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Abstract 
 

Spatiotemporal Dynamics of Working Memory in Humans 
 

by 
 

Elizabeth Loss Johnson 
 

Doctor of Philosophy in Psychology 
 

University of California, Berkeley 
 

Professor Robert Knight, Chair 
 
 
Working memory (WM) is the ability to hold information for online processing. As the basis of 
long-term memory formation and a fundamental construct of thinking, it is paramount that we 
understand how WM works. Distributed network models posit that the prefrontal cortex (PFC) 
supports WM by coordinating top-down control over other regions involved in sensory 
representation and long-term memory. We utilized an episodic memory paradigm that probes 
WM for identity, spatial, and temporal information to examine the PFC dependent model of 
WM. In two studies, multimodal electrophysiology data reveal that PFC control over WM is 
fundamentally dynamic in nature, and that WM is dependent on activity distributed across 
anterior and posterior cortical regions. Results challenge the simple PFC model of WM. 
 
Ch. 1 presents evidence from intracranial recordings that frontal and medial temporal lobe 
(MTL) theta rhythms carry WM-related activity, and uncovers two WM systems. The PFC-MTL 
system exhibits bidirectional interaction that shifts with msec precision in response to task 
demands. In contrast, MTL rhythms direct activity in the orbitofrontal cortex via theta rhythms 
that do not vary with task demands. These findings support a bidirectional PFC-MTL system in 
humans – in which theta rhythms subserve executive control during episodic memory formation. 
Ch. 2 presents evidence from patients with unilateral PFC damage, which shows that a 
posteriorly-sourced alpha-beta network provides adequate resources for well above-chance WM 
accuracy. However, when the PFC is intact, PFC low theta activity increases commensurate with 
executive demand, and PFC-sourced slow rhythms and posteriorly-sourced alpha-beta rhythms 
travel in opposite directions to support optimal WM. 
 
Ch. 3 reviews 15 years of intracranial research on human memory, and considers the potential of 
intracranial electrophysiology as a technique to address unresolved questions in the neuroscience 
of human memory. Ch. 4 presents key themes from this work for younger readers; specifically, it 
introduces the concepts of cross-frequency coupling between theta rhythms and fast activities in 
the MTL, and inter-regional PFC-MTL synchrony for memory formation. In a second public 
outreach piece, appendix 1 introduces the logic of neuropsychology to younger readers to 
understand why memories of music are resilient to the deleterious effects of amnesia and 
dementia. Appendix 2 shows that WM develops in children along with increases in sustained 
attention, and appendix 3 reviews evidence that executive control develops commensurate with 
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PFC connectivity across distributed neural networks. Finally, appendices 4-5 present applications 
of research on WM and control, together delineating behavioral and neural underpinnings of 
optimal relational reasoning in neurologically healthy adults. 
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Preface 
 
Memory allows us to hold information in mind and continuously update our autobiographies as 
we amass experience. When this intricate system breaks down, as in dementia, stroke, or 
traumatic brain injury, individuals lose the sense of self in time. Given high dementia rates (Van 
Cauwenberghe, Van Broeckhoven & Sleegers, 2016) and rapidly advancing technologies 
targeted at memory enhancement (Reardon, 2015), it is essential to define the mechanisms that 
govern this intricate system. 
 
Mounting evidence points to a balancing act of timing and coordination (Johnson & Knight, 
2015), irrespective of whether the brain is holding information in working memory (WM) or 
remembering it in episodes over the long term (Ranganath, Cohen & Brozinsky, 2005; Oztekin, 
Davachi & McElree, 2010; cf. Bergmann, Rijpkema, Fernández & Kessels, 2012). This contrasts 
with modular views of WM as a prefrontal cortex (PFC) function (Goldman-Rakic, 1995) and 
long-term memory as a hippocampal function (Annese et al., 2014). Instead, episodic memories 
may be formed via PFC control, sensory information representations (Sreenivasan, Curtis & 
D’Esposito, 2014; Lara & Wallis, 2015; Eriksson, Vogel, Lansner, Bergstöm & Nyberg, 2015), 
and hippocampal mechanisms for combining information into episodes (Hanslmayr, Staresina & 
Bowman, 2016). This distributed network is coordinated through precise temporal synchrony. 
 
However, scrutiny of the literature suggests that wherever we look, we find correlates of memory 
function. Parietal regions may play conjunctive roles in information binding (Shimamura, 2011) 
and in frontoparietal networks for control (Duncan, 2013), while thalamic function may subserve 
PFC-hippocampal communication (Sweeney-Reed et al., 2014). Furthermore, evidence on which 
regions play causal versus peripheral roles (Goldman-Rakic, 1995; Mackey, Devinsky, Doyle, 
Meager & Curtis, 2016; Ranganath & D’Esposito, 2005) and on how activity unfolds over time 
(Hanslmayr et al., 2016; Hanslmayr & Staudigl, 2014) is rife with contradiction. A more 
dynamic perspective suggests that, instead of mnemonic demands initiating a particular cascade 
of synchronizations through a distributed network, available systems quickly adapt to support the 
successful formation of episodic memories. 
 
Mammalian neural circuitries support ensemble or multi-unit activity, such that any one neuron 
becomes increasingly trivial as an ensemble increase in size (Yuste, 2015). In the PFC, 
populations of neurons display diverse and evolving response profiles (Fusi, Miller & Rigotti, 
2016; Stokes et al., 2013; Warden & Miller, 2010; Barak, Tsodyks & Romo, 2010). Importantly, 
subsequent memory accuracy is commensurate with such multi-unit adaptability (Rigotti et al., 
2013; Balaguer-Ballester, Lapish, Seamans & Durstewitz, 2011), which may explain apparently 
contradictory behaviors following frontal lesions (Duncan, 2013). Similar dynamic coding has 
also been observed in hippocampal populations (Fusi et al., 2016; Eichenbaum, 2016), which 
respond non-randomly to distinct episodic features (McKenzie et al., 2014). Taken together, 
these data suggest that frontal and hippocampal regions support episodic memory formation by 
interacting dynamically, as a function of task demands. 
 
Ch. 1 and 2 present converging evidence from multimodal electrophysiology and 
neuropsychology for dynamic, network-level substrates of executive control for human memory. 
Subjects encoded, maintained, and subsequently selected the identity, spatial relation, or 
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temporal relation episodic features that denote a real-world memory. Intracranial recordings of 
the PFC, orbitofrontal cortex (OFC; including the OFC and medial frontal polar areas), and 
medial temporal lobe (MTL; including the hippocampus and surrounding areas) revealed a 
bidirectional PFC-MTL system that juggled these episodic features per task demands (Johnson et 
al., in prep.). In contrast, MTL slow rhythms influenced OFC activities in a parallel system that 
was invariant to task demands. These findings demonstrate initial evidence of bidirectional PFC-
MTL communication in humans – and furthermore, that this system shifts dynamically to 
subserve executive control during WM. 
 
In a complementary project, electrophysiology data recorded noninvasively in individuals with 
unilateral lesions to the PFC revealed a PFC source for the slow rhythmic substrate of executive 
control (Johnson et al., in prep.). When the PFC was not compromised, slow rhythmic activity 
increased in the PFC per task demands, concurrent with directional connectivity from the PFC to 
widespread parieto-occipital regions. These effects were absent in patients, which indicates that 
the entire network was affected when part of the PFC was compromised. In contrast, rhythms 
originating in more posterior regions precessed toward the frontal lobe at higher frequencies 
(Hillebrand et al., 2016), irrespective of PFC integrity and task demands. Performance was 
consistently optimal when both networks were active, with bidirectional, multiplexed rhythms 
crossing paths between frontal and parieto-occipital regions to support executive control. When 
the PFC was compromised, the central-posterior network provided adequate, though not optimal, 
resources for WM. 
 
These findings are incompatible with modular views of the PFC in WM (Goldman-Rakic, 1995; 
see Sreenivasan et al., 2014; Lara & Wallis, 2015; Postle, 2016). Instead, we observed that the 
PFC interacts dynamically and rhythmically with multiple other regions to support executive 
control during episodic memory formation. Taken together, results highlight an emergent shift 
away from single-neuron and region-specific approaches to cognitive neuroscience – and build 
on millennia of inquiry into human memory. At the same time, they raise more questions than 
they answer. Ch. 3 considers the potential of human intracranial electrophysiology as a technique 
to address some of these questions, with emphasis on the specifics of PFC involvement in 
memory (Johnson & Knight, 2015). Ch. 4 focuses on core concepts in the neuroscience of human 
memory for younger audiences, providing the key findings from intracranial research on WM 
(Johnson & Helfrich, 2016). This public outreach piece introduces such questions to our most 
open minds, who may address them going forward. 
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Ch. 1: Dynamic Frontotemporal Systems for Episodic Working Memory 
 
Citation: Johnson, E. L., Adams, J. N., Solbakk, A-K., Endestad, T., Larsson, P. G., Lin, J. J. & 
Knight, R. T. Dynamic frontotemporal systems for episodic working memory (in prep.). 
 
Working memory (WM) is a core neural function necessary to hold information in an online 
state. We employed intracranial electrophysiology to delineate how human frontotemporal 
regions support the encoding, maintenance, and processing of episodic features in WM. We 
observed that theta rhythms carried WM-related activity and uncovered two parallel theta-
modulated frontotemporal systems. The medial temporal lobe (MTL) and lateral prefrontal 
cortex (PFC) system exhibited concurrent bidirectional interaction, which shifted dynamically 
with executive demand. In contrast, there was a unidirectional MTL theta influence on 
orbitofrontal (OFC) activity that was invariant to executive demand. Locally, we observed 
double-dissociations such that MTL was involved in dynamic executive control at encoding and 
maintenance, with PFC and OFC at processing. Together, these results are incompatible with 
simple models of PFC-guided network function for WM. Instead, we reveal a rapid, parallel 
frontotemporal network wherein theta rhythms subserve executive control during episodic 
memory formation. 
 
1.1 Main Text 
 
The ability to simultaneously hold multiples pieces of information in working memory (WM) 
allows us to learn, guides behavior, and enables our present neural states to adaptively evolve 
over time. Contrary to long-held modular views of the selective role of prefrontal cortex (PFC) in 
WM (Goldman-Rakic, 1995), mounting evidence suggests that WM is linked to distributed 
networks governed by PFC control over sensory and long-term information representations 
(Sreenivasan et al., 2014). Further, research with invasive stereotactic recordings – the only 
technique that enables direct access to the human hippocampus with high spatiotemporal 
resolution – implicates hippocampal theta rhythms in modulating local high frequency band 
activity during WM (Axmacher et al., 2010; Leszczyński et al., 2015; Johnson & Knight, 2015). 
 
