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ABSTRACT OF THE DISSERTATION

Patterning and Validation Technique for Arbitrary Anisotropic Impedance Surfaces

by

Jiyeon Lee

Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems)

University of California San Diego 2018

Professor Daniel F. Sievenpiper, Chair

Anisotropic impedance surfaces have been demonstrated to be useful for a variety of

applications ranging from antennas, to surface wave guiding, to control of scattering. To

increase their anisotropy requires elongated unit cells which have reduced symmetry and

thus are not easily arranged into arbitrary patterns.

We’ll discuss the limitations of existing patterning techniques and explore options for

generating anisotropic impedance surfaces with arbitrary spatial variation. A new patterning

technique, called a point-shifting method combined with a Voronoi cell generation technique,

will be introduced that allows a wide range of anisotropic impedance profiles. This approach

xv



can be used to produce patterns which include highly elongated cells with varying orientation,

and cells which can smoothly transition between square, rectangular, hexagonal, and other

shapes with a wide range of aspect ratios. Various applications fabricated by point sifting

method will be introduced. Also, we’ll discuss a new method to extract surface impedances

from arbitrarily shaped patch cells using the moment of inertia equations for validating

designed surface impedances. We verify the method by comparing the results between PEC

patterns and impedance boundary sheets to which the extracted impedances are applied.

Simulations of the patterns are verified by measurements as well. Lastly, a relationship

between tensor impedances and a geometry function of impedance pattern which is called

a starting function has been explored. We’ll discuss about inverse gradient procedure and

its condition, which is used to find a correlation between tensor impedances and a starting

function.
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Chapter 1

Introduction

1.1 Motivations for Anisotropic Impedance Surfaces

Figure 1.1: Control of the aircrafts interaction with the electromagnetic spectrum

An artificial impedance surface is a metasurface which is fabricated with periodic

metallic patches on a grounded dielectric substrate. It has been used for various applications

including control of surface waves [1, 2], scattering [3], conformal antennas [4] and waveg-

uides [5, 6, 7]. Fig. 1.1 shows that electromagnetic waves are the primary medium for both

communicating with and sensing of aircraft. Thus control of the aircrafts interaction with

the electromagnetic spectrum is critically important.
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Figure 1.2: Anisotropic impedance surfaces designed as a lattice of metal patches.
The property of anisotropic impedance surfaces are determined by the shape and
size of unit cell, gaps between patches, and so on.

The artificial impedance surface allows us to control the interaction between elec-

tromagnetic waves and metal or composite surfaces. Their electromagnetic properties are

defined by the thickness of the substrate, and the capacitance between patches, which to-

gether determine the effective surface impedance. Varying the cell size and shape allows

the impedance to be controlled. Vertical conducting vias are sometimes also used, but

they are only necessary if very high impedance values are needed, or to completely block

surface waves [8]. Initial impedance surfaces consisted of simple square or hexagonal

cells. However, reducing the symmetry of the cells allows the surface to have anisotropic

impedance properties. This is important for applications such as surface wave cloaking,

interference reduction between RF apertures, control over polarization, and conversion

between transverse magnetic (TM) and transverse electric (TE) surface waves.

2



Figure 1.3: Motivations for Anisotropic Impedance Surfaces. A primary challenge
in current artificial impedance surface research is how to pattern impedance surfaces
to produce arbitrary impedance profiles when the surface is highly anisotropic or
has impedance that varies dramatically with position.
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1.2 Patterning and Validation Technique

Until recently it was not possible to create smoothly varying, highly anisotropic

impedance functions because of the difficulty of patterning regions in which the cell size,

shape and orientation varied. Illustrated in Fig. 1.3, there was no available method to

smoothly connect these regions with different impedance values and with different primary

directions, aside from drawing each cell manually, which is impractical. In attempting to

produce surfaces with a high degree of anisotropy, we have become limited in the range

of impedance profiles that we can produce. We would like to print arbitrary patterns, but

we face the challenge of how to transition between regions of different impedance.The

challenge is how to pattern elongated unit cells which allow high anisotropy, but to also

create arbitrary and smoothly varying impedance patterns. All previous work in this area

used discrete regions of different impedance values or directions [3, 5].

Figure 1.4: Snake skin. As the shape and size of cells change, they fit in smoothly.

In general, these surfaces will consist of smoothly varying impedance profiles, so

we need to develop a patterning technique that enables the shape and orientation of the

patches, and the electromagnetic impedance associated with them, to vary smoothly and

continuously across a two-dimensional surface like a snake skin shown in Fig. 1.4.

4



Fig. 1.5 is an example of anisotropic impedance surface, shown in cartoon only. This

surface is made by simply stretching the surface in different ways to warp the unit cells.

We presently do not have a way to pattern such structures to produce smoothly varying

impedance functions. In this example, if the surface were extended over a large distance and

a similarly warping method is applied, the cells near the edges would become too large or

too small, similar to the problem with conformal mapping.

Figure 1.5: Manually designed anisotropic impedance surface

1.3 Summary of Dissertation

This dissertation presents the procedure of designing arbitrary anisotropic impedance

surfaces and details of each step as shown in Fig. 1.6.

Chapter 2 introduces a new patterning technique, the point-shifting method which

allows us to generate smoothly varying arbitrary anisotropic impedance surfaces.

Chapter 3 presents a design of smoothly varying impedance surface to block the

surface wave for shielding purpose. The surface wave shielding pattern is discussed and

simulation results are included. The pattern can be used to prevent or reduce the leakage of

5



Figure 1.6: The flow of designing impedance surface. It starts from a desired
current profile including a patterning step and a validation step.

the surface waves from a slot or a crack on the plane.

Chapter 4 addresses a validation technique to extract the effective tensor surface

impedance function from nonuniform, anisotropic, conductive Patterns. The method enable

to find tensor surface impedances for asymmetric and polygon unit cells which are not

possible to be analyzed in periodic boundaries.

Chapter 5 studies a relationship between a starting function and tensor impedance

function. As the tensor impedance function meeting the condition of inverse gradient is

found, we can design a pattern based on the tensor impedance in a certain condition.

6



Chapter 2

Patterning technique for generating

smooth anisotropic impedance surfaces

2.1 Limitation of conventional anisotropic impedance sur-

face

Several existing approaches to patterning anisotropic surfaces can be found in the

literature, and examples are shown in Fig. 2.1. The first anisotropic impedance surface

[9] shown in Fig. 2.1(a) used slices in a lattice of square patches, that are rotated to an

arbitrary angle. For example, if the slices are oriented along the Y direction, the structure

has twice as many capacitive gaps along X as along Y, due to the extra capacitance of the

slice. Thus, the maximum anisotropy of such a structure is roughly 2:1. A structure based on

circular patches [10] shown in Fig. 2.1(b) is similar and suffers from the same limitation. In

Fig. 2.1(c) the structure [11] involved capacitive regions connected by inductive bars that are

rotated to arbitrary angles. If the angle of rotation varies too rapidly between adjacent cells,

7



the capacitive regions do not line up. It is also limited by the use of a square grid. Fig. 2.1(d)

(a) (b)

(c) (d)

Figure 2.1: Conventional Impedance Surfaces. Examples of anisotropic surfaces
include (a) square (IEEE copyright line c© 2010) or (b) circular patches with slices
rotated to an arbitrary angle, (IEEE copyright line c© 2015) or (c) other patterns
confined to a square lattice, (IEEE copyright line c© 2015) as well as (d) lower
symmetry cells that cannot be arranged into arbitrary patterns (IEEE copyright line
c© 2014).

shows that elongated unit cells [3] can provide a high range of anisotropy however these

require a rectangular grid. Any design that reduces symmetry of the lattice itself cannot be

patterned to include an arbitrarily varying angle of anisotropy.

Other approaches exist for creating smoothly varying and arbitrary geometrical

patterns, however they dont have the required properties for artificial impedance surfaces.

