global gene expression through 

the regulation of chromatin structure and its association with embryonic and adult stem cell 

states21–24 as well as malignant tumours of diverse origins25–29. Hmga2 was derepressed 

by Nkx2-1 knockdown in TnonMet cells and regions of KrasG12D/+;p53Δ/Δ tumours that 

lacked Nkx2-1 expression were almost universally Hmga2pos (Fig. 4a–c). Importantly, 

Nkx2-1neg areas of known metastatic primary tumours and metastases were also Hmga2pos 

(Supplementary Fig. 9 and data not shown). Additionally, Hmga2 was downregulated in 

TMet cells after expression of Nkx2-1 cDNA and in TnonMet-shNkx2-1 cells after 

reexpression of Nkx2-1* (data not shown).

Although Hmga2 can be regulated by the Let7 family of miRNAs21,25,30, Let7 levels, 

Lin28 expression, and Let7 activity were equivalent in TnonMet, TMet, and Met cell lines and 

were unaltered in TnonMet-shNkx2-1 cells (Supplementary Fig. 10 and data not shown). 

Hmga2 promoter activity was derepressed in TnonMet-shNkx2-1 cells and repressed in TMet-

Nkx2-1 cells, indicating that expression of Hmga2 in lung adenocarcinoma cells is regulated 

at least in part through differential promoter activity (Supplementary Fig. 10).

We hypothesized that lung adenocarcinomas progress from an Nkx2-1posHmga-2neg to an 

Nkx2-1negHmga-2pos state. However, metastatic and non-metastatic tumours could be 

fundamentally distinct at the time of initiation. Hmga2 is highly expressed in embryonic 

lung but not in any normal adult lung cells, and early after initiation, KrasG12D/+;p53Δ/Δ 

tumours were uniformly Nkx2-1posHmga-2neg (Fig. 4d and Supplementary Fig. 11). 

KrasG12D/+;p53-proficient tumours, which maintain their differentiated phenotype and never 

metastasize even late after tumour initiation5, were almost universally Nkx2-1posHmga-2neg 

(Supplementary Fig. 11). Poorly differentiated areas of KrasG12D/+;p53Δ/Δ tumours with 

reduced Nkx2-1 expression were never found as in situ lesions and were almost always 

associated with lower grade Nkx2-1-expressing areas (Supplementary Fig. 6). Finally, we 
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induced KrasG12D/+;p53Δ/Δ tumours with a pool of lentiviral vectors that contain nucleotide 

barcodes. Amplification and sequencing of the lentivirus-encoded barcodes from adjacent 

low-grade Nkx2-1posHmga2neg and high-grade Nkx2-1negHmga2pos areas showed that these 

areas were clonally related (Supplemental Fig. 12). While alternate mechanisms leading to 

the generation of clonally-related but phenotypically-distinct tumour cell populations are 

possible, including the expansion of rare Nkx2-1neg cells that pre-exist within the tumour, 

we believe that our data strongly suggest that lung adenocarcinomas undergo a transition 

from an Nkx2-1posHmga-2neg state to a more aggressive Nkx2-1negHmga-2pos state. Our 

data additionally indicate that an Nkx2-1-dependent gene expression program is a key 

regulator of this transition.

We next analyzed the expression of NKX2-1 and HMGA2 in human adenocarcinoma. 

Although the expression patterns were diverse, two important conclusions could be made. 

First, tumours of NKX2-1posHMGA2neg and NKX2-1negHMGA2pos phenotypes exist 

within the spectrum of human lung adenocarcinoma (Fig. 4e and Supplementary Fig. 10). 

Second, there was a trend towards well-differentiated tumours being NKX2-1pos/

HMGA2neg whereas moderately and poorly differentiated tumours were more often 

represented by other combinations of these proteins. Most notably, the moderately and 

poorly differentiated groups contained NKX2-1neg/HMGA-2pos tumours (Fig. 4e). These 

results underscore the diversity within this single human tumour type and suggest that our 

genetically defined model likely represents, at the molecular level, a subset of these 

tumours.

