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Abstract

Genotype-by-environment interactions are a significant challenge for crop breeding as well as being important for understanding the ge-
netic basis of environmental adaptation. In this study, we analyzed genotype-by-environment interactions in a maize multiparent advanced
generation intercross population grown across 5 environments. We found that genotype-by-environment interactions contributed as much
as genotypic effects to the variation in some agronomically important traits. To understand how genetic correlations between traits change
across environments, we estimated the genetic variance—covariance matrix in each environment. Changes in genetic covariances between
traits across environments were common, even among traits that show low genotype-by-environment variance. We also performed a
genome-wide association study to identify markers associated with genotype-by-environment interactions but found only a small number
of significantly associated markers, possibly due to the highly polygenic nature of genotype-by-environment interactions in this population.

Keywords: maize; multiparental populations; genotype x environment interactions

Introduction

Both the effect of a given genotype on a trait, and the impact of
that effect on fitness, often vary across environments. Such geno-
type-by-environment interactions (GxE) are widespread, and
have been commonly observed in plants (Bradshaw 1965; Des
Marais et al. 2013). GxE interactions are of interest for multiple
reasons: they provide insight into the physiological processes and
genetic architecture underlying individual traits, are likely crucial
for local adaptation of populations to different environments, but
may also limit the response to selection (Allard and Bradshaw
1964; Kawecki and Ebert 2004).

While alleles affecting a trait will demonstrate GxE for fitness
across environments when there is selection for different trait
optima, it is also often observed that the effect of individual
alleles on traits will vary as well. This indicates that these alleles
affect plasticity and they may be present in a population due to
selection for or against plasticity (Josephs 2018). Alternatively,
they may be deleterious but rarely exposed to environments in
which they are selected against, or unassociated with fitness and
selectively neutral (Des Marais et al. 2013; Paaby and Rockman
2014).

One avenue to study GxE is to search for individual loci with
changing effects on traits or fitness across environments.
Multiple studies have identified loci that contribute to GxE [sev-
eral of which are reviewed in Josephs (2018)]. Loci which

contribute to GxE include the EDA locus in threespine stickleback
fish, which is associated with adaptation to the freshwater envi-
ronment, and SublA in rice, which is associated with tolerance to
submergence (Xu et al. 2006; Barrett et al. 2008). Genome-wide
association studies (GWAS) have also been used to identify alleles
significantly associated with GxE, including shade response and
drought response in Arabidopsis thaliana (Filiault and Maloof 2012;
El-Soda et al. 2015).

Individual traits do not exist in a vacuum, however, and alleles
that affect 1 trait often have pleiotropic effects on others. Indeed,
the outcome of selection on a trait depends crucially on the ge-
netic variance-covariance matrix (G-matrix), which describes
how the genetic value at 1 trait covaries with genetic values at
other traits (Lande 1979). Genetic covariation between traits can
have profound impacts on the genetic response to selection, ei-
ther hindering or facilitating trait response. For example, if fit-
ness positively covaries with 2 different traits, but those traits
negatively covary with each other, this can lead to a tradeoff.

But the G-matrix itself is not constant, as GxE at underlying
loci may impact trait variation and covariation among traits
(Wood and Brodie 2015). If in a different environment the covari-
ance of a trait with fitness or other traits is weakened or changes
sign, it may indicate that the selection or tradeoff does not exist
in the new environment (Sgro and Hoffmann 2004). As GXE con-
tributes to the G-matrix within each environment, understanding
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the G-matrix in multiple environments may illuminate the
causes of GxE. If the genetic covariance between 2 traits changes
between environments and GxE is observed, then a change in the
pleiotropy of the underlying loci may be responsible for both the
changes in the genetic covariance and GxE.

