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Abstract 

Cortical and Striatal Circuits for Learning Adaptive Behaviors and Wireless Ultrasonic 
Implants for Interfacing with the Nervous System 

by 

Ryan M Neely 

Doctor of Philosophy in Neuroscience 

University of California, Berkeley 

Professor Jose M. Carmena, Chair 

Brain and nerve interface systems have shown early promise for alleviating a wide 
range of debilitating conditions. In the field of brain-machine interfaces (BMI), movement 
kinematics have been decoded from cortical neurons and used as a control signal for 
prosthetic devices. In the periphery, recent insights into the connection between nerves 
and organ systems has sparked new interest in the therapeutic potential of accessing 
and altering activity in peripheral nerves. Investigating fundamental mechanisms 
through which networks of neurons coordinate to produce adaptive responses can 
inform the design of next-generation nervous system interfaces. However, technological 
challenges must also be addressed before these systems are ready for widespread 
clinical adoption.  

Using a brain-machine interface paradigm, we trained rodents to volitionally modulate 
the activity of primary visual cortex (V1) neurons. This approach allowed us to observe 
the instrumental learning process in cortical networks directly, and define the 
relationship between neural activity and behavioral outcomes. Learning occurred in the 
absence of visual input, suggesting that modulations were internally driven. Similar to 
demonstrations of instrumental learning in other cortical areas, learning in V1 engaged 
and required activity in the striatum, suggesting that cortico-striatal circuits are an 
essential component for behaviorally-relevant adaptation of cortical outputs. Next, we 
investigated how factors affecting behavioral choice are represented by striatal neurons 
as rodents performed a two-alternative probabilistic switching task. We found a rich 
encoding of task parameters in the dorsomedial striatum both at the level of single 
neurons and neural populations. We observed activity related to animals’ confidence in 
the current state of the task, and found that confidence levels modulated the strength 
and timing of signals predicting behavioral choice. Finally, we sought to address the 
limitations of current methods for interfacing with the nervous system. We designed, 
built, and tested mm-scale wireless implants for recording electrical activity in peripheral 
nerves and muscles. This system, called neural dust, utilized ultrasonic backscatter as a 
scalable means for powering and communicating with miniaturized devices implanted 
deep in tissue. We showed that this system is capable of recording electroneurogram 
and electromyogram activity with high fidelity in living animals.
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Chapter 1:  
Introduction 
From the rhythmic motion of the gut to the remembered melody of a favorite song, the 
nervous system conducts the tissues of the body in collective harmony. Electrical 
impulses spark muscles into action, maintain body temperature, and extract meaning 
from acoustic vibrations in the air. To understand and manipulate the signals carried by 
nerves and neurons would be to gain access to the mechanisms that keep our bodies 
and minds in motion. For many years, methods and technologies for interfacing with the 
nervous system have been developed and refined. Patch-clamp techniques can record 
voltage fluctuations inside single cells, while functional magnetic resonance imaging has 
revealed the collective activity of entire brains. In recent decades, advances in brain-
machine interface (BMI) technologies have leveraged developments in both 
technological improvements and biological understanding to create a bridge between 
the nervous system and electronic devices. Many such technologies seek to attain 
therapeutic endpoints in humans: cochlear implants to restore hearing and deep brain 
stimulators for essential tremor represent illustrative examples that have achieved 
widespread adoption (Chopra et al., 2013; van Schoonhoven et al., 2013). As a proof-of 
principal therapy to replace lost motor function, the activity of cortical neurons in 
humans and non-human primates has been decoded and used as a control signal to 
move artificial effectors (Aflalo et al., 2015; Bouton et al., 2016; Collinger et al., 2013; 
Gilja et al., 2015; Hochberg et al., 2012).  These and other approaches demonstrate the 
potential application of nervous system interfaces to restore and even augment the 
normal functions of the human nervous system.  

Moving beyond the state-of-the-art in BMI systems requires advances on two main 
fronts: 1) technological; including hardware design, materials science, and algorithms 
for decoding neural activity, and 2) biological; which entails a better understanding of 
how information is encoded in the nervous system, and how that information is 
translated into thought or action of muscles and organ systems. While progress in 
technological innovation and biological investigation often occur independently, a 
concerted approach can often be most effective. New tools can yield major insights into 
biological functions, while the questions posed by attempts to understand biology can 
guide and inspire technology development and design.  

This dissertation attempts to strike such a collaborative balance between biology and 
technology in the design and implementation of nervous system interfaces. In this 
introduction, we first explore how BMI systems can be designed to study volitional 
control signals in the brain, with a focus on learned volitional modulation of cortical 
neurons. We then discuss the current limitations of nervous system interfaces imposed 
by the physical properties of the underlying biology, and improvements to the state-of-
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the-art that have potential to overcome these limitations. Finally, we will conclude with 
an overview of chapters to come.  

1.1 Closed-loop motor brain-machine interface systems 

Brain-machine interface systems can be designed to replace motor function, sensory 
function, or both. A common goal of BMI systems is to decode movement kinematics or 
movement intention from neural activity directly, and to translate this control signal into 
the movement of an artificial effector, such as a computer cursor or robotic arm. Effector 
control can occur in an open-loop or closed-loop context; here we focus on closed-loop 
implementations. Closed-loop BMI systems typically involve recording neural activity 
(such as spike activity, local field potentials (LFP), or electrocorticography (ECoG)), 
translating this activity into a control signal using a decoding algorithm, and then 
generating movement in an effector. Finally, to close the loop, the subject must receive 
some feedback about the movement that took place; for example, visual feedback, by 
watching the motion in real-time (Fig 1.1).  Motor cortices, such as the primary motor 
cortex (M1) or the dorsal premotor cortex (PMd), are often targeted for this purpose due 
to the rich encoding of movement parameters that can be found in these regions. 
However, BMI systems have been implemented in a wide variety of brain regions, 
including the parietal cortex, temporal lobe, primary sensory cortex, and frontal eye 
fields, among others (Carmena et al., 2003; Cerf et al., 2010; Clancy et al., 2014; Fetz, 
2007; Hwang et al., 2013; Musallam et al., 2004; Schafer and Moore, 2011; Shibata et 

al., 2011). In theory, precise 
and accurate decoding of 
movement kinematics from 
cortical activity should allow 
a subject to control an 
artificial effector using her 
natural motor repertoire. 
However, in practice, there 
are often many differences 
between how neural activity 
is translated into movement 
in a BMI system compared to 
a natural motor plant. 
Methods used to record 
neural activity can only 
capture a small fraction of 
the total motor-related 
activity in the brain, and must 
estimate a subject’s true 
intention from this sample. 
Additionally, neural activity is 

Figure 1.1: Closed-loop BMI control. Brain activity is recorded from 
a subject, and then passed through a decoding algorithm, or 
decoder. The decoder translates neural activity into a control signal 
used to guide the movement of an artificial effector. Finally, the 
subject receives feedback about the movement that took place. 
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often mapped to the movement of an effector with very different physical properties than 
an arm or hand. Finally, no BMI studies to date have replicated the full complement of 
sensory feedback that typically accompanies and guides natural motion, such as 
proprioceptive feedback or a sense of muscular effort. The result of these factors is that 
the mapping between a naïve subject’s intended movement and the actual effector 
movement does not always precisely match.  

1.2 BMI as a tool to study learning in neural circuits 

This potential for mismatch between intended and actual movement in BMI systems 
creates an intriguing opportunity to study how feedback-based volitional control signals 
are learned in the brain. Just as the brain can learn  new motor skills involving the 
natural motor plant, learning can also occur in the case of BMI systems when a 
motivated subject desires to achieve better control of the novel effector (Carmena et al., 
2003). In contrast to studying natural motor systems, BMI learning provides a unique 
window into the cortical dynamics associated with learning for two primary reasons: 1) 
the final output layer of neurons directly responsible for control is known and observable 
by the experimenter. This is not always the case in natural motor control, where the 
mapping between cortical activity and muscle movement involves the activity of many 
intervening neural circuits. 2) the transform between neural activity and movement is 
well-defined. This allows both for a clear understanding of how neural activity generates 
movement, but also provides unique opportunities for perturbations. In the case of 
motor BMI systems, these properties have been exploited by fixing the decoder across 
many days and urging subjects to adapt their neural activity to improve control. This can 
result in new and stable tuning properties for the neurons controlling a cursor (Ganguly 
and Carmena, 2009). These tuning properties are unique to BMI control and revert back 
to earlier tuning configurations when a subject returns to manual control using the 
natural motor plant (Ganguly et al., 2011). Several studies have reported similar 
observations of neural adaptation as subjects learn in a BMI context (Arduin et al., 
2013; Clancy et al., 2014; Jarosiewicz et al., 2008; Koralek et al., 2012, 2013; Prsa et 
al., 2017; Sadtler et al., 2014). In addition to studying the dynamics of neurons directly 
involved in learning to control a BMI (and their nearby neighbors), BMI can also be used 
to ask questions about the larger circuits that support learning in the cortex. Koralek et 
al (2012) report that the striatum is necessary for learning abstract neuroprosthetic skills 
using control signals from the primary motor cortex; this result will serve as a starting 
point for experiments in Chapter 2.  

1.3 Limitations of state-of-the-art neural interfaces 

1.3.1   Limitations of brain interfaces 

Clinical applications of BMI in humans frequently rely on wired, invasive neural probes 
that penetrate cortical tissue (Aflalo et al., 2015; Bouton et al., 2016; Collinger et al., 
2013; Gilja et al., 2015; Hochberg et al., 2012). A major hurdle for reliable 
implementation of BMI systems in humans is the longevity and reliability of high-quality 
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neural recordings. Non-invasive systems, such as electroencephalogram (EEG) 
recordings, do not require surgery but are limited to recording low-frequency signals that 
reflect the activity of millions of neurons due to the attenuation of voltage signals 
through the skull.  However, invasive neural probes, such as penetrating Utah arrays, 
cause damage to brain tissue that results in a chronic inflammatory response, cell 
death, and encapsulation of the electrodes by microglia (Biran et al., 2005; Polikov et 
al., 2005; Turner et al., 1999). Perhaps a related observation is that the ability of 
implanted electrodes to record spike activity degrades over a variable period of time that 
can range from weeks to years (Chestek et al., 2011; Suner et al., 2005), although 
damage of the electrode materials and encapsulation can also contribute to the 
degradation of signal quality. Wired systems are especially problematic for several 
reasons; first, these systems typically require tethering of the implant to the skull, which 
increases the micromotion of the implant relative to the tissue, and therefore 
exacerbates the tissue response to the electrodes (Biran et al., 2007). Secondly, 
externalized leads provide opportunities for infection and lead migration that could affect 
the location of the implant and imperil the health of the patient. Finally, wired systems 
can be bulky and inconvenient for subjects to use on a daily basis.  These factors 
highlight the need for miniaturized, wireless probes for invasive recording of spike and 
LFP activity that are optimized for long-term use. 

1.3.2  Limitations of peripheral nerve interfaces 

In addition to the brain, recording and stimulating from the spinal cord and peripheral 
nerves has the potential to provide effective therapies for a wide range of conditions. 
Spinal cord stimulation for chronic pain using implanted neurostimulators has been an 
established therapy for decades (Cameron, 2004). More recently, closed-loop systems 
have been approved for the treatment of sleep apnea (Kezirian et al., 2010), and recent 
discoveries regarding the control of inflammation by cholinergic neurons have sparked 
new interest in therapies to relieve chronic inflammatory conditions by modulating 
peripheral nerve activity (Tracey, 2009). Inspired by these developments, an 
interdisciplinary community ranging from neurophysiologists to materials scientists 
developed a roadmap to next-generation peripheral nerve interfaces in late 2013 
(Birmingham et al., 2014). In addition to a widespread effort to map the function of 
peripheral nerves, key goals highlighted in the report included improving peripheral 
nerve interfaces by moving towards miniaturized, implantable, and wireless systems. As 
discussed above, these features are also desirable for next-generation brain interfaces. 
The commonalities between features desired for brain as well as peripheral nerve 
interfaces highlights their importance and serves as the motivation for data presented in 
Chapter 4. 
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1.4 Chapter previews 

In closed-loop BMI systems, subjects often improve control through the process of 
instrumental learning. In Chapter 2, we explore the possibility that instrumental learning 
is a common mechanism that tunes a variety of cortical circuits to improve behavioral 
outcomes. Specifically, we utilize a BMI paradigm to ask whether mice and rats can 
learn to modulate spike activity in the primary visual cortex (V1) in order to control an 
auditory cursor and obtain a reward. We explore the neural dynamics that accompany 
the learning process, and the sensitivity of learned performance to the presence or 
absence of visual input. Finally, we observe correlated activity in the region of the 
dorsomedial striatum that receives input from V1, and use an optogenetic strategy to 
determine whether activity in this region is necessary for learning 

In Chapter 3, we focus on the encoding of task parameters in the dorsomedial striatum 
(DMS). We model the behavior of rats as they learn to perform a two-armed bandit task 
with partially observable states. We then ask how individual neurons in the DMS encode 
task parameters, including representations of task state. Finally, we use dimensionality 
reduction strategies to extract task-relevant signals from populations of neurons in 
DMS, and show that action choice representations are modulated by animals’ 
confidence in the current state of the task. 

In Chapter 4, we focus on technologies for wireless nervous system interfaces. In order 
to overcome the size-scaling limitations of systems that rely on electromagnetics to 
transmit power, we instead demonstrate that ultrasonic backscatter is a scalable means 
to power and communicate with mm-scale devices implanted deep in tissue. We show 
in vivo electroneurogram and electromyogram recordings from anesthetized rats using a 
wireless ultrasonic recording system called neural dust. 
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Chapter 2:  
Volitional modulation of primary visual cortex activity 
requires the basal ganglia 
Animals often acquire new behaviors through instrumental conditioning, a process that 
involves exploring variable behaviors and repeating and refining behaviors that lead to 
rewarding outcomes. In closed-loop brain-machine interfaces systems, instrumental 
learning is a process by subjects often learn to control novel effectors. Unlike 
instrumental conditioning of natural motor behaviors, learning in a BMI context involves 
the reinforcement of patterns or modulations of neural activity directly. Volitional control 
of neural activity to obtain future outcomes has been reported in BMI systems that 
engage frontal and motor cortices, a rich source of signals for voluntary action. 
However, evidence suggests that activity in primary sensory cortices may also reflect 
internally driven processes, instead of purely encoding antecedent stimuli.  In this 
chapter, we leverage a BMI paradigm to show that rats and mice can learn to produce 
arbitrary patterns of neural activity in their primary visual cortex to control an auditory 
cursor and obtain reward. Furthermore, the ability to acquire the neural patterns that 
lead to reward was abolished when activity in the region of striatum that receives input 
from visual cortex was optogenetically inhibited. This inhibition did not affect the ability 
to produce the reinforced patterns after learning. These data demonstrate that cortico-
basal ganglia circuits play a general role in learning to produce cortical activity that 
leads to desirable outcomes. 

2.1 Introduction 

Behavioral flexibility is essential for survival in changing and uncertain environments. 
Task-relevant modification or enhancement of sensory representations can be important 
to improve behavioral outcomes: for example, attentional resources can be used to 
amplify activity related to salient stimuli while ignoring distractors. Many sensory areas 
of the cortex, including primary sensory areas, display activity that reflects task 
parameters, changing behavioral context, and shifting attention, suggesting that 
computations in these regions are influenced by ongoing internal processes (Keller et 
al., 2012; Martinez et al., 1999; Niell and Stryker, 2010; Shuler, 2006; Steinmetz et al., 
2000; Zhang et al., 2014). These task-relevant modulations of ongoing sensory 
representations can emerge and evolve following repeated training or association with a 
salient stimulus (Makino and Komiyama, 2015). An important question is how 
modulatory inputs to functionally diverse cortical circuits are tuned such that their 
outputs contribute positively to the behavioral outcomes of an individual. The basal 
ganglia, though the striatum, receives input from most cortical areas (Hintiryan et al., 
2016; Kemp and Powell, 1970; McGeorge and Faull, 1989; Webster, 1965), feeds back 
to the cortex via multiple recurrent pathways (Redgrave et al., 2010), and dynamically 
encodes action-outcome contingencies (Samejima, 2005; Tricomi et al., 2004), making 
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this structure a likely candidate to shape cortical activity based on behavioral 
experience (Barnes et al., 2005; Graybiel, 2008; Hinterberger et al., 2005; Swanson, 
2000). Previous work has demonstrated the importance of the striatum for voluntary 
behavior and instrumental learning (Hikosaka et al., 1999; Yin et al., 2005, 2006, 2009). 
Similarly, we have shown that a brain-machine interface controlled by neurons in the 
primary motor cortex also requires cortico-striatal plasticity in order for animals to learn 
a novel neuroprosthetic action (Koralek et al., 2012, 2013). However, in addition to overt 
motor behaviors driven by motor cortices, cortico-striatal circuits have been theorized to 
also support abstract forms of learning, such as cognitive associations (Graybiel, 1997; 
Middleton and Strick, 1994). Furthermore, damage to basal ganglia structures in human 
patients, either through stroke or in diseases like Parkinson’s, have been associated 
with deficits in sensory perception and the control of visual attention (Brown et al., 1997; 
Husain et al., 1997; Mercuri et al., 1997; Wright et al., 1990; Yamaguchi and Kobayashi, 
1998). These data suggest that basal ganglia circuits may be involved in learning 
modulatory signals that influence many forms of cortical processing based on 
experience. However, observing and measuring these influences can be difficult, 
especially when their contributions to overt behavior may not be immediately apparent. 

One strategy to overcome this difficulty is to use Brain-Machine Interfaces (BMIs) which 
directly map a subject’s internally generated neural activity to the movement of an 
artificial effector. By explicitly defining the behavioral relevance of observable patterns 
of neural activity, BMI can be an important tool for studying how these patterns are 
generated. In clinical applications, the activity of cortical neurons in humans and non-
human primates has been decoded as a proof-of-principle control signal to replace lost 
motor function by controlling prosthetic devices (Aflalo et al., 2015; Bouton et al., 2016; 
Collinger et al., 2013; Gilja et al., 2015; Hochberg et al., 2012). However, an important 
observation is that populations of cortical neurons whose activity is remapped to the 
movement of an artificial effector can undergo marked learning-related changes, and 
observing this learning process provides a unique window into how learning proceeds in 
the cortex (Arduin et al., 2013; Ganguly and Carmena, 2009; Ganguly et al., 2011; 
Jarosiewicz et al., 2008; Prsa et al., 2017; Sadtler et al., 2014). In order to better 
facilitate such observations, BMI studies can thus be designed to observe the 
acquisition and evolution of volitional control signals, rather than to optimize the 
performance and control of a complex effector.  

Here, we asked whether neurons in the primary visual cortex, an area involved in 
processing low-level visual features, could be instrumentally conditioned to produce 
arbitrary modulations of ongoing spike activity, and whether this abstract form of 
learning was dependent on the basal ganglia. To address this question, we trained rats 
and mice to perform a neuroprosthetic task that virtually re-routed spike activity from the 
primary visual cortex (V1) into the frequency of an auditory cursor. This allowed us to 
facilitate and observe learned modulations of V1 activity with a known relationship to 
behavior. Animals trained on the task successfully learned to produce this novel action 
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by voluntarily modulating spike activity in V1. Then, using the red-shifted inhibitory opsin 
Jaws (Chuong et al., 2014) to inactivate striatal neurons on a trial-by-trial basis, we then 
investigated to what degree this instrumental learning process in V1 was also 
dependent on activity in dorsomedial striatum. 

2.2 Methods 

2.2.1 Surgery 

All rat experiments were performed in compliance with the regulations of the Animal 
Care and Use Committee at the University of California, Berkeley. A total of ten singly-
housed, male Long-Evans rats weighing roughly 250 grams were used for the 
experiments. All rats were chronically implanted with microwire arrays in V1, with 8 rats 
also receiving implants in the dorsomedial striatum. Each array contained 16 or 32 

Figure 2.1: a: Left: schematic showing the location of V1 electrode arrays, verified by histology for 6 of 10 
animals. Right image shows an example section with electrode tracks. b: Sample V1 waveforms from an 
example session. Units outlined in green were chosen for Ensemble 1; units outlined in blue were chosen 
for Ensemble 2; and units outlined in black  were recorded but had no direct relationship to cursor control 
(Indirect units). 

Figure 2.2 a: Left: schematic showing the location of rat DMS electrode arrays, verified by histology 
for 6 of 8 animals. Right image shows an example section with electrode tracks. b: Total number of 
well-isolated DMS units for 8 animals recorded across several training sessions. Solid line shows the 
mean and S.E.M; grey lines show data for individual animals. 
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tungsten microelectrodes (35 μm diameter, 250 μm electrode spacing, 8x2 or 8x4 
configuration; Innovative Neurophysiology, Durham, NC).   Stereotactic coordinates 
relative to bregma and lambda were used to center the arrays (1 mm anterior of 
lambda, 3.5 mm lateral from the midline, and 1.25 mm ventral from the cortical surface 
for V1; 1.8 mm anterior of bregma, 2 mm lateral of the midline, and 5.5 mm ventral from 
the cortical surface for DMS).  V1 implants were targeted for layer 5 neurons based on 
insertion depth, and this was verified histologically at the end of experiments (Fig. 
2.1a,b). Rodents were anesthetized with Ketamine (50 mg/kg) and Xylazine (5 mg/kg) 
with supplemental isoflurance gas as needed. Craniectomies were sealed with 
cyanoacrylate and rats were allowed to recover for ten days after implantation before 
behavioral training. Rats were given dexamethasone treatment (0.5 mg/kg) for one 
week following surgery to minimize tissue damage around the implant (Zhong and 
Bellamkonda, 2007).  