Conformal mapping [12, 13], illustrated in Fig. 2.2(a) is one option which is commonly

used for defining effective permeability or permittivity in transformation optics applications

[14]. It could potentially be applied to generating cells for impedance surfaces. However, it

has the limitation that the cell size, shape, and orientation would be highly dependent on

the divergence of the local impedance function. As illustrated in Fig. 2.2(a), as the lines

8



diverge, the cells get larger in the direction perpendicular to the lines, which also sets their

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(a) (b)

Figure 2.2: Other possible approaches to patterning smoothly varying impedance
surfaces include (a) conformal mapping, and (b) mesh generation techniques.
Neither of these produce anisotropic impedance surfaces with the properties needed
for applications.

orientation. This is true of any patterning technique that relies on defining cell boundaries

by continuous lines. Thus, while conformal mapping is useful for determining impedance

profiles to achieve certain functional properties, it is not appropriate for defining the unit

cells to create those impedance profiles. Our approach to be described below provides more

freedom in defining impedance surfaces that have dramatic changes in impedance over short

distances.

Mesh generation techniques have been developed for physical modeling codes for

many years, and typically produce patterns such as shown in Fig. 2.2(b) [15]. These could

potentially be applied to patterning impedance surfaces as well. However, they are generally

designed to provide a specific average cell density, without concern for the details of the

cell shape. For impedance surfaces the cell shape is very important for determining the

anisotropic impedance values.

We explored another option that we called the point density method as illustrated

in Fig. 2.3. The idea is to start with a function in Fig. 2.3(a), the slope of which represents
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the local impedance. By traversing that function, we can define a point which represents

(a) (b)

Figure 2.3: Point density approach. Another method called the point density
approach involves choosing points with a density based on (a) a function whose
slope represents the local impedance function. The resulting set of points (b)
represents the centers of the cells, but their location depends on the path over which
one traverses the original function. Discrepancies are indicated at the red and blue
squares.

the center of a unit cell each time the function reaches an integer value, or at some other

uniform interval of z-axis and another axis among x and y axis. The problem with this

approach is that it is highly dependent on the path over which one traverses the function.

As shown in Fig. 2.3(b) it does not produce a unique set of unit cells. This is one example

of many path-dependent approaches that we determined were unable to produce patterns

which required properties for impedance surfaces.

2.2 Patterning Technique - Point Shifting Method

2.2.1 Dot patterning

We developed a patterning technique to produce arbitrary anisotropic surfaces which

we call the point shifting method. For our patterning method, we define a function that is
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related to the desired surface impedance in each direction, which is related to the cell size in

that direction. We currently choose this starting function based on knowledge of the desired

(a) (b)

(c) (d)

Figure 2.4: Procedure of point shifting method. (a) A starting function with a local
maximum. (b) A set of gradient vectors which define the movement of points. (c)
The final set of points. (d) The unit cells generated by the Voronoi method.

cell profile. We then define a uniform grid of points with a period equal to the average cell

size. Next, we shift each point in proportion to the gradient vector of the starting function.

This is illustrated in Fig. 2.4(a) which shows a function with a local maximum, and in Fig.

2.4(b) which shows each point moving with a direction and magnitude that is in proportion

to its gradient vector. The result is that the distance between neighboring points is expanded

near local maxima, and compressed near local minima. In regions with constant slope, the

points all shift by the same amount, resulting in no change in the distance between them.
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Fig. 2.4(c) shows the final lattice of points for this example. Anisotropic cells are created

by compressing or stretching the distance between points in one direction relative to the

other. Thus, the anisotropy in the final lattice of points is defined by the anisotropy of the

curvature in the starting function. The cells are generated from the grid of points using a

Voronoi technique, as shown in Fig. 2.4(d).

2.2.2 Voronoi function

Figure 2.5: Voronoi diagram for a random set of points. Each cell is defined as the
region that is closer to each point than to any of its neighbors.

A Voronoi diagram is an approach for dividing regions based on a set of points and the

Euclidean distance between those points [16]. To create a two-dimensional Voronoi diagram,

one draws a midline between each pair of neighboring points, which is perpendicular to a

line drawn from one point to the other. For each point, the collection of midlines to each of

its neighbors defines the cell associated with that point. This is the same method used to

define Brillouin zones for crystals [17] Fig. 2.5 shows an example Voronoi diagram for a

random set of points. The Voronoi function is available in codes such as Mathematica and
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MATLAB.

The relationship between the properties of the Voronoi cells and the surface impedance

is defined by the details of the cell geometry. For a fixed substrate thickness and dielectric

constant, higher impedance can be obtained using larger cells, or smaller gaps [1]. The

surface impedance is defined as the ratio of the tangential electric and magnetic fields. It

can be direction-dependent in the case of anisotropic surfaces, and the impedance along a

particular direction is primarily determined by the length and gap width in that direction

[5]. Varying only the gap width limits the range of available impedance values, but allowing

the cell size to vary provides a wider design space. Furthermore, more complex anisotropic

structures cannot be designed without either elongated unit cells (which cannot be patterned

into arbitrary functions with any existing techniques) or more complicated cell geometries

[11]. For this reason we are developing a patterning technique that allows for continuous

variation of cell size, shape, and orientation.

We note that polygon unit cells in the patterns are generated by Voronoi function

so that their shapes are limited. The shape of unit cell is determined by how many we

have nearest neighbor dots and how far they are spread out. We could have 8, 10 or other

more sides when we warp these but if the surface is smoothly varying, we are not going to

have any points where we end up with the force coming in one way and out the other way.

Everything is going to approximate some kind of largely convex multi-side object that will

be somewhere between rectangle or hexagon or minor variation of those. And its only few

special cases can produce more than 6 sides, and even getting into 8 sides requires some

settled points.
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2.2.3 Gap generation

After an array of cells is patterned on the XY plane, a gap is required between

neighboring cells to define an artificial impedance surface. The process of generating a

constant gap width starts with calculating the distance between the center point and one side

of the cell. Each cell is defined by its center point and vertices. We define a line connecting

each pair of vertices, as shown in Fig. 2.6(a), and then calculate the length of the segment

running from the center point and perpendicular to this line, as shown in Fig. 2.6(b). The

next step is calculating the ratio between the distance calculated in Fig. 2.6(b) and half of

the assigned gap which is shown in Fig. 2.6(c) as a blue line. After the ratio is obtained, it

can be used to calculate the coordinates of new vertexes for each cell. Each vertex is moved

toward the center of the cell by a distance that is defined by the ratio calculated above, as

shown in Fig. 2.6(d). This process is used to create each new side of the cell, as shown in

Fig. 2.6(e). However the varying angles between sides create errors in the definition of the

new cell which must be corrected. The solution is to take the intersections of lines created

from the new sides to generate corrected vertices, shown as blue dots in Fig. 2.6(f). These

new points complete the new cell with a constant gap width. This process is repeated for all

cells in the array to generate a file which defines the metallic pattern that forms the artificial

impedance surface.

2.2.4 Advantage of Point Shifting Method

The cells are generally designed to be electrically small at the frequency of interest so

that they can be considered in the effective medium limit, and the surface can be described

as an effective impedance boundary. Refraction or reflection [1] does not occur at the

individual cell boundaries, but rather due to large-scale variation in the effective surface
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Process of generating a constant gap. (a) A cell defined by a center
point and vertices. (b) A segment shown in blue from the center point to a line
connecting two vertices shown in red. (c) Half the intended gap width is shown
in blue. (d) Vertices are moved toward the center point by a distance that is
proportional to the gap width. (e) Errors are introduced due to the varying angles
between adjacent sides. (f) The errors are corrected by placing new vertices at the
intersections between lines defined by each side. The final cell has constant gap
width.
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(a) (b)

(c) (d)

Figure 2.7: Examples of various patterns that can be produced by this technique.
(a) Varying cell shape. (b) Gradient of impedance. (c) Varying orientation. (d)
Extreme variation with high anisotropy.

impedance.