Maize is a crop species adapted to a wide diversity of environ-
ments, from temperate to tropical and from low to high altitude
(Hake and Ross-Ibarra 2015). GxE has been shown to be an im-
portant contributor to many traits in maize, including grain yield
(Gage et al. 2017; Gates et al. 2019; Rogers et al. 2021).
Nonetheless, identification of GXE in maize, as in many species,
is complicated by issues of population structure and the low mi-
nor allele frequency of most polymorphisms (Korte and Farlow
2013). To circumvent these issues, we investigated the genetic ba-
sis of GxE in maize in a multiparent advanced generation inter-
cross (MAGIC) population of 16 diverse temperate maize lines
(Odell et al. 2022). We grew the MAGIC hybrids across 5 contrast-
ing temperate environments with diverse management practices
in order to capture a broad range of GxE relevant to the condi-
tions the parental lines would be grown in.

We find that GxE contributes as much as genotypic main
effects to variance for some traits. While GxE interactions are
significant, genome-wide association only finds a small number
of markers significantly associated with GxE interactions, per-
haps reflecting the highly polygenic nature of most traits.
Nonetheless, estimation of the G-matrix in each environment
reveals that changes in genetic covariance are common and may
be contributing to observed GxE. For example, we find that while
only a small proportion of variance in flowering time depends on
GxE, the genetic covariance between flowering time and grain
yield is strongly affected by the environment.

Materials and methods
Plant materials

We developed a maize MAGIC population by repeatedly crossing
the offspring of 16 maize inbred lines to generate recombinant
individuals (Odell et al. 2022). Inbred lines were selected to maxi-
mize genetic diversity and include dent, flint, and European flint
lines. After 8 generations of intercrossing, we generated a popula-
tion of 344 doubled haploids (DHs) lines. DH lines were crossed to
MBS847, a dent line chosen to be the tester, to make F1 plants.

Phenotype data

The MAGIC F1 plants were phenotyped in 4 different field loca-
tions in 4 different years, resulting in 5 distinct environment-
years (Supplementary Fig. 1 and Supplementary Table 1). The
environment-years included Blois, France, in 2014 and 2017,
Nerac, France, in 2016, St. Paul, France, in 2017, and Graneros,
Chile, in 2015. We used an alpha design with 2 plots of around 80
plants grown for each genotype in each environment-year.
Planting density ranged between 85,000 and 95,000 seeds per
hectare. Seeds were planted with an automatic seed drill. The
row width was 0.8 meters with 2 rows per plot. The fields in
environment-years Blois 2014, Blois 2017, and Graneros 2015 all
received consistent irrigation. The field in Nerac 2016 was not ac-
tively irrigated from vegetative phase through flowering, causing
drought stress through most of the life cycle. The field in St. Paul
2017 was not irrigated during vegetative phase but was irrigated
during flowering to allow plants to recover from the earlier
drought stress. The applied drought stress was mild and intended
to be representative of realistic field conditions.

We measured the following traits: male flowering date, female
flowering date, anthesis-silking interval (ASI), plant height, %
harvest grain moisture (HGM), grain yield, and thousand kernel
weight (TKW), where values were averaged over plots. Both flow-
ering time phenotypes were measured as the sum of degree days
since sowing with a base temperature of 6°C (48°F). Male flower-
ing date was considered as the growing degree days (GDD) until
50% of plants in a plot were shedding pollen on approximately 1
quarter of the central tassel spike. Female flowering date was
considered as the GDD until 50% of plants in a plot were flower-
ing with 2cm of silk outside of husk leaves. Plant height was
measured as the distance from the base of the plant to the top of
the tassel. Grain was collected using a combine harvest. Grain
yield and TKW were both adjusted to 15% humidity. TKW was es-
timated from a 100 kernel sample. Data was also collected from
an additional environment, Szeged, Hungary in 2017. We did not
use this data in the analyses presented here as flowering date
was not collected on the same schedule as in the other environ-
ments and this caused issues with the GxE analyses. Data from
Szeged are available in the data repository associated with this
paper. Between 292 and 309 of the MAGIC F1 lines were grown in
each environment. There were a total of 325 lines that had both
genotype data and phenotype data from at least 1 environment.