The hippocampus and surrounding medial temporal lobe structures (together, MTL) are critical 
for long-term memory (Annese et al., 2014), especially for ‘episodes’ with distinct 
spatiotemporal context (Eichenbaum, 2014). Indeed, human hippocampal recordings have shown 
that long-term memory formation is associated with spiking activity locked to theta phase 
(Rutishauser et al., 2010) and propose theta-phase multiplexing as a mechanism for episodic 
memory (Rey et al., 2014; Staudigl & Hanslmayr, 2013; Hanslmayr et al., 2016). Research in 
rodents (Place et al., 2016; Hallock et al., 2016) and macaques (Brincat & Miller, 2015) reveals 
that slow rhythms route bidirectional information flow between the PFC and MTL, co-
temporaneous with distinct local spiking activities, at different points during the encoding and 
retrieval of episodic-like memories. These findings raise the possibility that PFC and MTL theta 
rhythms subserve executive control during episodic memory formation in humans. 
 
We employed the unique spatial and spectrotemporal resolution of invasive electrophysiology to 
investigate how the encoding, maintenance, and subsequent selection of episodic information 
unfolds in real time across frontotemporal regions during WM. Ten human subjects (37 ± 13 
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years of age, 8 males) completed a task designed to operationalize episodic WM (Fig. 1.1A, 
Materials and Methods). On each trial, subjects encoded two colored shapes in specific 
spatiotemporal positions in preparation for a subsequent test on either the identity of each shape 
in the pair, or on the spatial or temporal relationship between the shapes in the pair. Episodic 
focus was designated at the start of each trial by a cue word – either IDENTITY or RELATION, 
for two conditions at encoding-maintenance – and then again mid-delay by a test prompt – either 
SAME (identity), or TOP/BOTTOM (spatial relation) or FIRST/SECOND (temporal relation), 
for three conditions at processing. Subjects were proficient at the task (accuracy range 0.75-1, 
chance 0.5), and mixed-effects models confirmed that any effects of episodic focus in the 
electrophysiology data could not be attributed to difficulty (accuracy p > 0.75, correct-trial 
response time p > 0.12; identity 0.90 ± 0.04, 1659 ± 701 msec; spatial relation 0.92 ± 0.09, 1335 
± 574 msec; temporal relation 0.89 ± 0.09, 1475 ± 734 msec). 
 
Signals were recorded directly from MTL (36 electrodes), lateral PFC (118 electrodes), and 
orbitofrontal (OFC, 102 electrodes) regions, for a total of 256 region-of-interest (ROI) electrodes 
(Materials and Methods; Fig. 1.1B). For each electrode, we computed the Hilbert transformation 
in 24 logarithmically-spaced, partially overlapping frequency bands between 1-200 Hz, and then 
selected time windows for the 200-msec pretrial baseline, 1500-msec encoding-maintenance 
period, and 900-msec processing period (Fig. 1.1A). Then, we took a data-driven approach to 
first quantify the mechanisms underlying successful WM, and then test whether and how 
focusing on one versus another episodic feature within a memory would shift those mechanisms. 
 

 
 
Fig. 1.1. Single-trial WM design (A) and electrode coverage for all 10 subjects, normalized to 
the left hemisphere and color-coded by ROI (B). After a 1-sec pretrial fixation, subjects were 
cued to focus on either IDENTITY or RELATION information at encoding (A). Then, two 
shapes were presented rapidly in one of two spatial positions and one of two temporal positions. 
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After a 900- or 1150-msec maintenance fixation, the test prompt appeared, followed by a 
processing fixation of the same length. WM was tested in a two-alternative forced choice test. In 
the identity test, subjects indicated whether the pair was the SAME pair they just studied. In the 
spatiotemporal relation test, subjects indicated which shape fit the TOP/BOTTOM spatial or 
FIRST/SECOND temporal relation prompt. Electrode coverage is shown in four views of the left 
hemisphere (B), from left to right: sagittal, coronal, ventral, and dorsal. Red, MTL; green, PFC; 
blue, OFC. 
 
Single-trial analyses of task-evoked spectrotemporal power revealed sustained theta increases 
and variable, faster activity bursts (centered between 16-152.5 Hz) throughout the encoding-
maintenance and processing periods in each ROI (Materials and Methods). We also observed 
alpha (9.5-13.5 Hz) increases in the OFC parallel to variable, alpha-range decreases in the PFC 
(Hanslmayr et al., 2016). The spectrotemporal characteristics of these activity bursts varied by 
trial, but were significant when averaged across all correct trials (|z| > 2.58, p < 0.01; Fig. 1.2A-
C). The higher-frequency activities were partially suggestive of distinct, population-level spiking 
(Scheffer-Teixeira et al., 2013; Buzsáki & Wang, 2012; Sherman et al., 2016; Lundqvist et al., 
2016). Per-electrode cluster-based statistics (Maris & Oostenvald, 2007) indicated that there 
were no effects of episodic condition in any ROI. Trial-by-trial fluctuations dominated the 
episodic WM encoding and delay periods above any overall condition-related patterns in 
249/256 electrodes (cf. Lundqvist et al., 2016; Stokes & Spaak, 2016), suggesting that sustained 
theta and bursts of faster activity index successful WM in frontotemporal regions. 
 
For each subject, we seeded the MTL electrodes and extracted the maximal task-evoked theta 
frequency, which spanned the canonical range of 3.5-8-Hz centroids, for use in subsequent 
analyses (Materials and Methods). Then, we quantified single-trial cross-electrode correlations at 
peak theta to test whether individual task-evoked slow rhythmic activity linked frontotemporal 
regions in a simultaneously active network. Analysis of trial-by-trial fluctuations in cross-
electrode correlations revealed frontotemporal network theta co-activation in each subject (z > 
1.96, p < 0.05; Fig. 1.2D). Per-subject tests did not detect any effects of episodic condition 
during encoding-maintenance or processing (all Kruskal-Wallis p > 0.11), suggesting that 
frontotemporal network theta co-activation is common to successful WM across domains. 
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Fig. 1.2. Mean task-evoked spectrotemporal power over encoding-maintenance (left) and 
processing (right) for single electrodes in the MTL (A), PFC (B), and OFC (C) regions. Single-
trial analyses revealed sustained theta power within ROIs (A-C), and cross-electrode correlations 
at individual peak theta frequency within and between ROIs (D). Vertical dotted line = 
maintenance fixation start (Fig. 1.1A). IDEN, identity; SPA, spatial relation; TEMP, temporal 
relation; θ, theta; CROSS-CORR, cross-electrode correlation; ENC-MAIN, encoding-
maintenance; PROC, processing. 
 
Because WM was correlated with sustained theta and bursts of faster activity, we hypothesized 
that effects of episodic condition would emerge as dynamic, theta-phase modulations of higher-
frequency activities. If theta multiplexing shifted as a function of episodic condition, then results 
would reveal a frontal and/or temporal theta-modulated system for executive control. To capture 
modulation of burst-patterned activities, we computed time-frequency representations of theta 
phase-amplitude coupling (PAC; Voytek et al., 2013) by condition for each electrode, and across 
each MTL-PFC and MTL-OFC electrode pair (Materials and Methods). Recent data suggest that 
PAC fluctuations predict population-level spiking patterns (Murta et al., 2016), making PAC an 
ideal metric for tracking dynamic shifts in activity bursts. Single-subject PAC encoding-
maintenance and processing data were z-scored against the pretrial baseline to delineate task-
evoked PAC in each electrode and electrode pair, and then submitted to whole-ROI group linear 
mixed effects models to test for system-level dynamics. Inter-regional PAC pairs were modeled 
as indices of effective connectivity by first subtracting each frontal ROI phase-MTL amplitude 
coupling z-score from its reverse, yielding positive values if MTL  PFC/OFC and negative 
values if PFC/OFC  MTL.  
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Because the baseline-standardization method is critically affected by differences in trial counts, 
we replicated all models using PAC data z-scored on time-resolved surrogate distributions 
(Materials and Methods). This procedure controls for differences in the number of trials as well 
as task-related burst amplitude characteristics with msec precision, and offers an alternative 
method for computing true PAC (Voytek et al., 2013; Aru et al., 2015). All reported results were 
significant at the single-electrode level, and at the Bonferroni-adjusted alpha threshold for 
whole-ROI analyses (described below), irrespective of whether input PAC data had been 
standardized on the pretrial baseline or on surrogate distributions. Because the baseline-
standardization method yielded more conservative estimates of true PAC, we chose to report data 
and statistics obtained using that method. We do not report outcomes that were significant using 
one or the other, but not both, standardization techniques. 
 
Single-electrode theta PAC reached task-evoked significance in bursts spread across time and 
amplitude frequency (z > 1.96, p < 0.05; Fig. 1.S1-S2), and differed by episodic condition in all 
ROIs (|z| > 1.96, p < 0.05). We also observed bursting patterns in PAC across inter-regional pairs 
of electrodes (z > 1.96, p < 0.05; Fig. 1.3), and by condition (|z| > 1.96, p < 0.05), suggesting that 
frontotemporal theta flexibly coordinates activity both locally and across networks (cf. van der 
Meij et al., 2012; Friese et al., 2013; Voytek et al., 2015). Furthermore, pair-wise comparisons of 
inter-regional PAC by directionality revealed bursts of theta PAC in each direction at different 
spectrotemporal points (|z| > 1.96, p < 0.05, Fig. 1.3, right), demonstrating concurrent, 
bidirectional frontotemporal interaction during successful episodic WM (cf. Hallock et al., 2016; 
Brincat & Miller, 2015). 
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Fig. 1.3. Inter-regional MTL-PFC (A-B) and MTL-OFC (C-D) PAC by episodic condition and 
directionality in single inter-regional electrode pairs. Inter-regional PAC reached significance in 
bursts, irrespective of whether the MTL (left) or PFC/OFC (middle) provided theta phase, shown 
here during encoding-maintenance. Tests of directionality revealed effective MTL-PFC PAC in 
each direction (right) at different spectrotemporal points during the encoding-maintenance of 
identity (A) and relation (B) information, |z| > 1.96, p < 0.05. In contrast, MTL-OFC PAC was 
largely unidirectional (right), with MTL theta carrying OFC bursts during the encoding-
maintenance of identity (C) and relation (D) information. Vertical dotted line = maintenance 
fixation start (Fig. 1.1A). AMP, amplitude. 
 
We submitted all PAC data to linear mixed effects models by ROI to test whether the bursts 
differed in dynamic patterns by episodic condition (Materials and Methods). By modeling inter-
regional PAC as indices of directionality, we tested whether bidirectional communication was 
reliably weighted toward MTL or PFC/OFC theta phase by spectrotemporal characteristics and 
condition. A significant time-frequency interaction would indicate that the spectrotemporal 
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bursts of PAC reflected a true bursting pattern and not random variation. Under the hypothesis 
that theta phase would selectively coordinate executive demand, we operationalized results as 
shifts (or not) in the dynamics of a frontotemporal system. A system was dynamic if episodic 
condition was sufficient to change local or effective PAC in both time and frequency – that is, 
observation of a three-way interaction with condition. If an amplitude-providing ROI was 
dynamic, we can deduce that theta in the phase-providing ROI modulated the bursts of activity 
revealed in the task-evoked power analysis (Fig. 1.2A-C), supporting our hypothesis and 
supporting a theta mechanism for executive control. 
 