Fig. 2.7 shows the range of properties that can be created using our point shifting

method. This approach enables not only smoothly varying impedance functions, but also

varying cells with arbitrary shapes, sizes and direction of anisotropy as a function of position.

The patterns in Fig. 2.7 were generated by starting function with a square grid. However,

we have also developed code to start with a triangular grid, which can produce similar

results, allowing a wider range of possible patterns. After having demonstrated the range of

properties that are achievable with this method we now use it to create a simple example of

a structure which requires a smoothly varying impedance profile, in the form of a planner

Luneburg lens. We should note that our method is applicable to general tensor impedance
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Figure 2.8: Index plot of Lunenurg lens

surfaces having a wide range of properties including anisotropy, as illustrated in fig. 2.7.

However, since canonical anisotropic impedance surface problems are not widely known,

for the purpose of demonstrating and validating our patterning method we choose a common

problem with a well-defined solution that requires a smoothly varying surface impedance.

For this reason we have selected a planar Luneburg lens design as an example.

2.3 Luneburg lens patterning

A Luneburg lens is a spherically symmetric gradient-index lens [16]. The refractive

index n of the lens follows the function

n =
√

εr =

√
2−
( r

R

)2
(2.1)

where r is the radial distance from the center of the lens and R is the radius of the lens. The

index n falls from
√

2 to 1 from the center to the edge. It has also been demonstrated in

planar form using impedance surfaces [18, 19]. As an example of a practical application

of our point shifting method, we generate an inhomogeneous impedance surface with the
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Figure 2.9: Normalized field plot from the impedance boundary simulation

Luneburg lens profile. We then simulate and measure it to verify that this approach can

produce the intended impedance pattern.

2.3.1 Impedance boundary simulation

Before designing the impedance pattern of Luneburg lens, impedance boundaries

have been simulated. The surface impedance of TM mode can be defined with effective TM

index as [20]:

ZT M = Z0
√

1−nT M2 (2.2)

From the above Luneburg lens index plot we calculate surface impedances for

boundaries. The diameter of the lens is 120mm and the impedance variation over boundaries

from 369jΩ to 650jΩ follows the index plot. Fig. 2.9 shows a part of impedance boundary

lens and a normalized field plot at 10GHz.
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2.3.2 Unit cell simulation results and impedance data

The patterned Luneburg lens consists of patches which set the surface impedance.

Therefore we first analyze the impedance as a function of cell geometry to determine the

appropriate range of cell sizes for a given substrate and thickness. Assuming grounded

2.5mm thick Rogers 6010 substrate (εr = 10.2), we studied cells ranging in size from 1 mm

to 5 mm, shown in Fig. 2.10. The gap was 0.25 mm for each case. Although the patches will

have various shapes, we studied square patches as a compromise that is representative of a

typical patch. We have previously shown that for anisotropic surfaces with rectangular unit

cells, the impedance along one direction is independent of the cell size in the orthogonal

direction [1], so simulations of square cells provide an understanding of the behavior of

rectangular cells as well. The unit cell structure was simulated in the eigenmode solver

in Ansys HFSS version 15.0.3 (a full-wave, commercial software package) The surface

impedance for TM waves was calculated as

ZT M = Z0

√
1−
(

kT Mc
ω

)2

(2.3)

based on the dispersion results of the unit cell [8, 21]. Fig. 2.10. shows the frequency-

dependent surface impedance plot of unit cells from 1 1mm to 5 5mm. In this plot TM

surface impedance can be translated to the index so that the analysis allows us to find an

appropriate range of cells which follows the index profile of a Luneburg lens. The effective

TM index for surface waves is defined as [20]:

ns =

√
1−
(

ZT M

Z0

)2

(2.4)

According to the simulation results we can find appropriate cell sizes which support
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Figure 2.10: Impedance plot for various sizes of square unit cells. Simulated
impedance versus frequency for various sizes of square unit cells on 2.5 mm
Rogers 6010 with 0.25 mm gaps. The indicated impedance range of 766.08 jΩ to
370.21 jΩ corresponds to an index ratio of 1.6:1.

the surface impedance range for the Luneburg lens index at around 7 - 8.5GHz. Fig. 2.10

shows the result at 7.5GHz which is selected as the operating frequency of our Luneburg

lens pattern. In order to approximate the Luneburg lens profile, we choose a range of cells

varying from 1mm to 3mm, which corresponds to an impedance range of 370.21jΩ to

766.08jΩ. Using ( 2.4), this corresponds to an index ratio of approximately 1.6. The next

step is to select a starting function for our pattern generation code which will produce a

rotationally symmetric array of cells that vary smoothly from 3mm in the center to 1mm at

the edges.

2.3.3 Patterns by point shifting method and simulation results

We do not have a direct method to produce an arbitrary impedance function. Instead,

we begin with a function that has the appropriate properties for our intended application,
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Figure 2.11: The Luneburg lens pattern used in the simulations. (only half shown)
(a) Patches at the center of the lens measured 3 mm. (b) Patches at the edge of the
lens measured 1 mm. These produce a 1.6:1 index ratio.

and then fit that function to produce the range of cell sizes that correspond to the desired

impedance range. For example, a planar Luneburg lens requires a function with circular

symmetry, and a local maximum in the center. The Luneburg lens pattern was generated by

the point shifting method on a 93 × 93 point array with a starting function, f .

f =
√

1000e−0.2(x2+y2)0.9 (2.5)

This function was chosen empirically to generate a smoothly varying pattern of

cells with rotational symmetry to approximate the Luneburg lens function. A section of

the lens, and details of the unit cells from the center and edge are shown in Fig. 2.11. As

shown in Fig. 2.10, the range of patch sizes varies from 1mm to 3mm from the edge

to the center of the lens, and these sizes were chosen to provide an index ratio of 1.4 as

required for the Luneberg lens profile. The substrate is the same 2.5 mm thick Rogers 6010

as used in the unit cell analysis. The diameter of the lens is approximately 90mm and the

whole pattern dimensions are 140 × 140mm. The pattern consists of 8281 PEC patches
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(a) (b)

Figure 2.12: Simulation result of the patterned Luneburg lens (a) Normalized
electric field at 7.5GHz. Simulated data showing the field of a collimated surface
wave produced from a monopole feed. (b) The area of the lens and surrounding
board. The edge of the lens is approximate because it does not have a distinct
boundary.

and there are 0.5mm gaps between the cells. This lens differs from the true Luneburg lens

profile in several ways. First, it does not match the function in ( 2.1) exactly, it is only an

approximation. Second, it does not have a distinct edge, as the cells simply get smaller

away from the center at a rate that exponentially approaches the background cell size of

approximately 1mm. Nonetheless, we can define an approximate edge to roughly match

the edge of the Luneburg lens function. Third, the cells end about 2cm past the edge of the

lens, and the surrounding material is dielectric clad ground plane, with an impedance of

75.5jΩ [22]. In spite of these differences, this approach has the advantage that the index

varies smoothly, aside from the discrete nature of the cells, and we do not need to use shells

or rings as in some other planar lens structures [23].

The Luneburg lens pattern was simulated using the driven modal solver in Ansys

HFSS. Fig. 2.12 shows the field plot at 2mm above the board at 7.5GHz. There is a coaxial

feed in front of the pattern which generates circular waves that propagate over the lens
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pattern. The wavefronts are flattened as they pass through the lens pattern. As shown in this

figure, the printed impedance surface produces a collimated beam at the output of the lens,

as expected, validating our patterning procedure.

2.4 Beam shifting patterning

Figure 2.13: Procedure of designing a beam shifting pattern

In addition to the lens, we have also studied a structure that explicitly requires

anisotropy, to demonstrate the usefulness of this structure for generating anisotropic patterns.