Genotyping

We genotyped each of the DH lines using the Affymetrix Axiom
Maize Genotyping Array, which successfully genotyped 551,460
SNPs. The probability of each founder contributing to each seg-
ment in the genome was imputed from the genotyped SNPs
(Odell et al. 2022).

Estimating kinship

Kinship matrices for the DH lines were estimated from the geno-
typed SNPs using the VanRaden method as implemented in the R
package sommer (Covarrubias-Pazaran 2016; VanRaden 2008; R
Core Team 2020). SNPs were first filtered for linkage disequilib-
rium using Plink with a window size of 50kb, a step size of 5, and
an r? threshold of 0.2 (Purcell et al. 2007). In order to perform
genome-wide association analyses, we used the leave 1 chromo-
some out method (Lippert et al. 2011).

Genotype x environment interactions

Variance components for each trait were estimated using the R
package sommer. We used the formula:

y = ZgUg + ZgUg + ZggUec + f£(X.y) + €,

where y is a vector of n observations from individual plots of a
single trait including both plots of all lines in all environments,
y = ZgUg + ZgUg + ZggUgc + f£(X,y) +e is a nxr design matrix
for the genotypic main effects of the r lines, Zg is a n x 5 design
matrix for the environmental main effect, Zgg is a n x 5r design
matrix for genotype-specific effects in each environment, ug is a
length r vector of random genotypic effects, ug is a length 5 vector
of environmental random effects, ugg is a length 5r vector of ran-
dom GxE effects with same variance and covariance among envi-
ronments, fg(x,y) is a 2-dimensional spline for the effect of the x/
y position in the field nested within environment modeled as a
single random effect fit from an incidence matrix containing the
tensor products of the x and y coordinates in the field, and e is
the error. sommer models 2D splines based on modified code from
SpATS (Rodriguez-Alvarez et al. 2018).
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Genome-wide association studies

Genome-wide association analyses for loci contributing to GxE
interactions were performed with the R package GridLMM (Runcie
and Crawford 2019). Imputed founder probabilities at each locus
were used as markers, meaning that at each marker we asked if
the identity of the founder which contributed that genomic re-
gion at a given locus was a significant predictor of differences in
plasticity among the hybrids. We set GridLMM to obtain maxi-
mum likelihood estimates of the effect of each marker.

GxE models can be parameterized in multiple ways which
could potentially capture different aspects of GxE. We chose to
model GxE in 3 different ways in our GWAS analyses, which we
describe below.

Main effect across environments and deviation effect within
environments

We tested whether a locus had a different effect on a trait in 2
environments: Blois 2017 and Nerac 2016. We chose these 2 envi-
ronments because they were respectively the highest and lowest
yielding environments. The model for this GWA was:

y = pn+wWo+ X By + XenPem + Zo1Uc1 + ZEG1UEGL
+Zcouc, +e,

where y is a vector of n observations from individual plots of a
single trait including both plots of all lines in both environments,
u is a constant length n vector of the average trait value across
the 2 environments, w is a length n design matrix of environmen-
tal effects taking values of —1 and +1 according to the environ-
ment (1 for Blois 2017 and —1 for Nerac 2016), « is a scalar
representing 1/, the deviation of trait means between the 2 envi-
ronments, X,, is a n x 16 matrix, where the kth column is the
probability that each of the n individuals inherited from the kth
founder at marker m, Xgm iS an n x 16 matrix formed by multi-
plying w with each column of X,,, B,, is a vector of main effects of
the founder alleles averaged over the 2 environments, B, is a
vector of differences between the founder allele effects between
the 2 environments, Zg1 is a n x r design matrix of additive geno-
typic effects, Zg1 1s a n x r design matrix of genotype deviations
formed by multiplying each column of Z¢; by w, Zg, is a n x r de-
sign matrix of nonadditive genotypic effects, ug; is a vector of ad-
ditive genotypic effects averaged over the 2 environments, ug.c; is
a vector of additive genotypic deviations between the 2 environ-
ments, ug, is a vector of nonadditive genotypic effects averaged
across the 2 environments, and e is a vector of error terms.
Uc1Zug; and ugg; both have covariance proportional to K, where
K is the additive genetic relatedness matrix, and ug, and e both
have covariance proportional to the identity matrix. The statisti-
cal test to identify markers influencing GxE was against HO:
Bem = 0.