The models revealed spectrotemporal bursting patterns that selectively shifted by ROI, period 
during the trial, and episodic condition (Fig. 1.4A). At encoding-maintenance, local PAC 
occurred in bursts in the MTL (cf. Axmacher et al., 2010; Leszczyński et al., 2015) and effective 
PAC occurred in bursts throughout the frontotemporal network (z > 4.5, p < 5×10-6). The three-
way interactions mirrored PAC bursting patterns (z > 4.1, p < 3×10-5), suggesting MTL-hubbed 
theta-modulated dynamics. At processing, bursting patterns shifted to frontal ROIs and dynamics 
again mirrored PAC bursting patterns. Local PFC and OFC PAC became dynamic (z > 3.3, p < 
9×10-4), while MTL and effective MTL-OFC PAC dynamics were attenuated (pcorr > 0.05, zdiff > 
2.0). Effective MTL-PFC PAC remained dynamic (z > 4.0, p < 5×10-5), suggesting a transfer of 
an MTL-hubbed information encoding role (cf. McKenzie et al., 2014; Eichenbaum, 2016) to an 
PFC-hubbed selection role (cf. Sreenivasan et al., 2014; Fusi et al., 2016). This pattern supports 
an executive control system subserved by bidirectional MTL-PFC theta interactions. Overall, the 
correspondence between time-frequency and three-way interactions reveal dynamic theta-based 
modulation for executive control. 
 
Turning to omnibus patterns, effects of frequency and two-way interactions with episodic 
condition delineate complementary MTL-PFC and MTL-OFC systems for WM. Frontotemporal 
network interaction peaked at select amplitude frequencies, revealing a dynamic, net 
bidirectional relationship between the MTL and PFC that depended on executive demand. At 
encoding-maintenance, a frequency by condition interaction indicated that MTL-PFC 
interactions depended on amplitude frequency as a function of episodic condition (Fig. 1.4B-C; p 
< 5×10-7). We observed a double-dissociation such that PFC theta influenced MTL amplitude in 
the beta range as a function of center frequency and episodic condition; activity related to 
identity information was maximally modulated at 16 Hz while relation activity was most 
pronounced at 26.5 Hz. At the same time, twin dissociations showed that MTL theta influenced 
PFC amplitudes maximally for identity activity at 12 Hz, and relation over identity activity at 
gamma (38.5 and 64 Hz) and high-frequency broadband (HFB; 91-107.5) centroids. Come 
processing, both the main effect of frequency and the interaction were significant, and an overall 
pattern of increased PFC theta influence on MTL amplitudes emerged (p < 0.002). Still, MTL-
PFC interactions remained bidirectional, and amplitude frequency by condition effects exhibited 
variability throughout the frequency spectrum, suggestive of flexible, inter-regional executive 
control. 
 
The MTL-PFC interactions demonstrated a theta-phase multiplexed system for bidirectional 
communication during episodic WM (cf. Brincat & Miller, 2015; Hallock et al., 2016).  In 
contrast, MTL theta directed MTL-OFC interactions, which were invariant to amplitude center 
frequency and executive demand (Fig. 1.4B, 4D). Throughout encoding-maintenance and 
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processing, main effects of frequency indicated that MTL theta phase directed OFC amplitudes 
at alpha and beta, broadly defined (9.5-32 Hz) and HFB (76.5-107.5 Hz; p < 3×10-7). Taken 
together, MTL-PFC and MTL-OFC interactions exhibited divergent profiles during episodic 
memory formation, with MTL-PFC interactions selectively reflecting executive control. 
 

 
 
Fig. 1.4. Characteristics of local and effective PAC in time and frequency, and their ROI-specific 
dynamics. PAC occurred in spectrotemporal bursts (A) at encoding-maintenance in local MTL, 
and effective MTL-PFC and MTL-OFC; and at processing in local PFC and OFC, and effective 
MTL-PFC (p < 0.002, top). Bursting patterns were mirrored by three-way interactions with 
condition (bottom). Condition was sufficient to shift the time-frequency characteristics of 
effective MTL-OFC and MTL-PFC PAC at encoding-maintenance, p < 7×10-10, but only MTL-
PFC PAC remained dynamic through processing, p < 5×10-5. Local PAC exhibited role 
reversals, showing dynamic organization in MTL at encoding-maintenance, p < 3×10-5, then in 
PFC and OFC at processing, p < 9×10-4. Collapsing the data over time revealed that MTL theta 
modulated both PFC and OFC amplitudes, while only PFC theta showed the reverse (B). We 
observed bidirectional PAC multiplexing between MTL and PFC (C), which shifted by condition 
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at encoding-maintenance (top), p < 5×10-7, and processing (bottom), p < 0.002. In contrast, the 
MTL-OFC system was unidirectional (D), with maximal MTL theta modulation at lower OFC 
amplitudes, p < 3×10-7. θ, theta; AMP, amplitude; IDEN, identity; REL, relation; SPA, spatial 
relation; TEMP, temporal relation; ENC-MAIN, encoding-maintenance; PROC, processing. 
 
In sum, our results uncover two complementary frontotemporal systems with dissociable 
electrophysiological profiles based on dynamic, theta-multiplexed activity during successful 
WM. First, our results support a distributed network account of WM (Sreenivasan et al., 2014). 
Our data are incompatible with models of PFC-guided network function; instead, we reveal that 
executive control is governed by bidirectional MTL-PFC interactions during WM. Because the 
MTL differentially interacted with the PFC and OFC, co-temporaneous with relative shifts in 
local network hubs, we show that MTL-PFC and MTL-OFC long-range systems are functionally 
dissociable. Second, theta rhythms linked regions in the frontotemporal network and modulated 
faster bursts of activity at different spatiotemporal points during WM. Our results extend recent 
findings of trial-by-trial fluctuations in macaque ensemble activity (Lundqvist et al., 2016; 
Stokes & Spaak, 2016) to human cognition, and reveal that they extend beyond the frontal lobe 
to long-range MTL interactions. Likewise, results demonstrate that theta rhythms carry per-trial 
activity, substantiating theta multiplexing as an underlying mechanism for episodic memory 
formation (Rey et al., 2014; Staudigl & Hanslmayr, 2013; Hanslmayr et al., 2016; Place et al., 
2016; Axmacher et al., 2010). 
 
We provide the first demonstration of parallel bidirectional communication between the MTL 
and PFC in humans – and demonstrate that it unfolds with millisecond precision as a function of 
executive demand during WM. In contrast, OFC activities were on the receiving end of MTL 
theta modulations, and showed dynamic local PAC specific to information selection at 
processing. Given proposals that OFC neurons encode goals (Tsujimoto et al., 2011) and that the 
orbitofrontal cortex maintains a cognitive map of task-related variables, analogous to that of the 
anatomically connected hippocampus (Wikenheiser & Schoenbaum, 2016), we suggest that the 
OFC plays a role in distributed memory systems that may be guided by retrieval objectives. 
Overall, the MTL, PFC, and OFC exhibit unique, interactive roles in dynamic systems for 
episodic memory formation, each showing evidence of theta-modulated activities, engaged on a 
network level to coordinate executive demands. 
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1.3. Materials and Methods 
 
1.3.1. Experimental Design 
 
We tested episodic working memory (WM) in a single-trial visuospatial task paradigm (Fig. 
1.1A). After a 1-sec pretrial fixation, a starting screen indicated whether the following pair of 
stimuli would be tested for IDENTITY or spatiotemporal RELATION information. Two colored 
shapes were then presented for 200 msec each in one of two vertical spatial positions and one of 
two temporal positions. After a 900- or 1150-msec maintenance period, a test prompt appeared 
indicating what type of information would be tested. After a processing period of the same 
length, two shapes were presented on the horizontal axis and subjects responded in a two-
alternative forced choice test, yielding a 0.5 chance rate. In the identity test, subjects indicated 
whether the pair was the SAME pair they just studied; half of the pairs show two old shapes 
(“yes”) and half the pairs show one old shape and one new shape (“no”). In the spatial relation 
test, subjects indicated which shape had been on the TOP or BOTTOM, and in the temporal 
relation test, which shape had been presented FIRST or SECOND. 
 
The length of maintenance and processing delay periods was randomly jittered at 900- or 1150-
msec to preclude anticipatory or in-phase mechanisms. The task was fully counterbalanced with 
120 trials split evenly between identity, spatial, and temporal conditions, chosen randomly from 
a pool of 150 trials. No stimuli were repeated across trials. An experimenter went through the 
task instructions and a set of six practice trials with each subject, who was permitted to repeat the 
practice trials by request. 
 
We submitted group accuracy and correct-trial response time data to logit and linear mixed-
effects models (fitglme.m, fitlme.m), respectively, with condition as the fixed effect and subject 
as the random effect, to confirm that the three conditions did not differ in difficulty (Jaeger, 
2008). We analyzed electrophysiological data for correct trials. 
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1.3.2. Data Acquisition 
 
We report data from ten human subjects (37 ± 13 years of age, 8 males) who were undergoing 
intracranial monitoring to localize epileptic foci in preparation for surgical resection. Electrodes 
were implanted based solely on the clinical needs of each patient, and we selected datasets for 
inclusion via off-site review of individual neuroanatomical coverage. These datasets were 
collected at one of three hospitals: University of California, Irvine (UCI; seven subjects with 
stereotactic and/or subdural implants), Oslo University Hospital (OUH; two subjects with 
stereotactic implants), or Stanford Medical Center (Stanford; one subject with stereotactic and 
subdural implants). All patients gave informed written consent in accordance with the respective 
institutional review board. 
 
UCI and OUH data were acquired using Nihon Kohden recording systems, and Stanford data 
were acquired using a Tucker Davis Technologies recording system. Data were sampled at 10 
kHz (UCI), 5 kHz (UCI), 1.526 kHz (Stanford), or 512 Hz (OUH). We resampled UCI and 
Stanford data offline to 1 kHz (resample.m), and preprocessed all datasets through a standard 
pipeline. 
 
1.3.3. Data Preprocessing 
 
Each patient’s raw electrophysiological traces were manually inspected by a neurologist (R.T.K.) 
in order to exclude any pathological channels and mark epochs containing ictal activity. 
Remaining channels were high-pass filtered above 1 Hz and low-pass filtered below 200 Hz (165 
Hz for OUH data) using zero-phase finite impulse response filters (eegfilt.m), and then filtered 
for 60-Hz (50-Hz for OUH data) line noise harmonics using a discrete Fourier transform and 
demeaned (ft_preprocessing.m). We manually re-inspected the data to mark any channels and 
epochs containing residual noise or abnormal signal for exclusion. 
 