Mouse experiments were performed in accordance with the Champalimaud Centre for 
the Unknown Ethics Committee guidelines and approved by the Portuguese Veterinary 
General Board (Direcção Geral de Veterinária, approval 0421/000/000/2014). A total of 
eight male C57BL mice of 2.5-3.5 months of age were used (four experimental mice 
and four control mice). Surgeries were performed under isoflurane anesthesia (1-3%). 
All mice were injected bilaterally with 1 µL of viral solution in the dorsomedial striatum 
using coordinates relative to Bregma (0.9 mm AP, ±1.5 mm ML, 2 mm below brain 
surface). Viral solution was injected through a glass pipette by pressure (Nanojet II from 
Drummond Scientific, 4.6 nl pulses at a rate of 0.2 Hz). For experimental animals, the 
virus injected was rAAV8/CamKII-Jaws-KGC-GFP-ER2 (University of North Carolina, 
titer 5.9x1012). For control animals, the virus injected was rAAV8/CamKII-GFP 
(University of North Carolina, titer 2.8x1012). For delivery of red light, mice were 
implanted bilaterally with optical fibers (250 µm diameter, NA 0.63). All mice were also 
implanted with 16-channel movable electrode arrays (electrode diameter 23 µm; 
Innovative Neurophysiology, Durham, NC) in the right primary visual cortex using 
coordinates relative to Lambda (0 mm AP, 0.3 mm ML, 0.6 mm below brain surface).  

2.2.2 Electrophysiology 

Single unit activity and local field potentials were simultaneously recorded with a 
Multichannel Acquisition Processor (MAP in rats, OmniPlex in mice; Plexon Inc., Dallas, 
TX). Activity was sorted using an online sorting application (Plexon Inc., Dallas, TX) 
prior to each daily recording session. Only units with a clearly identified waveform and 
signal-to-noise ratio greater than 2 were used. Sorting templates were further refined 
using an offline sorting application (Plexon Inc., Dallas, TX). Behavioral timestamps 
were sent to the MAP recording system through custom Python and C++ programs and 
synchronized to the neural data for later analyses. Recording arrays were grounded to a 
screw in the occipital bone, and both arrays were also referenced locally using the 
online program Ref2 (Plexon Inc., Dallas, TX) to eliminate effects of volume conduction. 
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For referencing, an electrode on each array was chosen to be subtracted from all other 
electrodes on that array. This was done independently for both V1 and DMS. 

2.2.3 Behavioral Task 

After recovering from surgery, rats were trained on the task in a dark behavioral 
chamber (Lafayette Instrument Company, Lafayette, IL) unless otherwise specified. 
During training, rats only received access to water during the task unless supplemental 
water was needed to maintain their body weight at a healthy level. At the start of each 
session, two ensembles of 2 well-isolated V1 units each were chosen for inclusion in the 
direct population based on SNR, interspike- interval histograms, and refractory periods. 
No other selection criteria were used to partition the recorded cells into each ensemble. 
Although these direct units were consistently well-isolated, we also ensured that many 
well-isolated units were included in the indirect population to enable a proper 
comparison. The units assigned to the direct population remained relatively constant 
throughout training using the stability of spike waveforms, sorting templates, and 
interspike intervals across sessions as a guide. After sorting and partitioning of direct 
and indirect units, a 15-minute baseline period was recorded in which animals received 

a sucrose water reward on a variable-interval schedule. During this time, spike counts 
were recorded for each ensemble binned into 100 ms bins, and a distribution of state 
values was calculated by subtracting the counts from E1 from E2 in each time bin.  
From here, the distribution was fit by a Gaussian mixture model (GMM) comprising 
between 1 and 10 Gaussian components (the exact number was chosen by finding the 
Akaike Information Criterion (AIC) value for each possible number of components, and 
choosing the number with the lowest AIC value). The probability density function (PDF) 
was then computed for the chosen model. By default, the neural state values (E1 – E2 

Figure 2.3 a: Calculation of cursor 
transform. Plot shows a histogram 
of binned E1-E2 values (i.e., total 
spike counts for all ensemble 1 
neurons minus total spike counts for 
all ensemble 2 neurons for each 
100 ms bin) during a 15-minute 
baseline period. A mixture of 
gaussians (dashed lines) are fitted 
to generate the PDF (solid black  
line). Based on a simulation of the 
task  using recorded baseline neural 
activity, thresholds are calculated 
for a low target (unrewarded in this 
plot), a high target (rewarded) and a 
midpoint (Baseline). b: The line 
fitted to the T2, Baseline, and T1 
values that is used to compute a 
feedback frequency based on the 
binned E1-E2 value. 
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counts for a 100 ms bin) corresponding to the low and high targets were set at the 
points on the computed PDF where the area under the curve was equivalent to 1.5% 
and 98.5% of the total area, respectively (Fig. 2.3a). However, these target values were 
iteratively updated by running a simulation using the data recorded in the baseline 
period until the probability of hitting each target was approximately 30% Finally, using 
the lowest and highest target values as well as the mean of the GMM, in combination 
with the lowest (1000 Hz), highest (15000 Hz) and midpoint (7000 Hz) frequencies, a 2-
degree polynomial function was fit to these values in order to map neural state to a 
frequency value. During online performance, the state value used to compute the 
instantaneous feedback frequency was smoothed over the most recent 10 bins, 
updated every 100 ms. The rodents had to then precisely modulate these neuronal 
ensembles to move the cursor to one of two target frequencies, one which was 
randomly chosen using a coin flip on a per-animal basis to be associated with a 20% 
sucrose solution reward (and kept consistent across training sessions). Rodents were 
free to reach either target, although the cursor value had to return to the middle value 
for a new trial to begin. A trial was marked as a miss if neither of these target states 
were achieved within 30 seconds of trial initiation. Recorded neural data was entered in 
real time to custom routines in Python and C++ that then translated those activity levels 
into the appropriate feedback frequency as described above and played the frequency 
on speakers mounted above the behavioral chamber. When a target was hit, a Data 
Acquisition board (National Instruments, Austin, TX) controlled by a Python script 
triggered the operant box to supply the appropriate reward to rodents. 

2.2.4 Behavioral manipulations 

After initial training of at least 8 days, a contingency degradation was performed. This 
took place over two sessions: during the first session, animals were allowed to achieve 
stable performance on the task, which took approximately 30 minutes (pre-degradation). 
Then, reward delivery was decoupled from task performance and delivered on a 
variable-interval schedule that approximated the rate of reward during training 
conditions (CD). During this time, animals still received auditory feedback lined to their 
neural state. The contingency degradation continued for the remainder of the session. 
The next day, animals were again trained on the task under normal conditions 
(reinstatement). Similarly, for contingency reversal sessions, we reversed the 
contingency approximately 30 minutes into a training session. During sessions that 
involved light manipulation, we again waited for animals to achieve saturating 
performance in a single session, and then placed a light into the behavioral chamber in 
an overhead configuration. 

2.2.5 Optical inhibition 

For optical inhibition experiments, red light was applied to the striatum of both 
experimental and control groups on 50% of all trials in a session. Light was applied 
through a fiber-coupled LED system (Prizmatix, Givat-Shmuel, Israel). Power levels 
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tested through the system at the optical fiber tip ranged from 4-6 mW. Red light 
application consisted of a square pulse that lasted the full duration of the current trial, 
from trial initiation until either a target or timeout was reached.  Both groups were 
trained in this manner for 7 days. Next, the experimental animals were trained for 5 
additional days in the absence of red light. After this initial training, both groups were 
tested to determine the role of striatal circuits in learning versus performance of the 
task. On day LED 50, red light was applied on 50% of all trials. On day LED late, no 
light was applied for the first 45 trials, after which red light was applied on 50% of all 
remaining trials. 

2.2.6 Data Analysis 

Analyses were performed in Python with custom- written routines utilizing publicly 
available software packages. Unit data were first binned in 1 ms time bins and digitized. 
Firing rate analyses were performed in relation to target achievement as indicated in 
figures. Unless otherwise specified, firing rates were binned into 50 ms bins for all 
analyses. Only two-sided statistical tests were used to determine significance. The term 
“early” indicates that analyses were performed using data taken from animals during the 
first 3 days of training (inclusive), while “late” specifies data taken from animals during 
the final 3 days of training.  The “first trials” of a session indicates trials in the first 10 
minutes, while the “last trials” of a session are defined as occurring in the last 10 
minutes, unless otherwise specified in the text. Modulation depths were computed as 
the difference between the maximum and minimum firing rate values in a 2-second 
window centered around target achievement. Coherence analyses were performed 

Figure 2.4 a: Jaws-mediated inhibition of DMS neurons. Inset shows a coronal section stained for 
neuronal cell bodies (blue) and Jaws expression (red). Zoomed inset shows a magnification with labeling 
apparent on single neurons (white arrows). Histogram plot shows suppression of spike activity in one 
example DMS neuron during Jaws-mediated inhibition (red bar). b: Mean firing rates of all recorded DMS 
units during Jaws-induced inhibition with red light (red bar); N = 5. Firing rates were normalized to 
baseline firing rate values. Shaded areas indicated SEM. c: Fraction of inhibition for recorded DMS units 
during Jaws-induced inhibition, where a value of 1 indicates complete inhibition of all spike activity. Grey 
circles show individual units. 

a b c 
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using algorithms translated to Python from the Chronux toolbox (http://chronux.org) in 
conjunction with custom routines in Python. A multi-taper method was used to compute 
spectral estimates of spiking and LFP activity (Jarvis and Mitra, 2001; Thomson, 1982).   
A total of 5 tapers were used with a time-bandwidth product of 3, and estimates were 
computed every 50 ms with a window size of 500 ms. Coherence between spiking in 
LFP activity was calculated and defined as: 

 

𝐶𝐶𝑥𝑥𝑥𝑥 =  
|𝑅𝑅𝑥𝑥𝑥𝑥|

�|𝑅𝑅𝑥𝑥𝑥𝑥|�|𝑅𝑅𝑦𝑦𝑦𝑦
 

 

where 𝑅𝑅𝑥𝑥𝑥𝑥 and 𝑅𝑅𝑦𝑦𝑦𝑦 are the power spectra and 𝑅𝑅𝑥𝑥𝑥𝑥 is the cross-spectrum. Spectral 
analyses were calculated relative to the delivery of reward and averaged across trials 
and animals.  

Coherence estimates can be affected by firing rate(Lepage et al., 2011) and we 
therefore performed a thinning procedure to equate firing rates between conditions in 
which rates differed (Gregoriou et al., 2009). Trial-averaged spike trains in the neuronal 
populations were smoothed with a moving average of 10 ms. The difference in firing 
rate between the populations normalized by the maximum firing rate at a given time 
point determined the probability that a spike would need to be removed from the 
population with a higher firing rate. Spikes were then removed from the population with 
a higher firing rate based on this probability in order to eliminate any possible influence 
of firing rate on coherence estimates. 

 

The signal-to-noise ratio for each recorded waveform was quantified as: 

 

𝑆𝑆𝑆𝑆𝑅𝑅 =  
𝐴𝐴

2 ∗  𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  
 

 

where 𝐴𝐴 is the peak-to-peak voltage of the mean waveform and 𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛   is the standard 
deviation of the residuals from each waveform after the mean waveform has been 
subtracted (Suner et al., 2005). Units included in the analysis had a minimum SNR of 2. 

 

For logistic regression analyses, we used functions from the publicly available python 
package scikit-learn (www.scikit-learn.org). Regression was performed using a window 
of spike activity 500 ms prior to target hits, binned into 50 ms bins. L2 Regularization 

http://www.scikit-learn.org)/
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was done using cross-validation to determine the optimum regularization parameter. 3-
fold cross validation was performed 5 times using left out data to compute accuracies, 
and the average of all 5 results was taken to be the final accuracy value. Chance rates 
were taken as the accuracy of the analyses using shuffled data. To determine 
significance values, a permutation test was used that compared the accuracy of the 
prediction using the original dataset compared to dataset in which target identities for all 
trials were shuffled. Neural activity was considered to be significantly predictive of target 
choice if the accuracy of the prediction using the original dataset outperformed the 
accuracy of the shuffled version on 95% of 500 iterations.  

2.3 Results 

2.3.1 A V1-driven closed-loop brain-machine interface 

 

We adapted our previously developed neuroprosthetic task for rodents (Koralek et al., 
2012) in order to directly study abstract reinforcement learning in V1 (Fig. 2.5). Briefly, 

Figure 2.6: Left, average z-
scored firing rates of V1 neurons 
arbitrarily assigned to ensemble 1 
(green), ensemble 2 (blue), or 
unassigned (indirect; black), time-
locked to rewarded targets. 
Shaded areas show S.E.M. right, 
Same as in left, but time-locked 
to the unrewarded target. 
Increased activity in Ensemble 1 
units moved the tone frequency in 
the opposite direction as 
increased activity in Ensemble 2 
units. 

Figure 2.5: Schematic of V1-BMI paradigm. Activity of well-isolated V1 units (top left) were used to 
generate auditory tones using a differential transform (top right). Animals were rewarded for producing a 
target tone (red). A second tone (black) at the opposite end of the frequency range terminated the trial but 
was not rewarded. 
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10 rats (and 8 mice, see later) were implanted chronically with microwire electrode 
arrays positioned in V1 layer 5 (L5), allowing us to isolate and record individual units 
(Fig. 2.5, Fig. 2.1a,b). In addition to V1, 8 rats were also implanted with electrode arrays 
in the dorso-medial striatum (DMS) near the projection target of V1 (Hintiryan et al., 
2016; Khibnik et al., 2014; McGeorge and Faull, 1989) (Fig. 2.2a,b).  During the course 
of the experiment, animals were placed in a totally dark or lighted behavioral chamber 
and allowed to move freely while listening to auditory feedback that reported their neural 
state in real time.  Each day, two neural ensembles, consisting of two well-isolated units 
each, were randomly chosen to directly control the continuous auditory cursor (direct 
units), while the remaining units recorded in V1 had no defined relationship to cursor 
control (indirect units, Fig. 2.1b). Activity of the two direct-unit ensembles had an 
opposing relationship, such that spikes produced by Ensemble 1 (E1) moved the cursor 
closer to the rewarded frequency, while spikes in Ensemble 2 (E2) moved the cursor 
away from the rewarded frequency and towards the unrewarded frequency (Fig. 2.6). 
The highest and lowest possible tones were randomly assigned to be rewarded or 
unrewarded for each animal, and this association remained constant for the duration of 
training. Prior the start of every session, a baseline distribution of neural states (binned 
E1 - E2 spike counts) was used to initialize the target values such that the chance rate 
of attaining each target (rewarded and unrewarded) within a trial period was 
approximately 30% (Fig. 2.3; see Methods). Animals were given 30 seconds to reach 
either target; otherwise the trial was considered a miss and animals received a white 
noise burst followed by a time-out. 

2.3.2 Rodents learn to control V1 activity patterns 

Over the course of 7-12 training sessions (average 9.11 sessions), rats learned to 
perform the task well above chance level (Fig. 2.7).  Animals in the late phase of 

Figure 2.7: Left, Timecourse of 
learning across training days. Bold 
line shows the mean and S.E.M. 
across 9 rats; grey lines show 
learning curves for animals 
individually. One animal only 
completed 4 sessions; data for this 
animal has been excluded from this 
plot. Dashed lines bound the range of 
chance performance levels. Orange 
highlighted region shows data range 
classified as the early learning phase 
for all animals; red region shows 
range for late learning phase. Right, 
Comparison of performance between 
early learning phases and late 
learning phases. (N = 9 animals, 
mean for the first 3 days = 39.6% 
rewarded; mean for the last 3 days 
67.2%; P = 0.00162 (paired t-test)). 
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learning, considered here the final 3 training sessions, exhibited significant 
improvements in the percentage of rewarded targets compared to their performance in 
the early phase (during the first three sessions of training) (Fig. 2.7; mean of the first 
three days for all animals = 39.7%; mean of the last 3 days = 67.2%; P = 0.00162). 

Additionally, over this same interval, latencies to rewarded targets decreased 
significantly, while changes in latencies to unrewarded targets was non-significant (Fig 
2.8).  We observed that simply pairing particular auditory tones with reward was not 
sufficient to drive V1 activity. After 5 days of performance above chance level, we 

decoupled auditory tones from neural activity mid-session by playing back the sequence 
of tones generated in the first part of the session.  Although reward was still delivered in 
tandem with the rewarded tone, modulation of the direct unit ensembles was markedly 
decreased when animals’ neural activity was not driving the cursor (Fig 2.9). This 
suggests that the learning we observed was not an effect of classical conditioning, and 
instead resulted from an intentional modulation of V1 activity. Because the chance rate 
for each target was reset at the start of each session to approximately 30%, increases  

Figure 2.9: Left: Ensemble 1 (green) and 
ensemble 2 (blue) modulations during passive 
playback of tones decoupled from ongoing 
neural activity, time-locked to the rewarded 
target tone. Right: Modulation depth of 
Ensemble 1 and Ensemble 2 during online 
control compared to tone playback. Mean 
modulation depth online control = 4.341; 
mean tone playback = 1.739; P = 0.000348 
(paired t-test). Black  bars show mean and 
S.E.M 

Figure 2.8: latencies to rewarded vs 
unrewarded targets for early training (first 
three days of training) compared to late 
training (last three days of training). Mean 
rewarded targets, early = 21.413 seconds; 
mean rewarded late = 17.965 seconds; P = 
0.0156 (paired t-test). Mean unrewarded 
targets, early = 20.731 seconds; unrewarded 
late = 18.131 seconds; P = 0.0684 (paired t-
test).   



 

17 
 

  

Figure 2.10: a, comparison of within-session improvements during the early learning period (first 3 days) 
of training relative to the late learning period (last 3 days) for each animal (N = 9 animals), expressed as 
the ratio of rewarded to unrewarded targets. Data to compute the ratio for first trials (shaded in cyan) was 
averaged over the first 10 mins of each session, while data for the last trials (shaded in blue) was 
averaged over the last 10 mins. During the early learning period, the mean rewarded/unrewarded ratio for 
first trials was 1.12, last trials session = 3.848; P = 0.275 (paired t-test).  For the late period, mean ratio 
early in session = 1.195, mean late in session = 11.667; P = 0.00130 (paired t-test). b, Mean distribution of 
cursor values for all animals for the first trials (first 10 mins) compared to the last trials (last 10 mins) of 
sessions during the late period. Cyan bars show the initial distribution, based on baseline activity, used to 
set the task  parameters, while blue bars show the distribution at the end of the training session for the last 
trials. Dashed lines show the thresholds corresponding to the rewarded and unrewarded targets. c, 
Timecourse of mean within-session task  learning during the late period of training for all animals. Shaded 
areas represent S.E.M. Chance rates for rewarded and unrewarded targets were set at approximately 
30% at the start of each training session. Comparisons in performance were made during over first 10 
mins of each session (first trials, cyan bar) and over the last 10 minutes (last trials, blue bar) of each 
session. N = 10 animals, mean of 3 sessions per animal. d: Quantification of rewarded and unrewarded 
target hits for the first trials compared to the last trials; data same as c. N = 10 animals, mean of the late 
period (last 3 sessions) for each animal. Paired t-test between first trials and last trials for rewarded 
targets: P = 0.00055; mean early = 36.9%, mean late = 59.1%. Paired t-test between first trials and last 
trials for unrewarded targets: P = 0.00145; mean early = 33.0%, mean late = 20.6%.  Red and blue 
indicate the rewarded and unrewarded targets, respectively (** indicates P < 0.001). Black  lines show 
mean and S.EM. 
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in performance seen as animals progressed from early to late phases reflected greater 
improvements within single training sessions across days. We quantified this by 
comparing performance in the first 10 minutes of a session (first trials) and the last 10 
minutes (last trials) (Fig. 2.10a,). This suggests that the learned ability to control V1 
activity was retained between training sessions, even though animals needed to 

perform some de novo learning to adjust to the initial parameters of the transform in any 
given day.  We observed that in late learning, over the course of single training 
sessions, animals acquired a strong preference for the rewarded target relative to the 
unrewarded target (Fig. 2.10c,d). This was reflected in the shift of the distribution of 
auditory cursor values in the direction corresponding to the rewarded target tone (Fig. 
2.10b). Additionally, we observed that auditory feedback was necessary for learning: 
sessions in which the feedback tones were muted resulted in no significant difference 
between the number of rewarded and unrewarded targets (P = 0.738, Fig. 2.11), even 
though these no-feedback sessions were conducted after several days of successful 
normal training. These data demonstrate that closed-loop neurofeedback-based 
reinforcement training can be used to condition the activity of neurons in the primary 
visual cortex. 

2.3.3 V1 modulation is sensitive to task contingency 

We next investigated the sensitivity of performance to changing task conditions. In late 
learning animals were able to quickly shift their neural activity to produce the rewarded 
tone frequency once the auditory feedback began (Fig. 2.12).  We asked whether 
animals’ behavior was habitual and therefore insensitive to changes in action-reward 
contingencies; or goal-directed, in which performance remains sensitive to changing 
task contingencies (Dias-Ferreira et al., 2009). To test if performance of the V1-
controlled task fit either of these regimes, we degraded the task contingency so that 
animals received randomly timed rewards irrespective of target hits, but at a similar rate. 

Figure 2.11: Left: Timecourse of 
performance when animals were 
not given auditory feedback 
about cursor position during 
training. Right: Comparison of 
rewarded and unrewarded target 
hits during sessions without 
auditory feedback Data is the 
mean over the last 10 minutes of 
each session. N = 7 animals 
(mean of 1.5 sessions per 
animal; range 1-2 sessions). 
Mean rewarded targets = 38.1%; 
mean unrewarded = 41.7%; P = 
0.738 (unpaired t-test). 
Horizontal black  line shows 
mean and vertical bars show 
standard error. 
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Similar to our 
observations 
of abstract 
skill learning 
in M1(Koralek 
et al., 2012), 
task 
performance 
during 
degradation 
dropped 

significantly (N = 8 animals; 2 sessions per animal. Pre-training = 64.5% rewarded, 
contingency degradation = 43.1%; P = 0.0038) (Fig. 2.12, left), but returned to pre-
manipulation levels once the reward contingency was reinstated (reinstatement = 61.4% 
rewarded; P = 0.289). These results suggest that modulation of V1 activity was 
intentional and goal-directed. To test whether the association between neural activity 
and rewarded cursor movement could be flexibly adapted to a new task contingency, 
we reversed the transform after animals had achieved saturating performance. This 
manipulation caused the cursor to move in the opposite direction for a given spike rate 
modulation that what animals had initially learned. Although this manipulation caused an 
initial decrease in performance, animals were able to learn the reversed behavior when 
given sufficient training time (Fig. 2.12, right), showing that animals could dynamically 
adapt to changes in the relationship between neural patterns and reward.  