Next we knocked-down Hmga2 in TnonMet-shNkx2-1 cells and found that their metastasis 

seeding potential was greatly reduced after transplantation (Fig. 4f and Supplementary Fig. 

13). Additionally, Hmga2 knockdown in a metastasis-derived cell line reduced its 

anchorage-independent growth and tumour seeding ability after transplantation (Fig 4g–h 

and Supplementary Fig. 13). A future challenge will be to understand the molecular 

mechanism by which Hmga2 controls lung adenocarcinoma metastatic potential. The 

expansion of Nkx2-1negHmga-2pos regions within primary lung tumours suggests the 

acquisition of phenotypes that are advantageous to the primary tumours and also increase the 

probability of metastatic spread.

That NKX2-1 can have both oncogenic and tumour suppressive functions in lung cancer 

presumably illustrating context-dependent functions within individual tumours of the same 

type. Lung adenocarcinomas may differ in their cell of origin, mutation spectrum, or gene 

expression leading to distinct requirements for continued NKX2-1 expression and different 

capacity to tolerate or benefit from NKX2-1 downregulation. Our studies uncovered the 

molecular and cellular basis for the association of NKX2-1 expression with good patient 

outcome17,18 and HMGA2 expression with poor patient outcome26,27. Our results 

emphasize the power of genetically-engineered mouse models of advanced disease, used in 

conjunction with human studies, to elucidate mechanisms that control cancer progression 

and metastatic spread. Through this approach we identified one molecular mechanism by 

which a highly prevalent tumour type can progresses to its malignant state.
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Methods Summary

Mice, tumour initiation, and derivation of cell lines

KrasLSL-G12D, p53flox, p53LSL-R270H, and p53LSL-R172H mice have been described3,5,19. 

Tumours were initiated by intratracheal infection of mice with a lentiviral vector expressing 

Cre-recombinase10. The MIT Institutional Animal Care and Use Committee approved all 

animal studies and procedures. Cell lines were created by enzymatic and mechanical 

dissociation of individual lung tumours and metastases harvested from mice 8-14 months 

after tumour initiation.

LM-PCR, Southern blotting, and gene expression analysis

LM-PCR was performed with forward primers specific for the lentiviral LTR. Southern 

blotting used a Cre probe and standard methods. RNA was extracted using Trizol, analyzed 

for RNA integrity, and prepared with Affymetrix GeneChip® WT Sense Target Labelling 

and Control Reagents kits, followed by hybridization to Affymetrix GeneChip® Mouse 

Exon 1.0 ST Arrays.

Protein and RNA analysis

Western blotting used standard methods and antibodies to Nkx2-1 (Epitomics, Inc), Hmga2 

(BioCheck, Inc), and Hsp90 (BD Transduction Laboratories) as a loading control. 

Immunohistochemistry was performed on formalin-fixed, paraffin-embedded 4μm sections 

using the ABC Vectastain kit (Vector Laboratories) with antibodies described above. 

Sections were developed with DAB and counterstained with hematoxylin.

Gene expression and knockdown

Nkx2-1 was stably knocked-down with a pLKO-based lentiviral vector (OpenBiosystems/

TRC). MSCV-Puro retroviral vectors were used for stable expression of Nkx2-1 and 

Nkx2-1* (created with 4 silent mutations using QuikChange® Lightning Site-Directed 

Mutagenesis (Stratagene). Hmga2 was stably knocked-down with an MSCV-Hygro 

retroviral vector.

Transplantation experiments

For intravenous transplantation 105 cells resuspended in 200μl PBS were injected into the 

lateral tail vein. For intrasplenic transplantation 105 cells resuspended in 50μl PBS were 

injected. In all graphs each circle represents an individual mouse and the bar represents the 

mean. Statistical significance was determined using the Student’s t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A lentiviral vector-induced mouse model of lung adenocarcinoma identifies gene 
expression alterations during tumour progression
a, Infection of KrasLSL-G12D/+;p53flox/flox mice with Cre-expressing lentiviral vectors 

initiates lung adenocarcinoma. b, Linker-mediated PCR cloning of the lentiviral integration 

site in metastases (Met) allows specific PCR amplification of that lentiviral-integration 

(lower band) to identify which primary tumour gave rise to the metastases. Top band is a 

control product. c, Southern blot on cell lines for the integrated lentiviral genome. d, 
Representative images of livers after intrasplenic transplantation of TnonMet or TMet cells. 