Plasticity

We tested whether a locus had an effect on the slope of the
observations of a genotype across the mean phenotypic value of
all genotypes in an environment. This model has the benefit of
including the maximum amount of data. Compared to the main
effect and deviation model (1), this model might be more likely to
pick up GxE effects that have smaller effects within those 2 envi-
ronments but a larger effect on the overall slope across environ-
ments. The model is the same as in (1) except for the following:
we now include all 5 environments, w is a length n vector with
each element taking the mean value of the phenotype within the
environment of the observation, and u is a length n vector of the

mean value of the phenotype within the environment of the ob-
servation.

Finlay-Wilkinson GWAS

Finally, we tested whether a locus had an effect on the slope of
the observations of a genotype across the mean grain yield of all
genotypes in an environment. Mean grain yield here serves as a
proxy for stress or environment quality and as such this GWA is
testing whether a locus affects the response to stress. This is
known as a Finlay-Wilkinson analysis (Finlay and Wilkinson
1963). For this analysis, a quantile plot of P-values indicated that
the test was poorly calibrated. Instead of asking whether allowing
a marker to have a slope across environments improved predic-
tion of a trait in each environment as in (2), we thus asked
whether the marker significantly predicted the slope of each ge-
notype.

s =Xpps + Zc1us + e,

where s is a length r vector of slopes for each genotype of trait
values on mean grain yield in each environment, g is a vector of
marker effects, and us is a vector of genotypic effects with covari-
ance proportional to K. Other model terms are as in (1).

To determine significance thresholds for the first 2 models, we
permuted phenotypic values among lines within each environ-
ment and ran the GWA 100 times. For the third model, we per-
muted the slopes among the genotypes and ran the GWA 100
times.

The G-matrix across environments

We estimated the G-matrix in each environment using the R
package brms (Blirkner 2017). brms implements Bayesian multile-
vel models using Markov chain Monte Carlo (MCMC) algorithms.
This is important as the samples from the MCMC chains allow us
to estimate uncertainty and significance in our downstream
analyses. We used the model:

Y =ZU+f(x,y) +E,

where Y = [y, ...ys] and y; is a vector of n observations for the ith
trait, Z is a n x r design matrix of genotypes, U and E are random
effects drawn from multivariate normal distributions: vec(U) ~
N(vec(0),G®1y), vec(E) ~ N(vec(0),R®1I,), Iy is the rxr identity
matrix where r is the number of lines grown in an environment,
I, is the n x n identity matrix where n is the number of observa-
tions, and G and R are 5 x 5 genetic variance-covariance and re-
sidual variance-covariance matrices estimated from the data. G
and R are parameterized as the products of standard deviations
and correlation matrices with a half Student-T distribution and
LKJ-correlation prior. f(x,y) is a 2-dimensional spline for the ef-
fect of the x/y position in the field. The standard deviations of the
2 splines have half Student-T distributions as priors.

All traits were scaled by the mean value across all environ-
ments and centered before analysis in order to make them unit-
less and improve model convergence. We performed this same
analysis with nonscaled traits so that our results can be com-
pared with those of previous studies with nonscaled phenotypic
data. The G-matrices we estimated were broad sense G-matrices
as they included both additive and nonadditive sources of genetic
variance. We ran 4 chains with 1,500 iterations of burn-in fol-
lowed by 3,500 iterations. We chose these numbers as the brms
documentation states that most models will converge with only a
few thousand iterations. We assessed convergence by checking
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that all statistics output by brms—such as R, defined as the po-
tential scale reduction factor on split chains, and the number of
divergent transitions, which occur when the simulated trajectory
along the posterior differs from the true trajectory—were within
recommended ranges and by visually inspecting the trace and
autocorrelation of model parameters. For genotypic standard
deviations and correlations, the bulk effective sample size of
parameters ranged from 1,506 to 6,449. To determine whether
the correlation between 2 traits differed between environments,
we found the difference between the MCMC samples for the 2
environments and determined whether the interval spanned by
the 2.5% and 97.5% quantiles of the differences overlapped zero.
In particular, if the correlation between 2 traits was positive in 1
environment and negative in another, and if one or both of those
traits correlate with yield, this would be evidence for a possible
tradeoff between fitness in different environments.