2.3.4 Changes in visual context affect performance of a V1-driven task 

Neurons in the primary visual cortex are known to respond to visual stimuli. The 
observation that animals can learn to successfully modulate V1 neurons in total 
darkness indicates that this activity is at least partially independent of visual input. One 
possibility is that over the course of learning, E1 and E2 units become decoupled from 
bottom-up sources of visual input; for example, visually-driven activity from the lateral 
geniculate nucleus of the thalamus. If this were true, then we can expect trained 
animals to be able to perform the task under any light condition. To test this, we trained 
animals both in light and total dark conditions. Interestingly, no significant difference 
was observed in performance at the end of a training session (last trials) for sessions 

Figure 2.12: Left  Percentage of rewarded trials for contingency degradation sessions. Bars show means, 
lines show individual animals. N = 8 animals, mean of 2 sessions per animal. P: pre-degradation, mean = 
64.5%. CD: peri-degradation (reward decoupled from cursor), mean = 43.1%. R; reinstatement of reward, 
mean = 61.4%. Paired t-test between pre- (P) and peri- (CD) degradation: P = 0.0038. Paired t-test 
between CD and reinstatement (R): P = 0.0283. Paired t-test between pre-degradation (P) and 
reinstatement (R): P = 0.289. Right, Quantification of performance in contingency reversal sessions; N = 7 
animals; average of 1.57 sessions per animal (range 1-2). P: pre-reversal (mean = 85.8%); Rev: peri-
reversal (mean = 47.8%); R: recovery of performance with the decoder still reversed (mean = 81.2%). 
Paired t-test between P and Rev: P = 0.0435; paired t-test between Rev and R: P = 0.447; paired t-test 
between P and R: P = 0.689. 
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performed entirely in the dark compared to in the light (train light = 74.0%, train dark = 
63.5%, P = 0.205, Fig. 2.13a,b), suggesting that learning can occur both in the presence 

Figure 2.13: a, Timecourse showing the mean percentage of rewarded trials within all sessions under 
lighted conditions (yellow) compared to dark  conditions (black). Shaded areas represent S.E.M. b, 
Quantification of data in a, using the first trials and last trials in a session. Train light: N = 4 animals; 
average of 7.5 sessions per animal (range = 5 to 10 sessions). Paired t-test between first trials and last 
trials: P = 0.0113; mean first trials = 37.8%; mean last trials = 74.0%. Train dark : N = 6 animals; 8 sessions 
per animal. Paired t-test between first trials and last trials: P = 0.00167; mean early = 0.396; mean late = 
0.635. Unpaired t-test between last trials for light sessions and last trials for dark  sessions: P = 0.205 (* 
indicates P < .05; black  crosses show mean and S.E.M.). c, Timecourse showing the mean percentage of 
rewarded trials when animals learned a decoder under dark  conditions, and were switched to a lighted 
condition mid-session (“train dark , test light”). d: Mean percentage of rewarded trials when animals were 
trained in dark , and then tested in the light (same data as c). N = 5 animals, mean of 1.8 sessions per 
animal (range 1-2). Data taken from last 15 mins of dark  training and first 15 mins of light testing. Mean 
train dark : 87.4%, mean test light 42.6%; P = 0.0309 (paired t-test). Error bars show S.E.M; horizontal lines 
show mean (* indicates P < 0.05). e, Mean percentage of rewarded trials when animals were trained in the 
light and tested in the dark . N = 4 animals, mean of 1.5 sessions per animal (range 1-2). Mean train light: 
77.9%. Mean test dark : 35.4%. P = 0.043 (paired t-test). 
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and absence of visual stimuli. However, changing the context within a training session, 
i.e. from dark to light after the animals had learned the task in darkness, or vice-versa, 
had a significant negative impact on performance (train dark = 87.4%, test light = 
42.6%, P = 0.0309; train light = 77.9% test dark = 35.4%, P = 0.043) (Fig. 2.13c,d,e). 
Changing the light conditions affected the mean spike rates of all V1 neurons. (Fig. 
2.14; mean rate in dark = 4.13 Hz; mean rate in light 6.18 Hz).  These results suggest 

that a modulatory input can 
learn to generate rewarded 
patterns of activity in direct 
units under stable network 
conditions, but that 
changing the state of the 
network (for example, by 
adding or removing 
visually-evoked activity) is 
disruptive and requires 
compensatory re-learning.   

2.3.5 Learning to 
modulate V1 neurons is associated with changes in neural dynamics 

Next, we chose to examine the neural dynamics associated with learning goal-directed 
modulations in V1. Correlations between E1 units, whose combined positive activity 
modulations moved the cursor in the rewarded direction, significantly increased over the 
course of the session (N = 10 animals, normalized change 4.42, P = 0.042) (Fig. 
2.15a,b), suggesting that training resulted in increased coordination between these 
units. No such change was observed between E2 units or between E1 and E2 units. In 
72 out of 102 sessions, the relationship between performance and the E1 unit 
correlation was positive (mean Pearson correlation coefficient = 0.187). Of these 
sessions, 55.72% exhibited a significant (P <0.05) correlation. An example session is 
shown in Fig 2.15c. We also observed that the correlation between E1 units was 
significantly greater in a 1-second window prior to rewarded target hits, relative to 
unrewarded targets or timeouts (Fig 2.15d). These data suggest that coordination 
between E1 units was important for success.  

Interestingly, in the late learning phase, we observed an increase in LFP power in V1 
prior to rewarded target hits (Fig. 2.15e). Similar changes in ongoing oscillatory activity 
have previously been associated with top-down processing in visual cortices (Engel et 
al., 2001), which is one potential mechanism by which animals may be performing the 
task. To further explore this possibility, we then calculated the coherence between 
spikes in direct (combined E1 and E2) units and local field potentials (LFP) in V1, time 
locked to rewarded targets. Previous reports have found that attention alters alpha-band 
(approx. 5-15 Hz) coherence in the deep layers of visual cortex (Buffalo et al., 2011). 
We found that the alpha-band spike-field coherence (SFC) of direct units increased from  

Figure 2.14: Mean spike rates for 
all V1 units when the light 
conditions were changed mid-
session. N = 6 rats. Paired t-test 
between light and dark  conditions: 
P = 0.314. 
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Figure 2.15: a, Mean pairwise 
correlations between units within 
Ensemble 1 (green) or within Ensemble 
2 (blue) during training. Correlations 
were calculated using 1 ms bins. b, 
Change in normalized correlation 
coefficients (cc) from the first trials to the 
last trials within sessions. CC calculated 
between units within Ensemble 1 (mean 
change = 4.418; P = 0.0417; paired t-
test), within Ensemble 2 (mean change 
= 0.942; P = 0.775; paired t-test)), or 
between units in ensembles 1 and 2 
(mean change = 1.361; P = 0.491; 
paired t-test). N = 10 rats; mean of 4.4 
sessions per rat (range 3-6). c: Example 
data from one session showing the 
relationship between changes in 
correlation of Ensemble 1 units (green) 
and task  performance (percent of correct 
trials, black). d: Mean correlation 
between Ensemble 1 units during a 2 
second window prior to target hits or 
timeouts. Mean cc prior to rewarded 
targets = 0.0285; mean cc prior to 
unrewarded targets = 0.0241 (P = 
0.00167; paired t-test). Mean cc prior to 
timeouts: 0.0240. Comparison between 
rewarded targets and timeouts: P = 
0.0362; comparison between 
unrewarded targets and timeouts: P = 
0.549 e:  Mean spectrogram of V1 LFP 
time-locked to rewarded target hits. f, 
Spike-field coherence between direct 
units and V1 LFP for late learning 
periods during task  performance (red) 
compared to non-engaged passive 
behavior (blue). Shaded area represents 
S.E.M. g, Spike-field coherograms 
showing the evolution of coherence over 
time for LFPs in V1 and spikes from 
direct (combined Ensemble 1 and 
Ensemble 2) units in during early 
training periods (days 1-3; top plot), late 
training periods (last 3 days, middle 
plot), and indirect units (no direct 
relationship to cursor control) for late 
periods (bottom plot) time-locked to 
rewarded targets. h: Coherence 
between direct units and V1-LFP in the 
10-25 Hz band for early training 
compared to late training. Solid lines 
show the mean for 10 animals and 
shaded areas represent S.E.M. 
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early to late phases of learning (Fig. 2.15g,h). This effect was stronger for E1 than for 
E2 units (Fig 2.16). This increase was only observed during task performance but not 
when animals were engaged in passive behavior (Fig. 2.15f). Indirect neurons did not 
show this effect (Fig. 2.15g), suggesting that these learning-related dynamics were 
specific to units directly involved in cursor control. However, a relatively constant 
fraction of indirect neurons in each training session did show predictive power for target 

choice (Figure 2.20e,f), suggesting that there is a broader network of neurons in V1 that 
may have supported learning in the direct units.  

2.3.6 Striatal activity becomes task-relevant with learning  

To address whether the dorso-medial striatum (DMS) plays a role in V1-based 
reinforcement learning, we next examined whether activity in an area of DMS that 
receives input from V1 changed with learning. Electrical stimulation of V1 produced a 
reliable spike response recorded in DMS with a delay of approximately 6 ms, 
suggesting a direct projection as shown in previous reports (Allen Institute for Brain 
Science, 2015; Faull et al., 1986; Hintiryan et al., 2016; Khibnik et al., 2014; McGeorge 
and Faull, 1989) (Fig 2.17a,b). Conversely, stimulation of DMS while recording in V1 did 
not produce an observable response (not shown). In late learning, DMS units exhibited 
a strong modulation time-locked to the rewarded target that was not present in the early 
phase (Fig. 2.17c,d). This was accompanied by increases in beta and gamma LFP 
power over the same time interval (Fig 2.17f).  A linear regression analysis revealed that 
over the course of training days, population activity of recorded DMS units became 
increasingly predictive of direct unit activity in V1 (Fig. 2.17e, Fig 2.20e), suggesting that 
extended training of V1 activity increasingly recruited the striatum. In accordance with 
this observation, field-field coherence between V1 LFP and DMS LFP was also 
increased in late learning around the time of target achievement (Fig. 2.17g,h), 
suggesting a possible role for the striatum in learning to produce rewarded modulations 
in V1. 

Figure 2.16: Left: comparison between spike-field coherence between E1 or E2 units and V1 LFP in late 
training. Middle: Spike-field coherence between E1 or E2 units time-locked to rewarded targets and 
isolated between 10 and 25 Hz for early training periods. Right: Coherence as in h for late training 
periods.  
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2.3.7 Striatal activity is critical for learning to modulate V1 activity 

Next, we asked whether DMS activity was necessary for learning to volitionally 
modulate V1 neural activity. Mice were injected bilaterally with the red-shifted inhibitory 
opsin Jaws (rAAV8/CamKII-Jaws-KGC-GFP-ER2) (Chuong et al., 2014) into the area of 
DMS which receives input from V1, and implanted chronically with optical fibers 
targeting DMS, and with recording electrodes in L5 of V1 (Fig. 2.18a). Red light 
stimulation through the optical fiber decreased activity in optogentically-identified DMS 
units (Fig. 2.4), but had no effect on spike rates in V1 (not shown). Mice were trained on 
the same task as rats as described above and in Fig. 2.5. During the first 7 days of 
training, Jaws-injected mice and GFP-injected controls randomly received red light 

Figure 2.17: a: Raster plot of an example DMS unit time-locked to V1 ICMS. b: histogram of evoked 
spike counts from unit shown in c. c, Mean z-scored firing rate of units recorded in the dorsal medial 
striatum (DMS) time-locked to rewarded targets for early compared to late learning. d: Modulation depth 
of DMS units in a 1-second window surrounding rewarded target hits. Mean for early periods = 2.872; 
mean for late periods = 3.691; P = 0.00015. e: Proportion of variance of direct unit spikes in V1 explained 
by DMS unit spikes in a 500 ms window prior to rewarded target hits, computed using a linear regression 
analysis on individual training days. Solid black  lines show mean and S.E.M; grey lines show data for 
individual animals. Mean of first two days =0.0788; mean of last 2 days = 0.276; P = 0.0196 (paired t-
test). f: Mean spectrogram of DMS LFP time-locked to rewarded target hits for all animals during the early 
period (sessions 1-3), left), compared to the late period (last 3 sessions, right). g: Field-field coherograms 
between V1 LFP and DMS LFP for early (left) compared to late training (right) sessions time-locked to 
rewarded targets. h: field-field coherence between V1 and DMS in the 0-5 Hz band in for early and late 
training, time locked to rewarded targets. Solid lines show mean for all animals; shaded areas represent 
S.E.M. 
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stimulation on 50% of trials for the whole duration of the trial (see Methods; LED 50, Fig. 
2.18a, bottom). Control GFP animals were able to learn the task and improved with 
several days of training (N = 4 animals, mean of first 3 days = 39.7%, mean of last 3 
days = 69.7%, P = 0.00072) while Jaws animals did not learn (N = 4 animals, mean first 
3 days LED 50 = 29.3%, mean of last 3 days LED 50 = 33.3%, P = 0.183) (Fig. 2.18c,d). 
This appeared to be a deficit in acquisition of the task, and not just poor performance in 
LED on trials, as no difference in success rate was observed between performance 
during LED on trials compared to LED off trials in any of these sessions (Fig. 2.18b). 
However, Jaws animals were able to learn the task and improve over the course of 5 

Figure 2.18: a, Schematic showing the replication of rat experiments in Jaws-injected mice. Left: mice 
were injected bilaterally with rAAV8/CamKII-Jaws-KGC-GFP-ER2. Middle: After Jaws expression 
stabilized, mice were implanted unilaterally with an electrode array in V1 L5 and bilaterally in DMS. Right: 
animals were trained on the same task  as rats (see Figure 1a) with the addition of optogenetic inhibition. 
Bottom: timecourse of experiments. LED 50% indicates that Jaws was activated via red LED light in 50% 
of trials. b, Success rates for LED-on VS LED-off trials in Jaws-injected animals across training sessions. 
c, Percentage of rewarded trials for Jaws compared to control GFP mice over the course of several days 
of training. Red bar indicates sessions where the LED was active on 50% of trials for both groups (LED 
50). d, Quantification of performance across days for Jaws-injected animals (red; N = 4) and GFP-
injected animals (green, N = 4) Each time period is a mean over 3 sessions. Mean GFP, first 3 sessions = 
39.7%, Mean GFP, last 3 sessions = 69.7%; P = 0.00072 (paired t-test). Mean Jaws, first 3 sessions = 
29.3%, mean Jaws, last 3 sessions LED 50 = 33.3%; P = 0.183. Mean jaws, last 3 sessions LED off = 
62.1%. Paired t-test between Jaws last 3 sessions LED 50 and Jaws LED off: P = 0.00131. e and f: Mean 
spectrogram of V1 LFP in Jaws animals time-locked to rewarded targets for LED-50 sessions (e) and 
LED-off sessions (f). LED-50 sessions include both trials with and without Jaws activation. 
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subsequent training days if no LED stimulation was provided and activity DMS was 
unimpaired (mean performance after LED off training = 62.1%, P = 0.00131), (Fig. 
2.18c,d). Interestingly, V1 LFP power in the gamma band (25-60Hz) during sessions 
with Jaws inhibition was markedly reduced around the time of target hits, while gamma 
power during LED-off sessions in which animals successfully learned the task was 
similar to that observed in rats after learning (Figure 2.18e,f; 2.19a). Together, these 
results suggest that inhibition of DMS activity prevents animals from learning to 
generate arbitrary patterns of V1 activity in order to obtain a desirable outcome.  

2.3.8 Optogenetic inhibition of DMS does not impair learned performance  

In our task, the parameters used to translate neural activity to auditory tones were re-
calculated each day such that at the start of every session animals were required to 
undergo some de novo learning in order to adapt to the new calibration. Despite this, 
animals were able to retain some memory of training from previous days to perform 
better over the course of each session as training progressed (Fig. 2.10a; comparison 
between early and late phases). Interestingly, we observed that returning Jaws animals 
to an LED on 50% condition after several successful days of LED off training impaired 
their ability to learn during that session, even though they performed well above chance 
during the previous session and during following session when the LED was not active 
(N = 4 animals, performance with LED off, pre = 63.3%, LED 50 = 38.9%, LED off, post 
= 59.6%, Fig. 2.19b).  This could suggest that striatal activity is required for animals to 
learn the initial parameters set at the beginning of the session; however, it could also 

Figure 2.19:  a: Mean gamma power (25-60 Hz, solid lines) in V1 time-locked to rewarded targets during 
LED-50 vs LED-off sessions. Shaded areas show S.E.M. b, Mean performance of trained Jaws-injected 
animals after several days of training. Data is plotted in the order that the training sessions occurred. 
Black  bars indicate sessions without LED activation. Striped red bars indicate sessions where the red 
LED was active on 50% of trials. N = 4 animals. Mean LED off, first session = 63.3%; mean LED 50 % 
(second session) = 38.9%; mean LED off, last session = 59.6%. Paired t-test between LED off, first 
session and LED 50%: P = 0.0122.  Paired t-test between LED 50% and LED off, second last session: P 
= 0.0259. Paired t-test between LED off, first and last sessions: P = 0.502. c, Mean performance within a 
session for trained Jaws animals with late-session LED only activation compared to full-session LED 50% 
sessions. d, Quantification of performance when animals were trained with LED off and tested with LED 
on in the same session; data same as in f.  N = 4 animals; mean of train LED off = 59.6%; mean of test 
LED on = 64.4%; P = 0.657 (paired t-test). 
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indicate that striatal inhibition was interfering with task performance rather than 
acquisition. To disambiguate these two possibilities, we allowed animals to achieve 
saturating performance on the task within a single session (Train LED off, Fig. 2.19d), 
and then continued to train animals with the LED turned on in every trial for the 
remainder of the session (Test LED on, Fig. 2.19d). Interestingly, inhibition of the 
striatum after within-session learning had taken place did not impair animals’ ability to 
perform the task, and they continued to perform well above chance level (Fig. 2.19c,d), 
and in an indistinguishable manner from the LED off trials (training with LED off = 
59.6%, testing with LED on = 64.4%; P = 0.657). These data suggest that striatal 
inhibition prevents animals from learning to modulate neural patterns in V1 through 
instrumental conditioning, but not from executing these patterns after learning has taken 
place. 

2.4 Discussion 

Here we demonstrate that animals can learn to modulate spike activity in the primary 
visual cortex in a goal-directed manner using an abstract virtual task. These data 
demonstrate that feedback-based reinforcement learning can modulate activity on the 
scale of a few neurons, even in a primary sensory region which is strongly driven by 
external sensory input. Because we observed that successful performance occurred in 
both the presence and absence of light, it would appear that the learned modulation of 
V1 units in our task is an internally-driven process. Taken along with a body of previous 
work describing brain-machine interface learning in other diverse cortical areas (Cerf et 
al., 2010; Clancy et al., 2014; Fetz, 2007; Prsa et al., 2017; Schafer and Moore, 2011; 
Shibata et al., 2011), these results suggest that this type of instrumental learning ability 
may be a common feature that tunes the activity of cortical circuits more generally.  

In the realm of motor control, the cortico-basal ganglia circuit has been hypothesized to 
perform a selection function in which competing cortical motor programs are either 
maintained or released from inhibitory control (Costa, 2011; Redgrave et al., 2011). A 
similar function has also been postulated to operate in the realm of abstract cognition, 
by which various cognitive patterns may be selected that are appropriate for the current 
behavioral context, and have previously led to positive outcomes (Graybiel, 1997). 
These models propose an inhibitory feed-forward projection from basal ganglia output 
nuclei (globus pallidus internal (GPi) and substantia nigra pars reticulata (SNr) that can 
activate cortical programs when inhibition is transiently released from the thalamus. 
Interestingly, although basal ganglia outputs are known to target frontal cortical areas 
and even higher-order visual areas like area TE in the primate (Middleton and Strick, 
1994, 1996), we are not aware of any direct projections from the basal ganglia that 
target V1-projecting thalamic nuclei.  

Despite this, we observed that activity in the striatum was necessary for instrumental 
learning of neural patterns in the primary visual cortex. This result may be due to an 
induced learning deficit in a cortical region other than V1 whose input modulates 
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Ensemble 1 and Ensemble 2 activity in the absence of visual stimulation. Frontal 
cortical areas, such as the cingulate cortex (Cg) in the rodent, are known to powerfully 
and directly influence processing in V1 to select and amplify representations of 
behaviorally relevant stimuli (Zhang et al., 2014). Thus, disrupting cortico-basal ganglia 
circuit function might impair learning of a top-down modulatory signal that generates 
rewarded activity in V1. Perhaps analogously, Parkinson’s patients with abnormal basal 
ganglia function have been shown to be impaired in voluntary and sustained control of 
visual attention in the absence of eye movements (Wright et al., 1990; Yamaguchi and 
Kobayashi, 1998). Alternatively, the learning process we observed could have recruited 
structures upstream of V1, such as the superior colliculus, that also form connections 
with the basal ganglia (McHaffie et al., 2005). Our results do not rule out these or other 
possibilities; rather, they simply demonstrate that the basal ganglia are necessary to 
learn to modulate activity in V1, and that the input for this circuit is the striatum. 

In our experiments, we observed that animals performed in a goal-directed manner: 
performance remained sensitive to changing task contingencies, even after many days 
of training (Figure 2.12). The projection of the primary visual cortex to the striatum lies 
along the most medial-dorsal aspect, adjacent to the ventricle wall (Khibnik et al., 2014). 
This lies well within the dorsomedial division of the striatum, which is known to be 
necessary for and to facilitate goal-directed behaviors (Yin et al., 2005, 2009), as 
opposed to the dorsolateral division which is required for habitual action (Redgrave et 
al., 2010; Wickens et al., 2007; Yin et al., 2006).  One possibility is that segregation of 
V1 projections in the dorsomedial division of the striatum favors goal-directed learning 
and behavior in V1. However, it is also possible that the daily recalibration of task 
parameters or simply insufficient training time prevented behavior from becoming 
habitual. Previous work utilizing a similar task design but controlled by neurons in M1 
also observed that animals behaved in a goal-directed manner (Clancy et al., 2014; 
Koralek et al., 2012). 