We determined individual channel locations in a group review of each patient’s structural and 
post-implant scans under at least one neurologist. Channels were included by anatomical 
placement in three regions of interest (ROIs): medial temporal lobe (MTL: hippocampus, or 
parahippocampal, perirhinal, or entorhinal area), lateral prefrontal cortex (PFC: inferior, middle, 
or superior frontal, or premotor area), and orbitofrontal cortex (OFC: orbitofrontal area or medial 
frontal pole). We referenced every clean channel within an ROI to its next adjacent channel, 
spaced at 0.5 cm within that ROI, using bipolar montages to create a new set of virtual electrodes 
with minimized volume conduction (Shirhatti et al., 2016; Trongnetrpunya et al., 2016). The 
final dataset contained 256 traces across ten subjects, comprised of 3.6 ± 2.0 MTL, 11.8 ± 8.4 
PFC, and 10.2 ± 14.4 OFC virtual electrodes per subject. 
 
We then split each subject’s data into trials with a 1-sec buffer on either side, and excluded any 
trials overlapping with epochs that had been marked for ictal or other abnormal activity. We split 
all remaining trials into: (1) a 200-msec pretrial baseline window extending from 250-50 msec 
before the start screen; (2) a 1500-msec encoding-maintenance window extending from the onset 
of the first stimulus, irrespective of delay jitter; and (3) a 900-msec processing window 
extending from the start of the processing period, irrespective of delay jitter. Each of the three 
within-trial windows was padded out to 7.5 sec, for a minimum of three cycles’ buffer at 1 Hz on 
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either side, to minimize filtering-induced edge artifacts. We quantified all metrics per electrode, 
separately for pretrial, encoding-maintenance, and processing data. Then, we standardized 
encoding-maintenance and processing data outputs against a common pretrial baseline, and 
applied inferential statistics. 
 
1.3.4. Event-Related Potential (ERP) Analysis 
 
We computed and analyzed single-trial, event-related potentials (ERPs) separately by electrode 
for each subject. We passed the data through a low-pass, zero-phase finite impulse response filter 
at 30 Hz, and absolute baseline-corrected the encoding-maintenance and processing outputs on 
the all-trial, temporal mean of the pretrial data window. Then, we separately analyzed ERP data 
for condition differences between identity and relation trials at encoding-maintenance, and 
between identity, spatial, and temporal trials at processing. Statistical testing employed a Monte 
Carlo method with cluster-based maximum correction for multiple comparisons on the time 
dimension within each electrode (Maris & Oostenvald, 2007). An independent-samples t-test (or 
F-test for three conditions) was used to identify clusters of contiguous time points showing a 
difference between conditions, thresholded at 0.05, two-tailed, and then the t-statistics (or F-
statistics) were summed over all data points per cluster to calculate cluster size. Then, the 
condition labels were randomly shuffled and the same clustering procedure was applied; we 
repeated this procedure 1000 times to create a null distribution. Observed clusters were 
considered significant if fewer than 10% of randomizations yielded a larger effect 
(ft_timelockstatistics.m). No condition differences were detected. 
 
1.3.5. Task-Evoked Spectrotemporal Power Analyses 
 
We computed and analyzed single-trial, task-evoked power separately by electrode for each 
subject. We passed the data through 24 logarithmically-spaced bandpass, zero-phase finite 
impulse response filters between 1-192 Hz (1-162 Hz and 23 filters for OUH data), with partial 
overlap. We applied the Hilbert transformation to each of the 24 filtered time series, yielding a 
series of complex numbers, from which we extracted and squared the absolute values to produce 
real power values. We baseline-standardized the encoding-maintenance and processing outputs 
against the pretrial data window using a statistical bootstrapping procedure (cf. Flinker et al., 
2015). First, we pooled the pretrial outputs of all trials into a single time series for each electrode 
and frequency. Then, we randomly selected and averaged t data points (t = number of trials in 
that subject’s dataset) from the pooled time series; we repeated this procedure 1000 times to 
create a normal distribution of pretrial baseline power values. Encoding-maintenance and 
processing data for each trial and time point were z-scored on the baseline distribution to assess 
the significance of task-evoked changes. 
 
Statistical testing of condition differences in task-evoked power employed the equivalent 
procedure as for ERPs, but with clustering on the time and frequency dimensions 
(ft_freqstatistics.m). Across all 256 electrodes, seven (1 MTL + 3 PFC + 3 OFC in five subjects) 
showed condition differences in any time-frequency cluster during encoding-maintenance or 
processing. We excluded these seven electrodes from further analysis. 
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1.3.6. Individual Theta Band and Cross-Correlation Analyses 
 
The task-evoked power analysis revealed significantly increased, sustained activity centered in 
the theta range throughout MTL, PFC, and OFC electrodes (Fig. 1.2A-C). We derived the peak 
frequency ranges for theta-based analyses on an individual basis from each subject’s resultant 
MTL activity at encoding-maintenance. We selected task-evoked power in seven extended theta-
range frequencies centered between 2.75 Hz and 9.5 Hz (cf. Haegens et al., 2014), then averaged 
over the trial and time dimensions to reveal maximal frequency. Individual peaks spanned the 
theta center frequencies: n = 3 at 3.5 Hz, n = 1 at 4.5 Hz, n = 2 at 5.5 Hz, n = 3 at 6.5 Hz, and n = 
1 at 8 Hz. We visually inspected the task-evoked power data without averaging to confirm that 
these peak frequencies exhibited comparable responses across subjects. 
 
Using the MTL electrodes as seeds, we computed cross-electrode correlations on single-trial, 
task-evoked power at the individual peak theta band for each subject. Concurrent activation 
would indicate that individual peak task-evoked theta extends to frontal regions and links 
frontotemporal regions in a simultaneously active network, while a null result would show that 
MTL peak theta does not extend to frontal regions – irrespective of whether frontotemporal 
regions would appear linked at another frequency. We applied the Pearson correlation to all 
electrode combinations over the time dimension to produce per-trial correlation coefficients and 
associated p-values (corrcoef.m) for encoding-maintenance and processing. This analysis 
revealed frontotemporal network co-activation at individual peak theta frequency on a per-trial 
basis. For statistical testing of condition differences, we normalized the correlation coefficients 
using Fisher’s z-transformation and then submitted them to Kruskal-Wallis tests. No condition 
differences were detected. 
 
1.3.7. Theta Phase-Amplitude Coupling (PAC) Analyses 
 
We quantified and analyzed cross-frequency phase-amplitude coupling (PAC) separately by 
electrode for each subject. First, we split the data into conditions and subtracted the trial-
averaged time series from each single-trial time series to minimize any contamination from 
simultaneous voltage changes on phase consistency or PAC (Brincat & Miller, 2015). Then, 
spectral decomposition employed the equivalent procedure as for computation of 
spectrotemporal power. We extracted the angle from each individual’s theta band complex time 
series to produce the phase time series for each electrode and trial. We then separately extracted 
the absolute values from each complex time series to produce a matrix of amplitude time series 
by frequency for each electrode and trial. We computed event-related PAC between theta phase 
and the full range of amplitudes, by frequency, within each electrode and also between pairs of 
electrodes, yielding local and inter-regional PAC. 
 
To compute local PAC, we applied the Pearson correlation between theta phase and each 
frequency amplitude via sliding window on the trial dimension at every instantaneous time point 
(circ_corrcl.m). This method produces time-frequency representations of PAC correlation 
coefficients for each electrode (Voytek et al., 2013). We standardized the encoding-maintenance 
and processing outputs against the temporal mean of the pretrial data window using Fisher’s z-
tests. This transformed the PAC correlation coefficients to z-scores to assess the significance of 
task-evoked changes in true PAC. Note that this transformation method is more conservative 
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than traditional surrogate testing, as both true and spurious PAC comprise pretrial data, while 
only spurious PAC should survive in a surrogate distribution of correlations between the real 
phase (or amplitude) and a shuffled amplitude (or phase) series of any data (Aru et al., 2015). 
 
However, because Fisher’s z-tests are critically affected by differences in trial counts, we 
replicated all reported PAC data standardized on time-resolved surrogate distributions. At each 
time-frequency point, we randomly shuffled the amplitudes across trials and re-calculated PAC; 
we repeated this procedure 100 times to create a surrogate distribution of PAC correlation 
coefficients derived from identical amplitude and trial parameters to the original but with 
spurious timing relative to real theta phase. Then, raw PAC was z-scored on the surrogate 
distribution to assess the significance of true PAC with msec precision (Voytek et al., 2013). 
Single-electrode PAC standardized on the pretrial baseline indeed returned more conservative 
estimates of true PAC – e.g., z-scores of 2.5 versus 3.5. For this reason, and for consistency with 
the single-electrode condition and directionality comparisons (described below), we report data 
obtained using the baseline-standardized PAC. 
 
Then, we separately analyzed PAC data for condition differences between identity and relation 
trials at encoding-maintenance, and between identity and spatial relation trials, and identity and 
temporal relation trials, at processing. Statistical testing employed Fisher’s z-tests, outputting p-
values with positive z-scores if identity > relation PAC and negative z-scores if identity < 
relation PAC, equivalent to a two-tailed test. Similar to the baseline transformation, this testing 
method reveals condition-related changes in true PAC. 
 
We computed inter-regional PAC between pairs of electrodes for all MTL-PFC and MTL-OFC 
electrode pairs within left and right hemispheres, respectively. For each pair, we applied the 
equivalent correlation procedure between the theta phase of the MTL (PFC/OFC) electrode and 
each frequency amplitude of the PFC/OFC (MTL) electrode. Then, we applied the equivalent 
baseline transformation to assess the significance of task-evoked changes in MTL (PFC/OFC) 
phase-PFC/OFC (MTL) amplitude coupling. We separately analyzed inter-regional PAC outputs 
for condition differences, as described above, and also for directionality by condition at each 
electrode pair (cf. Voytek et al., 2015). Statistical testing of directionality again employed 
Fisher’s z-tests, outputting p-values with positive z-scores if MTL phase  PFC/OFC amplitude 
and negative z-scores if PFC/OFC phase  MTL amplitude. This testing method reveals 
effective connectivity as direction-related changes in true inter-regional PAC. 
 
1.3.8. Region-of-Interest (ROI) PAC Analyses 
 
We tested the spectrotemporal patterns of PAC and corresponding condition effects in non-
overlapping, linear mixed effects models (LMEMs) of PAC data by region of interest (ROI). We 
selected baseline-standardized PAC by condition at encoding-maintenance and processing, 
respectively, down-sampled the data to 10-msec resolution, and pooled it across subjects. We cut 
data at amplitudes with center frequencies outside of the 9.5-128-Hz range common to all 
subjects, yielding sixteen frequencies for the LMEMs. We modeled the inter-regional theta PAC 
by directionality by subtracting PFC/OFC phase-MTL amplitude coupling z-scores from MTL 
phase-PFC/OFC amplitude coupling z-scores at each electrode pair. This procedure transformed 
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inter-regional PAC into indices of effective connectivity, with positive values if MTL  
PFC/OFC and negative values if PFC/OFC  MTL. 
 