To quantitatively assess differences among the G-matrices es-
timated in the 5 environments, we performed eigenanalysis of a
covariance tensor as described in Aguirre et al. (2014). The tensor
approach is a geometric approach founded on the diagonalization
of symmetric matrices, and is mainly used to calculate a set of
orthogonal axes known as eigentensors that describe coordinated
changes in the elements of the original matrices being compared.
Eigentensors describe which elements of a set of matrices most
contribute to variation among those matrices. As the G-matrices
differed in their environment but not population, the genetic
variances and covariances that contribute the most to the eigen-
tensors are those which are most influenced by the environment.
Eigentensor analysis was performed on the posterior median G-
matrices. Uncertainty in the eigentensors was estimated by
performing eigentensor analysis on the MCMC samples of the
G-matrices. Finally, to determine whether an eigentensor
explained more of the variation among G-matrices than would be
expected by chance, we shuffled the real phenotypic data among
environments, estimated G-matrices, and asked whether the
eigentensors of the randomized G-matrices explained as much of
the variation as the MCMC samples from the real data. If an
eigentensor of the estimated G-matrices explain more of the vari-
ation, this indicates that this eigentensor is explaining biological
variation and not only variation due to random sampling.

Results

We evaluated 7 phenotypes for each of 344 hybrids of DH lines
crossed with a tester in replicated trials across 5 environments
that varied in temperature, daylength, and watering or drought
conditions (Supplementary Fig. 2). Each DH line hybrid was geno-
typed for 551,460 SNPs, allowing us to identify ancestry segments
along the genome.

Genotype x environment interactions

Genotypic main effects and GxE interactions contributed a signif-
icant amount of the variance of all measured traits (Fig. 1).
Across environments, it was common for the rank of DH lines for
grain yield to change, indicating that individual lines were gener-
ally not high yielding in all conditions (Fig. 1a). ASI showed a
qualitatively similar pattern of rank-changing, while some traits
such as TKW showed less dramatic GxE (Supplementary Fig. 3).
The proportion of variance due to main genotypic effects ranged
from 0.34 for grain yield to 0.72 for male flowering date (Fig. 1b).
For grain yield and HGM, GxE interactions contributed an
amount of variance similar to the amount contributed by geno-
typic effects. For flowering time, TKW, and plant height, GxE
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Fig. 1. a) Mean yield of all genotypes in each environment. On the x-axis
environments are plotted by the mean yield across all genotypes in that
environment. Points are mean yields of individual genotypes. Lines are
the slope of a genotype’s mean yield in each environment on the mean
yield of all genotypes in that environment. The color of the line
corresponds to the slope; a slope greater (or less) than one indicates a
genotype more (or less) responsive to the environment than average. b)
Restricted maximum likelihood estimates of variance components for
each trait across all environments.

interactions contributed less of the variance than main genotypic
effects.

Genome-wide association studies

Our test of the deviation effect of a marker within environments
did not recover any markers significant at the 5% permutation
threshold for any trait. In contrast, our plasticity GWAS identified
2 peaks which were significant at the 5% significance level, which
were for ASI and female flowering (Fig. 2a and Supplementary
Fig. 4). Neither of these peaks overlapped with GWAS peaks for
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the plasticity of that haplotype and the difference in slopes is GXE. The
color of the line corresponds to the slope; a slope greater (or less) than
one indicates a genotype more (or less) responsive to the environment
than average.