As an example, we have designed a beam shifting strucutre. Such structures have been

designed prevoiusly using anisotropic metasurfaces [3]. However, prevoius work involved

homogenoius impedance surfaces because of the difficulty of patterning inhomogenoius

anisotropic surfaces. The beam shifter can be understood by considering that waves in an
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(a) (b)

(c)

Figure 2.14: Simulation result of the beamshifter. (a) Normalized electric field at
7GHz. (b) Pattern on the board with a wave guide source. (c) Enlarged section of
the beam shifting surface.
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anisotropic medium will refract toward the lower index direction [24]. By gradually tilting

the direction of low impedance, the wave can be made to follow a desired path.

The beam shifting pattern was generated with starting funtion, f.

f =
x
2
−2sin(5x+ y) (2.6)

The patterning method resulted in 1154 PEC patches which were printed on a

grounded 2.5mm thick Rogers 6010 substrate. The size of the entire structure 56mm

× 88mm. For the elongated patches near the center of the beam shifting structure, the

impedance was 260 jΩ in the low direction, and 374 jΩ in the high direction. Simulations,

shown in Fig. 2.14, indicate that a beam excited at one end of the structure (such as generated

by a waveguide aperture) will be shifted by nearly an entire beamwidth at the other end

of the structure. This smoothly varying beam shifting structure represents a pattern that

would be impossible to produce using existing techniques. The performance of both the

Luneburg lens and the beam shifting surface were verified experimentally, as described in

the following section.

2.5 Near field scanning measurement

The Luneburg lens pattern was fabricated using printed circuit fabrication technology,

and is shown in Fig. 2.15. The panel is 190 × 180 mm with 8281 copper patches on top

of the board, and bottom of the board is a ground. There is a 5mm diameter hole in front

of the pattern for a coaxial feed which is the excitation source. A vertical probe was swept

2mm above the surface along a 1mm grid and an Agilent E5071C vector network analyzer

recorded the magnitude and the phase of the surface wave. Normalized field results are
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(a)

(b) (c)

Figure 2.15: Measured fields of the patterned Luneburg lens (a) Normalized near
field plot of the surface waves scanned over a 190 165 mm area, indicating the
collimating capabilities of the lens. The scan starts just beyond the feed point. (b)
Close-up photo of the fabricated Luneburg lens pattern. (c) Details of the feed and
the measurement technique, including the probe visible at one extreme of the scan
region.
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shown in Fig. 2.15(a). The circular wavefronts generated by the feed are transformed into

flat wavefronts at the opposite side of the lens, as expected. The essential characteristics of

the pattern match that shown in Fig. 2.12, verifying that our technique produces practical

impedance surface patterns that match simulation results, and perform a useful function

of collimating surface waves. The flat wavefronts emerging from the surface of the lens

opposite to the feed are the expected behavior for a Luneburg lens. The additional variations

along the edges of the measurement area are artifacts that are indicative of a standing wave

pattern which is likely caused by reflections from the edges of the board. The beam shifting

(a) (b)

Figure 2.16: Measured fields of the beamshifter (a) Normalized electric field at
7GHz. (b) Pattern on the board with a wave guide source. (c) Enlarged section of
the beam shifting surface.

structure was excited by a WR137 waveguide placed adjacent to the surface at one edge. A

field map was produced in the same way as for the lens described above, and is plotted in
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Fig. 2.16. The beam center is smoothly shifted from 50 mm to 70 mm along the length of

the structure. Note also that the phase fronts begin and end parallel to the front and back

edges of the surface, gradually tilt to the right in the central region, following the anisotropic

impedance pattern.

2.6 Conclusion

We have introduced a patterning technique for generating arbitrary impedance

surfaces. It provides several advantages over other patterning approaches such as the ability

to produce a range of cell sizes, shapes, and orientations, including smoothly varying and

highly anisotropic impedance surfaces. Specifically, the ability to produce smoothly varying

impedance surfaces with reduced symmetry cells, which are important for achieving high

anisotropy, has been absent from all previous patterning methods. We have illustrated the

limitations of existing techniques, as well as other potential approaches such as conformal

mapping, and path-dependent methods. We have shown that our technique based on point

shifting with Voronoi cell generation can produce impedance surfaces with a wide range of

useful properties. We have chosen a simple and practical example to validate our method

experimentally, in the form of a planar Luneburg lens as well as an anisotropic beam shifting

structure.

We expect that this method will be used to design a wide range of future impedance

surface for applications such as planar antennas, scattering control, and interference mitiga-

tion. However, there are also several fundamental questions that are topics for future research.

First, the starting function is currently chosen empirically to produce a described range

of predetermined cell geometries. We need a method to translate the desired impedance

function directly to the starting function. Second, the limitations of this method are not
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known, such as the range of impedance functions that are achievable. Third, aside from

certain special cases such as the lens illustrated here, it is not known what impedance

function is required to produce a specific surface wave or scattering response. Addressing

these issues will allow us to use the method described here to produce arbitrary impedance

surfaces for a wide range of applications.

Chapter 2 is based on and is mostly a reprint of the following paper: J. Lee, D.

Sievenpiper, ”Patterning Technique for Generating Arbitrary Anisotropic Impedance Sur-

faces”, IEEE Transactions on Antennas and Propagation, vol. 64, no. 11, pp. 4725-4732,

December 2016. The dissertation author was the primary author of this material.
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Chapter 3

Scattering Reduction Scheme using

Impedance Surfaces

3.1 Motivation

Controlling surface waves is important to prevent damage to sensitive spots on the

surface or to minimize interference with other systems. As shown in Fig. 1.2 in Chapter 1,

if the aircraft has multiple sensitive regions on the surface and an incident wave hits the

aircraft, either the flow of surface waves should be guided in the other direction avoiding

spots or the sensitive area should be shielded from the wave.

To solve this problem there are several approaches have been tried such as cloaking

techniques from transformation electromagnetics and beam shifting methods. However

some of transformation methods cannot be implemented for surface wave structures since

it is not possible to independently set the impedance and index in the material in two

dimension impedance surfaces unlike volumetric materials. Also impedance surfaces don’t

have freedom in setting tensor solutions of ε and µ in the tensor impedance boundary
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condition and have only three independent variables, Zxx, Zyy, Zxy, which can be set.

(a)

(b)

Figure 3.1: Impedance patterns with different weight factors

3.2 Surface wave shielding pattern design

The idea of surface wave shielding pattern is applying higher surface impedances to

the shielded area comparing with surface impedances in the background, and having smooth

transition between low and high impedance region. Fig. 3.1(a) shows impedance surfaces
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generated by the point shifting method. A convex function in three dimensional space is

used as a starting function for patterning and applied with various weight factors. As shown

in 3.1(b) the surface wave starts being suppressed when the pattern has larger unit cells at

the center than background unit cells so that high impedance area has emerged in the middle

of the pattern.

The third pattern with weight factor 1.1 in Fig. 3.1(a) shows high impedance region

at the center of the pattern and it is surround by smooth transition to low impedance

background. The unit cell size of highest impedance is 4mm × 4mm which is 6 times larger

than background unit cells. The normalized field plot in Fig. 3.1(b) shows the shielded area

from the wave in the middle of the pattern, and the wave keep propagating beyond the high

impedance area and recombine.

Fig. 3.2 shows comparison between a full shielding pattern and other shielding

conditions. In Fig. 3.2(a), all three impedance surfaces have huge jump from low impedance

at the background to high impedance in the center which is the shielded area. The first

structure is a fully patterned impedance surface with PEC patches on the 2mm thick Rogers

3010 substrate. The second structure has same condition with the first structure except the

background unit cells including smooth transition area. Here the background unit cells and

the transition area are removed. The impedance surface consists of the same Rogers 3010

substrate and a few PEC patches in the middle which have high surface impedances. In the

third structure low impedance unit cells in the background remain, but the high impedance

region is replaced by one piece of PEC patch and the transition area is removed.

Fig. 3.2(b) shows normalized field plots of three different shielding conditions at

9GHz. The fully patterned impedance surface shows a clear shielded area from the surface

wave at the center of the plane. In the second structure the high impedance region shows

32



(a)

(b)

Figure 3.2: Comparing a full shielding pattern with other conditions.
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Figure 3.3: Procedure of designing a shielding pattern. A starting function plot
and set of shifted points.

reflections around the patches and couldn’t stop the wave coming into the area. The third

structure shows the wave is weakened in the PEC patch but the surface waves are out of

phase after passing the high impedance region.