For local PAC LMEMs, we considered all 35 MTL, 115 PFC, and 99 OFC electrodes as samples 
of the respective ROI and fit them as random effects. For inter-regional PAC LMEMs, all 
within-subject, within-hemisphere electrode pairs were considered samples of the respective ROI 
interaction; we fit MTL-PFC LMEMs with 111 electrode random effects and MTL-OFC 
LMEMs with 107 electrode random effects. In addition to electrodes, we fit the 10 subjects to 
each LMEM as random effects, and fit the 2 (3) conditions at encoding-maintenance 
(processing), 150 (90) time points at encoding-maintenance (processing), and 16 frequencies as 
fixed effects (fitlme.m). Results were Bonferroni-corrected for multiple comparisons (3 main + 4 
interaction fixed effects; Cramer et al., 2015), yielding an adjusted alpha threshold: pcorr = 0.05/7 
≈ 0.0071. 
 
Finally, we replicated the LMEMs using input PAC data standardized on time-resolved surrogate 
distributions. All reported LMEM results were significant irrespective of whether raw PAC was 
standardized on the temporal mean of pretrial baseline window or on time-resolved surrogate 
distributions. We do not report outcomes that were supra-threshold using one input data type but 
not both. All reported whole-ROI outcomes were obtained using baseline-standardized PAC 
because it returned more conservative estimates of single-electrode PAC (Fig. 1.4). 
 
1.3.9. Code 
 
We analyzed all data in MATLAB (The MathWorks, Inc., Natick, MA) using custom scripts. 
Some electrophysiological data analyses adopted functions available in open-source MATLAB 
toolboxes: FieldTrip (Oostenvald et al., 2011), CircStat (Berens, 2009), and EEGLAB (Delorme 
& Makeig, 2004). The behavioral task was programmed in E-Prime Professional 2.0 
(Psychology Software Tools, Pittsburgh, PA). 
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1.4. Supplementary Figures 
 

 
 
Fig. 1.S1. Local MTL (A), PFC (B), and OFC (C) PAC by episodic condition in single-ROI 
electrodes. Local PAC reached significance in bursts during the encoding-maintenance of 
identity (left) and relation (middle) information, z > 1.96, p < 0.05. While condition comparisons 
(right) might suggest more coupling for identity than relation information, this effect was not 
replicated using PAC data standardized on time-resolved surrogate distributions (Materials and 
Methods). Vertical dotted line = maintenance fixation start (Fig. 1.1A).  
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Fig. 1.S2. Local MTL (A), PFC (B), and OFC (C) PAC by episodic condition in single-ROI 
electrodes. The bursting pattern continued through processing, as shown for identity information 
(left), and in comparison to spatial relation (middle) and temporal relation (right) information. 
Condition tests revealed significant coupling for each condition at different spectrotemporal 
points, |z| > 1.96, p < 0.05. IDEN, identity; SPA, spatial relation; TEMP, temporal relation. 
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Ch. 2: Causal Evidence That Bidirectional Neural Rhythms Support Optimal Working 
Memory 
 
Citation: Johnson, E. L., Dewar, C. D., Solbakk, A-K., Endestad, T., Meling, T. R. & Knight, R. 
T. Causal evidence that bidirectional neural rhythms support optimal working memory (in prep.). 
 
We investigated the effects of unilateral prefrontal cortex (PFC) damage on the neural networks 
supporting the encoding, maintenance, and active processing of information in working memory 
(WM). In healthy controls, low theta activity in PFC increased with processing demands, 
concurrent with delta-theta directional connectivity from PFC to widespread parieto-occipital 
regions, as measured using the Phase Slope Index. These effects were compromised in patients. 
Low theta activity was attenuated over the lesion and the frontal-to-posterior directional rhythms 
were absent bilaterally. In contrast, alpha-beta rhythms originating in posterior regions preceded 
frontal rhythms, independent of PFC integrity and task demands. These findings reveal 
independent but complimentary systems, with one originating in PFC and the other in posterior 
regions. Performance was consistently optimal when bidirectional, multiplexed rhythms between 
frontal and parieto-occipital regions were recruited to support executive control. When PFC was 
compromised, the posterior network provided adequate cognitive resources for well above-
chance WM performance. 
 
2.1. Introduction 
 
The ability to maintain and select pieces of information in working memory (WM) allows us to 
plan, solve problems, and adapt our underlying neural states over time. Building on traditional 
views that attribute WM function to the prefrontal cortex (PFC; Goldman-Rakic, 1995), 
distributed network accounts posit that WM is supported by long-range interactions coordinated 
through PFC-driven, top-down control (Miller & Cohen, 2001; Sreenivasan et al., 2014; Lara & 
Wallis, 2015; Postle, 2016; Eriksson et al., 2015; Lorenc et al., 2015). However, examination of 
individuals with PFC damage – which provides sufficient evidence to draw causal links between 
neuroanatomy and behavior – indicates that PFC plays an important, yet selective role in WM 
(Szczepanski & Knight, 2014). A meta-analysis of 166 PFC patients revealed that performance 
on strictly mnemonic tasks (e.g., maintaining information in WM) was unaffected by PFC 
lesions (D’Esposito & Postle, 1999). Instead, performance depended critically on whether a task 
imposed additional executive demands (e.g., selecting or manipulating information in WM; also 
Barbey et al., 2013; Petrides & Milner, 1982). Once executive demands were imposed, 
performance decrements were commensurate with the extent of frontal damage (Müller & 
Knight, 2006). Taken together, these findings suggest that PFC exerts control over information 
representations maintained across distributed regions, but only as necessitated by task demands. 
 
Neural oscillations provide a plausible mechanism for PFC-guided network control over 
information in WM as task demands unfold in real time (Helfrich & Knight, 2016). Slow 
rhythmic synchrony between PFC and distal regions – including the hippocampus (Anderson et 
al., 2010; Brincat & Miller, 2015; Place et al., 2016), thalamus (Sweeney-Reed et al., 2014), and 
temporo-parietal regions (Watrous et al., 2013; Burke et al., 2013) – is consistently correlated 
with successful encoding and retrieval in memory (Johnson & Knight, 2015). Within PFC, 
focusing attentional resources within the context of multi-item WM was reflected in delta-theta 
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(1-7 Hz) and alpha band (8-16 Hz) activity in non-human primates (Lara & Wallis, 2014). 
Specific item representations, in contrast, have been found in posterior sensory regions (Postle, 
2016; Ku et al., 2015; Galeano Weber et al., 2016; Bettencourt & Xu, 2016; Fallon et al., 2016), 
although recent studies suggest that information may be represented in higher cortical areas as 
well (Ester et al., 2016; Serences, 2016). Notably, cross-frequency coupling between frontal 
theta (~5 Hz) oscillations and parieto-occipital gamma band (>30 Hz) activity is enhanced during 
the encoding of visual information that is subsequently remembered (Friese et al., 2013). 
 
We recorded the 64-channel electroencephalogram (EEG) in patients with PFC lesions to 
investigate the causal influence of PFC integrity on local and long-range rhythmic activity during 
the encoding, maintenance, and subsequent processing of information in WM. Fourteen 
unilateral PFC patients (Fig. 2.1A, 2.S1; 46 ± 16 years of age, 15 ± 3 years of education, 6 
males) and 20 age- and education-matched, healthy controls completed a lateralized WM task 
that targeted the lesioned or intact hemisphere (Fig. 2.1B, Methods). On each trial, subjects 
encoded two shapes in specific spatiotemporal positions in preparation for a subsequent test on 
either the identity of each shape in the pair, or on the spatial or temporal relationship between the 
shapes in the pair. They were instructed to maintain central fixation because the shapes would be 
presented rapidly (200 msec each) on the left or right side of the screen (Duarte et al., 2005; 
Voytek et al., 2010a, 2010b). We confirmed the lateralized visual hemifield manipulation with 
eyegaze position data (Methods). Condition was designated at the start of each trial by a cue 
word, either IDENTITY or RELATION, and then again mid-delay by a test prompt – either 
SAME (identity), or TOP/BOTTOM (spatial relation) or FIRST/SECOND (temporal relation). 
The test prompt was presented mid-delay to impose executive demands at processing. This 
critical manipulation allowed us to look at how WM unfolded over time, first at encoding and 
maintenance, and then as the task demanded subjects to actively process information for a 
memory test. 
 
We tested the hypothesis that theta rhythms would flexibility coordinate PFC influence over 
parieto-occipital regions per executive demands in the service of WM. However, behavioral 
outcomes demonstrated that, while patients were impaired relative to controls, they were able to 
do the task well above chance (Fig. 2.1C). This crucial result reveals that PFC does not play a 
unitary role in WM. Because all patients exhibited above-chance accuracy, we hypothesized that 
WM would be dually supported by a separate network that was not under top-down PFC control. 
To assess the impact of unilateral PFC lesions on whole-brain activity, we took a data-driven 
approach to first quantify the mechanisms underlying successful WM in controls and then 
investigate how these mechanisms were implemented in patients. All between-groups statistical 
testing employed a Monte Carlo method with 95% cluster-based maximum correction for 
multiple comparisons (Maris & Oostenveld, 2007). 
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Fig. 2.1. Reconstruction of the extent of PFC lesion overlap for all 14 patients normalized to the 
left hemisphere (A), single-trial lateralized WM design (B), and distribution of performance by 
group (C). Color scale (A) = number of patients with lesions at the specified site. After a 2-sec 
pretrial fixation, subjects were cued to focus on either IDENTITY or RELATION information at 
encoding (B). Then, two shapes were presented rapidly to the left or right visual hemifield in one 
of two spatial positions and one of two temporal positions. After a 900- or 1150-msec 
maintenance fixation, the test prompt appeared, followed by a processing fixation of the same 
length. WM was tested in a two-alternative forced choice test, yielding a 0.5 chance rate. In the 
identity test, subjects indicated whether the pair was the SAME pair they just studied. In the 
spatiotemporal relation test, subjects indicated which shape fit the TOP/BOTTOM spatial or 
FIRST/SECOND temporal relation prompt. Patients exhibited impaired accuracy across 
conditions relative to controls (C), p < 10×10-5, irrespective of whether the stimuli were encoded 
in the lesioned or intact hemisphere, p > 0.08 (note: pcorr ≈ 0.0071). HEM, hemisphere; CTRL, 
controls; PFC, PFC patients. 
 