main effects in this population (Odell et al. 2022). The peak for
ASI on chromosome 1 appears to be driven by the effect of the
FV2 founder, which has a small effect in environments where ASI
is close to zero but strongly increases the magnitude of ASI in
environments where average ASI is greater (Fig. 2b). Patterns of
identity by descent at the genomic region surrounding the peak
identified unique haplotypes for 15 of the founders (Odell et al.
2022), but a PCA of the SNPs in the region did not indicate that
the FV2 haplotype was strongly diverged from other founders
(Supplementary Fig. 4). The peak for female flowering on chro-
mosome 4 appears to be driven by founder A654, but the marker
effects for this founder appeared unrealistically strong and likely
reflect an artifact of the extremely low sampling of this founder
among the DH lines. In addition to these 2 associations at the 5%
level, we detected 1 peak which was significant at the 10% level
for grain yield (Supplementary Fig. 6). Our Finlay-Wilkinson
GWAS uncovered 1 peak significant at the 5% level for ASI
(Supplementary Fig. 7). However, the founder whose effect
appears to be driving this peak also appears to be underrepre-
sented at this locus and only 1 line has a greater than 0.8 proba-
bility of carrying this founder allele. As a result, this peak is likely
to be a statistical artifact.

The G-matrix across environments

To understand how the environment affected pleiotropy, we esti-
mated the genetic variance/covariance matrix (G-matrix) of 5
traits in each environment (Fig. 3, a and b and Supplementary
Figs. 8 and 9). We dropped ASI and HGM from this analysis be-
cause models including those traits failed to converge; ASI was
dropped due to concerns about collinearity as it is a function of 2
other traits in our analysis and HGM was dropped because in
analyses run on subsets of these traits we found that HGM had
very low covariance with the other traits. Comparisons of the
95% credible intervals of the difference between individual ge-
netic correlations revealed numerous differences among environ-
ments (Supplementary Fig. 10). Both the genetic variances of
individual traits and the covariances between traits differed
across environments (Fig. 3, a and b). As the traits were mean
scaled, the variances presented in Fig. 3a are not heritabilites,
which is the genetic variance scaled by the phenotypic variance.
Importantly, mean-scaled genetic variances are not affected by

the amount of residual variance, which means that a trait with
high genetic variance relative to the mean along with high envi-
ronmental variance can have low heritability but high mean-
scaled genetic variance. (Houle 1992). We found that grain yield
generally had high mean-scaled genetic variance in each environ-
ment, and the single highest mean-scaled genetic variance of any
trait in any environment was grain yield in Blois 2017. In 1 case,
the sign of a genetic covariance changed: the genetic covariance
between grain yield and female flowering date was positive
across all environments except in Nerac 2016. This environment
was the only 1 in which the values in the 2.5% and 97.5% quan-
tiles of the posterior of the genetic covariance between grain yield
and female flowering date was entirely negative, while in both
years in Blois this interval was positive. The median posterior val-
ues of some other genetic covariances also switched signs be-
tween environments, but based on credible intervals we cannot
state that they switched with confidence.

To quantitatively assess how individual elements of the
G-matrix contributed to variation among environments, we
performed an eigentensor analysis. The eigentensors of a set of
G-matrices describe independent dimensions of variation
among the G-matrices and can be used to identify which ele-
ments are contributing the most variation among the set. All of
the 4 nonzero eigentensors explained significantly more vari-
ance than expected by chance (Supplementary Fig. 11). The ele-
ment of the G-matrix that most contributed to the first
eigentensor was genetic variance for grain yield (Fig. 3c). When
plotting each environment on this eigentensor, Blois 2017 is
strongly differentiated from the other environments, which is
probably due to the genetic variance for grain yield being the
highest in this environment (Supplementary Fig. 12). The genetic
variance for grain yield also contributed strongly to the second
eigentensor, while the genetic covariance between plant height
and grain yield and the genetic variance of plant height contrib-
uted in the opposite direction. The third eigentensor described a
contrast between genetic variance for plant height on the one
hand and the genetic covariances between both female flower-
ing date and TKW with grain yield on the other. Nerac is strongly
differentiated on this eigentensor. While the covariance be-
tween female flowering and grain yield is not the only element
of the G-matrix contributing to the third eigentensor, it is worth
noting that Nerac is the only environment in which this covari-
ance is negative.