Fig. 3.3 shows a starting function and set of shifted points for a shielding pattern.

The pattern is design to have the larger shielded area than the previous pattern shown in

Fig. 3.1 and Fig. 3.2. A full shielding pattern and a normalized field plot at 9.2GHz are

shown in Fig. 3.2.The diameter of the shielded area is approximately 60mm including the

transition region. The pattern is simulated with a plane wave source. In the field plot we
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Figure 3.4: A shielding pattern and normalized field plot at 9.2GHz

can observe that the surface wave is blocked and shows lower magnitude in the high surface

impedance region with larger patches.

Fig. 3.5 is the simulation results of the shielding pattern with waveguides. The field

plots show the surface wave propagates over the pattern avoiding the shielded area, and the

wave smoothly flows around the transition area without significant reflections.

3.3 Preventing Leakage of surface waves by smooth vary-

ing impedance pattern

We have applied the shielding pattern to prevent or reduce the leakage of surface

waves from a slot or a crack on the object. This approach can be useful in certain situations

when the traveling waves hit the object such as aircrafts or cars which have windows or slits

on their body.

Fig. 3.6 shows a design of the pattern and structure. A 12 × 32 mm slot is located in

the middle of a 2mm thick Rogers 3010 substrate. The diameter of the shielded area in the
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(a)

(b)

Figure 3.5: Shielding pattern and normalized field plot with rectangle wave guides
(a) Normalized field plot at 9GHz (b) Normalized field plot at 8.8GHz. The source
is located at the left bottom of the pattern.

pattern is 90mm. We simulate the board patterned with PEC patches and a plane substrate

board without the pattern. The surface waves from the source are propagating around the

shielded area and couldn’t flow into the As shown in the normalized field plot in Fig. 3.6

there is no leakage wave from the slot when the board has covered with a shielding pattern.
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Figure 3.6: Manually designed anisotropic impedance surface

3.4 Conclusion

This chapter has demonstrated a pattern that can be used for shielding two dimen-

sional area from surface waves. We’ve studied several designs of high and low surface

impedances combination for surface waves shielding. The surface waves on the full pattern

propagate around the shield area which is covered by larger PEC patches that have high

surface impedances. We have also simulated substrate boards with a slot and showed the

leakage of surface waves are prevented by the smoothly varying surface impedance pattern.

Chapter 3, in part, are currently being prepared for submission for publication of

the material as it may appear in: J. Lee, D. Sievenpiper, Design of Arbitrary Anisotropic

Impedance Surface for Reducing Leakage of Surface Wave. The dissertation author was the

primary author of this material.
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Chapter 4

Method for Extracting the Effective

Tensor Surface Impedance

4.1 Motivation

To address the limitation of conventional artificial impedance surfaces, a patterning

technique which is called the point shifting method [25] has been developed. Fig. 4.1 shows

that impedance surfaces produced by the point shifting method have smoothly varying

anisotropic patterns with various shapes of unit cells which vary over the surface along with

the impedance values. Previously, we assumed that the impedances of polygon patches

produced by the point shifting method can be represented by the tensor impedance of

rectangular or square unit cells as an approximation. However, as the unit cells created by

the point shifting method are highly asymmetric and polygonal, their shapes are sufficiently

different from rectangles that we cannot accurately determine their surface impedance using

this assumption. Additionally as the unit cells smoothly vary their orientations, the tensor

impedance of each cell changes according to the tilt angle. For these reasons, we have
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Figure 4.1: Arbitrary anisotropic impedance surfaces generated by the point
shifting method. The unit cells of the pattern have all different shapes and sizes.

developed a technique to accurately calculate tensor impedances for various shapes and

directions of polygon cells.

In this section, we introduce a new method to extract surface impedances from arbi-

trarily shaped patch cells using the moment of inertia equations. We discuss the details of the

extraction process and provide an example of calculation for a polygon unit cell. We verified

that the extracted surface impedances of polygon unit cells are in the reasonable range by

comparing the simulation results between a PEC pattern and an impedance boundary sheet.

Measurements show that the field profile matches the simulations, verifying that this method

produces the intended impedance profile.

39



4.2 Extracting Surface impedance of nonuniform unit cell

Surface impedance is related with the geometry of a unit cell, and specifically

depends on the length in the propagation dimension when the unit cell is a rectangle. [26]

Our goal is to find an equivalent rectangle which has the same tensor impedance properties

of a general polygon unit cell in the surface impedance patterns to extract accurate surface

impedances in a convenient way. We take this approach because the impedance properties

of rectangular cells can be calculated easily using periodic boundary conditions, while

more complex or less symmetrical cells cannot be arranged into periodic boundaries. In

calculating the impedance of the equivalent rectangular cell, we assume it is in an infinite

homogeneous surface consisting of identical cells. Thus, assigning this equivalent surface

impedance to a general polygon unit cell corresponds to the local impedance at that cell,

which is actually part of a spatially varying impedance function. The use of an impedance

function based on the local impedance values corresponding to individual unit cells has been

established previously in the work on holographic impedance surfaces [9, 27].

4.2.1 Inertia of momentum

In attempting to define a function that relates the impedance tensor to the unit cell

shape, we found that the impedance of a rectangular lattice is higher in the direction in

which the cells are longer, and we observe that this is similar to the mechanical moment of

inertial of a flat rectangular plate, which is higher when it is rotated around the short axis.

In this work, we define the equivalent rectangle of the polygon unit cell as the rectangle

having the same second moment of inertia [28] with the polygon unit cell. We note that this

technique has been applied to limited patch style cells since other type of unit cells, such as

active unit cells or patches with vias, have additional factors which determine their surface
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(a) (b)

Figure 4.2: A polygon and a rectangle for the moment of inertia equations are
placed on a cartesian coordinate. (a) Numbering of vertices is counterclockwise.
(b) A rectangle is located at the center of the coordinate. H is the length and b is
the width.

impedances besides the geometrical dimensions of the patches or the gaps between cells.

The concept of the moment of inertia was borrowed to calculate the equivalent rect-

angular cell because it can explain the geometrical property of an area regarding directions

and weight of the cell. Fig. 4.2 shows a polygon and a rectangle in cartesian coordinates, of

which the second moment of inertia for the polygon is obtained from the locations of the

vertices, given by

Ix =
1

12

i=N

∑
i=1

(
y2

i + yiyi+1 + y2
i+1
)
(xiyi+1− xi+1yi) (4.1)

Iy =
1

12

i=N

∑
i=1

(
x2

i + xixi+1 + x2
i+1
)
(xiyi+1− xi+1yi) (4.2)

Ixy =
1

24

i=N

∑
i=1

(xiyi+1 +2xiyi +2xi+1yi+1 + xi+1yi)(xiyi+1− xi+1yi) (4.3)

and for the rectangle is given by
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Ix =
∫

A
y2dA =

∫ b
2

− b
2

∫ h
2

− h
2

y2dydx =
∫ b

2

− b
2

1
3

h3

4
dx =

bh3

12
(4.4)

Iy =
∫

A
x2dA =

∫ b
2

− b
2

∫ h
2

− h
2

x2dydx =
∫ b

2

− b
2

hx2dx =
b3h
12

(4.5)

The variable N in ( 4.1) - ( 4.3) is a number of vertices of the polygon. The second moments

of area of simple polygons on the XY-plane are calculated by summing contributions from

each segment of the polygon. We note that the coefficient 1/12 is a common coefficient from

each term of the equation which is computed by the definition of the second moment of area

regardless of the number of polygons sides.