2.2. Results 
 
2.2.1. Behavior 
 
Accuracy was tested in logit mixed-effects models with group, visual hemifield, and condition as 
fixed effects, and subjects as random effects (Jaeger, 2008). Because accuracy did not differ 
between patients as a function of which hemisphere was lesioned (p > 0.34), we swapped right-
hemisphere lesioned patient data across the midline so that all lesions were normalized to the left 
hemisphere (right visual hemifield) to comprise a single patient group (Methods). Then, we 
randomly swapped the data for half of the controls (n = 20/2 = 10) to preclude any inter-
hemispheric variation from confounding lesion-related outcomes. Results revealed that patients 
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were impaired at the task relative to controls (Fig. 2.1C; 0.87 ± 0.08 versus 0.95 ± 0.03, p < 
10×10-5). There were no differences between conditions or visual hemifields (condition p > 0.31, 
group*field p > 0.08; pcorr ≈ 0.0071; Cramer et al., 2015), permitting analyses of data pooled 
across conditions and further suggesting that unilateral PFC lesions have a bilateral influence on 
the neural networks supporting WM. We analyzed EEG data for all correct trials by visual field 
and group, collapsed across identity, spatial relation, and temporal relation conditions (Methods). 
 
2.2.2. Event-Related Potentials 
 
Analysis of event-related potentials (ERPs) confirmed the bilateral and network-scale influence 
of unilateral PFC lesions. We bandpass-filtered the EEG data between 1-30 Hz, divided the 
traces into time windows for a 500-msec pretrial baseline, 1500-msec encoding-maintenance 
period, and 900-msec processing period, and then corrected encoding-maintenance and 
processing data on the pretrial baseline (Fig. 2.1B, Methods). Patients showed attenuated 
positive-polarity ERPs in parieto-occipital channels when stimuli were presented to the visual 
hemifield contralateral to PFC damage. Effects were bilateral (Fig. 2.2), and reached significance 
in the intact hemisphere ~200-300 msec after the offset of the second stimulus (cluster p = 0.03; 
cf. Barceló et al., 2000; Yago et al., 2004). Importantly, the effect did not persist when stimuli 
were presented to the visual hemifield contralateral to the intact hemisphere (cluster p > 0.33), 
revealing that unilateral PFC lesions impacted long-range networks on a trial-wise basis, 
depending on which hemisphere was taxed. 
 

 
 
Fig. 2.2. Mean ERPs over encoding-maintenance in select parieto-occipital channels by 
hemisphere and group. Patients exhibited diminished positive-polarity ERPs relative to controls 
early in the maintenance period, bilaterally. The effect reached significance in a cluster of 
channels (P6-P8-P10-PO8) in the intact hemisphere (cluster p = 0.03, marked in black on the x-
axis [right]). Exact data reflect outcomes when stimuli were encoded in the lesioned hemisphere. 
Vertical dotted line = maintenance fixation start (Fig. 2.1B). CTRL, controls; PFC, PFC patients; 
SIG, significant. 
 
2.2.3. Spectrotemporal Power 
 
Spectral decomposition was computed using a Hanning taper in evenly spaced frequency bins 
between 1-40 Hz, and then encoding-maintenance and processing data for all correct trials were 
standardized on the pretrial baseline (Methods). Single-subject analyses of task-evoked 
spectrotemporal power revealed that successful WM delay activity was linked to two causally 
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dissociable, frequency-dependent mechanisms. Visual processing was marked by increased 
parieto-occipital beta-gamma (12-35 Hz) activity with narrowband alpha desynchronization 
during encoding, followed by widespread alpha-beta (9-24 Hz) decreases throughout 
maintenance and processing (Fig. 2.3; |z| > 1.96, p < 0.05). These patterns did not differ by 
group, indicating that sustained alpha-beta suppression for WM was independent of PFC, 
consistent with sources in more posterior regions (Hillebrand et al., 2016; Xie et al., 2016). 
Spectrotemporal power did not differ by visual hemifield presentation. 
 

 
 
Fig. 2.3. Mean task-evoked spectrotemporal power over encoding-maintenance for controls (A) 
and PFC patients (B) in lateral frontal (top) and parieto-occipital (bottom) regions. Single-subject 
analyses revealed anterior and posterior theta increases, and posterior beta-gamma (12-35 Hz) 
increases at encoding followed by a decrease at maintenance. A narrowband alpha decrease was 
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observed in posterior channels throughout the encoding-maintenance period. While parieto-
occipital power appears diminished in PFC patients relative to controls, contrasts did not survive 
statistical testing (zdiff < 1.96, p > 0.05; cluster p = 1). Exact data reflect outcomes when stimuli 
were encoded in the lesioned hemisphere. Vertical dotted line = maintenance fixation start (Fig. 
2.1B). 
 
In contrast, encoding-maintenance (Fig. 2.1B) was marked by anterior delta-theta (2-7 Hz) 
activity, which increased and then remained elevated through processing (Fig. 4A-B; z > 3.29, p 
< 0.001). Patients did not show the same increase after executive demands were imposed. The 
hemispheric asymmetry test revealed a cluster centered in low theta (3-4 Hz) that spanned ~0-
700 msec of the processing period (Fig. 4C; cluster p ≤ 0.04). Patients exhibited less of an 
increase in channels proximal to the lesion site than in the contralateral channels, highlighting a 
PFC origin for the slow rhythmic substrate of executive control. The effect was significant 
irrespective of whether stimuli were encoded in the lesioned or intact hemisphere, revealing 
bilateral low theta for executive control in PFC. 
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Fig. 2.4. Mean task-evoked spectrotemporal power over processing for controls (A) and PFC 
patients (B) in lateral frontal (top) and parieto-occipital (bottom) regions, and the anterior 
hemispheric asymmetry effect (C). Single-subject analyses revealed sustained delta-theta (2-7 
Hz) in anterior regions and widespread alpha-beta (9-24 Hz) power suppression. Exact data 
reflect outcomes when stimuli were encoded in the lesioned hemisphere (A-B). Patients showed 
less of an increase in low theta (3-4 Hz) activity proximal to the lesion site than in contralateral 
channels (C), cluster p ≤ 0.04 (masked), uncovering a PFC origin for low theta rhythms 
underlying executive control in WM. The hemispheric asymmetry effect (top) reflects the mean 
t-statistics collapsed across visual field presentations for the cluster of channels (AF7-F5-F7-
FC5-FT7) with overlapping outcomes when stimuli were presented to the right (middle) versus 
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left visual field (bottom). POST LEFT/LESION, channels P1-P3-P5-P7-P9-PO3-PO7-O1; POST 
RIGHT/INTACT, channels P2-P4-P6-P8-P10-PO4-PO8-O2; HEM, hemisphere. 
 
2.2.4. Directional Connectivity 
 
Next, we investigated the temporal dynamics of directional connectivity between regions at 
encoding, maintenance, and processing using the Phase Slope Index (PSI; Nolte et al., 2008). 
The PSI tracks whether the slope of the phase lag between A-B channel pairs exhibits consistent 
polarity across several adjacent frequency bins; positive PSI indicates that channel A  channel 
B, while negative PSI indicates the reverse, and zero PSI indicates either zero or an evenly 
balanced lead/lag relationship between A and B. PSI was quantified separately for the delta-theta 
(2-7 Hz) and alpha-beta (9-24 Hz) ranges based on the results of the spectrotemporal power 
analysis (Methods). If PFC signals directed visual information per executive demands, then the 
diminished PFC low theta activity observed at processing should also cause diminished PFC  
parieto-occipital PSI in patients relative to controls. Note that alpha-beta PSI was purported to be 
elevated in patients reflecting neuroplasticity to compensate for attenuated executive control (cf. 
Voytek et al., 2010a). 
 
Task-evoked delta-theta rhythms precessed from parieto-occipital to frontal regions at the offset 
of the second stimulus in both groups (Fig. 2.5A; z ≤ –10, p < 2×10-23), suggesting the end of 
bottom-up information transfer at encoding in that frequency range. Then, time-resolved 
connectivity patterns revealed a shift in directionality so that frontal regions led parieto-occipital 
regions mid-maintenance, but only in controls (z > 1.96, p < 0.05). Additional group differences 
emerged at various points early in encoding (Fig. 2.5B) and over the course of the maintenance 
period (Fig. 2.5C), so that even when control PSI was not supra-threshold in the PFC-led 
direction, controls still displayed greater PFC leads than patients (all cluster p < 0.05). Moreover, 
graph theoretical network analysis (Methods) revealed an absence of PFC-led delta-theta PSI in 
patients throughout the task. We observed this network effect bilaterally and regardless of 
whether stimuli had been presented to the lesioned or intact hemisphere, demonstrating that 
unilateral PFC lesions compromised the entire PFC-sourced network supporting executive 
control. Group differences were most pronounced mid-maintenance when stimuli were presented 
to the intact hemisphere (Fig. 2.5C, bottom; all cluster p < 0.05), confirming that the entire delta-
theta network was attenuated by unilateral PFC lesions. 
 
Delta-theta PSI continued to increase in controls with task demands such that the PFC lead 
peaked early in processing (Fig. 2.5D, z ≥ 10, p < 2×10-23), while patient PSI remained at zero. 
Cluster-based statistics confirmed the between-groups differences across channels and in 
network-wide patterns (Fig. 2.5E, all cluster p < 0.05), which were strongest at 100-200 msec 
and persisted over ~0-700 msec of the processing period. These differences occurred irrespective 
of which hemisphere had previously encoded the stimuli so that the hemispheric differences 
which emerged during the maintenance period (Fig. 2.5C) decreased by processing. Network-
wide outcomes were apparent in bilateral central-posterior regions, revealing causal evidence 
that PFC slow rhythms influenced widespread poster sensory and nearby regions commensurate 
with executive demand. In contrast, alpha-beta rhythms from parieto-occipital regions led PFC 
throughout encoding, maintenance, and processing, and were invariant to executive demand (Fig. 
2.6). Furthermore, PFC lesions did not affect alpha-beta PSI at any point during the encoding or 
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delay periods, corroborating an independent, more posterior source for alpha-beta rhythms 
during WM. 
 

 
 
Fig. 2.5. Mean task-evoked delta-theta (2-7 Hz) PSI at encoding-maintenance (A) and processing 
(D) as a function of visual hemifield, and the results of between-groups statistical testing. 
Parieto-occipital regions led frontal regions at the end of encoding in both groups (z ≤ –10, p < 
2×10-23), followed by a shift in directionality at mid-maintenance specific to controls (A), 
irrespective of visual hemifield (z > 1.96, p < 0.05). Channel-wise comparisons revealed less 



29 

delta-theta lead in patients 100-200 msec into encoding (B) when stimuli were presented to the 
lesioned hemisphere (top) and 200-300 msec into encoding when stimuli were presented to the 
intact hemisphere (bottom). Similar effects were observed at maintenance (C), with group 
differences appearing earlier when stimuli were presented to the lesioned hemisphere (at 700-800 
msec [top] versus 1000-1200 and 1400-1500 msec [bottom]). At processing, the PFC lead 
increased in controls (z ≥ 10, p < 2×10-23), while patients continued to exhibit no PFC  parieto-
occipital PSI (D). Channel-wise comparisons revealed less delta-theta lead in patients throughout 
the first 700 msec of processing, irrespective of hemifield of presentation at encoding, with the 
most pronounced effects in anterior-to-posterior PSI at 100-200 msec (E). Statistics topographies 
(B-C, E) = PSI (between-channel lines) and network (red circles) t-statistics scaled 
proportionally to the outcome magnitude per 100-msec time point. ANT LESION, channels 
AF7-F5-F7-FC5-FT7; ANT INTACT, channels AF8-F6-F8-FC6-FT8; POST LESION, channels 
P1-P3-P5-P7-P9-PO3-PO7-O1; POST INTACT, channels P2-P4-P6-P8-P10-PO4-PO8-O2; 
CTRL, controls. 
 

