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Abstract

We describe a recurrent neural network model of rate effects
on the syllable-initial voicing distinction, specified by voice-
onset-time (VOT). The stimuli were stylized /bi/ and /pi/
syllables covarying in VOT and syllable duration. Network
performance revealed a systematic rate effect: as syllable
duration increases, the category boundary moves toward
longer VOT values, mirroring human performance. Two
factors underlie this effect: the range of training stimuli with
each VOT and syllable duration, and their frequency of
occurrence. The latter influence was particularly strong,
consistent with exemplar-based accounts of human category
formation.

Introduction

Speaking rate is a well-established source of contextual
variation in the speech signal for which listeners must
compensate. The effects of rate variation are complex. For
example, Miller & Liberman (1979) examined the effect of
speaking rate and syllable structure on the stop-semivowel
distinction, specified by a change in the formant transition
duration. When syllable duration is increased by
lengthening the vowel, they found that the stop semivowel
boundary moves toward transitions of longer duration. But
when syllable duration is lengthened by adding a final
transition corresponding to a third phonetic segment, this
boundary moves in the opposite direction,

Miller & Liberman argued that speakers compensate by
normalizing for speaking or "articulatory” rate, defined in
terms of syllable duration and the number of phonetic
segments in the syllable. It has been noted that an account
that is dependent on listeners' sensitivity to variation in
articulatory rate cannot explain human subjects’
categorization of analogous nonspeech stimuli (Diehl &
Walsh, 1989) nor nonhuman subjects' discrimination of
speech stimuli (Stevens ez al., 1983).

An alternative account is that some rate effects on
phonetic perception are derived from the general auditory
principle of durational contrast that applies to speech and
nonspeech signals alike (Diehl & Kluender, 1989).
According to this account, when speaking rate is varied,
those changes that occur closest to the target segment will
most affect its perception. Consider the syllables /bla/ and
/pla/. The auditory model predicts that varying the /l/
should have a greater effect on the voicing distinction than
varying the more distant /a/, whereas the articulatory model
predicts that the effect is just as strong irrespective of which

Nick Chater
Department of Psychology
University of Edinburgh
Edinburgh EH8 9JZ
UK.
nicholas @cogsci.ed.ac.uk

segment is varied, as long as the overall syllable duration is
varied (c¢f. Newman & Sawusch, 1992).

We have trained a recurrent neural network on rate-
varying speech-like stimuli (Abu-Bakar & Chater, 1993b),
and compared its performance with these divergent
predictions. The network was trained to classify stimuli as
fbal, /wa/, /bad/ or /wad/ and trained to decide if an initial /b/
or a /w/ had been encountered. From the results, it was
evident that the duration of the syllable's CV component
provided the network with reliable and sufficient
information to distinguish the initial consonants. That is,
irrespective of syllable structure (CV or CVC), the identity
of the syllable-initial consonant was distinguishable on the
basis of a durational contrast between the transition duration
and the adjacent vowel. The network therefore appeared to
behave in line with the auditory account.

This might suggest that the network could simply be
viewed as a computational instantiation of the auditory
account. However, the fact that the network learns to apply
durational contrast suggests a possible modification to the
standard auditory view, in which it is assumed that the
contrast strategy is wired into the structure of the auditory
system. In this paper, we elaborate the suggestion that
effects normally viewed as falling out of the structure of the
auditory system might also be learned from experience of
language.

We begin by noting Diehl & Kluender's (1989) distinction
between the space in which speech and nonspeech sounds
are represented and the partitioning of that space into
categories. For speech, this partitioning is properly called
"phonetic”. But humans' categorization of speech and
nonspeech signals (Diehl & Walsh, 1989), and animals'
discrimination of speech sounds (Kuhl, 1988) are so
strikingly similar - they all correspond to regions of
relatively high auditory discriminability - that pre-existing
auditory boundaries are often assumed to be natural
locations for phonetic partitioning. But experimental studies
that show discrimination peaks at identification boundaries
are equally consistent with a learning interpretation, as it
appears that discrimination can be nearly the same across
entire continua when a reasonable amount of experience and
training is implemented.