4.2.2 Procedure of finding equivalent rectangle cell

Fig. 4.3 shows a procedure of calculating an equivalent rectangle which has the same

impedance tensor as that of the polygon. A diamond shaped unit cell is used as an example

polygon in Fig. 4.3, because the impedance tensor of both of these shapes can be solved

using periodic boundaries, thus we can verify the approach. As shown in ( 4.1) - ( 4.3)

and Fig. 4.2(a), not only the shape (position of vertices) and size of polygon but also its

location on the x-y plane affects on the moment of inertia. Therefore, we set a centroid of

the polygon as the zero point of the x and y axes first, shown as a red dot in Fig. 4.3(a) before

calculating the moment of inertia. Once the moment of inertia matrix I is calculated from

( 4.1) - ( 4.3), we find the eigenvalues and eigenvectors of the matrix I. Since the eigenvalues

of matrix I mean Ixx and Iyy of the diamond cell when the cell is perpendicular to axes, we

apply these two values to ( 4.4) and ( 4.5) by definition of the equivalent rectangle. From

( 4.4) and ( 4.5), we can find a length and a width of the equivalent rectangle as shown in
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Figure 4.3: Procedure of calculating equivalent rectangle. (a) A polygon unit cell
and centroid (a red dot) at the zero point. (b) An equivalent rectangle is calculated
by the relationship between eigenvalues of the moment of inertia matrix for the
polygon and the second moment of inertia of rectangle. (c) The equivalent rectangle
tilted by the angle. is the rotated angle which is calculated from eigenvectors of the
moment of inertia matrix for the polygon.

Fig. 4.3(b). Fig. 4.3(c) shows the tilted equivalent rectangle by , which is the angle of the

polygon from x axis. The angle is calculated from eigenvectors of the polygon which is -45

degrees in the example. Fig. 4.4 is a top view of polygon and rectangle cells for eigenmode

simulations in Ansys HFSS version 18.2 (a full-wave, commercial software package). We

assign 0.25mm gaps on the cell so that the gap width between patches is 0.5mm as shown

in the diamond cell. Dashed lines in the diamond cell present the original size which has

shown in Fig. 4.3(a).

Fig. 4.5 is a plot of the surface impedance for rectangular cells which are analyzed

as a function of cell geometry for a given substrate, thickness, frequency and gap between

patches. The rectangular unit cell structure was simulated by changing both its longitudinal
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Figure 4.4: Polygon unit cell and its equivalent rectangle. Top view of polygon
and rectangle cells for eigenmode simulations in HFSS. Polygon cell dimension
is 4
√

2 ×
√

2 mm and the equivalent rectangle is 4 × 1 mm with 0.25mm gaps.
(0.5mm gap width between patches) Structures are surrounded by two pairs of
periodic boundaries.

and transverse length in the eigenmode solver in HFSS. The surface impedance for TM

waves was calculated as

ZT M = Z0

√
1−
(

kT Mc
ω

)2

(4.6)

Although the surface impedances of a rectangular unit cell are mainly affected by

the length in the propagation direction [26], there is still some dependence on the transverse

dimension. This can be ignored in periodic rectangular cell patterns, however here we

consider the impedance variation due to the transverse length as well for the accuracy of the

tensor impedance of a smoothly varying impedance pattern [29]. According to the graph in

Fig. 4.5 which is for rectanfular cells on a grounded 2.5mm thick Rogers 6010 substrate (εr

= 10.2) with 0.25mm gap, a tensor impedance matrix of the equivalent rectangle, ZER, for

41mm size (from Fig. 4.3(b)) at 7GHz is

ZER =

 Zxx Zxy

Zyx Zyy

=

 292.64 0

0 790.64

 jΩ (4.7)
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Figure 4.5: Impedance plots. Simulated impedance versus propagating lengths
and transverse lengths at 7GHz for rectangle unit cells on 2.5 mm Rogers 6010
with 0.25 mm gaps.

Once ZER is obtained from the surface impedance graph, we need to rotate the

impedance tensor to fully represent the polygon in its coordinate system. In order to keep

the properties of equivalent rectangle in the matrix, we use Jacobi rotation where the rotation

matrix Q [30] is

Q =

 Cosθ Sinθ

−Sinθ Cosθ

 (4.8)

Therefore, a tensor impedance matrix of polygon, Zp, at 7GHz from ZER is

Zp = QT ZERQ =

 Zp−xx Zp−xy

Zp−yx Zp−yy

=

 541.64 −249

−249 541.64

 jΩ (4.9)
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Figure 4.6: Simulated surface impedance versus frequency for polygon and equiv-
alent rectangle cells
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4.3 Unitcell and equivalent rectangle simulation

To prove validity of the equivalent rectangle, we simulated each polygon and equiva-

lent rectangle unit cell in the eigenmode solver. Fig. 4.6 shows frequency-dependent surface

impedance plots of polygons and equivalent rectangles. Various propagation directions

- 0◦, 60◦ and 90◦ from the x-axis are simulated (the x-axis is defined as 0◦) and those

show the impedances of the polygon and the equivalent rectangle are matched well. We

note that symmetric polygon cells are taken as examples here to prove this concept since

nonsymmetric unit cell cannot be analyzed in the eigenmode solver [17]. In Fig. 4.6 (a)

and (b) a thickness of Rogers 5880 grounded slabs is 1.575mm which is in the typical

sub-wavelength region. In Fig. 4.6(c) we change the slab thickness of the hexagon and its

equivalent rectangle cells to 30mm and 0.1mm thicknesses to verify the technique for the

electrically thick and thin slabs. As shown in Fig. 4.6(c), the fair agreements of surface

impedances between the hexagon and equivalent rectangle cells are plotted for both cases

of 30mm and 0.1mm thickness. The plot of 30mm thickness slab covers from λ

4 to 2λ

frequency range and the plot of 0.1mm thickness slab also show the agreement in λ

1000
λ

166

frequncy range.

4.4 Whole pattern and impedance boundary simulation

We also extend this method from a single unit cell to a whole impedance pattern

for the purpose of validating our impedance extraction technique. The impedance values

extracted from individual unit cells are simulated in tensor impedance boundaries in HFSS,

and compared to a simulation of the conducting patches. We start with a simple anisotropic

impedance pattern with hexagonal unit cells, which is generated by the point shifting method
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[25]. As shown in Fig. 4.7(a), unit cells are symmetric hexagon shapes and form an angle of

45 degrees with × and y axes. The size of the hexagonal unit cell is 3.58mm in the long

dimension and 1.47mm in the short dimension with 0.6mm gaps between the cells, and all

cells have same sizes on the pattern. The overall pattern dimensions are 220 × 220 mm,

with 5952 perfectly conducting patches on a grounded 2.5mm thick Rogers 6010 substrate.

A coaxial feed is located in the middle of the panel and its diameter is 5mm. Fig. 4.7(b)

shows the field plot at 2mm above the board at 5.3GHz from the driven modal solver in

Ansys HFSS. The wave propagates faster in low impedance region and move slower in

the high impedance direction, so that the anisotropy produces ellipse-shaped patterns of

constant phase as expected. The additional variations shown in PEC simulation is indicative

of standing wave pattern which is caused by edge scattering.