From our analyses, we observed that learning-related changes in neural dynamics, 
such as changes in correlations and spike-field coherence (Figure 2.15) were largely 
restricted to the direct population consisting of units from Ensemble 1 and Ensemble 2. 
Absolute modulation depth of indirect (non- E1 or E2) neurons in V1 remained low 
relative to direct units (Figure 2.20a,b), suggesting that the learning we observed 
operated primarily on the small scale of a few neurons. Furthermore, the modulation 
depth of task-irrelevant indirect neurons declined over the course of training (Figure 
2.20c), echoing similar results observed across mice and monkeys using calcium 
imaging and electrophysiology techniques (Clancy et al., 2014; Ganguly et al., 2011; 
Prsa et al., 2017). It has been reported that the activity of single cells in sensory cortex 
is sufficient to drive a percept (Houweling and Brecht, 2008), suggesting that cortical 
circuits may be optimized to operate on these microscales. However, a closer analysis 
of indirect unit activity showed that many single units as well as the full population of 
indirect cells contained activity that was predictive of target choice (Figure 2.20e,f). 
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These results suggest a subtle role for this population in the learning and execution of 
the task; however, as we only capture a small slice of the neural population using our 
technique, it is difficult to conclusively say much about the relative contributions of this 
population as a whole. Future projects will no doubt involve closer study of how nearby 
neural populations support learning in a particular subset of cells, perhaps by using new 
approaches (such as calcium imaging) that allow for stable recording of large neural 
populations. 

An important goal of BMI research is often to decode movement parameters with high 
accuracy in order to translate a subjects’ existing motor control repertoire into the 
movement of a complex artificial effector. In these cases, using high channel count 

Figure 2.20: a and b: absolute z-scored firing rates for E1, E2 and indirect units, time-locked to rewarded 
(a) and unrewarded (b) target hits. c: Mean modulation depth of direct (pooled E1 and E2) units and 
indirect units in early (sessions 1-3) and late (sessions 8-10) training. Data taken during a 3-second 
window prior to rewarded target hits. Mean direct early = 3.988, mean direct late = 3.942, P = 0.743 
(unpaired t-test). Mean indirect early = 3.135, mean indirect late = 2.718, P = 0.0218 (unpaired t-test). d: 
total number of indirect units recorded across training sessions. Black  lines show mean and S.E.M; grey 
lines show values for individual animals. e: Mean percent of single indirect units with significant 
predictability for target choice over all training days. Significance determined by permutation test with P < 
0.05. Mean = 10.782%. Black  lines show mean and S.E.M. for all animals; dots show mean for each 
animal individually. f: Prediction of target choice using population activity. Direct (E1 and E2) units or 
indirect units were used to predict target choice using a logistic regression analysis. Spike data was taken 
in a 500 ms window prior to target hits. Grey bars show chance accuracy rates calculated by permutation 
test. Mean direct =0.964 ; mean indirect = 0.729 
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recordings in motor cortices is an effective strategy due to the rich encoding of 
movement parameters in areas such as M1 and PMd; however, BMI tasks have 
successfully been implemented in other cortical regions as well (Carmena et al., 2003; 
Cerf et al., 2010; Clancy et al., 2014; Fetz, 2007; Hwang et al., 2013; Musallam et al., 
2004; Schafer and Moore, 2011; Shibata et al., 2011). In this study, our goal was not to 
optimize performance or control of an effector, but rather develop a task that would 
enable us to study learning. The learning rates we observed for a 1-dimensional BMI 
task using low numbers (~1-10) of neurons in rodents were consistent with what we and 
others have previously reported (Arduin et al., 2013; Clancy et al., 2014; Koralek et al., 
2012; Prsa et al., 2017). It is important to note our task is different in several respects 
from BMI paradigms designed with the goal of maximizing performance and control in a 
therapeutic context, and we believe that comparing learning rates or performance 
metrics observed in this study with those reported across the BMI field as a whole would 
be misleading. Instead, our goal was to use a BMI paradigm as a method of operantly 
conditioning neural activity in V1 directly in order to study the learning process and the 
neural dynamics associated with it. This enabled us to define the final output layer of 
neurons directly responsible for controlling a virtual action as well as their relationship to 
task performance, and allowed us to observe their activity relative to each other, other 
V1 neurons, and activity in the dorsomedial striatum. 

Although neurons in the primary visual cortex are thought to represent low-level visual 
features early in the visual processing stream, we observed that V1 neurons could learn 
to produce rewarded activity patterns that were independent of visual stimulation when 
spike activity was used as a control signal for a closed-loop brain-machine interface 
task. While here we focus on learning in the primary visual cortex, the dynamics of 
striatal activation, cortico-striatal dynamics over the course of learning, and the 
necessity of the striatum in the learning process is similar to what has been observed in 
a variety of tasks that engage diverse cortical regions (Barnes et al., 2005; Corbit and 
Janak, 2010; Koralek et al., 2012; Pasupathy and Miller, 2005; Shohamy et al., 2004; 
Yin et al., 2009). These results suggest that cortico-striatal projections, as part of larger 
cortico-basal ganglia circuits, play a generalizable role in shaping cortical activity based 
on ongoing experience and behavioral outcomes.  
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Chapter 3: 
Representation of task-relevant parameters by 
population activity in the dorsomedial striatum  
Selecting the appropriate behavior for a given time and place can be a complicated 
decision. Evidence suggests that cortico-basal ganglia circuits shape behavior by 
learning the value of different actions, and selecting actions that are most likely to lead 
to positive outcomes. In Chapter 2, we demonstrated that the dorsomedial striatum 
(DMS) was necessary for learning to modulate neural activity in the primary visual 
cortex (V1). These data suggest that patterns of neural activity can be learned 
instrumentally, similar to overt actions, and that cortico-basal ganglia circuits may be 
necessary to assigning value to these patterns. However, the value of a given action 
may not be static and can fluctuate according to the current state of an animal’s 
environment, creating uncertainty about which action to take. How cortico-basal ganglia 
circuits facilitate action selection under different environmental conditions remains an 
active area of investigation. We trained rats on a two-alternative probabilistic switching 
task while recording neural activity from the dorsomedial region of the striatum, the main 
input nucleus of the basal ganglia. We found that the encoding of task parameters was 
mixed at the level of single neurons, but latent signals corresponding to individual 
parameters could be robustly decoded from population activity. Furthermore, we found 
that the magnitude of animals’ uncertainty about the correct action was encoded by 
neural populations on a trial-by-trial basis, and that uncertainty influenced the timing and 
strength of signals encoding action choice.  

3.1 Introduction 

Instrumental learning is a common mechanism by which animals acquire new 
behaviors, including natural motor behaviors and brain-machine interface-driven 
behaviors that condition neural activity directly. In Chapter 2, we showed that 
instrumental learning was a common mechanism by which animals learned to control 
neural activity to obtain rewarding outcomes.  In many models of instrumental learning, 
there is an early period of exploration, during which an agent will sample many possible 
actions and acquire information about their relative values. This is often followed by a 
period of exploitation, when the agent repeats the action with the highest estimated 
value to accumulate rewarding outcomes. In real-life scenarios, intelligent prediction 
about the value of possible actions is essential. Cues about state of an environment can 
signal that previously estimated action values may no longer be valid, requiring a 
change of strategy or further exploration. Conversely, failing to exploit valuable options 
when they are available can result in suboptimal outcomes. A deficit in the ability to 
respond flexibly to changing conditions is feature of several neuropsychiatric disorders, 
such as obsessive-compulsive disorder (Gillan et al., 2011) and addiction (Everitt and 
Robbins, 2005), that can severely impact an individual’s quality of life.  
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In the brain, deliberative decisions about behavioral choices have been attributed to 
regions of the prefrontal cortex, such as the orbitofrontal and anterior cingulate cortices 
(Izquierdo et al., 2016; Quilodran et al., 2008; Saez et al., 2015; Wilson et al., 2014). 
However, accumulating evidence suggests that these prefrontal areas are likely part of 
larger circuits involved in action selection that include the basal ganglia (Clarke et al., 
2008; Daw et al., 2005, 2006; Gremel and Costa, 2013; Kimchi and Laubach, 2009; 
McClure et al., 2003; Owen, 1997; Tanaka et al., 2016). The striatum, which is the main 
input nucleus of the basal ganglia, is known to encode action-outcome contingencies 
(Samejima, 2005; Tricomi et al., 2004) and has a well-documented role in instrumental 
learning (Dang et al., 2006; Hikosaka et al., 2002; Yin et al., 2005, 2006, 2009).  Distinct 
roles in the acquisition of new behaviors have been attributed to different sub-regions of 
the striatum (O’Doherty et al., 2004). The ventral compartment is thought to encode the 
difference between expected and actual reward (Gläscher et al., 2010; O’Doherty et al., 
2004; Schultz, 2000), whereas the dorsal region is thought to be involved in action 
selection (Costa, 2011; Kimchi and Laubach, 2009; Redgrave et al., 2011). A further 
distinction may be drawn between the medial and lateral compartments of the dorsal 
striatum. The dorsolateral part (DLS), which is recipient of sensorimotor inputs from the 
cortex, is thought to be involved during the later phases of skill learning when actions 
become habitual (Yin et al., 2006, 2009). The dorsomedial part (DMS) receives input 
primarily from associative areas of the cortex, and is thought to be engaged during early 
periods of skill learning, or when actions are goal-directed and sensitive to action-
outcome contingency (Redgrave et al., 2010; Yin et al., 2005, 2009). 

In addition to accumulating experience through trial and error, goal-directed actions can 
be guided by acquired knowledge or predictions about an environment. For example, an 
individual with confidence in the current state of the environment may choose to 
exclusively and repeatedly execute a single action, while the same individual in a more 
uncertain environment might choose to sample many different options. Behaviors that 
rely on abstract knowledge about environmental state have been shown to engage the 
frontal cortex (Saez et al., 2015; Samejima and Doya, 2007; Wilson et al., 2014; 
Yoshida and Ishii, 2006)(Wolter, 2014), and lesions of frontal cortices are known to 
cause deficits in these behaviors (Boulougouris et al., 2007; Brigman and Rothblat, 
2008; Cordova et al., 2014; McAlonan and Brown, 2003). However, similar deficits have 
been observed following lesions of the medial striatum (Castañé Anna et al., 2010; 
Clarke et al., 2008). This evidence, as well as the anatomical convergence of frontal 
cortical inputs to the dorsomedial striatum, suggests that striatal circuits play an 
important role in flexible decision making. 

Here, we asked how the activity of neurons in the dorsomedial striatum encoded task 
parameters as rats learned to perform a two-alternative probabilistic switching task. 
Rats exploited actions when the state of the environment was clear, and explored 
alternatives when the state was uncertain.  We observed that a fraction of single units 
displayed activity that significantly predicted one or more task parameters, including the 
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degree of uncertainty about the best action to take in a given trial. We then used 
dimensionality reduction techniques to decompose the activity of neural populations into 
latent factors that encoded individual parameters, and found factors that robustly 
encoded action, choice, and uncertainty from trial-to-trial. Furthermore, we found that 
the magnitude of choice signals was affected by animals’ uncertainty levels, suggesting 
that uncertainty may promote exploration by weakening striatal signals that favor 
selection of a particular action. 

3.2 Methods 

3.2.1 Surgery 

All rat experiments were performed in compliance with the regulations of the Animal 
Care and Use Committee at the University of California, Berkeley. A total of three 
singly-housed, male Long-Evans rats weighing roughly 250 grams were used for the 
experiments. After a total of 17 days of behavioral training, all rats were chronically 
implanted bilaterally with microwire arrays the dorsomedial striatum. Each array 
contained 16 tungsten microelectrodes (35 μm diameter, 250 μm electrode spacing, 8x2 
or 4x4 configuration; Innovative Neurophysiology, Durham, NC).   Stereotactic 
coordinates relative to bregma and lambda were used to center the arrays (1.8 mm 
anterior of bregma, 2 mm lateral of the midline, and 5.5 mm ventral from the cortical 
surface for DMS). Rodents were anesthetized isoflurance gas as needed. 
Craniectomies were sealed with cyanoacrylate and rats were allowed to recover for ten 
days after implantation before behavioral training. Rats were given dexamethasone 
treatment (0.5 mg/kg) for one week following surgery to minimize tissue damage around 
the implant (Zhong and Bellamkonda, 2007).  

3.2.2 Electrophysiology 

Single unit activity and local field potentials were simultaneously recorded with a 
Multichannel Acquisition Processor (MAP; Plexon Inc., Dallas, TX). A commutator 
(Plexon Inc., Dallas, TX) was mounted above the behavioral chamber and used to route 
and detangle headstage cables connected to the animals’ implants while they moved 
freely. Activity was sorted using an online sorting application (Plexon Inc., Dallas, TX) 
prior to each daily recording session. Only units with a clearly identified waveform and 
signal-to-noise ratio greater than 2 were used. Sorting templates were further refined 
using an offline sorting application (Plexon Inc., Dallas, TX). Recording arrays were 
grounded to a screw in the occipital bone, and both arrays were also referenced locally 
using the online program Ref2 (Plexon Inc., Dallas, TX) to eliminate effects of volume 
conduction. For referencing, an electrode on each array was chosen to be subtracted 
from all other electrodes on that array. This was done independently for arrays in each 
hemisphere. 
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3.2.3 Behavioral Training 

 Rats were trained on the task in a lit behavioral chamber (Lafayette Instrument 
Company, Lafayette, IL). One wall of the chamber was configured with two levers in the 
center of the wall, positioned one on top of the other. The bottom lever was 2 cm from 
the floor of the chamber, and the other was 10 cm above the first. Animals needed to 
stand on their hind legs in order to press the top lever. The opposite wall of the chamber 

was configured with a nose poke port connected to a IR beam break detector, as well 
as a syringe pump that delivered a sucrose water reward. (Fig. 3.1). Food pellets were 
freely available to the animal during the task. A speaker was mounted at the top of the 
cage to signal behavioral events: a single beep indicated that a lever had been fully 
depressed, while two beeps indicated that a new trial had started and the levers were 
reset. A programmable Raspberri Pi computer (Raspberri Pi Foundation, Cambridge, 
UK) along with custom-written Python routines was used to control the behavioral task, 
log behavioral events, and record video using USB webcams. During the first two days 
of training, animals were familiarized with the behavioral chamber and rewarded for 
nose pokes into the reward port. In the next three days of training, animals were trained 
to first press the lower lever exclusively (with a 100% reward rate), followed by the top 
lever exclusively (again with 100% reward rate). Pressing the correct lever primed the 
reward port such that when animals poked their nose inside and broke the IR beam, a 
sucrose water reward was delivered. Subsequent days of training then utilized both 
levers. In the two-lever task, the first lever press in the trial was considered to be the 
chosen lever for that trial, meaning that any subsequent lever presses had no effect on 
the outcome for that trial. At any point in the two-lever task, one lever was associated 
with an 85% probability of reward, while pressing the other lever did not deliver any 
reward. At a randomized and un-cued number of trials between 25 and 100, the 
identities of the rewarded lever and unrewarded lever were reversed. Training sessions 
lasted approximately 1 hour each day, and animals trained for a total of 30 days on the 
two-lever task.  

Figure 3.1: a: side view of behavioral chamber configuration. b: example of hidden task  structure for a 
single session. In this example, the identity of the correct lever switches at approximately 90 trials. The 
correct lever had an 85% chance of delivering a sucrose water reward. 
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3.2.4 Data Analysis 

Analyses were performed in Python with custom- written routines utilizing publicly 
available software packages. Unit data were first binned in 1 ms time bins and digitized. 
Analyses were performed in relation to different behavioral events as indicated in 
figures. For all analyses, firing rates were first smoothed with a Gaussian window of 
100-ms width, and then binned into 50-ms bins. Only two-sided statistical tests were 
used to determine significance. Any trials in which the interval between lever press and 
nose poke was greater than 5 seconds was excluded from analyses.  

RL model. To compute estimates of action value, we adapted a previously described 
method (Samejima, 2005) based on a Rescorla-Wagner rule. In the model, a sucrose 
reward on the 𝑖𝑖 −th trial following nose poke was considered to have a value of 𝑟𝑟(𝑖𝑖) =
 1, while an unrewarded poke had a value of 𝑟𝑟(𝑖𝑖) =  0. The action value for an action 𝑎𝑎 
is defined as 𝑄𝑄𝑄𝑄 =  𝐸𝐸[𝑟𝑟(𝑖𝑖) | 𝑎𝑎(𝑖𝑖)  =  𝑎𝑎]. After taking an action 𝑎𝑎(𝑖𝑖) and receiving a 
reward 𝑟𝑟(𝑖𝑖), the on-line estimate 𝑄𝑄𝑄𝑄(𝑖𝑖) is updated by: 

 

𝑄𝑄𝑄𝑄 (𝑖𝑖 +  1)  =  (1 −  𝛼𝛼 )𝑄𝑄𝑄𝑄 (𝑖𝑖) +  𝛼𝛼𝛼𝛼(𝑖𝑖) 𝑖𝑖𝑖𝑖 𝑎𝑎 =  𝑎𝑎(𝑖𝑖) , or 

 

𝑄𝑄𝑄𝑄 (𝑖𝑖 +  1)  =  𝑄𝑄𝑄𝑄 (𝑖𝑖) 𝑖𝑖𝑖𝑖 𝑎𝑎 ≠  𝑎𝑎(𝑖𝑖), where 𝛼𝛼 is the learning rate parameter. 

 

The choice of lever 𝑎𝑎 is chosen according to a Boltzmann distribution:  

 

𝑃𝑃𝑎𝑎(𝑖𝑖) =  
𝑒𝑒𝛽𝛽𝑄𝑄𝑎𝑎(𝑖𝑖)

∑ 𝑒𝑒𝛽𝛽𝑄𝑄𝑎𝑎′(𝑖𝑖)
𝑎𝑎′∈𝐴𝐴

 

 

where 𝛽𝛽 is the inverse temperature parameter that regulates the randomness of action 
selection. Because our task has only two possible actions, the probability of choosing 
one lever is a sigmoid function of the difference between the two estimated action 
values: 

𝑃𝑃𝑎𝑎(𝑖𝑖) =  
1

1 +  𝑒𝑒(−𝛽𝛽{𝑄𝑄𝑎𝑎(𝑖𝑖)−𝑄𝑄𝑎𝑎′(𝑖𝑖)})
 

 

Hidden Markov Model. We adapted equations from previous reports (Hampton et al., 
2006; Schlagenhauf et al., 2014) in order to construct a Bayesian Hidden State Markov 
Model (HMM) that accounts for the partially observable structure of the probabilistic 
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switching task. In this model, 𝑠𝑠𝑡𝑡 is the abstract hidden state (upper lever rewarded or 
lower lever rewarded) that subjects have to infer at time 𝑡𝑡.𝑦𝑦𝑡𝑡 is the result of a trial at time 
𝑡𝑡; that is the action-outcome pair of the trial 𝑦𝑦𝑡𝑡= 𝑎𝑎𝑡𝑡, 𝑜𝑜𝑡𝑡; where 𝑎𝑎 is the lever choice and 𝑜𝑜 
is whether the trial is rewarded or unrewarded. Subjects therefore need to estimate their 
belief in the state of the task at the next trial, 𝑡𝑡 + 1. Here, the belief over states at time 
𝑡𝑡 + 1, based on all observations (action-reward pairs) up to time 𝑡𝑡 be 𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑜𝑜𝑡𝑡) =
𝑝𝑝(𝑠𝑠𝑡𝑡+1 |𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡), where 𝑦𝑦𝑡𝑡 = {𝑦𝑦𝜏𝜏}𝜏𝜏=1𝑡𝑡 =  {𝑎𝑎𝜏𝜏 ,𝑟𝑟𝜏𝜏}𝜏𝜏=1𝑡𝑡 . We write:  

𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑦𝑦𝑡𝑡) =  �𝑑𝑑𝑠𝑠𝑡𝑡  𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡)
𝑝𝑝(𝑦𝑦𝑡𝑡|𝑠𝑠𝑡𝑡)𝑝𝑝(𝑠𝑠𝑡𝑡|𝑦𝑦𝑡𝑡−1)

∫𝑑𝑑𝑠𝑠′𝑡𝑡  𝑝𝑝(𝑦𝑦𝑡𝑡|𝑠𝑠𝑡𝑡)𝑝𝑝(𝑠𝑠𝑡𝑡|𝑦𝑦𝑡𝑡−1) 
 

 

The probability of observing a given action-outcome pair can be estimated by the 
reward probabilities of different actions in different states. A reward tells the subject with 
probability 𝑐𝑐 that the choice was correct and the state corresponds to action 𝑎𝑎; the 
absence of reward tells us with probability 𝑑𝑑 that the state is the one not corresponding 
to action 𝑎𝑎: 

 

 

 

Next, we consider the probability of transitioning from one state to another. Here, the 
probability of staying in a state is 𝛾𝛾. We can write: 

 

𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡) =  �
𝛾𝛾         𝑖𝑖𝑖𝑖 𝑠𝑠𝑡𝑡+1 =  𝑠𝑠𝑡𝑡

1 −𝛾𝛾  𝑖𝑖𝑖𝑖 𝑠𝑠𝑡𝑡+1 ≠   𝑠𝑠𝑡𝑡
 

 

Finally, once the belief in state 𝑏𝑏 = 𝑝𝑝(𝑠𝑠𝑡𝑡 = 1|𝑦𝑦𝑡𝑡−1 ) is computed based on past 
observations, this belief is mapped onto action probabilities using a sigmoidal function 
as in the RL model, but using a fixed steepness: 

 

𝑝𝑝(𝑎𝑎𝑡𝑡 = 1|𝑏𝑏) =  
1

1 + 𝑒𝑒−20(𝑏𝑏−0.5) 

 

Model fitting. Parameters for both RL models and HMM models were fit with the 
Sequential Monte Carlo (SMC) method (Samejima, 2005), which acts as a particle filter 
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that represents and updates parameter distributions using a large number of samples or 
“particles.” We randomly seeded 100,000 particles around reasonable means for each 
of the parameters. At each time step, particles whose parameter values provided the 
best estimates of behavior were assigned the strongest weight and used to update the 
distributions, along with some added Gaussian jitter. Parameter values evolved at each 
time step to better fit the subject’s true behavior. At the end of the evolution, the 
converged parameter means were used as the final model values. Goodness-of-fit was 
computed using log-liklihood estimation as well as accuracy of performance by 
comparing to subjects’ actual action choices.  