The partitioning of auditory space has a prototype
structure so that some stimuli are perceived as better
category members than others (Samuel, 1982). Transitory
prototypes may also be created in conditions such as
selective adaption where selected stimulus items are
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repeatedly exposed. In non-experimental settings, one can
find, say, a vowel, not always ending up quite where the
auditory "hot spot” is, even if the whole vowel system is
subject to auditory-based selection pressures. What is
significant in these cases is the apparent correspondence
between the prototypical location and the perceived category
boundary. Repp & Liberman (1987) sum up this
observation by proposing that category prototypes are
responsible for determining boundaries. That is, phonetic
boundaries may not conform to boundaries set by
discontinuities in the auditory system, but are instead
flexibly determined by the acoustic consequences of the
articulatory gestures specifying the category prototype. The
category prototypes, and hence category boundaries, may
therefore be learned from exposure to language rather than
determined by auditory discontinuities (Kluender er al.,
1987). Hence, they may be learnable by mechanisms, such
as a connectionist network, which do not embody auditory
constraints. Here, we show that a learning account,
embodied in a recurrent neural network, can capture the
results outlined above, focussing on the /bi/-/pi/ distinction,
specified by the VOT, in the context of changing speech
rate.

Description of the Model

Recurrent neural networks (e.g. Elman, 1990) are very
attractive for problems concerned with speech processing
because they are suited to processing sequential material.
The presence of recurrent connections gives the network the
opportunity to store information about past items, and thus
to respond on the basis of the sequence as a whole, rather
than just the present input item. In the present simulations,
the network is trained to classify input sequences into a
small number of categories corresponding to different
syllables. The network is fed with the relevant sequences
one input pattern at a time, with the target output pattern
kept present throughout the presentation of each sequence.
The production of the correct output when the sequence is
presented indicates that the sequence has been classified
successfully. If performance is optimal, correct
classification should occur after the "recognition point" of
the category is reached that is, when enough of the
sequence has been encountered that it can be classified
unambiguously.

In addition to identifying the syllable presented, a set of
output nodes was trained, at time t, to attempt to predict the
input pattern at time t+2 (Fig. 1). This forces the network to
encode the input sequence more deeply leading to better
network performance (cf. Abu-Bakar & Chater, 1993a;
Maskara & Noetzel, 1992; Shillcock er al.,, 1992). The
network was trained by recurrent backpropagation
(Rumelhart er al., 1986) which computes gradient descent
by "unfolding” the recurrent network into a sequence of
serially connected feedforward networks, and then trains the
resulting network using standard backpropagation. In
general, the larger the number of unfoldings used, the more
exactly the network computes true gradient descent,
although the benefits of additional unfoldings begin to tail
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Figure 1: The recurrent network used in the simulations. It
is unfolded during training for as many time-steps as
required to accomodate the longest training stimuli.

off after some point, because very deep feedforward
networks are very slow to train (see Chater and Conkey,
1994). Training used conjugate gradient descent and
implemented on the Xerion simulator (van Camp & Plate,
1993). The number of input, hidden and output units was
30, 60 and 32 respectively.

Stimuli

Training stimuli were based on a two-formant syllable with
an initial period of formant transitions followed by a steady-
state (vowel) (Fig. 2). Frequency values were represented
binarily using several input units. Each unit represents a
particular range of frequency (at intervals of 20 Hz (F1) and
40 Hz (F2)). If a formant has frequency F, then all and only
the units which represent frequency values F and less will be
active.! One group of units, which consisted of two further
sub-groups (corresponding to F1 and F2 units), represents
formants with a periodic source, while another group
represents formants (namely, F2) excited with a noise
source. Beginning with the end-point /bi/, we built a pool of
/bi/ and /pi/ syllables by varying VOT. This is effected by
simultaneously switching off the activation of the periodic

' This may not seem the most ideal method of representing
frequency information nor a realistic description of the neural
encoding of speech sounds in the auditory pathways (see
Greenberg, 1988, for a review). However, given the specific
focus of this paper, a more complex representation is not
considered essential. A further simplification is that time is
measured in time-steps (henceforth "ts") rather than
milliseconds to allow flexibility in apportioning segmental
lengths with a view to lower computational demands. Apart
from ensuring that the relative VOT distribution of the /b/ and
/p/ category is observed, there is no pressing need for the
syllable length to be kept similarly natural. Thus for each
“rate”, vowel segment is cut back such that its proportion to
the VOT is smaller than that found in natural speech. Since
the number of unfoldings is set to be dependent on the length
of the longest stimuli, shorter stimuli help to trim the number
of unfoldings, leading to faster training time.
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Figure 2: Schematic representations of the formant motions
of the endpoint stimuli corresponding to /bi/ (left) and /pi/
(right). Each representation consists of an interval of
aspiration (striped line), followed by onset of
voicing (dark lines).

units of F1 and F2 and activating the F2 noise units for the
appropriate duration. This can be interpreted as eliminating
all energy in the region of Fl and replacing the higher
formants (only F2, in this instance) with noise.
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Figure 3: Location of /bi/-/pi/ tokens on the VOT and
syllable duration space, in ts, for (a) the "natural”
training set and (b) the "artificial” training set.
Distribution of tokens used as tests only are
also shown on each panel.