Results of the analysis with nonscaled phenotypes are pre-
sented in the Supplementary figures.

Discussion
Genotype x environment interactions

Genotype x environment interactions are known to be important
for many agronomically important traits in maize, and our
results on the relative importance of GxE across traits confirm
these earlier findings. For example, male and female flowering
date have been shown to be influenced predominantly by addi-
tive genetic effects and are not strongly influenced by GxE inter-
actions (Buckler et al. 2009; Rogers et al. 2021), while grain yield
and HGM have large GxE variance components relative to main
genotype effects (Gage et al. 2017; Rogers et al. 2021). We find
similar results in our analysis, indicating that this may be a con-
sistent pattern for diverse maize germplasm in temperate envi-
ronments.

If genotypes are adapted to different environments, we would
expect to see GxE for fitness-related traits. The high variance
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Fig. 3. The genetic a) variances and b) covariances of the highest yielding environment (Blois 2017) and the lowest yielding environment (Nerac 2016).
Traits are mean scaled. A black border around a covariance indicates that the 95% quantile interval of the posterior does not overlap with zero. Note
that the scales on the upper and lower rows are different. c¢) Contributions of elements in the genetic variance-covariance matrices to the first 4
eigentensors of the set of genetic variance-covariance matrices. Elements on the diagonal are genetic variances of traits and elements on the off-
diagonals are genetic covariances between traits. The color of a square represents the strength of the contribution of that element to the eigentensor

which is not dependent on the sign.

contributed by GxE to grain yield seen in this study thus indi-
cates that the founder maize lines, despite all having been bred
in temperate environments, still carry many alleles that are dif-
ferentially adapted to this set of environments. For traits that are
further removed from fitness it is less clear how to interpret the

contribution of GxE. It may be that the GxE we observe for a
trait like HGM, which has a high proportion of GxE variance and
a low genetic covariance with grain yield, is an example of neu-

tral plasticity and is not under strong selection (Des Marais et al.
2013).
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Despite the presence of substantial GxE variance for several
traits, we found relatively few markers which were significantly
associated with GxE. One possible explanation is that the GxE
variance we observed is largely polygenic and caused by many
loci of small effect which we did not have power to detect with
our GWAS. Previous studies investigating loci with main effects
on traits such as grain yield and flowering time in maize have
found that they are highly polygenic (Buckler et al. 2009;
Dell’Acqua et al. 2015). It may not be surprising then if GxE for
these traits also has a similarly polygenic basis. Grain yield is a
highly integrated trait dependent on the interaction of many
other traits with the environment; if those traits have a complex
basis and different optima within different environments, then it
would not be surprising to observe large GxE variance at the level
of genotype while not observing significant GxE effects for indi-
vidual loci.

The G-matrix across environments

The G-matrix has previously been shown to differ as much be-
tween environments as between populations (evidence reviewed
in Wood and Brodie 2015). Our work shows that the G-matrix dif-
fers across environments in a multiparent population of temper-
ate maize lines. We find that these differences include both
changes in the magnitude of genetic variances and covariances
as well as changes in the sign of genetic covariances. The highest
mean-scaled genetic variance we observed was for grain yield in
Blois 2017, and in general grain yield had high mean-scaled ge-
netic variance compared to other traits within each environment.
This is in contrast to the finding that grain yield had the lowest
heritability across all environments. This finding fits with previ-
ous work finding that fitness proximal traits frequently have low
heritability but high mean-scaled genetic variance, possibly be-
cause of high residual variance for fitness proximal traits reduc-
ing heritability (Houle 1992).