Linear regression. To analyze single-unit encoding of task parameters, we used 
smoothed spike data from individual trials that began 800 ms window prior to lever 
press. and ended 800 ms after nose poke. Linear regression models were computed 
using activity for each unit in all trials within one session. We used the open-source 
statsmodels (www.statsmodels.org) package to fit regression models to the data using 
3-fold cross validation. 10 regressors were used to fit the model: action choice, 
outcome, task state (upper or lower rewarded), estimated uncertainty, and the pairwise 
interactions between each of these variables. Statistical significance was computed 
using parametric t-testing available in statsmodels. Permutation tests yielded similar 
significance values.  

Logistic regression. To compute the population encoding of decision variables, we used 
the logit models available from the statsmodels package. We computed the log-
likelihood of upper or lower lever pressing at each time bin using bin values for all 
recorded neurons in a single session. To decode decision variables as they evolved 
over time, we computed the mean coefficient values over all time bins and then used 
these as a fixed value in a linear decoder built from the logistic regression model to 
predict the log-likelihood of upper or lower lever choice at each time point for individual 
trials. To compare trials with high or low uncertainty, we ordered trials by the estimated 
uncertainty for each session. Then, we averaged the decision variables for the top 10 
percent of trials with the highest uncertainty, and the top 10 percent of trials with the 
lowest uncertainty.  

De-mixed principal components analysis. dPCA models were fit by following the 
procedures in Kobak et al, 2016. Briefly, we used action choice (upper or lower) and 
task state (upper rewarded or lower rewarded) to define the dPCA marginalizations. 
Data matrices were constructed by separating out trial types according to combinations 
of these marginalizations; for example, one trial type was (state = upper rewarded; 
action = lower lever). Data from all animals and all sessions were pooled into a single 
data matrix. Because the data were not recorded sequentially and the number of trials 
differed between various trial types, a re-balancing procedure was used (Kobak et al., 
2016). We fit models using 15 components using code available at 
https://github.com/machenslab/dPCA. Significance was determined by using each 
component as a linear decoder to classify the condition it was associated computing the 

http://www.statsmodels.org)/
https://github.com/machenslab/dPCA
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accuracy of decoding on a cross-validation procedure, and comparing this accuracy to 
performance of the decoder using shuffled labels.  

Tensor analysis. Data from each session individually was used to create a third-order 
tensor of dimensions units x bins x trial number, such that each entry was the binned 
spike rate of a single unit at a single time point within a single trial. Tensors were then 
decomposed using canonical polyadic tensor decomposition using the methods 
described elsewhere and 10 factors (Williams et al.). To compute the correlation 
between trial factors and uncertainty estimates, we computed the Pearson correlation 
coefficient between the top three trial factors accounting for the most variance and the 
uncertainty estimate. To compute significance, we compared the number of sessions 
per animal where the time-varying uncertainty value showed a significant correlation 
with at least one of the trial factors, and then compared this to an analysis of correlation 
where the trial factors and uncertainty estimates were shuffled randomly between trials. 

3.3 Results 

3.3.1 A probabilistic switching task To observe possible state-dependent signals in 
the dorsomedial striatum, we trained rats on a two-alternative probabilistic switching 
task. Rats were placed in an operant chamber and allowed to move freely. On one side 
of the chamber were two levers in the center of the wall, one higher than the other. On 
the opposite side of the chamber was a nose poke port that dispensed a sucrose water 
solution (Fig. 3.1a). At the beginning of each session, one lever was designated as 
correct, and the other lever was considered incorrect. Animals were given an auditory 
cue that signaled the start of a trial, at which point they were free to press either lever. 
After choosing to press one lever, animals were trained to move to the opposite side of 
the cage and nose poke into the reward port to terminate the trial. If the correct lever 
was chosen, the reward port delivered a sucrose water reward with an 85% probability, 

Figure 3.2: Actions of one animal on the third day of training. Blue and red dashed lines indicate the start 
of lower = correct and upper = correct task  states, respectively. 
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while the incorrect lever was not associated with any reward. After a randomized 
number of trials between 25 and 50, the identities of the correct and incorrect levers 
were reversed without providing any cue to the animal (Fig. 3.1b). Thus, animals were 
forced to sample both levers to determine which was associated with reward at a given 
time during a session. Animals trained on this task for a total of 30 days, completing one 
session per day. After 9 days of training, animals were implanted bilaterally with 16-
channel microwire arrays in the dorsomedial striatum (DMS). After implantation, we 
recorded a mean of 31.7 (range 22-52) well-isolated units across both arrays in each 
session.  

3.3.2 Animals learn to balance exploration and exploitation 

Animals’ performance, measured as the fraction of correct lever presses over total lever 
presses, significantly improved across days (Fig. 3.2, 3.3, 3.4a; mean percent correct 
for animals during the first 4 days = 0.5553, mean for animals in the last 4 days = 
0.8467; P = 0.000665, T = -38.770). Training was also associated with shorter trial 
durations (Fig. 3.4b, mean trial duration for first 4 days = 2.36 sec; mean for last 4 days 
= 1.48 seconds; P = 1.933x10-62, T = 16.9066). As animals learned to perform the task, 
they adapted their behavior to fit the hidden task structure. We observed that when the 
identities of the correct and incorrect levers were switched, animals in the early phase of 
training persisted in pressing the previously rewarded lever. In contrast, animals in later 

Figure 3.3: Same 
as in Figure 3.2, 
but for Day 27 of 
training for the 
same animal. 
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training sessions quickly recognized the state change and adjusted their behavior 
(compare Figs. 3.2 and 3.3; Fig. 3.5a). To quantify this effect, we computed the number 
of trials to reach a criterion performance of 70% correct following a lever switch. In the 
early period, animals needed a mean of 26.632 trials before reaching criterion, while in 
the late period, animals needed only 12.319 trials (Figure 3.5b,c; P = 0.0301; T = 
5.630). In order to obtain more rewards, trained animals may have adopted a strategy 
that better balanced exploration and exploitation. In this task, receiving a reward means 
that the chosen lever was correct. However, not receiving a reward does not provide 
definitive information on the identity of the chosen lever, as both correct and incorrect 
levers could be unrewarded. We thus asked whether animals’ behavioral strategy 
reflected this relationship. We observed that compared to choice behavior during the 
first 4 training sessions, animals in the last 4 sessions were significantly more likely to 
exploit rewarded lever presses. After receiving a reward, animals in the early phase 
returned to the same lever on 89.9% of trials on average, while animals in the late 
phase returned on 97.24% of trials (Figure 3.5d,e, P = 0.0322; T = -5.435). Conversely, 
after unrewarded choices, animals in all training phases exhibited more exploratory 
behavior, returning to the same lever on only 65.20% of trials and 61.89% of trials for 
early and late training, respectively (Figure 3.5f,g; P = 0.562, T = 0.690). These data 
suggest that increasingly with training, animals adopted a win-stay, lose-shift strategy 
that accounted for task structure.  

 

 

 

Figure 3.4: a, left panel: fraction of correct trials out of all trials for each day. Black  bars show mean and 
SEM; grey lines show trajectories for each animal individually. Red line indicates days when animals 
underwent electrode implants in DMS. Right panel: quantification of mean performance on the first 4 and 
last 4 training days. Black  bars show mean and SEM across animals; dots show data for each animal 
separately. Double asterisk  indicates P < 0.01. b: Histograms showing the distribution of trial durations for 
all sessions (top), early sessions (first 4 days, left bottom) and late sessions (last 4 days, bottom right.) 
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Figure 3.5: a: mean switch curves for all animals during the first 4 and last 4 training sessions. In this 
plot, lever 1 is the lever designated as correct prior to trial 0 (red line), where lever 2 is correct after trial 0. 
Lines show the probability of an animal pressing lever 2 as a function of trials. b: number of trials to reach 
criterion (70% correct) after a state switch as a function of training day. Red line represents a break in 
training for array implantation. c: quantification of number of trials to criterion by pooling across the first 
and last 4 training days. Black  lines show mean and SEM for all animals, and dots show data for animals 
individually. d: Exploitative behavior, expressed as the mean percentage trials in which animals switched 
to the second lever after being rewarded for pressing the first, as a function of training day. Black  lines 
show mean and SEM for all animals; orange lines show data for animals individually. e: Quantification of 
exploitive behavior in d comparing the first and last 4 training days. Black  lines show mean and SEM; dots 
show data for animals individually. Asterisk  indicates P < 0.05. f: Exploratory behavior, expressed as the 
mean percentage of trials in which animals switched to a new lever after not being rewarded for pressing 
the other lever. g: Quantification of exploratory behavior in f comparing the first and last 4 training days. 
Black  lines show mean and SEM; dots show data for animals individually. 
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3.3.3 Animals’ behavior reflects the hidden state of the environment 

We next chose to model animals’ behavior in order to make predictions about 
behavioral choice. First, we fit a simple reinforcement learning (RL) model (also known 
as a Q-learning model, Fig. 3.6a) (Samejima, 2005). This model estimates the value of 
possible actions at each trial, and updates those estimates by computing the difference 
between expected and received rewards. Importantly, in this model, only the value of 
the chosen action is updated on each trial. Additionally, we fit a Hidden Markov Model 

(HMM, Fig. 3.6b). This model estimates the hidden state of the environment using 
observations about actions and outcomes on each trial. Unlike the Q-learning model, 
the estimate of the hidden state can be used to update the expected values of both 
actions on each trial. For early training periods, both the HMM model and the RL model 
performed similarly (mean RL accuracy = 0.580, mean HMM accuracy = 0.584; P = 
0.915, T = 0.114). However, in late training periods after animals had learned behavioral 
strategies that reflected the task structure, the HMM significantly outperformed the RL 
model (Fig. 3.6c,d; mean RL accuracy = 0.616, mean HMM accuracy = 0.800; P = 
0.0207, T = 3.706). An examination of the behavior of the fitted models provides a likely 
explanation: following a lever identity switch, trained animals quickly begin exploiting the 
newly assigned correct lever after experiencing a rewarded trial. The HMM behaves 
similarly; however, the RL model relies on experience with an action in order to update 

Figure 3.6: a: a: an example of an RL model fitted to 
behavioral data from the end of training. Symbols plotted on 
the top and bottom show the actions performed by the animal 
compared to actions predicted by the RL model. Estimated 
action values are plotted in the center. b: an example HMM 
model fit, used to predict the same data as in a. c: accuracy 
of HMM models and RL models as a function of trials, 
concatenated across all behavioral training sessions. Dark  
lines show mean across all animals, and shaded areas 
represent SEM. d: quantification of both models’ accuracy 
from early (first 4 days) to late (last 4 days). Asterisk  
indicates P <= 0.05. 
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its value and thus the value of the newly assigned incorrect lever remains high (Fig. 
3.6a,b). Thus, the RL model persists in choosing the unrewarded lever even after the 
animal has switched its strategy and thus performs less accurately. These data suggest that 

well-trained animals acquire an abstract representation of the task structure that 
influences their behavior. 

Given that the HMM can provide an accurate description of behavior, we used the 
model parameters to estimate animals’ uncertainty about their behavioral choice on any 
given trial. The HMM computes a probability estimate that the task is in either state 
(upper lever correct or lower lever correct) at each time step, which equates to the 
relative value of either action. Thus, we estimated the uncertainty on one trial as the the 
inverse of the difference between these two state estimates. For example, when 
P(upper lever = correct) was high and P(lower lever = correct) was low, the relative 
difference between action values was large and thus the uncertainty was low. 
Conversely, when the probabilities of each state were similar, the uncertainty value was 
high. We predicted that animals should behave in a more exploratory manner when 
uncertainty was high, and be exploitative when uncertainty was low.  To test this, we 
computed the mean uncertainty values for trials following rewarded trials, after which 
animals were more likely to exploit, and mean uncertainty values following unrewarded 
trials when animals were more likely to explore. We found that for all animals, the mean 
uncertainty value was significantly higher following unrewarded trials compared to 
rewarded trials (Fig. 3.7a,b; mean uncertainty after rewarded trials = 1.758, mean 
uncertainty after unrewarded trials = 2.992; P = 0.001, T = -30.027). Thus, this 
uncertainty value provides a meaningful estimate of animals’ decision to explore or 
exploit on a trial-by-trial basis.  

 

 

Figure 3.7: a: an example of 
an uncertainty estimation for 
one behavioral session. 
Green dots indicate trials 
following a rewarded trial, 
while red dots indicate trials 
following unrewarded trials. 
Uncertainty about action 
values is influenced by trial 
history. b: Mean uncertainty 
scores for trials following a 
rewarded trial compared to 
scores following unrewarded 
trials. Lines show SEM; 
symbols show scores for 
animals individually. Asterisk  
indicates P < 0.01.  
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Figure 3.8 a: An example of an action-selective neuron with significant predictive value for lever choice. 
The left panel shows mean activity averaged over states; the middle shows mean activity averaged over 
actions; the right shows activity averaged over outcomes. State and action epochs are aligned to lever 
press (dashed line), while the outcome epoch is aligned to time of reward delivery.  b and c: examples of 
different individual single neurons encoding different task  parameters. Legends same as a. d: distribution 
of the number of parameters significantly encoded by single units, not including units that show no 
significant encoding. e: Change in the proportion of units significantly encoding each task  paramter over 
the course of a trial. Solid lines show mean, and shaded areas represent S.E.M. for all animals. f: 
proportions of units with significant predictability for different task  parameters in across training epochs, 
as well as the difference between early and late epochs (bottom right). 



 

45 
 

3.3.4 Single neurons encode one or more task parameters 

Previous reports have demonstrated that single striatum neurons can encode task 
parameters, including action choice, reward, and action value (Kim et al., 2009; Lau and 
Glimcher, 2008; Samejima, 2005). Using a linear regression analysis, we asked 
whether single DMS neurons encoded the parameters of this task. Specifically, we 
asked whether the activity of single neurons was predictive of action choice (upper lever 
or lower lever), task state (upper rewarded or lower rewarded), trial outcome (rewarded 
or unrewarded poke), the estimated uncertainty value, and interactions between each of 
these terms. Data used in this analysis was taken from a window that began 800 ms 
before a lever press, and ended 800 ms following a nose poke. We found that single 
neurons could be significantly predictive of one or more task parameters (Fig. 3.8a,b,c), 
with the number of parameters encoded by each neuron roughly following a normal 
distribution (Fig 3.8d). On average, single neurons encoded a mean of 5.25 parameters, 
suggesting that task encoding was mixed at the level of single units. We observed that 
the fraction of neurons significantly encoding individual parameters fluctuated over the 
course of the trial (Fig 3.8e). We next asked whether the proportion of units displaying 
selectivity for different parameters changed over the course of training. Although several 
parameters did show different encoding levels between early and late training, these 
differences were non-significant (Fig 3.8f). 

3.3.5 Task parameters can be decoded from population activity 

Given that single neurons displayed mixed selectivity for task parameters, we next 
asked how task-relevant activity of the recorded population was encoded at the 
population level. To extract relevant signals simultaneously from many recorded 
neurons, we used a directed dimensionality reduction technique known as de-mixed 
Principal Components Analysis (dPCA) (Kobak et al., 2016). Similar to principal 

components analysis, this technique aims to decompose 
high-dimensional neural activity into a few low-
dimensional latent components that capture a large 
proportion of the variance. However, in addition, dPCA 
takes into account information about task parameters 
such that each component is explicitly related single task 
variables, de-mixing task-relevant signals from the 
population activity. Combining data from all animals and 
all trials, we performed a dPCA analysis that decomposed 
population activity into signals related to time, task state, 
action choice, and their interaction. We fitted dPCA 
models using neural data beginning 2 seconds prior to 
lever press and ending 2 second after receipt of reward. 
Models were fit with 15 components, which explained 
over 75% of the variance in the neural data (Fig. 3.9). 

Using this method, latent signals encoding individual task parameters were clearly 

Figure 3.9: Variance explained 
by dPCA models fit with 15 
components. 
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separable (Fig. 3.10). Some components displayed sustained activity related to 
particular task states or lever choices, while others displayed activity that peaked 
around the time of lever press. The interaction components represented the interaction 
between task states (upper or lower correct) and action choices (upper or lower lever) 

and were therefore loosely 
related to task outcomes. Activity 
in these components peaked 
around the time of nose poke in 
the reward port, at which time the 
outcome of the trial was revealed 
to the animal. To test whether 
de-mixed components could 
accurately classify task variables, 
we measured the classification 
accuracy of individual 
components at each time bin for 
the component’s related task 
variable using a cross-validation 

Figure 3.10: Plots show 
estimated latent variables for 
each task  parameter 
independently. Rows from top to 
bottom show components 
capturing the greatest variance 
in the neural data with respect to 
time, task  state, action, and 
state-action interaction on the 
bottom. Columns show the top 
two components capturing the 
greatest amount of variance for 
each parameter. Cyan bars 
show regions in which the 
components can accurately 
decode task  parameters with P < 
0.05. 

Figure 3.11 
Classification 
performance for 
each component 
in b. Solid line 
shows cross-
validated 
accuracy; cyan 
bars show 
performance with 
shuffled data.  
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procedure (see Methods). Then, to determine the significance of classification, we used 
a permutation test on shuffled data. In addition to appearing visually separable, the first 
component capturing the most variance for each task parameter (task state, action 
choice, and state-choice interaction), as well as the second action component, 
contained time regions in which they were predictive of the related task parameter (Fig. 
3.10, cyan bars, Fig. 3.11). These results demonstrate that the population activity of 
dorsal striatum neurons can be decomposed into low-dimensional latent factors that 
encode task parameters, including those related to the state of a probabilistic switching 
task. Interestingly, the first latent component encoding task state showed significant 
classification accuracy across the entire duration of the trial, suggesting that task state 
is persistently encoded in DMS across many behavioral epochs within a trial. The 2-
second pre-action and post-reward time windows we used in this analysis likely 
overlapped between trials, suggesting that the encoding of task state is likely persistent 
across epochs of several trials as well.  

3.3.6 Population activity in DMS reflects trial-by-trial estimates of uncertainty 
about behavioral choice 

Given that signals encoding the state of the task and thus action value are strongly 
encoded in DMS, we wondered whether uncertainty was also represented in population 
activity, and whether this representation fluctuated from trial to trial based on evidence 
from the sequential sequence of actions and outcomes. We showed previously that a 
hidden markov model could be used to accurately predict animals’ behavior as well as 
uncertainty, and that this uncertainty value fluctuated depending on whether a trial was 

Figure 3.12: Example latent factors decomposed from DMS activity recorded one training session. Rows 
show top 3 factors explaining the greatest proportion of variance.  First column shows the weights 
assigned to units for the first 3 factors. Middle column shows the estimate time factors that capture 
variance within trials. Third column shows the estimated trial factors, color-coded for various trial types. 
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rewarded or not. We thus sought to detect whether this time-varying uncertainty 
parameter was also encoded by population activity in DMS. Many techniques for 
dimensionality reduction in neural data, including dPCA used here, rely on computation 
of peri-stimulus time histograms constructed by averaging activity over many trials. 
However, uncertainty can fluctuate widely on a trial-to-trial basis as new observations 
are made (Fig. 3.7). To extract time-varying uncertainty signals from DMS population 
activity as training progressed, we utilized canonical polyadic (CP) tensor 
decomposition (Williams et al.). For each training session, we constructed a third-order 
tensor in which each element represents the binned spike activity of one neuron at a 
particular time point in a single trial. This tensor decomposition allowed us to 
decompose this spike activity into low-dimensional latent factors that capture how 
neural activity evolves across time within trials, such as in the dPCA analysis above, but 
also how it evolves in time across many trials (Fig. 3.12). CP tensor decomposition was 
fit to neural data from each session independently using 10 latent factors. Scrutinizing 
these models for each session individually, we observed that in many sessions, at least 

one of the first 
three trial 
factors 
accounting for 
the largest 
proportions of 
variance 
appeared to 
track our 
estimates of 
uncertainty as 
they evolved 
across trials 
(Fig. 3.13a). To 
better quantify 
this, we 
computed the 
Pearson 
correlation 
coefficient for 
each of the first 

three trial factors compared to the uncertainty values estimated by the HMM in each 
session. We found that across all animals, an average of 84.51% of all training sessions 
contained at least one trial factor that correlated significantly with the estimated 
uncertainty value on that trial (Fig. 3.13b). This relationship did not hold when 
uncertainty estimations and trial factors were shuffled for different days. Performing the 
same analysis with the shuffled data yielded a significant correlation on only 27.5% of 

Figure 3.13: a: An example of the correlation between an animal’s estimated 
uncertainty in task  state across one session, estimated from behavioral 
observations, and a trial factor extracted from DMS neuron population activity. b: 
fraction of trials for all animals in which one of the top three trial factors correlated 
significantly with the estimated uncertainty values. Black  bar shows data computed 
for shuffled data; red bar shows matched data. Lines show SEM across all 
animals; dots show data for animals individually. Asterisk  shows P < 0.05. c: Mean 
Pearson correlation coefficient between trial factors and uncertainty estimations for 
all animals. Legend same as in b. 
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sessions for all animals (P = 0.023; T = 6.483), comparison between percent of 
significant days using real vs shuffled data). Additionally, the mean correlation 
coefficient for the intact dataset was 0.246, while the mean correlation coefficient for the 
shuffled data was 0.119 (Fig. 3.13c; P = 0.027; T = 5.963). These data demonstrate that 
in addition to selection of actions and evaluation of outcomes as has been previously 
reported, DMS neurons also encode signals that track an animal’s uncertainty about the 
best course of action. 