 
 
Fig. 2.6. Mean task-evoked alpha-beta (9-24 Hz) PSI at encoding-maintenance (A) and 
processing (B) as a function of visual hemifield. Parieto-occipital regions led frontal regions 
irrespective of executive demands (z < –1.96, p < 0.05). No differences were observed as a 
function of visual hemifield or group. Vertical dotted line = maintenance fixation start (Fig. 
2.1B). ANT LESION, channels AF7-F5-F7-FC5-FT7; ANT INTACT, channels AF8-F6-F8-
FC6-FT8; POST LESION, channels P1-P3-P5-P7-P9-PO3-PO7-O1; POST INTACT, channels 
P2-P4-P6-P8-P10-PO4-PO8-O2; CTRL, controls. 
 
2.3. Discussion 
 
We examined the causal influence of PFC integrity on visuospatial WM ability and the 
oscillatory substrates in real time as a function of executive demand. Results uncover two long-
range neural networks with dissociable neuroanatomical and electrophysiological profiles that 
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together govern optimal WM performance. Low theta activity was attenuated at the lesion site 
following presentation of the test prompt, concurrent with diminished frontal-to-posterior 
directional connectivity in the delta-theta range in patients. These findings extend correlative 
evidence using electrophysiological recordings (Raghavachari et al., 2013; Güntekin & Başar, 
2015), and provide the first causal demonstration that the slow rhythmic substrate of executive 
control is dependent on PFC – and these oscillations dynamically influence parieto-occipital 
regions depending on whether information was being maintained or actively processed in WM. 
While these results are consistent with models of PFC-guided network function during WM 
(Sreenivasan et al., 2014; Lara & Wallis, 2015; Postle, 2016; Eriksson et al., 2015), our 
behavioral data reveal that PFC-guided network function is not necessary for WM unless 
additional executive demands are imposed for active processing. 
 
Instead, our results provide causal evidence that alpha-beta rhythms originating in central-
posterior regions supported above-chance WM performance. The widespread decreases in power 
observed over the maintenance and processing periods may reflect frontoparietal control and/or 
recruitment of the dorsal attention network (Sadaghiani & Kleinschmidt, 2016; Xie et al., 2016). 
The notion that such domain-general physiological signatures underpin WM function is not new 
(Postle, 2006), but their mechanistic interplay with PFC function remains controversial. We 
show that alpha-beta rhythms precessed from parieto-occipital to frontal regions (Hillebrand et 
al., 2016). Critically, we observed that this network was unaffected by task demands or PFC 
lesions, and showed no signs of compensatory neuroplasticity, inconsistent with prior accounts 
of PFC lesion-related, within-region outcomes (e.g., Voytek et al., 2010a). The observed lack of 
interplay with PFC is in accord with proposals that parieto-occipital alpha-beta oscillatory 
activity is a substrate for the purely mnemonic component of WM (cf. D’Esposito & Postle, 
1999; Postle et al., 1999; Galeano Weber et al. 2016). 
 
Taken together, the results support our hypothesis that dual-networks govern WM – and that one 
network works independently of PFC. The findings demonstrate that delta-theta and alpha-beta 
rhythms comprise divergent substrates of WM function. While the central-posterior alpha-beta 
network is adequate for well above-chance performance, optimal WM depends on the additional 
recruitment of a dynamic slow rhythm driving executive control from PFC. 
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2.5. Methods 
 
2.5.1. Subjects 
 
We report data from 14 patients with unilateral prefrontal cortex (PFC) lesions (Fig. 1A and S1; 
46 ± 16 years of age, 15 ± 3 years of education, 43% male) and 20 age- and education-matched, 
healthy controls (44 ± 19 years of age, 16 ± 3 years of education, 55% male). Patients had 
normal vision, estimated IQ in the normal range, and no other neurological or psychiatric 
diagnoses. Each patient was examined by a neurologist (R.T.K.) or neurosurgeon (T.R.M.) prior 
to testing, and final eligibility was determined through review of each patient’s structural 
magnetic resonance imaging (MRI) scans. Patients were included by lesion focus in unilateral 
inferior, middle, and/or superior frontal gyrus. Half presented with left-hemisphere lesions and 
half presented with right-hemisphere lesions (n = 7 each). Injury was in the chronic phase (8 ± 6 
years since incident or surgery). Independent-samples t-tests assuming unequal variance 
confirmed that the control group matched on demographics (age p = 0.72, education p = 0.24). 
Subjects were tested at one of two sites: University of California, Berkeley (UCB; five patients 
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with lesions due to stroke and all controls), or Oslo University Hospital (OUH; nine patients with 
lesions due to tumor resection). All subjects gave informed written consent in accordance with 
the respective institutional review board. 
 
2.5.2. Experimental Design 
 
We tested working memory (WM) in a single-trial, lateralized, visuospatial task paradigm (Fig. 
2.1B). After a 2-sec pretrial fixation, a starting screen indicated whether the following pair of 
stimuli would be tested for IDENTITY or spatiotemporal RELATION information. Then, 
following a 100-msec central fixation, two colored shapes were presented for 200 msec each in 
one of two vertical spatial positions and one of two temporal positions. Each shape was 
presented to the left or right of a central fixation cross to target the contralateral hemisphere 
(Duarte et al., 2005; Voytek et al., 2010a, 2010b). After a 900- or 1150-msec maintenance 
period, a test prompt appeared indicating what type of information would be tested. The test 
prompt was presented mid-delay to elicit executive control mechanisms during a processing 
period of the same length. Then, two shapes were presented full field on the horizontal axis and 
subjects responded in a two-alternative forced choice test, yielding a 0.5 chance rate. In the 
identity test, subjects indicated whether the pair was the SAME pair they just studied; half of the 
pairs show two old shapes (“yes”) and half the pairs show one old shape and one new shape 
(“no”). In the spatial relation test, subjects indicated which shape had been on the TOP or 
BOTTOM, and in the temporal relation test, which shape had been presented FIRST or 
SECOND. 
 
The length of maintenance and processing delay periods was randomly jittered at 900- or 1150-
msec to preclude anticipatory or in-phase mechanisms. The task was fully counterbalanced with 
240 trials split evenly between the left and right visual hemifields, and then sub-split evenly into 
identity, spatial, and temporal conditions, chosen randomly from a pool of 250 trials. No stimuli 
were repeated across trials. An experimenter went through the task instructions and a set of six 
practice trials with each subject, who was permitted to repeat the practice trials by request. 
 
2.5.3. Data Acquisition 
 
Subjects were tested in a sound-attenuated recording room. The electroencephalogram (EEG) 
was collected using a 64 + 8 channel BioSemi ActiveTwo amplifier (BioSemi, Amsterdam, 
Netherlands) sampled at 1024 Hz. The horizontal electrooculogram (EOG) was recorded at both 
external canthi, and the vertical EOG was monitored with a right inferior eye electrode and a 
superior eye/frontopolar electrode. Electrode impedances were kept below 20 kΩ. All EEG data 
were re-referenced offline to the mean potential of two earlobe electrodes (pop_biosig.m), 
resampled to 256 Hz (pop_resample.m), and then preprocessed through a standard pipeline. 
 
Continuous eyegaze positions were recorded to exclude any trials post-hoc in which stimuli had 
been encoded in the ipsilateral hemifield. UCB eyetracking data were collected using an Eyelink 
1000 optical tracker (SR Research, Ontario, Canada) sampled at 1 kHz and OUH eyetracking 
data were collected using an iView X optical tracker (SMI, Teltow, Germany) sampled at 60 Hz. 
Subjects’ head movements were restrained using a custom wooden chin rest to minimize 
contamination of anterior-channel EEG traces.  



35 

2.5.4. Behavioral Data Analysis 
 
First, we established that patients with left and right PFC damage did not differ in task accuracy. 
We excluded any trials marked based on eyegaze position, and then calculated the mean 
accuracy per patient by visual hemifield (right or left) and condition (identity, spatial relation, or 
temporal relation). Accuracy data were submitted to a logit mixed-effects model (fitglme.m) with 
lesion hemisphere, visual hemifield, and condition as the fixed effects, and subject as the random 
effect (Jaeger, 2008). No significant effects were found. 
 
Then, visual hemifield presentations were swapped for the right-lesioned patients (n = 7) to 
create a single patient group with lesions normalized to the right visual field. We randomly 
selected half of the controls (n = 20/2 = 10) for the identical swapping procedure to preclude any 
confounding influence from inter-hemispheric differences. This step ensured that all results 
would be a function of lesioned versus intact and not left versus right hemisphere. We calculated 
the mean accuracy for each subject by visual hemifield (lesion/right or intact/left) and condition, 
and submitted the accuracy data to a mixed logit model with group (patient or control), visual 
hemifield, and condition as the fixed effects, and subject as the random effect. The main effect of 
group and the three-way interaction passed an alpha threshold of 0.05. However, neither result 
survived the Bonferroni-correction for multiple comparisons (3 main + 4 interaction fixed 
effects; Cramer et al., 2015), which yielded an adjusted alpha threshold: pcorr = 0.05/7 ≈ 0.0071. 
Because the visual hemifield and condition effects did not approach significance (p > 0.15), we 
submitted the same data to a model with group as the only fixed effect to confirm that patients 
were impaired at the task. 
 
Because several of the patients exhibited general slowed or impaired motor function following 
injury, we did not compare response time between patients and controls. 
 
2.5.5. Data Preprocessing 
 
Eyetracking data were analyzed for both 200-msec stimulus presentation epochs relative to the 
within-trial temporal mean position over the 100-msec central fixation preceding the first 
stimulus. Any trial in which gaze position drifted from the center to include the ipsilateral visual 
hemifield during stimulus presentation was marked for exclusion from all behavioral and EEG 
analyses. This ensured that analyses would be isolated to the lesioned or intact hemisphere at 
encoding. 
 