The magnitude of the genetic covariances between traits can
be reduced solely as a function of reduced genetic variance for
one or both of these traits without a change in the correlation be-
tween them. However, by looking at genetic correlations, we
show that the correlations between traits varied across environ-
ments beyond effects of the differences in the variances
(Supplementary Fig. 10). In addition, changes in the genetic vari-
ance alone will not cause the covariance between traits to change
sign, which we also see for some combinations of traits.
Particularly striking was the change in sign for the genetic covari-
ance between grain yield and female flowering date observed in
the most stressful environment, Nerac 2016. This environment
was the only 1in which the genetic covariance between grain
yield and female flowering date was negative. Previous work has
shown that flowering time is important for adaptation to drought
stress (reviewed in Kazan and Lyons 2016). Nerac 2016 experi-
enced a drought from vegetative growth through maturity. Early
flowering in this environment was genetically correlated with
higher yields, suggesting that early flowering may have been a
means to escape drought stress. The change in sign of the covari-
ance is noteworthy given that we observed low GxE variance and
high genotypic variance for female flowering date while simulta-
neously observing high levels of GxE variance for grain yield.
This indicates that genotypes were relatively consistent in their
flowering time across environments but that late flowering geno-
types were higher yielding in most environments and lower yield-
ing in 1 environment. In this way, a change in the genetic

covariance between 2 traits (grain yield and female flowering)
across environments may be contributing to GxE in one of those
traits (grain yield), and provides an illustrative example of how
traits that themselves show little GxE may nonetheless contrib-
ute to GXE for fitness.

While differences between environments presumably shape
these changes in the G-matrix, previous work has found that nei-
ther measures of environmental novelty nor differences in pheno-
typic means predicted differences in the G-matrix when looking
across all the studies in a meta-analysis (Wood and Brodie 2015).
In our analysis we find a similar result; differences between the
G-matrices estimated in each environment are largely idiosyn-
cratic and do not correspond with levels of stress or water avail-
ability. Eigentensor analysis reveals that each of the main
directions of variation across G-matrices correspond mostly to the
differentiation of one or at most two of the environmental G-ma-
trices from the others. Previous work investigating the G-matrix
of plant populations grown in well-watered and drought environ-
ments has been inconsistent in terms of whether drought stress
increases or decreases genetic variance and how it affects the ge-
netic correlation between flowering time and yield (Sherrard et al.
2009; Manzaneda et al. 2015). Considering our work in the context
of previous studies, we suggest that the environmental contribu-
tion to the G-matrix is complex and not easily described by 1 envi-
ronmental axis, which raises the possibility that multivariate
adaptation to the environment may be difficult to predict.

In addition, both the severity and timing of drought seem to
be important in determining the effects of water deficit on
covariances between traits. In this study, we find that in Nerac,
the most drought-stressed environment, the genetic covari-
ance between flowering time and yield is negative and that this
genetic covariance contributes to differentiating it from the
other environments. The fact that the genetic covariance be-
tween flowering date and grain yield in the other water deficit
environment, St. Paul, was not significantly negative may be
because that population was given water during flowering
while in Nerac water deficit extended through flowering. It
appears that how the G-matrix is affected by environmental
stress is highly dependent on the species and population stud-
ied and the exact stress applied.

Conclusion

Using a MAGIC population of maize grown in 5 environments x
year combinations we were able to analyze the genetic basis of
GxEin a set of diverse maize lines. We observed GxE variance for
all traits and for some traits we observed comparable amounts of
genotypic and GxE variance. Estimating the G-matrix within
each environment revealed that changes in genetic variances
and covariances across environments were common. Notably,
the genetic covariance between yield and female flowering time
was positive in most environments but negative in 1 of the envi-
ronments. GWAS identified 1 locus significantly associated with
GxE for ASI. Given the substantial GxE variance, the low number
of significant loci suggests that GxE for the traits we analyzed
may have a polygenic basis.

Data availability

Phenotypic and environmental data are located on Figshare with
doi 10.6084/m9.figshare.14963034. Genotypic data are available
through a data repository associated with companion paper
(Odell et al. 2022).

Supplemental material is available at G3 online.
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