3.3.7 Uncertainty influences the magnitude and timing of action choice signals in 
DMS 

Given that population activity of striatal neurons encodes actions related to action 
choice as well as uncertainty about action value, we asked whether this uncertainty 
value also influenced choice-related activity. For each training session, we used a 
logistic regression model to construct a linear decoder of population activity that 
computed the log odds of choosing the upper or lower lever. On average for each 
animal, the decoder was able to predict lever choice with a peak accuracy of 77.1 
percent, with decoders tested on left-out data. This peak occurred approximately 250 
ms before lever press (Fig. 3.14a). Using a decoder fit on all trials in one session, the 

log odds of pressing the upper or lower lever could then be computed at each time bin 
for each trial individually (see Methods). Here, we refer to these odds computed across 
time as decision variables. Fig. 3.14b shows the timecourse of the mean decision 
variable for upper lever presses and lower lever presses individually. Next, we chose to 
separate decision variables based on animals’ uncertainty about the current choice. 
From the pool of all trials in one session, we sorted trials according to the estimated 
uncertainty magnitude. From here, we chose the top 10 percent of trials with high 
uncertainty as well as the lowest 10 percent of trials. We then averaged these decision 

Figure 3.14: a: Mean decoding accuracy of lever choice using cross-validation. Solid lines show mean 
across all animals; shaded areas represent SEM. b: Decision variables represented by the decoded 
log odds of choosing either lever prior to lever press. c: Mean decision variables separated by trials 
with high estimated uncertainty about action value and low estimated uncertainty.  
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variables across all animals. As shown in Fig. 3.14c, decision variables for upper or 
lower lever presses on low uncertainty trials were separable throughout the length of the 
analysis window, suggesting that signals for action choice persisted from seconds 
before action until the action took place. However, for high uncertainty trials, animals’ 
choice only became clear approximately 800 ms prior to lever press. Additionally, the 
magnitude of decision variables was greater for low uncertainty trials than for high 
uncertainty trials. These data suggest that signals encoding action choice in the striatum 
are modulated by an animal’s uncertainty about whether a particular decision is correct. 

3.4 Discussion 

The striatum is a site of convergence for efferent activity from most cortical regions 
(Hintiryan et al., 2016; Kemp and Powell, 1970; McGeorge and Faull, 1989; Webster, 
1965), and thus is recipient of task-related information of many different types. One 
popular hypothesis is that the cortico-basal ganglia circuitry performs a selection 
function, in which action values learned through experience are used to select between 
many possible competing actions (Redgrave et al., 2011). The anatomy of cortico-basal 
ganglia loops is well-suited for such a function: glutmatergic collaterals from the cortex 
pass to the striatum, which sends inhibitory GABA-ergic output to the SNr or GPi, the 
output nuclei of the basal ganglia. Both of these nuclei in turn tonically inhibit the 
thalamus which projects back to the cortex. Therefore, the net effect of activating the 
striatum is to release inhibition over thalamic inputs to the cortex. Although initial reports 
proposed that these recurrent anatomical loops were parallel and segregated into 
different circuits processing different types of information (Alexander et al., 1986), more 
recent work has suggested that there is greater convergence between striatal areas 
receiving different types of information (Joel and Weiner, 1994).  

 Despite receiving input from many cortical areas involved in higher-order 
information processing, basal ganglia circuits have long been associated with basic 
sensorimotor instrumental learning and the encoding of reward prediction error (Oyama 
et al., 2015). However, more recently, human neuroimaging studies have demonstrated 
that the dorsomedial striatum is also active during tasks involving internal models of 
task states (Daw et al., 2011; Gläscher et al., 2010; Li and Daw, 2011). Here, we show 
that spike activity in medial striatum neurons robustly encoded signals not only related 
to actions and outcomes, but also related to the current state of a switching task, and 
the uncertainty about that state estimate. Previous reports have shown that lesions of 
the frontal cortex and DMS produce similar deficits of perseverative responding in 
reversal learning tasks (Boulougouris et al., 2007; Clarke et al., 2008; Izquierdo et al., 
2016). Combined with anatomical reports of frontal cortical projections to the striatum 
(Hintiryan et al., 2016; Kemp and Powell, 1970), our results seem to support the idea 
that signals relating to model-based estimates of the environment pass from the frontal 
cortex through the striatum before influencing behavior.  
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 Furthermore, we found that animals’ uncertainty in the state of the task 
influenced the magnitude and timing of decision signals in encoded by the population. If 
the striatum is indeed performing an action selection function, this result suggests that 
reliable knowledge about the correct action to perform in a given context may bias 
decision-making processes in the striatum. Conversely, uncertainty may result in weak 
choice signals, the result of which may direct animals to be more exploratory in their 
behavior. Given the diversity of convergent information in striatal circuits, our results 
support the notion that cortico-basal ganglia circuits play an integral role in integrating 
relevant information, both from external and internal sources, in order to guide adaptive 
behavior. 
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Chapter 4:  
Wireless recording in the peripheral nervous system 
with ultrasonic neural dust 
The experiments described in Chapters 2 and 3 relied upon chronically implanted 
microwire arrays to obtain neural recordings. Although this approach is feasible in 
laboratory setting, state-of-the-art invasive BMI systems that rely on cabled electronics 
create challenges for widespread clinical adoption and daily use in human subjects. As 
discussed in Chapter 1, the need for miniaturized, wireless, implantable neural 
recording systems extends beyond the field of motor BMI systems. Recent 
technological innovations and fundamental discoveries have renewed interest in 
strategies to treat diseases by altering activity in the peripheral nervous system with 
electronic devices (Birmingham et al., 2014; Famm et al., 2013). These emerging 
technologies, known as bioelectronic medicines or electroceuticals, seek to decipher 
and modulate electrophysiological activity in the body to attain therapeutic effects at 
target organs. Similar to the technologies used to record and stimulate the brain, current 
approaches to interfacing with peripheral nerves and muscles rely heavily on wires, 
creating problems for chronic use. Simultaneously, while emerging wireless approaches 
exist, they lack the size scalability necessary to interrogate small-diameter nerves. 
Furthermore, conventional electrode-based technologies lack the capability to record 
from nerves with high spatial resolution or to record independently from many discrete 
sites within a nerve bundle. In this chapter, we demonstrate neural dust, a wireless and 
scalable ultrasonic backscatter system for powering and communicating with implanted 
bioelectronics. We show that ultrasound is effective at delivering power to mm-scale 
devices in tissue; likewise, passive, battery-less communication using backscatter 
enables high-fidelity transmission of electromyogram (EMG) and electroneurogram 
(ENG) signals from anesthetized rats. These results highlight the potential for an 
ultrasound-based neural interface system for advancing future bioelectronics-based 
therapies.      

4.1 Introduction 

Recent technological advances (Boretius et al., 2010; Delivopoulos et al., 2012) and 
fundamental discoveries (Bhadra and Kilgore, 2005; Pavlov and Tracey, 2012; Rosas-
Ballina et al., 2011)have renewed interest in implantable systems for interfacing with the 
peripheral nervous system. Early clinical successes with peripheral neurostimulation 
devices, such as those used to treat sleep apnea (Strollo et al., 2014) or control bladder 
function in paraplegics (Creasey et al., 2001) have led clinicians and researchers to 
propose new disease targets ranging from diabetes to rheumatoid arthritis (Famm et al., 
2013). A recently proposed roadmap for the field of bioelectronic medicines highlights 
the need for new electrode-based recording technologies that can detect abnormalities 
in physiological signals and be used to update stimulation parameters in real-time. Key 



 

53 
 

features of such technologies include high-density, stable recordings of up to 100 
channels in single nerves, wireless and implantable modules to enable characterization 
of functionally specific neural and electromyographic signals, and scalable device 
platforms that can interface with small nerves of 100 µm diameter or less (Birmingham 
et al., 2014) as well as specific muscle fibers. Current approaches to recording 
peripheral nerve activity fall short of this goal; for example, cuff electrodes provide 
stable chronic performance, but are limited to recording compound activity from the 
entire nerve. Single-lead intrafascicular electrodes can record from multiple sites within 
a single fascicle, but do not enable high-density recording from discrete sites in multiple 
fascicles (Lefurge et al., 1991). Similarly, surface EMG arrays allow for very high density 
recording (Lapatki et al., 2004; Martinez-Valdes et al., 2016) but do not capture fine 
details of deep or small muscles. Recently, wireless devices to enable untethered 
recording in rodents (Lee et al., 2013; Szuts et al., 2011) and nonhuman primates 
(Foster et al., 2014; Schwarz et al., 2014; Yin et al., 2014), as well as mm-scale 
integrated circuits for neurosensing applications have been developed (Biederman et 
al., 2015; Denison et al., 2007; Muller et al., 2015). However, most wireless systems 
use electromagnetic (EM) energy coupling and communication, which becomes 
extremely inefficient in systems smaller than ~5 mm due to the inefficiency of coupling 
radio waves at these scales within tissue (Rabaey et al., 2011; Seo et al., 2013); see 
also Size Scaling and Electromagnetics in the Discussion section, below. Further 
miniaturization of wireless electronics platforms that can effectively interface with small-
diameter nerves will require new approaches.   

In contrast to EM, ultrasound offers an attractive alternative for wirelessly powering and 
communicating with sub-mm implantable (Charthad et al., 2015; Larson and Towe, 
2011; Meng and Sahin, 2013; Ozeri and Shmilovitz, 2010; Seo et al., 2015). Ultrasound 
has two advantages. First, the speed of sound is 105 x lower than the speed of light in 
water, leading to much smaller wavelengths at similar frequencies; this yields excellent 
spatial resolution at these lower frequencies as compared to radio waves. Second, 
ultrasonic energy attenuates far less in tissue than EM radiation; this results not only in 
much higher penetration depths for a given power, but also significantly decreases the 
amount of unwanted power introduced into tissue due to scattering or absorption. In 
fact, for most frequencies and power levels, ultrasound is safe in the human body. 
These limits are well-defined and ultrasound technologies have long been used for 
diagnostic and therapeutic purposes. As a rough guide, about 72x more power is 
allowable into the human body when using ultrasound as compared to radio waves (Lin, 
2006; US Food and Drug Administration, 2008) 

We previously introduced the neural dust ultrasonic backscattering concept to harness 
the potential advantages of ultrasound and showed that, theoretically, such a system 
could be scaled well below the mm-scale when used for wireless electrophysiological 
neural recording (Seo et al., 2013, 2015). Here, we present the first experimental 
validation of a neural dust system in-vivo in the rat peripheral nervous system (PNS) 
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and skeletal muscle, reporting both electroneurogram (ENG) recordings from the sciatic 
nerve and electromyographic (EMG) recordings from the gastrocnemius muscle. The 
neural dust system consists of an external ultrasonic transceiver board which powers 
and communicates with a millimeter-scale sensor implanted into either a nerve or 
muscle (Fig. 4.6a). The implanted mote consists of a piezoelectric crystal, a single 
custom transistor, and a pair of recording electrodes (Fig. 4.6b,c and Fig. 4.1). 

During operation, the external transducer alternates between a) emitting a series of six 
540 ns pulses every 100 µs and b) listening for any reflected pulses. The entire 
sequence of transmit, receive and reconstruction events are detailed in Fig. 4.8; this 
sequence (steps a – h) is repeated every 100 µs during operation. Briefly, pulses of 
ultrasonic energy emitted by the external transducer impinge on the piezocrystal and 
are, in part, reflected back towards the external transducer. In addition, some of the 
ultrasonic energy causes the piezocrystal to vibrate; as this occurs, the piezocrystal 
converts the mechanical power of the ultrasound wave into electrical power, which is 
supplied to the transistor. Any extracellular voltage change across the two recording 
electrodes modulates the transistor’s gate, changing the amount of current flowing 
between the terminals of the crystal. These changes in current, in turn, alter the 
vibration of the crystal and the intensity of the reflected ultrasonic energy. Thus, the 
shape of the reflected ultrasonic pulses encodes the electrophysiological voltage signal 
seen by the implanted electrodes and this electrophysiological signal can be 
reconstructed externally. The performance specifications of neural dust in comparison 
to other state-of-the-art systems are summarized the Table below. 
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4.2 Methods 

4.2.1 Neural dust mote assembly 

Lead zirconate titanate (PZT) sheets (841, APC Int., Mackeyvile, PA) with ~12 µm of 
fired on silver were diced to desired dimensions using a dicing saw (DAD3240, Disco, 
Santa Clara, CA) with a ceramic blade (PN CX-010-270-080-H). The diced PZT coupon, 
along with the custom transistor, were attached to a 50 µm thick polyimide flexible PCB 
with immersion gold (Altaflex, Santa Clara, CA) using a thin layer of two-part silver 
epoxy with 1:1 mix ratio (H20E, Epotek, Billerica, MA). The board was cured at 150°C, 
which is far below the melting temperature of polyimide and the Curie temperature of 
the PZT, for 10 minutes. The custom transistor was wirebonded using an aluminum 
ultrasonic wirebonder (7400B, West Bond, Scotts Valley, CA) to pre-patterned targets. 
In order to prevent charge build-up on the PZT from the wedge contact, top and bottom 
contacts of the PZT were discharged to a thin metal sheet prior to wirebonding the top 
contact of the PZT to close the circuits. Medical-grade, UV-curable epoxy (OG116-31, 
Epotek) was used to protect the wirebond and provide insulation. The platform was then 
cured in UV chamber (Flash, Asiga, Anaheim Hills, CA) with 92 mW/cm2 @ 365 nm for 
3 minutes. 

4.2.2 Electrical and ultrasonic characterization of the assembly in water 

The custom transistor was electrically tested with a precision current meter (2400-LV, 
Keithley) and a DC-power supply (3631A, Agilent, Santa Clara, CA). To characterize the 
piezocrystal prior to assembly, an impedance plot was obtained with an impedance 
analyzer (4285A, Agilent) using two-terminal measurements with open/short/load 

Figure 4.1: a: Robust, 
high-yield fabrication 
steps for the mote, 
which is encapsulated 
with medical grade, 
UV-curable epoxy.b. 
Close-up of neural 
dust mote on a flexible 
PCB with calibration 
leads to measure 
electrophysiological 
signals (ground truth) 
and voltages 
harvested on the 
piezocrystal. During 
in-vivo experiments, 
calibration leads are 
removed. c. Single-
element Olympus 
transducer used in this 
manuscript.  
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calibration scheme. The impedance of exposed gold recording pads (0.2 mm x 0.2 mm), 
separated by 1.8 mm on the bottom of the PCB, was measured in Phosphate Buffered 
Solution (PBS 1X) with an electrochemical impedance spectroscope (nanoZ, White 
Matter LLC, Mercer Island, WA). The device formed the active electrode and a silver 
wire formed the reference electrode. 

Ultrasonic characterization of the transducer was performed in a custom-built water 
tank. A capsule hydrophone (HGL-0400, Onda Corp., Sunnyvale, CA) with 20 dB 
preamplification (AH-2020, Onda Corp.) was mounted on a computer-controlled 2D 
translating stage (XSlide, VelMex Inc., Bloomfield, NY) and was used to calibrate the 
output pressure and characterize beam patterns of a 2.25 MHz single element 
transducer (V323-SU, Olympus). Verification of ultrasonic power transfer and 
communication sensitivity was performed in a smaller water-tank with the transducer 
mounted on manual translational and rotational stages (Thorlabs Inc.). The outline of 
the neural dust mote was patterned on an extruded acrylic piece with UV-laser and the 
mote was clamped to the acrylic stage with nylon screws. The position and angle of the 
transducer with relative to the mote were manually adjusted until the maximum voltage 
was measured across the piezocrystal. Cable capacitances and parasitics were 
carefully calibrated by adjusting the series capacitance in the high-impedance probes 
(N2863B, Agilent). An electric field in the water tank was generated with a current 
source (2400-LV, Keithley) forcing electrical current at varying current densities through 
two 0.127 mm thick platinum wires (773000, A-M systems) immersed in the tank. 

The transceiver board consisted of a custom integrated circuit (IC) in a QFN-64 
package that achieved an on-chip 1.8V to 32V charge pump efficiency of 33% and 
system latency of 20 ns and consumed 16.5 µJ per each transmit cycle (Tang et al., 
2015). During the receive mode, the high voltage switch was closed and the signal was 
amplified by 28 dB; both operations were performed on-chip. The output signal from the 
chip was digitized by an off-chip 10-bit, 100 MHz analog-to-digital converter (ADC) 
(LTC2261-12, Linear Technology, Milpitas, CA). The outputs of the ADC were fed back 
into the field-programmable gate array (FPGA) and USB 3.0 integration module 
(XEM6310-LX45, Opal Kelly, Portland, OR) and transferred to the laptop. The FPGA-
USB module was also used to serially program the IC. 

4.2.3 Experiment setup and surgical procedures 

All animal procedures were performed in accordance with University of California 
Berkeley Animal Care and Use Committee regulations. Adult male Long-Evans rats 
were used for all experiments. Prior to the start of surgery, animals were anesthetized 
with a mixture of ketamine (50 mg/kg) and xylazine (5 mg/kg) IP. The fur surrounding 
the surgical site was shaved and cleaned. For EMG recordings, a patch of 
gastrocnemius muscle roughly 10 mm x 5 mm in size was exposed by removing the 
overlying skin and fascia. The neural dust mote was then placed on the exposed 
muscle, and the skin and fascia were replaced and the wound was closed with 5/0 
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surgical suture. For ENG recordings, the sciatic nerve was exposed by making an 
incision from the sciatic notch to the knee, and separating the hamstring muscles. The 
mote was then placed in contact with the epineurium of the main branch of the sciatic 
nerve bundle, and sutured to the nerve using 10/0 microsurgical suture. Animals were 
euthanized at the conclusion of the experiments. 

Constant-current stimulation was delivered using an isolated pulse stimulator (2100, A-
M Systems). Single biphasic pulses with a 2 ms pulse width were used to deliver 
stimulation at various current amplitudes. For each experiment, electrophysiological 
responses from 10 stimulations (i.e., samples) were recorded. The FPGA-USB module 
generated a trigger for the stimulator every 6 seconds. For EMG experiments, bipolar 
Ag-AgCl hook electrodes placed around the trunk of the sciatic nerve were used for 
stimulation. To evoke ENG activity, 28G stainless steel needle electrodes were placed 
in the foot with an inter-electrode distance of approximately 5mm. 

The wired signals were amplified (100x) by a battery-powered differential amplifier with 
a built-in bandpass filter (DAM50, WPI, Sarasota, FL) set at 10 Hz – 1 kHz. The ground 
reference for the amplifier was a 28G stainless steel needle electrode placed in the 
contralateral foot relative to the recording setup. The output of the amplifier was 
connected to a multi-channel digitizer, sampled at 100 kHz, and recorded on computer. 

4.2.4 Transmit pulse waveforms and data acquisition 

The neural dust mote was placed one Rayleigh distance from the transducer (8.9 mm), 
which corresponded to 5.9 µs transit time, assuming an acoustic velocity of ~1500 m/s 
in water. 6-cycles of square waves at 1.85 MHz with peak voltage of 5 V were launched 
every 100 µs (pulse repetition frequency (PRF) of 10 kHz). The total transmit pulse 
width was approximately, 3.3 µs, which was sufficiently small to prevent any overlaps 
with the first harvested voltage measurement at 5.9 µs. Given that the first reflection 
back to the transducer (e.g., backscatter) occurred at approximately 11.8 µs (twice the 
transit time) and persisted until for 3.3 µs, the maximum PRF (e.g., in this context, the 
sampling rate) was ~66 kHz. Given that the bulk peripheral nerve responses occurred 
below 1 kHz (Mezzarane et al., 2013), a PRF of 10 kHz was chosen to sufficiently 
capture the dynamics. 

In order to sample the backscatter waveform at 1.85 MHz without losing signal fidelity, 
the off-chip ADC on the transceiver board was heavily oversampled at 50 MHz. This 
resulted in ~8 Mbits of data in a 10 ms neural recording, which was stored in a 128 
MByte, 16-bit wide, synchronous DDR2 DRAM (MT47H64M16HR-3, Micron 
Technology, Boise, ID). The raw waveforms were transferred to the laptop via the USB 
interface post-recording. The raw waveforms were simultaneously recorded using an 8-
bit digitizer (USB-5133, National Instruments, Santa Clara, CA) for comparison. 
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4.2.5 Backscatter data processing 

Raw backscatter waveforms, sampled at 50 MHz, from each experiment were sliced 
and time-aligned to be averaged over samples. The averaged signals were bandpass-
filtered with a symmetric 4th order Butterworth filter from 10 Hz to 1 kHz. The distinct 
characteristics of the backscatter waveform (Fig. 4.7e) were used as a template to 
locate the region of interest. The signals were then rectified and the integral of the 
region was computed to estimate the input voltage signal, which exhibited a linear 
response (Fig. 4.7f). Multiplication factor for the signal was extracted from the ground 
truth measurement. 

4.2.6 Piezocrystal model  

There are a number of equivalent circuit models to describe the electromechanical 
operation of a piezoelectric crystal. In this study, a combination of KLM model 
(Krimholtz et al., 1970) and resonance model (Kino, 1987) are used. Across a wide 

range of frequencies, KLM model (Fig. 4.2a) can be used; the frequency-dependent 
three-port network consists of one electrical port (where electric power is applied or 
collected) and two acoustical ports (where mechanical waves are produced or sensed 
from the front and back faces of the transducer). The parallel-plate capacitance due to 
the electrodes and the frequency-dependent acoustic capacitance are modeled as Co 
and Xi, respectively, and the transduction between electrical and mechanical domains is 
modeled as an ideal electromechanical transformer with a turn ratio of ɸ, connected to 
the middle of a transmission line of length λ/2 (Fig. 4.2a). Near the resonant frequency 
of a piezocrystal, KLM model can be simplified to the resonance model (Fig. 4.2b). 
However, both models are derived under the assumption of one-dimensional operation, 
and therefore can only provide a valid representation for a piezoelectric transducer with 
an aspect ratio (width/thickness) greater than 10 or less than 1/10. Therefore, 
piezocrystals are also simulated using a 3D finite element package (COMSOL 
Multiphysics, Acoustic Module) to model anisotropies and mode coupling between 
several resonant modes. 

Figure 4.2: a: KLM model or b. simplified near resonance model. c. Measured impedance spectrum of a 
0.75 mm x 0.75 mm x 0.75 mm piezocrystal cube used in this manuscript compared to impedances 
estimated by the resonance, KLM, and COMSOL models. 
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Simulated impedance spectrums using various models of the piezocrystal matched the 
measured resonant frequency at 1.85 MHz with the impedance magnitude of ~100 Ohm 
(Fig. 4.2c). Given the aspect ratio of 1, the measurement of 0.75 mm x 0.75 mm x 0.75 
mm piezocrystal used in this study showed a splitting of the anti-resonant peak due to 
mode coupling, at 2.25 MHz and 2.6 MHz, which was captured by the COMSOL model. 
Both KLM and the resonance model, however, did not capture this effect. Although the 
COMSOL model of the piezocrystal was more accurate, in order to reduce the 
computational complexity, KLM model was used to simulate the link behavior near the 
operation frequency of 1.85 MHz. 