Procedure

The network's task is continuously to rate the probability of
a stimulus belonging to a particular category as the stimulus
unfolds. The nature of the voicing distribution makes it
possible for the net to identify the consonant early in the
sequence for some syllables, particularly those whose VOT
values are unambiguous (see Abu-Bakar & Chater, 1993a,
1993b). But a thorough evaluation of category goodness is
possible only when the net has scanned the entire length of
the syllable and the proportion of VOT to syllable duration
has been calculated. The activation values of the output
units at the offset of each syllable was therefore taken as an
accurate measure of the probability that a stimulus belongs
to the category which the unit represents.

Distribution Effects on Category Boundary

In this study, we look at how VOT distribution, in relation
to varying speaking rate, plays a role in influencing the
boundary locations of /b/ and /p/. The range of
VOT/syllable durations, shown in Fig. 3(a), is based on the
production patterns of the voiced and voiceless tokens
studied by Volaitis & Miller (1992). Notice that as syllable
duration increases, the VOT specifying a category also
increases but this increase was greater for /p/ than for /b/. In
addition, the width of the range of VOT of each category
also increases.

We also trained another network on an "artificial” training
set whose members were artificially distributed in the
VOT/syllable duration space (Fig 3(b)). Here, the range of
VOT for each voicing category is constant regardless of
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Figure 4: Probability functions for the /bi/-/pi/ stimuli used
in the (a) natural set, and (b) artificial set. The results of
only the 20-, 23- and 26-ts series are displayed here.
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Figure 5: Training frequency for /bi/ and /pi/ tokens in (a) Scheme O, (b) Scheme A, and (c¢) Scheme B. Only the
17-, 23- and 29-ts series are shown here.

syllable duration. We predicted that the network would
show a criterion shift only for the “natural” set. This would
support our suggestion that the criterion shift found
experimentally partly has its roots in the particular
distribution of the two stop consonants.

During training, the network encountered each
permissible VOT/syllable duration token once for every
pass through the training set. During the test phase, the net
was presented with the original training tokens as well as
novel tokens whose VOT values straddle the category
boundary (see Fig. 3).

Fig. 4 shows the activation values of the output unit
representing the /b/ category obtained at syllable offset.
These may represent the probability of a /bi/ as a function of
the VOT value of the stimulus. Fig. 4(a) shows that no
syllable duration effect on the voicing distinction was
observed for the control set. Fig. 4(b) shows, by contrast, a
systematic effect of syllable duration on the identification of
the voiced and voiceless consonant for the "natural” training
set. To quantify the boundary shift, we calculated the
location of the /b-p/ phonetic boundary for each of the three
syllable durations by fitting a regression line to the data and
taking the boundary to be the stimulus value corresponding
to the 0.5 probability. The boundary locations for the 20-,
23-, and 26-ts series were at VOT values of 5.359, 6.263,

and 6.886 respectively, representing a substantial shift in the
boundary location.

Effect of Training Frequency on Category
Boundary

According to the learning account we are advocating, the
frequency of individual speech tokens, not just their range of
variation, may be expected to play an important role in
determining phonetic judgements. In the previous
simulation, each stimulus is presented equally often.
Coupled with the fact that the voicing distribution locates
the voiceless syllables over a wider range on the VOT
continuum than the voiced syllables, this produces an
unbalanced exposure between voiced and voiceless tokens
in favour of the latter. Consider the 23-ts series (see Fig.
3(a) in conjunction with Fig. 5(a)). The voiced tokens are
distributed over three points along the VOT scale while the
voiceless tokens are fixed at six points on the same scale. If
every such point is encountered once, this means the
network encounters voiceless tokens twice as often as
voiced tokens. This imbalance may be expected to affect
categorization performance.