We calculate the equivalent rectangle and the surface impedance matrix of the

hexagonal unit cell using the impedance extraction procedure. The equivalent rectangle

of the hexagonal unit cell is 3.4 ellipse 1.45 mm, and the impedance Zp based on the

extracted impedance function is

 245 −78

−78 245

 jΩ at 5.3GHz. For verifying the calculated

impedance value Zp, we have simulated an impedance boundary sheet with the extracted

impedance profile. Fig. 4.7(c) shows a part of the impedance boundary sheet which is

divided into individual cells which are assigned the effective impedance boundary extracted

from the hexagonal unit cells. The impedance Zp has been applied on each region of the

impedance boundary sheet and the size of the whole sheet is the same as the panel that is

patterned with conductive cells. In Fig. 4.7(d) we have obtained the field plot that matches

with the result of PEC pattern, under the same simulation setup. Except for reflections due

to the edges in Fig. 4.7(b), the regions where reflections are not significant still show the

same shape of oval with the same aspect ratio.
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Figure 4.7: Hexagone pattern with PEC pateches and impedance boundary, and
field plots (a) Enlarged section of the PEC pattern with hexagon unit cells and a
coaxial feed. (b) Normalized electric field at 5.3GHz. (c) Impedance boundaries
for extracted tensor impedances of hexagon cells with a coaxial feed. Surface
impedance of the substrate, 50jΩ, is applied to the green region. (d) Normalized
electric field at 5.3GHz shows same field trend with the PEC pattern.
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Figure 4.8: Procedure of designing a 90 degree beam shifter
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Figure 4.9: 90 degree beam shifter pattern with PEC pateches and impedance
boundary, and field plots (a) A part of the PEC pattern with anisotropic polygon
cells. (b) Normalized electric field at 7GHz. (c) Impedance boundaries for extracted
tensor impedances of polygon cells. (d) Normalized electric field at 7GHz shows
same field trend with the PEC pattern.

We generated an additional surface impedance pattern using the point shifting

method, which is highly anisotropic, and smoothly varies the direction of high impedance

over a 90 degree rotation. A part of the pattern is shown in Fig. 4.9(a).

Each elongated polygon unit cell which is close to a rectangular cell has slightly

different shape and size as the pattern has a gradual change with the rotation angle. It has

different orientations of maximum and minimum values of impedance so that every cell

has a different surface impedance Zp tensor. The overall pattern dimensions are 150 × 150

mm, with 7750 conductive patches on a grounded 2.5mm thick Rogers 6010 substrate, and
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Figure 4.10: Enlarged section of the PEC pattern. The largest cell size is 3 × 3
mm and the smallest one is 0.5 × 0.5mm. The gaps between patches are 0.6mm.

there are 0.6mm gaps between the cells. A thin, wide rectangular source is placed at the

right bottom edge of the panel for excitation. Fig. 4.9(b) shows the field plot of the whole

panel at 2mm above the board at 7GHz analyzed in the driven modal solver in HFSS. The

sets of Zp from the impedance extraction method are applied to each impedance boundary

region correspondingly which is shown in Fig. 4.9(c). As elongated unit cells have a smooth

transition towards 90 degrees, the range of Zp−xx is 468.23 j to 236.65 jΩ and Zp−yy is

231.86 jΩ to 464.28 jΩ at 7GHz. Fig. 4.9(d) shows the field plot from the impedance

boundary simulation which has the same trend as the panel consisting of conducting patches,

verifying that the impedances extracted from the metallic patches are accurate.

Fig. 8 shows another inhomogeneous pattern including smoothly varying impedance
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Figure 4.11: Square field pattern with PEC pateches and impedance boundary, and
field plots. (a) Pattern on the board with a coaxial feed. (b) Normalized electric
field at 9GHz at 2mm above the PEC pattern. Circular fields from the coaxial
feed turn into square fields as it follows the impedance surface. (c) Impedance
boundaries corresponding to polygon unit cells and the board. (d) Normalized
electric field at 9GHz at 2mm above the impedance boundary plane.

53



transition with various shapes of unit cells. As shown in Fig. 4.11(a), the pattern consists of

both isotropic and anisotropic cells which have different shapes and sizes. Fig. 4.11(b) is a

whole PEC pattern on 1.5mm thick Rogers 6010 and the same coaxcial feed from Fig. 4.7

is located in the middle of the plane. The board dimensions are 110 × 110 mm with the

pattern consisting of 2580 perfectly conducting patches. Fig. 4.11(c) shows a normalized

field plot at 2mm above the PEC pattern at 9GHz.The range of Zp−xx is 480.128 jΩ to 98.58

jΩ and Zp−yy is 480.13 jΩ to 98.58 jΩ at 9GHz. In Fig. 4.11(c) the field at the four corners

propagates fater since the impedances in diagonal directions are lower than neighboring

impedances as the transition of unit cells shows in the pattern. These stretched fields in the

diagonal directions make planar wavefronts in the four directions which could be useful

to feed a planewave in multiple directions. Fig. 4.11(e) is a normalized field plot at 9GHz

from the impedance boundary simulation with the extracted tensor impedance set. The

agremment between two simulations proves that the technique extracts tensor impedances

within a reliable margin of error.

4.5 Near field scanning measurement

The hexagonal cell pattern was fabricated using printed circuit fabrication technology,

and is shown in Fig. 4.12(a). The panel is 230 × 230 mm with 5952 copper patches on top

of the board, and bottom of the board is a ground plane. There is a 5mm diameter hole in

the middle of the pattern for a coaxial feed which is the excitation source. A vertical probe

was swept 2mm above the surface along a 1mm grid and an Agilent E5071C vector network

analyzer recorded the magnitude and the phase of the surface wave. Normalized field results

are shown in Fig. 4.12(b). The circular wavefronts generated by the feed are transformed

into elliptical wavefronts as they follow the anisotropic impedance profile, as expected. The
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result is matched with Fig. 4.7(b) including the effect shown by edge scattering.

The 90 degrees curve pattern and its measurement setup are shown in Fig. 4.12(c).

The feed is a trapezoidal sheet of Rogers 5880 and an end-launch SMA adapter is attached

to the back of the feed, which functions as a small H-plane sectoral horn. A field map was

produced in the same way as with the hexagonal cell pattern described above, and is plotted

in Fig. 4.12(d). The 35mm wide flat wavefronts excited by the feed smoothly move from

the bottom edge to the left side edge of the panel along the anisotropic impedance pattern of

the structure.

4.6 Impedance matching by smoothly varying anisotropic

impedance surface patterns

4.6.1 Overview

We apply the 90 degree beam shifter pattern in Fig. 4.8 to impedance matching

between two circuits as shown in Fig. 4.13. The modified 90 degree curve pattern is designed

to yield the requested resistance and capacitance values in the specified orientation including

a transition area that will properly match the two circuits together.

Figure 4.16: Circuit topology of the unit cell simulation
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Figure 4.12: Measurement results of hexagone pattern and 90 degree beam shifter.
(a) Close-up photo of the fabricated hexagon cells pattern. (b) Normalized near
field plot of the surface waves scanned over a 230 × 230 mm area. (c) Details
of the feed and the measurement technique for the fabricated 90degrees curved
pattern (d) Normalized near field plot of the surface waves scanned over a 150 ×
150mm area.
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Figure 4.13: Transitioning Two Circuits. Using a smoothly varying 90 degree
curve pattern for transitioning between two circuits

Figure 4.14: Simulation set up and a unit cell structure (a) A unit cell structure
with boundaries. (b) Top view of the unit cells.
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Figure 4.15: Materials of the unit cell structure

Figure 4.17: Resistance and reactance of the surface shown in a diagram and
equations

4.6.2 Unit cell simulation

Fig. 4.14 shows simulation set up and a unit cell structure. The unit cell has been

simulated in the driven solver in HFSS with PEC and PMC boundaries. As shown in

Fig. 4.14(a) the structure is located in the middle between port 1 and 2. The unit cell with a

solid integration line in Fig. 4.14(b) varies its transverse length from 1mm to 5mm while

its vertical length is 1mm. The other unit cell with a dashed integration line in Fig. 4.14(b)

varies its vertical length from 1mm to 5mm while its transverse length is 1mm. The gaps

between patches are 0.7mm.

Fig. 4.15 shows an enlarged part of the unit cell. The 0.5 oz copper patch sits on the
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(a)

(b)

Figure 4.18: Simulated surface impedance versus frequency for the upright rectan-
gle cell (dashed lines) and the horizontally elongated rectangle cell
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polyimide substrate and the 800 Ω

� impedance boundary sheet is top of the copper

patch.The thickness of polyimide substrate is 0.025mm.