Scale bar = 0.5cm. e, Quantification of liver nodules after intrasplenic injection of two 

TnonMet and TMet cell lines. f, Gene expression alterations (log2) between TnonMet and 

TMet/Met samples.
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Figure 2. Reduced Nkx2-1 in advanced lung adenocarcinoma correlates with a less differentiated 
state
a, Cross-species analysis of human lung adenocarcinoma12 patient outcome (likelihood 

ratio with the sign from correlation value) versus differential gene expression in murine 

TnonMet cells. b, Nkx2-1 protein is absent from TMet and Met-derived cell lines. c–d, 
Nkx2-1 expression is high in well differentiated adenomas and early murine 

adenocarcinoma (top) but is downregulated in moderately to poorly differentiated advanced 

carcinomas (bottom). Scale bar = 50μm. Upper inlay Nkx2-1 staining. Lower inlay H+E 

staining. e, Quantification of Nkx2-1 expression in murine lung tumours relative to tumour 

grade from most differentiated (atypical adenomous hyperplasia (AAH)) to least 

differentiated (Poor)).
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Figure 3. Nkx2-1 controls lung adenocarcinoma differentiation and restricts metastatic ability
a, Nkx2-1 protein expression in TMet cells. b, Nkx2-1 expression reduces lung nodule 

formation after intravenous transplantation. p < 0.002. c, Quantification of Nkx2-1 in lung 

nodules after TMet or TMet-Nkx2-1 transplantation. n=3/group. d, Association of Nkx2-1 

expression with differentiation state after TMet or TMet-Nkx2-1 transplantation. Fisher’s 

exact test on the association of differentiation state with Nkx2-1 p < 0.002. e, Nkx2-1 

expression reduces anchorage-independent growth of TMet cells. Representative images and 

colony number (mean +/− SD of quadruplicate wells, p < 0.0001). f, Nkx2-1 knockdown 

increases liver nodules after intrasplenic injection (top) and lung nodules after intravenous 

transplantation (middle) of TnonMet cells. Representative of 7 mice/group. shNkx2-1 

enhanced anchorage-independent growth of TnonMet cells (bottom). Representative images 

and colony number (mean +/− SD of triplicate wells, p < 0.0001). g. Induction of tumours in 

KrasLSL-G12D/+;p53flox/flox mice with Nkx2-1/Cre lentivirus reduces the development of 

advanced tumours (grades 3&4). Numbers indicate percent of tumours in each group.
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Figure 4. Nkx2-1 regulates the expression of Hmga2 in advanced lung adenocarcinoma
a, Nkx2-1 knockdown derepresses Hmga2 in TnonMet cell lines. b, Hmga2 and Nkx2-1 are 

reciprocally expressed in KrasG12D/+;p53Δ/Δ murine lung adenocarcinomas. Scale bar = 

50μm. Inlaid images show cellular features and protein localization. c, Hmga2 and Nkx2-1 

expression in advanced KrasG12D/+;p53Δ/Δ murine lung adenocarcinomas. Fisher’s exact 

test, p-value < 10−11. d, Early KrasG12D/+;p53Δ/Δ tumours are Nkx2-1posHmga2neg. e, 
NKX2-1 and HMGA2 expression in human lung adenocarcinomas. Large numbers are 

percentages. Small numbers are absolute numbers. f, Hmga2 knockdown reduces the 

tumourigenic potential of TnonMet-shNkx2-1 cells after intravenous transplantation. Control 

samples include the parental TnonMet-shNkx2-1 cells (grey circle) and cells infected by a 

control retrovirus (black circles). p < 0.003. g, shHmga2 reduces anchorage-independent 

growth of a metastasis-derived cell line (Met). Representative images and colony number 

(mean +/− SD of quadruplicate wells, p < 0.0001). h, shHmga2 reduces the tumour-seeding 

potential of a Met cell line after intravenous transplantation. p <0.0001.
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