4.2.7 In-vivo ultrasonic transmission 

A 2.25 MHz single element transducer (V323-SU, Olympus NDT, Waltham, MA) was 
used to generate 6 pulses at 1.85 MHz. The transducer had a measured half-power 
bandwidth (HPBW) of more than 2.5 MHz (Fig. 4.3a). In order to measure the 
transmission loss through the tissue, various thicknesses of skin found near the 
gastrocnemius muscle of a male Long-Evans rat was placed in between the transducer 
and the neural dust prototype. The harvested voltage on the piezocrystal with and 
without tissue was obtained and 8.9 mm-thick tissue resulted in 10 dB of tissue 
attenuation (Fig. 4.3b).  

 

4.2.8 Electrode characterization  

A recording electrode pair was made of immersion gold by a flexible PCB vendor 
(Altaflex, Santa Clara, CA) and measured 0.2 mm x 0.2 mm. We characterized the 
electrical properties of the surface electrode by measuring the recording site 
impedances in Phosphate Buffered Solution (PBS 1X) with an electrochemical 
impedance spectroscope (nanoZ, White Matter LLC, Mercer Island, WA). The device 
formed the active electrode and a silver wire formed the reference electrode. 
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Figure 4.3: a: Frequency response of the transducer. b: Ultrasonic attenuation in 8.9 mm of tissue.  
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The electrode/electrolyte interface can be fitted to a Randles Cell model (Randles, 
1947) to extract the line resistance (Rs = 9.73 𝑘𝑘Ω), charge transfer resistance (Rp = 25.6 
𝑀𝑀Ω), and the parameters of the constant phase element (CPE: n = 0.94, P=5.1 nF⋅sn); 
the MATLAB package Zfit 
(https://www.mathworks.com/matlabcentral/fileexchange/19460-zfit) was used to fit 
these parameters (Fig. 4.4).  

 

4.2.9 ENG recording with different electrode spacing  

Recording electrodes with various spacing were fabricated on a 50 µm thick polyimide 
flexible printed circuit board (PCB). There were a total of 5 electrodes, each measuring 
0.2 mm x 0.2 mm, and one of them was used as the reference electrode. Other 
electrodes were spaced 0.3 mm, 0.8 mm, 1.3 mm, and 1.8 mm, respectively, apart from 
the reference electrode. 

The spacing board was placed in contact with the epineurium of the main branch of the 
sciatic nerve bundle (distal) and sutured to the nerve. Bipolar Ag-AgCl hook electrodes 
placed around the trunk of the sciatic nerve (proximal) were used for stimulation. 
Constant-current simulation of a single biphasic pulse with a duration of 0.5 ms every 1 
second was delivered using an isolated pulse stimulator (2100, A-M Systems, Sequim, 
WA). 

The recorded signals with various spacing between the electrodes were amplified 
(100x) by a battery-powered differential amplifier with a built-in bandpass filter (DAM50, 
WPI, Sarasota, FL) set at 10 Hz – 1 kHz (Fig. 4.5a). As expected, the peak-to-peak 
voltage recorded on the electrode increased with the spacing at least quadratically. The 
amplitude saturated after the spacing of 1.3 mm, confirming that the electrode spacing 

Figure 4.4: Impedance spectroscopy of the electrode and the fit using Randles Cell model. 
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of 1.8 mm on the recording sensor was sufficient to capture the maximum, saturated 
ENG response (Fig. 4.5b).  

 

4.2.10 Calculation of acoustic intensity  

Several parameters are established by the American Institute for Ultrasound in Medicine 
and National Electronics Manufacturers Administration to assess the safety of an 
ultrasonic system (American Institute of Ultrasound in Medicine, 1998). The acoustic 
power output of diagnostic ultrasonic system is limited by the de-rated values of spatial-
peak pulse-average intensity (ISPPA), spatial-peak temporal average intensity (ISPTA), and 
mechanical index (MI). These de-rated values are computed by multiplying the 
measured values in water by an attenuation factor of 0.3 dB/cm/MHz to simulate the 
effects on tissue (US Food and Drug Administration, 2008). 

A capsule hydrophone (HGL-0400, Onda Corp) with 20 dB preamplification (AH-2020, 
Onda Corp., Sunnyvale, CA) was mounted on a computer-controlled 2D translating 
stage (XSlide, VelMex Inc., Newton, NJ) and immersed in a custom-built water tank to 
calibrate the output pressure of a 2.25 MHz single element transducer (V323-SU, 
Olympus NDT). 6-cycles of square waves at 1.85 MHz with peak input voltage of 5 V 
were launched every 1 ms (pulse repetition frequency (PRF) of 10 kHz) to the 
transducer. The hydrophone was placed one Rayleigh distance from the transducer (8.9 
mm). 

The pulse intensity integral (PII) is defined as: 𝑃𝑃𝑃𝑃𝑃𝑃 =  ∫ 𝑝𝑝2(𝑡𝑡)
𝑍𝑍0

𝑑𝑑𝑑𝑑 where 𝑝𝑝 is the 
instantaneous peak pressure, 𝑍𝑍0 is the characteristic acoustic impedance of the 
medium. In the case of water, 𝑍𝑍0 is estimated to be 1.5 MRayl. 
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Figure 4.5: a: Recorded time-domain ENG responses. b: Peak-to-peak ENG with varying electrode 
spacing.  
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The ISPPA is defined as: 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝐷𝐷

, where 𝑃𝑃𝑃𝑃 is the pulse duration defined as 
(𝑡𝑡)(0.9 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃 − 0.1 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃) ⋅ 1.25 as outlined by the standards established by NEMA 
(American Institute of Ultrasound in Medicine, 1998). 

The ISPTA is defined as: 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑃𝑃𝑃𝑃 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃 where PRF is the pulse repetition frequency. 

The MI is defined as: 𝑀𝑀𝑀𝑀 = 𝑝𝑝𝑟𝑟
�𝑓𝑓

 where 𝑝𝑝𝑟𝑟 is the peak rarefaction pressure and 𝑓𝑓 is the 

acoustic frequency. 

 

4.3 Results 

4.3.1 Commercially-available components can be assembled into mm-scale 
recording implants 

The assembly process (Fig. 4.1) shows a neural dust implant mote integrated on a 50 
µm thick polyimide flexible printed circuit board (PCB) where both the piezocrystal (0.75 
mm x 0.75 mm x 0.75 mm) and the custom transistor (0.5 mm x 0.45 mm) are attached 
to the topside of the board with a conductive silver paste. Electrical connections 
between the components are made using aluminum wirebonds and conductive gold 
traces. Exposed gold recording pads on the bottom of the board (0.2 mm x 0.2 mm) are 
separated by 1.8 mm and make contact on the nerve or muscle to record 

Figure 4.6: a: An external 
transducer powers and 
communicates with a neural dust 
mote placed remotely in the body. 
Driven by a custom transceiver 
board, the transducer alternates 
between transmitting a series of 
pulses that power the device and 
listening for reflected pulses that 
are modulated by 
electrophysiological signals. b: A 
neural dust mote anchored to the 
sciatic nerve in an anesthetized rat. 
Inset shows neural dust mote with 
optional testing leads. c: 
Components of a neural dust mote. 
The devices were assembled on a 
flexible PCB and consist of a 
piezoelectric crystal, a single 
custom transistor, and a pair of 
recording electrodes. d: The 
transceiver board consisted of Opal 
Kelly FPGA board, ASIC board 
(Seo et al., 2015; Tang et al., 
2015), and the transducer 
connector board. 



 

63 
 

electrophysiological signals (Fig. 4.6c). Recorded signals are sent to the transistor’s 
input through micro-vias. Additionally, some implants were equipped with 0.35 mm-
wide, 25 mm-long, flexible, compliant leads (Fig. 4.1, bottom) with test points for 
simultaneous measurement of both the voltage across the piezocrystal and direct wired 
measurement of the extracellular potential across the electrode pair used by the mote 
(we refer to this direct, wired recording of extracellular potential as the ground truth 
measurement below, which is used as a control for the ultrasonically reconstructed 
data). The entire implant is encapsulated in a medical grade UV-curable epoxy to 
protect wirebonds and provide insulation. A single neural dust mote implant measures 
roughly 0.8 mm x 3 mm x 1 mm (Fig. 4.6c and 4.1). The size of the implants presented 
here is limited only by our use of commercial polyimide backplane technology, which is 
commercially accessible to anyone; relying on more aggressive assembly techniques 
with in-house polymer patterning would produce implants not much larger than the 
piezocrystal dimensions (yielding a ~1 mm3 implant).  

4.3.2 A custom integrated circuit operates the external transceiver board and 
enables low-noise interrogation 

An external, ultrasonic transceiver board (Fig. 4.6d) interfaces with neural dust motes by 
both supplying power (transmit (TX) mode) and receiving reflected signals (receive (RX) 
mode). This system is a low-power, programmable, and portable transceiver board that 
drives a commercially available external ultrasonic transducer (V323-SU, Olympus, 
Waltham, MA). Details of the custom integrated circuit (IC) that drove the external 
ultrasonic transducer with high energy-efficiency were presented elsewhere (Seo et al., 
2015; Tang et al., 2015). The transceiver board exhibited a de-rated focus at ~8.9 mm 
(Fig. 4.7a). The XY cross-sectional beam-pattern clearly demonstrated the transition 
from the near-field to far-field propagation of the beam, with the narrowest beam at the 
Rayleigh distance (Fig. 4.7b). The transducer was driven with a 5 V peak-to-peak 
voltage signal at 1.85 MHz. The measured de-rated peak rarefaction pressure was 14 
kPa, resulting in a mechanical index (MI) of 0.01. De-rated spatial pulse peak average 
(ISPPA) and spatial peak time average (ISPTA) of 6.37 mW/cm2 and 0.21 mW/cm2 at 10 
kHz pulse repetition were 0.0034% and 0.03% of the FDA regulatory limit, respectively 
(US Food and Drug Administration, 2008). The transceiver board was capable of 
outputting up to 32 V peak-to-peak and the output pressure increased linearly with the 
input voltage (Fig. 4.7c).  

4.3.3 Reflections from non-piezocrystal interfaces provide a built-in reference for 
movement artifacts and temperature drift  

The entire system was submerged and characterized in a custom-built water tank with 
manual 6 degrees-of-freedom (DOF) linear translational and rotational stages (Thorlabs 
Inc., Newton, NJ). Distilled water was used as a propagation medium, which exhibits 
similar acoustic impedance as tissue, at 1.5 MRayls (Kino, 1987). For initial calibration 
of the system, a current source (2400-LV, Keithley, Cleveland, OH) was used to mimic 
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extracellular signals by forcing electrical current at varying current densities through 
0.127 mm thick platinum wires (773000, A-M Systems, Sequim, WA) immersed in the 
tank. The neural dust mote was submerged in the current path between the electrodes. 
As current was applied between the wires, a potential difference arose across the 
implant electrodes. This potential difference was used to mimic extracellular 
electrophysiological signals during tank testing. 

Figure 4.7: a: A de-rated, normalized peak pressure as a function of distance from the surface of the 
transducer showed a de-rated focus at ~8.9 mm at 1.85 MHz. b: The XY cross-sectional beampatterns 
and the corresponding 1-D voltage plot at y = 0 at near-field, Rayleigh distance, and far-field showed 
beam focusing at the Rayleigh distance. c: The transducer’s output pressure was a linear function of 
input voltage (up to 32 V peak-to-peak). d: Cross-section of the neural dust mote. e: Example backscatter 
waveform showing different regions of backscatter. The backscatter waveform is found flanked (in time) 
by regions which correspond to reflections arising from non-responsive regions; these correspond to 
reflected pulses from other device components shown in D. The measurement from the non-responsive 
regions, which do not encode biological data) can be used as a reference. As a result of tak ing this 
differential measurement, any movements of the entire structure relative to the external transducer during 
the experiment can be subtracted out. f: Calibration curve obtained in the custom water tank setup 
showed the noise floor of 0.18 mVrms. g: 1-D plot of the transducer’s off-axis voltage and power drop-off 
at y = 0 at Rayleigh distance. h: The effect of noise floor as a function of lateral misalignment followed the 
beampattern power fall-off. 
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To interrogate the neural dust mote, six 540 ns pulses every 100 µs were emitted by the 
external transducer (Fig. 4.8). These emitted pulses reflect off the neural dust mote and 

produce backscatter pulses back towards the external transducer. Reflected 
backscatter pulses were recorded by the same transceiver board (Fig. 4.6a and d). The 
received backscatter waveform exhibits four regions of interest; these are pulses 
reflecting from four distinct interfaces (Fig. 4.7d,e): 1) the water-polymer encapsulation 
boundary, 2) the top surface of the piezoelectric crystal, 3) the piezo-PCB boundary, 
and 4) the back of the PCB. As expected, the backscatter amplitude of the signals 
reflected from the piezoelectric crystal (second region) changed as a function of 
changes in potential at the recording electrodes. Reflected pulses from other interfaces 
did not respond to changes in potential at the recording electrodes. Importantly, pulses 
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Figure 4.8: (left) schematic flow of information; (right) representative time traces of signals at each step 
(referenced to the left diagram). The sequence is shown on the right for two time points, t1 and t2. 

a: An extracellular, electrophysiological potential is presented to the recording electrodes on a neural dust 
mote. b: The FPGA generates a trigger signal to initiate recording. c: Upon receiving the trigger from the 
FPGA, the transceiver board generates a series of transmit pulses. At the end of the transmit cycle, the 
switch on the ASIC disconnects the transmit module and connects the receive module. d: Backscatter 
from the neural dust mote reaches the transducer approximately 2tRay leigh. e: Zoomed-in transmit pulse 
sequence, showing 6 pulses at 1.85 MHz. f: Zoomed-in backscatter waveforms, aligned in time with e. 
Note the large, saturating signal which overlaps with the transmitted pulses is electrical feedthrough and 
is ignored. The returning, backscattered pulses can be seen subsequent to the transmission window 
(green box). A close-up of the backscatter pulses is shown in Fig. 4.7e and discussed in the text. g: 
These backscattered pulses are filtered, rectified, and the area under the curve is computed in order to 
produce reconstructed waveforms. h: Reconstructed waveform is sampled at 10 kHz. Each point of the 
reconstructed waveform is computed by calculating the area under the curve of the appropriate reflected 
pulses, received every 100 µs. 
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from the other non-responsive regions were used as a signal level reference, making 
the system robust to motion or heat-induced artifacts (since pulses reflected from all 
interfaces change with physical or thermal disturbances of the neural dust mote but only 
pulses from the second region change as a function of electrophysiological signals). In a 
water tank, the system showed a linear response to changes in recording electrode 
potential and a noise floor of ~0.18 mVrms (Fig. 4.7f). The overall dynamic range of the 
system is limited by the input range of the transistor and is greater than >500 mV (i.e., 
there is only an incremental change in the current once the transistor is fully on (input 
exceeds its threshold voltage) or fully off). The noise floor increased with the measured 
power drop-off of the beam; 0.7 mm of misalignment degraded it by a factor of two (N = 
5 devices, Fig. 4.7h). This lateral mis-alignment-induced increase in the noise floor 
constitutes the most significant challenge to neural recordings without a beam-steering 
system (that is, without the use of an external transducer array that can keep the 
ultrasonic beam focused on the implanted dust mote and, thus, on-axis). On axis, the 
neural dust mote converted incident acoustic power to electrical power across the load 
resistance of the piezo with ~25% efficiency. Fig. 4.7g plots the off-axis drop-off of 
voltage and power at one Rayleigh distance for the transducer used in this manuscript. 
Likewise, Fig. 4.7h plots the change in effective noise floor as a function of angular 
misalignment. 

4.3.4 EMG and ENG can be recorded tetherlessly in-vivo in rodents 

We recorded evoked EMG responses from the gastrocnemius muscle of adult Long-
Evans rats under anesthesia using the neural dust system. The mote was placed on the 
exposed muscle surface, the skin and surrounding connective tissue were then 
replaced, and the wound was closed with surgical suture (Fig. 4.9a).  

The ultrasonic transducer was positioned 8.9 mm away from the implant (one Rayleigh 
distance of the external transducer) and commercial ultrasound gel (Aquasonic 100, 
Parker Labs, Fairfield, NJ) was used to enhance coupling. The system was aligned 
using a manual manipulator by maximizing the harvested voltage on the piezocrystal 
measured from the flexible leads. Ag/AgCl wire hook electrodes were placed 
approximately 2 cm distally on the trunk of the sciatic nerve for the bulk stimulation of 
muscle fiber responses. Stimulation pulses of 200 μs duration were applied every 6 
seconds and data was recorded for 20 ms around the stimulation window (Fig. 4.9b). 
The power spectral density (PSD) of the reconstructed data with several harmonics due 
to edges in the waveform is shown in Fig. 4.9c. This process could be continued 
indefinitely, within the limit of the anesthesia protocol; a comparison of data taken after 
30 minutes of continuous recording showed no appreciable degradation in recording 
quality (Fig. 4.9d). 

We obtained EMG recruitment curves with both ground truth and wireless dust 
backscatter by varying stimulation amplitude (Fig. 4.10a and 4.10b). Reconstruction of 
the EMG signal from the wireless backscatter data was sampled at 10 kHz, while the  
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Figure 4.9: a: In-vivo experimental setup for EMG recording from gastrocnemius muscle in rats; the 
neural dust mote was placed on the exposed muscle surface and the wound was closed with surgical 
suture. The external transducer couples ultrasound to the mote and the wireless data is recorded and 
displayed on the laptop. b: Comparison between ground truth measurement and the reconstructed EMG 
signals over a number of trials. 20 msec samples were recorded and the inter-stimulus interval was 6 sec. 
c: Power spectral density (PSD) of the recorded EMG signal showed 4.29e4 µV2/Hz and 3.11e4 µV2/Hz 
at 107 Hz for ground truth and the reconstructed dust data, respectively, and several harmonics due to 
edges in the waveform. d: The wireless backscatter data recorded at t = 0 min and t = 30 min matched 
with R = 0.901. 
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wired, ground truth measurement was sampled at 100 kHz with a noise floor of 0.02 
mV. The two signals at response-saturating stimulation amplitude (100%) matched with 
R = 0.795 (Fig. 4.10c). The difference between the wireless and wired data was within ± 
0.4 mV (Fig. 4.10d). The salient feature of the neural dust mote EMG response was 
approximately 1 ms narrower than the ground truth, which caused the largest error in 
the difference plot (Fig. 4.10c and 4.10d). The responses from skeletal muscle fibers 

Figure 4.10: a: Different intensities of EMG signals were recorded in-vivo with the electrodes on the PCB 
with varying stimulation intensities. b: Similar gradient EMG responses were recorded wirelessly with the 
mote. c: Ground truth and reconstruction of EMG signal from the wireless backscatter data at response-
saturating stimulation amplitude (100%) matched with R = 0.795 (R = 0.60, 0.64, 0.67, 0.92 for 54%, 
69%, 77%, 89%, respectively). d: Quantitative comparison showed < 0.4 mV match of the salient feature 
(shaded regions). E. EMG peak-to-peak voltage showed an expected sigmoidal relationship with the 
stimulation intensity. 
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occurred 5 ms post-stimulation and persisted for 5 ms. The peak-to-peak voltage of the 
EMG shows a sigmoidal response as a function of stimulation intensity (Fig. 4.10e) as 
expected (Gruner and Mason, 1989). The error bars indicate the measurement 
uncertainties from two rats and 10 samples each per stimulation amplitude. The 
minimum signal detected by the neural dust mote is approximately 0.25 mV, which is in 
good agreement with the noise floor measurement made in a water tank.  

A similar setup was prepared to measure the electroneurogram (ENG) response from 
the main branch of the sciatic nerve in anesthetized rats. The sciatic nerve was exposed 
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Figure 4.11: a: A. Different intensities of ENG signals were recorded in-vivo with the electrodes on the 
PCB with varying stimulation intensities. b: Similar gradient ENG responses were recorded wirelessly 
with the mote. c: Ground truth and reconstruction of ENG signal from the wireless backscatter data at 
response-saturating stimulation amplitude (100%) matched with R = 0.886 (R = 0.822, 0.821, 0.69, 0.918, 
0.87 for 44%, 61%, 72%, 83%, 89%, respectively). d: Quantitative comparison showed < 0.2 mV match 
of the salient feature (shaded regions). e: ENG peak-to-peak voltage showed an expected sigmoidal 
relationship with the stimulation intensity. 
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by separating the hamstring muscles and the neural dust mote was placed and sutured 
to the nerve, with the recording electrodes making contact with the epineurium (Fig. 
4.6b). We measured a similar graded response on both ground truth and wireless dust 
backscatter by varying stimulation current amplitude delivered to bipolar stainless steel 
electrodes placed in the foot (Fig. 4.11a and 4.11b). The two signals at response-
saturating stimulation amplitude (100%) matched with R = 0.886 (Fig. 4.11c); the 
average error was within ± 0.2 mV (Fig. 4.11d). The peak-to-peak ENG voltage showed 
a sigmoidal response with the error bars indicating uncertainties from two rats and 10 
samples each per stimulation amplitude. The minimum signal detected by the neural 
dust mote was again at 0.25 mV (Fig. 4.11e). 

4.4 Discussion 

In recent years, there has been growing interest in the use of neural recording 
technologies to improve neurostimulation-based treatments as well as to develop new 
closed-loop neuromodulation therapies for disorders in the central (Krook-Magnuson et 
al., 2015) and peripheral (Famm et al., 2013) nervous systems. Because nerves carry 
both efferent and afferent signals to a variety of target organs, effective recording 
technologies will need high spatiotemporal resolution to record from multiple discrete 
sites within a single nerve. In order for these technologies to become clinically viable 
they will need to be tether-less to avoid potential infections and adverse biological 
responses due to micro-motion of the implant within the tissue.  