Fig. 4.16 is a circuit topology of the simulation structure for Fig. 4.14(a). We

obtain reflection coefficient γ from the simulation and calculate the impedance Zs. Fig. 4.17

presents resistance and reactance of the surface shown in a diagram and equations. Fig. 4.18

shows resistance and reactance values versus frequency. In Fig. 4.18(a) the resistivity values

are not influenced much by the transverse dimension at lower frequency, below 3GHz, and

they change dramatically after 4GHz when the transverse dimension varies. As shown in

Fig. 4.18(b) reactance values show opposite trend that the reactance doesn’t change much as

the frequency goes higher.

4.7 Conclusion

We have introduced an approach to extract surface impedances of polygon unit cells

using the second moment of inertia equations. This method has an ability to calculate the

impedance for nonsymmetric patch cells, which cannot be obtained directly from eigenmode

simulations.

This approach has been developed based on the idea that a propagation dimension of

unit cell affects its surface tensor impedances. This method which is using momentum of

inertia could be useful and applicable to other metamaterials in certain way if properties of

their structures or unit cells are related with dimensions. In this paper we limit our method

only in the metal patch case.

We have demonstrated that the extracted impedances obtained from the equivalent

rectangle are matched with the impedances of the original polygon unit cells. We have

chosen a simple and practical example to validate our method experimentally, in the form
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of a hexagonal anisotropic pattern as well as an anisotropic 90 degree curved pattern and a

square field pattern.

We also have used the 90 degree curved pattern for impedance matching transition

area between two circuits. The unit cell simulation results are shown, which include

resistance and reactance values of the surface versus frequency.

Chapter 4 is based on and is mostly a reprint of the following paper: J. Lee, D. Sieven-

piper, Extracting Surface Impedance Method for an Anisotropic Polygon Unit Cell,IEEE

Antennas and Propagation Symposium, San Diego, CA, July 9, 2017; J. Lee, D. Sievenpiper,

”Method for Extracting the Effective Tensor Surface Impedance Function from Nonuni-

form, Anisotropic, Conductive Patterns”, IEEE Transactions on Antennas and Propagation,

Submitted. The dissertation author was the primary author of this material.
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Chapter 5

Tensor Impedance Matrix and Starting

Function

5.1 Motivation

In chapter 2, we have discussed the patterning technique which is called the point

shifting method. In this method the impedance surfaces are designed by a starting function

that is related to the desired surface impedance in each direction, which is related to the

cell size in that direction. We have chosen this starting function based on knowledge of the

desired cell profile.

However, the starting function is related with the desired surface impedances but

the function itself is not the tensor impedance function. From the procedure of designing

impedance surfaces shown in Fig. 1.6, our goal is to generate a impedance pattern based

on the desired surface tensor impedances. In this chapter we investigate the relationship

between tensor impedances and starting functions so that we can extend the scope of the

point shifting method. We also present a overview of vector integral calculus and integral
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Figure 5.1: Tensor impedance and starting function. A starting function is related
to surface impedances but it is not a tensor impedance function itself.

theorems which are used for building a connection between tensor matrix and the starting

functions.

5.2 Vector integral of tensor matrix

5.2.1 Intergral theorems

Figure 5.2: Definition of starting function, vector function and tensor matrix of
the starting function and their relationship
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Figure 5.3: Example of gradient and inverse gradient procedure. The vectors in
the tensor matrix meet the condition for path independent.

As shown in Fig. 5.2 the gradient of the starting function is a vector function and

the gradient of the vector function is a tensor matrix. The tensor matrix from the starting

function is brought since we assume that it may have a relationship with a surface tensor

impedance matrix. This assumption is based on the property of patch style unit cells that the

surface tensor impedances depend on a dimension of unit cell in the propagation direction.

Here we call double vector integrals of the tensor matrix as ’inverse gradient process’. To

take the vector integral of the tensor matrix in order to have the starting function, the integral

should be path independent in a domain D in space. When there is line intergral

∫
C

F ·dr =
∫

C
(F1dx+F2dy+F3dx) (dr = [dx,dy,dz]) (5.1)

and we see that path independence of the integral in a domain D holds if and only if:
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(Theorem1) F = grad f, where grad f is the gradient of f

(Theorem2) Integration around closed curves C in D always gives 0.

(Theorem3) curlF=0, provided D is simply connected.

We focus on the theorem 3, which is practical to set the tensor matrix for the starting function.

From the theorem 3, components should meet the following condition below

∂F3

∂y
=

∂F2

∂z
,

∂F1

∂z
=

∂F3

∂x
,

∂F2

∂x
=

∂F1

∂y
(5.2)

5.2.2 Vector integral of tensor matrix and starting function

Fig. 5.3 is an example of vector integral of tensor matrix. The tensor matrix meets

the condition of path independence. Fig. 5.4 is another example that the starting function

includes the first order and constant terms. It shows the first order term and constant terms

are not restored at the starting function (b) which is calculated from the tensor matrix. For

checking reliability of the inverse gradient process we generate patterns using the point

shifting method with starting function (a) and (b) from Fig. 5.4.

Fig. 5.5 shows sets of shifted points and patterns designed by starting function (a)

and (b). The set black dots are point grids and the set of pink dots are the shifted points

by the gradient of the starting function. Since the first order terms of the starting function

become constant terms in the vector function after taking gradient, it only affects on position

of dots, not on the design of pattern.

65



Figure 5.4: Example of gradient and inverse gradient procedure with the first order
and constant terms. The inverse gradient of the tensor matrix can not restore the
first order and constant terms of the original starting function.

Figure 5.5: Patterns by the original starting function and the developed starting
function from tensor matrix. (a)The original starting function and its pattern. (b)
The starting function calculated from tensor matrix and its pattern. The patterns
are not changed by the first order and constant term. Those terms only affect on
the position of the pattern.
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5.3 Conclusion

This chapter has studied the relationship between tensor matrix and starting functions,

and addressed the inverse gradient process by vector integral calculation. The vectors of the

tensor matrix must be path independent in the inverse gradient process. We have calculated

couple of inverse gradient processes and showed validity of patterns which are generated

from tensor matrix. A further study on correlation between the tensor matrix and surface

tensor impedance would be useful in designing impedance surfaces based on the desired

tensor impedance function.
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Chapter 6

Conclusion

6.1 Summary of Work

This dissertation presents patterning and a validation methods for arbitrary anisotropic

impedance surfaces and introduces practical applications generated by the point shifting

method.

Chapter 2 discussed a new patterning technique, the point-shifting method which

allows us to generate smoothly varying arbitrary anisotropic impedance surfaces. A 2D

Luneburg lens and a beam shifter have been simulated and measured.

Chapter 3 demonstrate a pattern that can be used for shielding two dimensional area

from surface waves. Several designs for surface waves shielding are studied and shown

that high surface impedance resign can block the surface waves from an object placed on a

surface.

Chapter 4 addresses a validation technique to extract the effective tensor surface

impedance function from nonuniform, anisotropic, conductive Patterns. The method enable

to find tensor surface impedances for asymmetric and polygon unit cells which are not
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possible to be analyzed in periodic boundaries.

Chapter 5 studies a relationship between a starting function and tensor impedance

function. As the tensor impedance function meeting the condition of inverse gradient is

found, we can design a pattern based on the tensor impedance in a certain condition.

6.2 Future work

The work has covered most of procedure of designing arbitrary anisotropic impedance

surface based on desired tensor impedances as shown in Fig. 1.6. Current patterning tech-

nique designs impedance surfaces based on the starting function. As mentioned in chapter

5, if the relationship between tensor matrix of the starting function and desired tensor

impedance functions is found, it would allow us to more easily pattern the desired impedance

surfaces and complete the design process.

In this thesis, we have discussed the patch style unit cells and surface impedance

patterns, which support TM mode. Since unit cells generated by the point shifting method

have variety of shapes, and often asymmetric unit cells will support TM, TE, or mixed

TM/TE modes depending on the direction of propagation, it would be useful to explore TE

or mixed mode characteristic in arbitrary anisotropic patterns. Also this patterning technique

could be used with via or active components, or would be developed and applicable to

design a pattern for 3D structure.
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