We therefore ran new simulations in which the exposure
of voiced and voiceless tokens in each syllable duration
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Figure 6: Probability functions for /bi/ showing the rate
effect for three /bi/-/pi/ series.

series was held equal (Fig. 5(b)). Here, each category in
each /bi/-/pi/ series is allowed 10 exposures in a single
training cycle. The ten exposures are first divided equally
between all the tokens within the permitted VOT range.
Where the number 10 is not divisible by the number of VOT
points on which the tokens are distributed, the remainder of
the exposure is simply divided between each of the middle
tokens of the category.

While this modified frequency scheme maintains an equal
number of exposures of each category, it ignores the fact
that some variants of a category occur more frequently. It
seems likely that this will affect category prototype
formation, and consequently the category boundary (Repp &
Liberman, 1987).2 We therefore ran a further set of
simulations using an improved frequency scheme (Fig. 5(c))
which, in the absence of a more realistic appraisals of the
frequency information delimiting the occurrence of
members of the /b/-/p/ series, only loosely models the
production data of Volaitis & Miller (1992). Notice that
while there is no frequency bias between categories, within
a category, some tokens are more frequent than others.

2 We consider only category boundaries here, leaving
prototypes to another paper.

Table 1: Voiced-voiceless boundary locations, in ts VOT,
for each training scheme (O, A, B) and rate (20-, 23-, 26-ts)

o A B
" 201s 5.359 4.681 4.432
23 ts 6.263 5.609 5.376
261s 6.886 6.498 6.497

After training, the network was tested on the same set of
test stimuli as used previously. Results from the two
training frequencies (the 'modified’ type referred to as
Scheme A and the ‘improved' type as Scheme B) were
compared in conjunction with the results obtained earlier in
the preceding section (referred to as Scheme O). The
number of iterations during training for the two schemes
varies between 200 to 300.

Fig. 6 shows the activation of the unit representing a /bi/
as a function of VOT. To quantify the effects of syllable
duration and frequency schemes, six new boundary
locations arising from schemes A and B were computed
using the same procedure as before. These boundary values,
together with the three already calculated (due to scheme
0), are shown in Table 1.

Consider first the boundary shift as a result of changes in
syllable duration (Fig. 6; Table 1)). All the frequency
schemes show a shift toward longer VOT as syllable
duration increases. With the exception of the boundary shift
between the 23- and 26-ts series under the O scheme, all
other shifts are roughly equal (between 0.9 to 1.1 ts). Next
consider the effect of varying the frequency scheme on the
boundary location for each individual series (Table 1). Now
the boundary is shifted in the opposite direction. Changing
from scheme O to scheme A results in a larger boundary
shift (mean 0.57 time-steps) than the change between A and
B schemes (mean 0.16 ts). Also, the change from O to B for
the longer series produces small shifts as compared to the
shorter series.

While the shift as a consequence of changing rate is
expected, the corresponding movement in the opposite
direction due to training frequency is novel. To get an
intuition for why the latter may have occurred, consider first
the change in frequency schemes from O to A (Fig. 5). This
transition is accompanied by a greater increase in exposure
for the voiced tokens as compared to the voiceless tokens.
Take, for example, the 23-ts series. In scheme O, the voiced
tokens are exposed three times, but in A, this is increased to
seven. In contrast, the voiceless tokens gain an increase of
only four exposures over the same transition. There is thus
a differential of three exposures in favour of the voiced
category. A possible explanation for the observed shift in
the boundary location therefore is that increase in exposure
in favour of one category pulls the boundary towards that
category.

The changes accompanying the transition from Scheme A
to Scheme B are more difficult to quantify. The number of
exposures have been increased in Scheme B but between-
category differential is still maintained at zero (see Fig.
5(c)). The differential in exposure between members of the
same category may be crucial. Table 1 suggests that biasing



the frequencies of members of the voiced and voiceless
categories in the way we did (Fig. 5(c)) made the voiced
category optimally more effective as a "boundary puller”
than the voiceless category, particularly for the shorter
SET1Es.

Conclusion

The results from this work have implications for spoken
language processing and models of perception and
categorization of human speech. A connectionist network
can learn to show a systematic rate effect that can be traced
to the network's sensitivity to the type and frequency of
training stimuli. The factors that matter to the network may
also matter to humans in fundamental ways, which raises the
possibility that boundary locations need not be determined
solely by listeners' capacity to discriminate auditorily but
could be learnt from experience. More generally, this
suggests that learning may play a more pervasive role in
phonetic category formation than previously thought.
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