To address this looming issue, we designed, built, and implanted a wireless, ultrasonic 
neural sensor and communication system that enables neural recordings in the 
peripheral nervous system. In-vivo, acute recordings in a stationary, anaesthetized rat 
model were used to collect compound action potentials from the main branch of the 
sciatic nerve as well as evoked EMG from the gastrocnemius muscle. The performance 
of the neural dust system was equivalent to conventional electrophysiological 
recordings employing microelectrodes and cabled electronics. 

One of the principal strengths of the demonstrated technology is that, unlike 
conventional radio frequency technology, ultrasound-based systems appear scalable 
down to <100 µm sizes (see Size Scaling and Electromagnetics below), opening the 
door to a new technological path in implantable electronics. A complete analysis of this 
scaling can be found in (Seo et al., 2013, 2015). In brief, physics limits how small a 
good radio frequency receiver can be due to the long wavelengths of radio frequency 
energy (millimeters to centimeters) and the high degree of absorption of radio frequency 
energy into tissue (which heats up the tissue and limits the total power than can be sent 
to an implant). Ultrasonic systems fare much better in both areas, allowing for the 
design of extremely small receiver devices. In addition, the extreme miniaturization of 
lower power electronics allows for useful recording electronics to be incorporated into 
such small packages. 
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A number of technical challenges remain open. The power levels used in this study 
were limited by the specifications of commercially-available transducers; custom 
transducers will reduce the overall external device footprint, lower the noise floor (by 
producing higher power densities at the focal spot), and allow for selection of the focal 
depth to suit specific applications. For example, a flat, low-profile piezo-transducer with 
proper impedance matching would enable a wearable neural dust transceiver board 
small enough for awake, behaving rodent neurophysiology. Additionally, the 
development of wearable, battery-powered multi-element arrays would allow for beam-
steering of the ultrasonic beam, with several advantages: 1) motes could be maintained 
on-axis even in the face of relative motion between mote and external transducer, which 
is the most significant challenge of the present work; 2) multiple motes could potentially 
be interrogated by sweeping the focused beam electronically; 3) post-surgical tuning of 
mote location would be made easier. Additional de-noising of the transceiver drive 
electronics should also help decrease the noise floor (see Methods). The modifications 
above are all well-within current state of the art; with others, we have recently shown 
theoretical and experimental advantages to using beam-forming systems (Bertrand et 
al., 2014; Seo et al., 2015).   

In addition, the calculated scaling predictions suggest that <500 µm scale motes are 
feasible. To do this, a number of material and microfabrication challenges exist, 
including the use of microfabricated backplanes, solder microbumping assembly of 
components (instead of the conventional wirebonding approach used here) and the use 
of thin film encapsulants (instead of medical grade epoxy) such as parylene. 
Transitioning away from PZT piezocrystals to biocompatible BaTiO3 single crystal 
transducers is also underway; taken together, these developments would open the way 
for chronic studies of neural dust recording. 

Lastly, as this platform presents a generalized power delivery system, the design and 
fabrication of neural stimulation systems based on charge-delivery through electrodes 
on the dust motes is also underway. 

4.4.1 Size Scaling and Electromagnetics  

The most popular existing wireless transcutaneous energy transfer technique relies on 
electromagnetics (EM) as the energy modality. An external transmitter generates and 
transfers information through purely electric or magnetic near field or electromagnetic 
far field coupling; this energy can be harvested by the implanted device and converted 
into a stable DC supply voltage. Energy transmission via magnetic near field has been 
used in a wide variety of medical applications (e.g. cochlear implants). As EM requires 
no moving parts or the need for chemical processing or temperature gradients, it is 
considered more robust and stable than other forms energy scavenging. When used in-
body, however, EM coupling power density is restricted by the potential adverse health 
effects associated with excess tissue heating in the vicinity of the human body due to 
electromagnetic fields. This is regulated by the well-known FCC and IEEE-
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recommended levels. Roughly, the upper limit for EM power density transiting through 
tissue is set by the minimum required to heat a model sample of human tissue by 1°C. 
For electromagnetic waves, the output power density is frequency dependent and 
cannot exceed a maximum of 10 mW/cm2. Consider, in this context, the problem of 
transmitting EM power to (and information from) very small CMOS chiplets embedded in 
tissue; does this approach scale to allow high density neural recordings? Regardless of 
the specific implementation, any such chiplet will contain a resonant component that 
couples to the EM waves; such a system can be modeled as a series/parallel RLC (for 
the purposes of this exercise, one may presume that a suitable method exists for 
modulating the quality factor or mutual coupling of the RLC as a function of neural 
activity for wireless communication). Given this, the performance of electromagnetic 
power transfer suffers from two fundamental issues. First, the extreme constraint on the 
size of the node limits the maximum achievable values of the passives. Assuming a 3-
turn planar square loop inductor with 1 oz. copper wire and capacitor density of 1 
fF/µm2, calculations to maximize the link efficiency using equations derived in (Harrison, 
2007; Jow and Ghovanloo, 2007) predict the resonant frequency of a 100 µm neural 
dust would be ~10 GHz.  

Fig. 4.12a plots the modeled channel loss, or the attenuation of the EM signal as it 
propagates through 8.9 mm of tissue, due to tissue absorption and beam spreading, as 
a function of frequency. We observe that there is an exponential relationship between 
the propagation loss and the frequency, and at 10 GHz – the total combined loss for 
one-way transmission is approximately 50 dB. Moreover, at these very small footprints 
(compared to the wavelength, which is in the millimeter range), the receive antenna 
efficiency becomes quite small, thereby easily adding roughly 20 dB of additional loss. 
The tissue absorption loss penalty incurred by operating at high frequency can be 
reduced by increasing the capacitance density using 3D inter-digitized capacitor 
layouts, but even then, as shown in Fig. 4.12b, scaling down the dimensions of the 
motes increases the resonant frequency of the link, causing an exponential increase in 
the tissue absorption loss and the overall channel loss, and the efficiency of EM 
transmission becomes miniscule.  
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Ultrasound transmission performs much better at the same size scale. Our experimental 
data confirms this, as can be seen from the data plotted in Fig. 8 of Seo et al., 2014. 
There, dust motes were manufactured with crystals ranging from ~1 mm down to 125 
µm and the power delivery efficiency and backscatter sensitivity were measured in a 
water tank. Comparing data from Fig. 8 of that paper with Fig. 4.12b, we note that for a 
100 µm mote for transmission through 8.9 mm of tissue, the single path loss of EM is 
125 dB (or ~3e-13 efficiency) vs. ~1e-5 for ultrasound (or 7 orders of magnitude better). 

In addition, we may ask just how small an ultrasonically-powered implant could be made 
and still reasonably be expected to function. Our earlier theoretical work (Seo et al., 
2013) matches that above results closely and, in that work, we show that a dust mote 
embedded 2 mm into the brain tissue would not scale well below 50 µm in size. This is 
because unlike conventional penetrating recording shanks  (which measure electrical 
potential at each recording site in relation to a common electrode which is placed 
relatively far away – centimeters – from the recording sites), with neural dust motes both 
the recording and the common electrode must be placed within the same (very small) 
dust mote. Thus, the distance between electrodes and therefore, the maximum 
differential signal between the electrodes are inherently limited by the neural dust 
footprint size, and follow the dipole-dipole voltage characteristic that decreases at least 
quadratically (unless very near a cell body, in which case it appears to scale 
exponentially; see (Gold et al., 2007) for a more thorough review) with increasing 
separation distance. Since the power available to the implant has a fixed upper bound, 
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Figure 4.12: a: Total 
propagation loss through 
8.9 mm of tissue, due to 
both tissue and path loss, 
increases exponentially 
with frequency, resulting in 
approximately 50 dB of 
loss at 10 GHz. b: The 
mutual coupling, and 
therefore link  efficiency, 
also reduces dramatically 
with the scaling of mote 
dimensions. Note that the 
transmit coil is assumed to 
be 1 cm in diameter, 
which is equivalent to the 
diameter of the ultrasonic 
transducer surface used in 
the manuscript.  
 



 

74 
 

the reduction of extracellular potential amplitude as the neural dust dimensions are 
scaled down in the presence of biological, thermal, electronic, and mechanical noise 
(which do not scale), causes the signal-to-noise (SNR) ratio to degrade significantly. At 
a separation distance of 100 µm between recording electrodes, we expect a 10 µV AP 
amplitude (data derived from (Du et al., 2011)), with the amplitude further reducing 
quadratically as the separation is reduced.  

Since the power available to the neural dust is limited, the design goal of a front-end 
architecture is to minimize the input-referred noise within this power budget. The power 
efficiency factor (NEF2 x Vdd) quantifies the tradeoff between power and noise 
(Bjorninen et al., 2012) and extrapolating from the measurement result of a recent 

CMOS neural front-end design (NEF2 x Vdd of 11.3 (Muller et al., 2015), we can 
estimate the relationship between the input-referred noise level and the DC power 
consumption of an optimally designed front-end architecture as we scale. The 
fundamental limit to the NEF2 x Vdd occurs at a supply voltage of at least ~4 kBT/q or 
100 mV, in order to reliably operate the FET, and by definition, the NEF of 1 for a single 
BJT amplifier (Steyaert and Sansen, 1987). Fixing the minimum input SNR to 0 dB for 
extracting neural signals, we can evaluate the scaling capability of neural dust as shown 
in Fig 4.13. The point of intersection in Fig. 4.13 denotes the minimum size of neural 
dust that enables the operation of the complete link. For transmission through 8.9 mm of 
tissue (as is the case in this manuscript), this occurs approximately at 90 µm. This 
effectively means that, staying within FDA-approved ultrasound power limits, assuming 
an SNR of 0 dB is required, neural dust motes smaller than 90 µm cannot receive 
enough power to distinguish neural activity from noise. 
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Figure 4.13: As we scale 
down the neural dust size, 
more power is needed to 
keep the noise floor down to 
maintain SNR while less 
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Chapter 5: 
Conclusions and open questions 
As our understanding of the nervous system expands in tandem with the increasing 
pace of technological innovation, the capacity to seamlessly merge the brain and nerves 
with electronic devices will only increase. Technological innovation can provide new 
methods and devices to improve reliability, resolution, and efficacy of BMI systems and 
bioelectronic medicines. However, intelligent neural interface design requires a strong, 
foundational understanding of neurobiology. Efforts to better map the contributions of 
the nervous system to voluntary behaviors, such as speech and motion, as well as 
involuntary activity, such as gut motility and organ function, will inform the design of 
future devices to alter or correct nervous system function. For example, understanding 
the circuits and mechanisms behind how the brain learns to control novel 
neuroprosthetics can inform the design of adaptive decoders that learn in concert with 
the brain (Orsborn et al., 2014). These “top-down” approaches help to focus the 
direction and specificity of neural interface design to ensure that the resulting devices 
are best suited for the target application. On the other hand, “bottom-up” approaches to 
designing neural interfaces that begin by setting aggressive performance targets based 
on fundamental limitations can provide new tools that enable new insights into biological 
function. The point at which these two approaches meet will likely be the cutting edge of 
new innovation.  

This dissertation was written with the goal of balancing both investigation of 
neurobiological functions, using brain-machine interfaces as a tool to study learning in 
neural circuits, as well as technological innovation to improve the tools that make such 
investigations possible. A summary of the contributions to the field appear below in 
Chapter 5.1. Finally, although this work has yielded insights into both neural function 
and possibilities for the design of next-generation neural interfaces, many open 
questions still remain; these are summarized in Chapter 5.2.  

5.1 Summary of contributions 

One of the primary motivations of this work was to better understand how the brain 
learns to control its own neural activity in behaviorally constructive ways. In Chapter 2, 
we investigated a possible circuit-level mechanism by which cortical neurons learn to 
modulate their activity to contribute to rewarding behavioral outcomes. Using a BMI 
paradigm that transformed neural activity in the pitch of an auditory tone, we showed 
that rats could learn to produce arbitrary modulations of primary visual cortex (V1) 
neurons, both in the presence or absence of light. We demonstrated that performance 
on this task was goal-directed and intentional using contingency degradation. Then, we 
found that this learning process was accompanied by cell-specific changes in neural 
dynamics, including spike-field coherence and correlations between neurons directly 
responsible for cursor control. These results mirror observations of learning in the 
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primary motor cortex reported elsewhere (Clancy et al., 2014; Koralek et al., 2012, 
2013).  

In the second half of Chapter 2, we reported that with training, activity in the 
dorsomedial striatum (DMS) became increasingly modulated and coherent with learned 
activity in V1. To test the relevance of this observation, we injected mice with a viral 
vector encoding the red-shifted inhibitory opsin, Jaws. Injections were targeted to the 
region of DMS that receives projections from V1. We demonstrated that GFP-injected 
(control) mice were able to learn the same BMI task as was implemented in rats. Then, 
using the Jaws-infected animals, we silenced activity in DMS on approximately 50% of 
all trials during training sessions. We observed that inhibition of DMS prevented learning 
to modulate activity in V1, but that DMS inhibition after learning had taken place did not 
affect performance. Given that the striatum is the primary input nucleus of the basal 
ganglia, these results argue for a necessary role for cortico-basal ganglia circuits in 
learning to modulate cortical activity in behaviorally relevant ways.  

After documenting an important role for the striatum in goal-directed instrumental 
behavior, in Chapter 3 we focused on the representation of task parameters in the 
dorsomedial striatum. We trained rats to perform a probabilistic switching task that 
involved choosing between two levers. We quantified animals’ behavior and observed 
that with learning, animals adopted patterns of responding that allowed them to exploit 
the hidden structure of the task. Then, we showed that behavior was best fit by a hidden 
markov model (HMM), and used models of behavior to compute a measure of 
confidence. This measurement, which was intended to estimate animals’ confidence in 
the current state of the task, closely tracked behavioral outcomes from trial-to-trial, as 
well as the likelihood of an animal to explore alternative actions.  

Then, we analyzed the task-relevant components of neural activity as animals learned 
and performed the switching  task. Many single neurons in DMS encoded one or more 
task parameters, including task state, action choice, and the outcome of a trial. We then 
utilized de-mixed principal components analysis (dPCA) to extract task-relevant neural 
dynamics from the full population of recorded DMS units. We observed that population 
activity robustly captured task-relevant information, and could accurately classify 
different aspects of animals’ choice. In order to achieve trial-by-trial resolution of the 
encoding of confidence by population activity, we employed canonical polyadic tensor 
decomposition on simultaneously recorded data within single training sessions. We 
observed the existence of trial factors that robustly correlated with fluctuations in 
animals’ confidence level on a trial-by-trial basis. Given that confidence signals could be 
decoded from neural activity, we then investigated the influence of confidence on 
action-predictive decision variables that could also be decoded from population activity. 
We found that high confidence levels biased choice signals in DMS to be larger in 
magnitude and appear earlier in a trial. Conversely, weak confidence levels resulted in 
lower-magnitude choice signals that only appeared immediately prior to an animals’ 
choice. These data demonstrate a rich encoding of task parameters in DMS that may 
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influence the selection of appropriate behaviors according to abstract predictions about 
the environment.  

In Chapter 4, we demonstrated a novel approach for recording neural activity in vivo. 
We designed, built, and tested an implantable, mm-scale wireless ultrasound system, 
known as neural dust, to record electroneurogram (ENG) and electromyogram (EMG) 
activity in anesthetized rats. These devices utilized ultrasonic backscatter to encode the 
neural activity of nerves and muscles. We used an off-the-shelf ultrasonic transducer to 
communicate and power neural dust motes and demonstrated that the system could 
operate efficiently at power levels well within established safety limits for ultrasonic 
devices. Then, we demonstrated that implanted neural dust motes could reliably record 
ENG and EMG activity relative to conventional wired electronics. We show that 
ultrasonic backscatter is a safe, scalable method for powering and communicating with 
miniaturized devices implanted deep in tissue. These results demonstrate the potential 
for ultrasonic implantables to overcome many of the limitations facing state-of-the-art 
neural interfaces.  

5.1.1 Additional engineering collaborations  

Beyond the results presented in this dissertation, the work reported here also resulted in 
additional fruitful engineering collaborations. Although they are not covered in detail in 
the preceding chapters, they will be briefly reported below. 

Prior to beginning work on in vivo testing of the neural dust system, we validated the 
performance of a wireless, low-power system-on-chip (SoC) for neural recording and 
stimulation. This 65 nm CMOS SoC had a 4.78mm2 footprint, and consumed 348 µA 
from an unregulated 1.2 V to 1.8 V power source. The system operated 64 data 
acquisition channels with compression and was capable of simultaneously engaging 
two stimulation channels. At the time of initial reporting, this device was the lowest area 
and power for the highest integration complexity to date.  

As mentioned in Chapter 1, a common failure mode of brain-machine interfaces is 
breakdown of encapsulation material or the foreign body response caused by 
implantation. Silicon carbide is extremely stable and biocompatible, and therefore a 
strong candidate for fabrication of neural interfaces. We presented in vivo validation of a 
novel method for fabricating electrode arrays that integrated polycrystalline conducting 
silicon carbide with insulating silicon carbide. The result of this process was a seamless 
transition between doped and amorphous silicon carbide at recording sites, avoiding 
heterogenous interfaces that are a common site of degradation. We successfully 
demonstrated high-fidelity recording of sciatic nerve ENG and electrocorticography in 
the visual cortex from anesthetized rats. This novel fabrication process represents an 
exciting new avenue for neural interfaces designed to last years to decades. 
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5.2 Open questions and future directions 

5.2.1 The source of voluntary control signals 

In Chapter 2, we observed that animals could learn to volitionally modulate the activity 
of V1 neurons in total darkness. Where, then, is the source of modulatory input? 
Previous reports have demonstrated motor-related activity in V1 (Niell and Stryker, 
2010). In addition, attention is known to modulate neural activity in V1 (Gregoriou et al., 
2009; Martinez et al., 1999; Zhang et al., 2014), suggesting that the learning we 
observe might be a result of top-down inputs from other areas of cortex. Previous 
reports have shown that learning enhances top-down cortical influences in V1 while 
reducing the impact of visually-driven activity (Makino and Komiyama, 2015). It seems 
possible that these same circuit mechanisms are in play. A broader understanding of 
this process would contribute greatly to knowledge of how instrumental learning 
proceeds in the cortex. 

5.2.2 The role of DMS in learned V1 modulations 

 The primary visual cortex has a well-established connection to the dorsomedial 
striatum (Khibnik et al., 2014). However, we know of no reports of direct projections 
from the output nuclei of the basal ganglia that return to neurons in the primary visual 
cortex.  How the basal ganglia, which consists of multiple unique nuclei and several 
converging pathways, contributes to this learning process remains unknown. Dissecting 
the multi-synaptic pathways through the basal ganglia that enable instrumental learning 
in the cortex could yield important mechanistic insights.  

5.2.3 The role of convergent inputs in the striatum for action selection 

In Chapter 3, we show that the striatum contains several simultaneous representations 
of task variables, including those that relate to confidence in the current state of a 
switching task. The striatum is recipient of inputs from most cortical areas, and is 
implicated in the selection of actions and motor programs. These data seem to suggest 
that the striatum is important for selecting a course of action based on many different 
sources of information from a variety of cortical areas. However, many cortical regions 
are also known to be critical for action planning and execution, which leaves open the 
question of how different components of cortico-basal ganglia circuits contribute to the 
selection of appropriate actions, and how they may work in concert to give rise to 
adaptive behavior.  

5.2.4 Digital neural dust 

In Chapter 4, we demonstrated a wireless neural recording system that operated using 
acoustic energy for power and communication. The devices reported here were analog, 
such that changes in voltage recorded by the electrodes directly modulated the gate of 
a single transistor, which in turn modulated the reflectivity of a piezoelectric crystal. One 
drawback of this design is that only a small fraction of the piezocrystal’s dynamic range 
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was utilized, resulting in the fairly high noise floor value of 0.18 mV. A future direction 
that is already in progress is to develop a digital version of recording neural dust motes 
that utilizes the full dynamic range of the crystal, allowing for more robust operation 
under instances of misalignment, as well as a lower noise floor. 

5.2.5 Stimulation neural dust 

In addition to recording, closed-loop BMI systems and bioelectronic medicines often 
require stimulation of nerves or neurons to achieve therapeutic endpoints. Another 
future direction of neural dust technology, again already in progress, is to develop an 
implantable device that can harvest ultrasonic energy, and then use it to stimulate 
neural tissue on demand. These devices would an essential component of a fully 
closed-loop ultrasonic neural interface.  

5.2.6 Neural dust in the brain 

In Chapter 4, we described the application of neural dust for recording the activity of 
peripheral nerves. Theoretically, further miniaturization of neural dust motes could allow 
for wireless recording from many sites deep in brain tissue. This possibility has been 
described in detail elsewhere (Seo et al., 2013). However, several important challenges 
remain. Acoustic waves are attenuated by bone to a degree that makes transmission of 
ultrasonic backscatter through the skull infeasible. Other strategies could be employed 
to alleviate this issue: an intermediate interrogator placed on the cortical surface could 
communicate with motes implanted in tissue and then relay data through the skull using 
electromagnetic coupling. Additionally, the noise floor of analog motes is likely too high 
to record single unit activity; however, increasing the complexity of the devices may also 
increase their size, which could create challenges for implantation. The electrode 
spacing of cortical neural dust motes is also an important consideration if devices reach 
the order of 10s of microns, due to a much smaller potential difference that would be 
measured across the electrodes relative to a mm-scale device. Finally, an implantation 
method for delivering motes precisely in brain tissue remains to be determined. 

5.3 Conclusion 

Direct interfaces between brains, nerves and machines represent a compelling direction 
for future investigation. Outlining the neural mechanisms that underlie the voluntary and 
involuntary motions of the body open up new possibilities for therapeutic interventions 
and can inspire new technologies. These same technologies can also spur greater 
understanding of the biological tissues with which they connect. However, many 
important avenues of investigation must still be explored in order to fully grasp the 
complex mechanisms by which the nervous system directs and adapts the behavior of 
the body. In this dissertation, we demonstrated both the potential of technology to 
elucidate learning mechanisms in the brain, as well as developed novel systems to 
improve the way we record neural activity. Although many questions remain 
unanswered, identifying fundamental properties of the learning process as well as 



 

80 
 

scalable tools for interfacing with nervous tissue present exciting new experimental and 
clinical possibilities.  
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