Each subject’s EEG traces were high-pass filtered above 1 Hz and low-pass filtered below 70 Hz 
using zero-phase finite impulse response filters (eegfilt.m), and demeaned. Electromyography 
(EMG) artifacts were removed automatically using the AAR external plug-in with the default 30-
sec sliding window (pop_autobssemg.m; Gomez-Herrero, 2007; Islam et al., 2016). Traces were 
then filtered for 60-Hz (50-Hz for OUH data) line noise harmonics using a discrete Fourier 
transform (ft_preprocessing.m). We then split each subject’s data into trials with a 1-sec buffer 
on either side, excluded any that had been marked for exclusion based on eyegaze position, and 
manually inspected the data to mark any channels containing abnormal signal. Next, we used 
independent components analysis to remove artifactual signal components from all remaining 
channels (ft_componentanalysis.m). These artifacts constituted EOG and microsaccadic 
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movements, auricular components, heartbeat, and residual cranial muscle activity (Hipp et al., 
2013). Any channels that had been marked as abnormal were then replaced via interpolation of 
the mean of the nearest neighbors (7.6 neighbors per channel on average; ft_channelrepair.m). 
Finally, the data were manually re-inspected to identify and discard any trials containing epochs 
with residual noise. 
 
We applied the surface spline Laplacian (ft_scalpcurrentdensity.m) to all clean EEG data to 
enhance spatial resolution and minimize volume conduction (Perrin et al., 1989; Kayser & 
Tenke, 2015; Cohen, 2015, 2014). Then, channels in patients with right-hemisphere lesions (n = 
7) and 10 controls were swapped across the midline (cf. Voytek et al., 2010a, 2010b). 
 
We split the trials into: (1) a 500-msec pretrial baseline window extending from 550-50 msec 
before the start screen; (2) a 1500-msec encoding-maintenance window extending from the onset 
of the first stimulus, irrespective of delay jitter; and (3) a 900-msec processing window 
extending from the start of the processing period, irrespective of delay jitter. Each of the three 
within-trial windows was padded out to 7.5 sec, for a minimum of three cycles’ buffer at 1 Hz on 
either side, to minimize filtering-induced edge artifacts. 
 
2.5.6. Electroencephalogram (EEG) Analyses and Statistical Testing 
 
Except for the baseline Fourier analysis (described below), we analyzed EEG data for all correct 
trials as a function of visual hemifield. We analyzed activity between 1-40 Hz, and quantified all 
metrics per electrode and trial separately for pretrial, encoding-maintenance, and processing data. 
Then, we standardized encoding-maintenance and processing data outputs against a common 
pretrial baseline, computed the per-subject mean, and applied inferential statistics between 
groups. This way, inter-subject differences in trial counts might affect subject-wise estimates but 
not between-groups statistics. Within-channel EEG metrics were also tested for group-by-
hemisphere interactions – termed hemispheric asymmetry. First, we calculated inter-hemisphere 
contrasts by subtracting the data in the 27 intact-hemisphere channels from the data in the 
homologous lesioned-hemisphere channels (e.g., F5–F6), excluding the midline. Then, we tested 
the contrast data for between-groups effects. 
 
All statistical testing employed a Monte Carlo method with cluster-based maximum correction 
for multiple comparisons (Maris & Oostenveld, 2007). An independent-samples t-test was used 
to identify clusters of contiguous data points showing a difference between groups, thresholded 
at 0.05, two-tailed, and then the t-statistics were summed over all data points per cluster to 
calculate cluster size. Then, the group labels were randomly shuffled and the same clustering 
procedure was applied; we repeated this procedure 1000 times to create a null distribution. 
Observed clusters were considered significant if fewer than 5% of randomizations yielded a 
larger effect. 
 
2.5.7. Event-Related Potential (ERP) Analysis 
 
We passed the data through a low-pass, zero-phase finite impulse response filter at 30 Hz, and 
absolute baseline-corrected the encoding-maintenance and processing outputs on the all-correct-
trial, temporal mean of the pretrial data window. Then, we visually inspected the data for event-
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related potentials (ERPs), and submitted the encoding-maintenance and processing data, 
respectively, to group and hemispheric asymmetry tests with clustering on the time and space 
dimensions (neighboring channels ≥ 2; ft_timelockstatistics.m). 
 
2.5.8. Baseline Fourier Analysis 
 
We quantified the raw power spectra over the 500-msec pretrial baseline period for all trials. 
Spectral decomposition was performed using a Hanning taper over a frequency-dependent 
sliding window of three cycles, with 2-Hz bandwidth in steps of 1 Hz, yielding a series of 
complex numbers from which absolute values were extracted and squared to produce real power 
values (ft_freqanalysis.m). We tested the data for group and hemispheric asymmetry effects with 
clustering on the frequency and space dimensions (ft_freqstatistics.m). The hemispheric 
asymmetry test revealed a cluster between 6-18 Hz in anterior channels (Fig. 2.S2; cluster p = 
0.004), confirming that pretrial baseline differences must be reconciled prior to between-groups 
tests of task-evoked activity. 
 
2.5.9. Task-Evoked Spectrotemporal Power Analyses 
 
Spectrotemporal decomposition employed the equivalent procedure as for computation of 
baseline spectral power. We baseline-standardized the encoding-maintenance and processing 
outputs against the pretrial data window using a statistical bootstrapping procedure (cf. Flinker et 
al., 2015). First, the pretrial outputs of all trials were pooled into a single time series for each 
channel and frequency. Then, we randomly selected and averaged t data points (t = number of 
trials in that subject’s dataset) from the pooled time series; we repeated this 1000 times to create 
a normal distribution of pretrial baseline power values. Encoding-maintenance and processing 
data for each trial and time point were z-scored on the baseline distribution to assess the 
significance of task-evoked changes. Then, we submitted the task-evoked power data to group 
and hemispheric asymmetry tests with clustering on the time, frequency, and space dimensions 
(ft_freqstatistics.m). 
 
2.5.10. Directional Connectivity Analyses 
 
The task-evoked power analysis revealed significantly increased, sustained activity centered in 
delta-theta (2-7 Hz) in anterior channels; and increased alpha-beta (9-24 Hz) activity in posterior 
channels during stimulus presentation followed by widespread suppression during delay in 
central and posterior channels. We quantified directional connectivity using the Phase Slope 
Index (PSI; Nolte et al., 2008) separately for delta-theta and alpha-beta (9-24 Hz) frequency 
ranges. First, we subtracted the trial-averaged time series from each single-trial time series to 
minimize any contamination from simultaneous voltage changes on phase consistency (Brincat 
& Miller, 2015). Then, spectral decomposition employed the equivalent procedure as for 
computation of spectrotemporal power, sampled at 100-msec resolution. However, instead of 
extracting the absolute values, we computed single-trial cross-spectral density directly from the 
complex numbers. 
 
The PSI was quantified for each trial-by-time point, and then averaged over trials and submitted 
to surrogate testing (code adapted from data2psiX.m; Cohen, 2014). We randomly shuffled the 
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frequency bins at each time-frequency point 1000 times to create a normal distribution of 
surrogate data, and z-scored all outputs on the surrogate distributions to assess true PSI. Finally, 
encoding-maintenance and processing PSI data were absolute baseline-corrected on the temporal 
mean of the pretrial PSI data to isolate true, task-evoked directionality. We performed between-
groups tests on task-evoked PSI data at encoding-maintenance and processing, with clustering on 
the time, frequency, and space dimensions. Then, we averaged all significant PSI results across 
frequencies to obtain delta-theta and alpha-beta connectivity time courses, which we visualized 
topographically. 
 
2.5.11. Network Analysis 
 
We applied graph theoretical metrics to assess node degree (ft_networkanalysis.m) – i.e., the 
degree to which each channel shares a significant (PSI |z| > 1.96, p < 0.05) directional connection 
to all other channels. This computation was performed on the surrogate-standardized PSI data, 
prior to applying the absolute baseline correction. Then, the node data were absolute baseline-
corrected on the pretrial node data, employing the equivalent method as for the PSI data to 
isolate true, task-evoked network shifts in directionality. Together with PSI outputs, this analysis 
produced a per-subject connectome for every time point in each of the delta-theta and alpha-beta 
networks. We performed post-hoc between-groups tests on task-evoked node degree data if 
significant effects were observed in the PSI data. This step permitted us to assess whether 
between-groups differences in specific inter-regional connections would have a net effect on 
region- or network-wide lead/lag characteristics. Any significant network effects were then 
averaged across frequencies to obtain time courses, and visualized topographically with the PSI 
effects. 
 
2.5.12. Code 
 
We analyzed all data in MATLAB (The MathWorks, Inc., Natick, MA) using custom scripts. 
Electrophysiological data analyses adopted functions available in open-source MATLAB 
toolboxes – FieldTrip (Oostenveld et al., 2011) and EEGLAB (Delorme & Makeig, 2004) – or 
code corresponding to Cohen (2014). Group differences in directional connectivity were plotted 
using the open-source toolbox BrainNet Viewer (Xia et al., 2013). The behavioral task was 
programmed in E-Prime Professional 2.0 (Psychology Software Tools, Pittsburgh, PA). 
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2.6. Supplementary Figures 
 

 
 
Fig. 2.S1. Individual computerized reconstructions of structural scans for all 14 PFC patients. 
Red = lesion site.  
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Fig. 2.S2. Mean raw energy per frequency over the 500-msec pretrial baseline period in the 
lesioned/left versus intact/right hemisphere as a function of group. Controls (left) exhibited clear 
peaks at alpha (~10 Hz) in frontal (top) and parieto-occipital (bottom) regions that did not differ 
between hemispheres. In contrast, PFC patients (right) did not show an alpha peak in anterior 
channels in either hemisphere, but the mean energy was elevated between 6-18 Hz in a cluster of 
channels proximal to the lesion site (AF3-F3-F5), relative to the contralateral channels 
(hemispheric asymmetry cluster p = 0.004, marked in black on the x-axis [top right]). While the 
posterior alpha peak appears diminished in patients relative to controls, contrasts did not survive 
statistical testing (between-groups p > 0.05, uncorrected). POST LEFT/LESION, channels P1-
P3-P5-P7-P9-PO3-PO7-O1; POST RIGHT/INTACT, channels P2-P4-P6-P8-P10-PO4-PO8-O2; 
SIG, significant. 
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Ch. 3: Intracranial Recordings and Human Memory 
 
Citation: Johnson, E. L. & Knight, R. T. Intracranial recordings and human memory. Curr. Opin. 
Neurobiol. 31 (2015). 
 
Recent work involving intracranial recording during human memory performance provides 
superb spatiotemporal resolution on mnemonic processes. These data demonstrate that the 
cortical regions identified in neuroimaging studies of memory fall into temporally distinct 
networks and the hippocampal theta activity reported in animal memory literature also plays a 
central role in human memory. Memory is linked to activity at multiple interacting frequencies, 
ranging from 1 to 500 Hz. High-frequency responses and coupling between different frequencies 
suggest that frontal cortex activity is critical to human memory processes, as well as a potential 
key role for the thalamus in neocortical oscillations. Future research will inform unresolved 
questions in the neuroscience of human memory and guide creation of stimulation protocols to 
facilitate function in the damaged brain. 
 
3.1. Introduction 
 
Our ability to act based on personal experience drawn from memory is central to everyday life, 
and defines our individual identity. Human memory function is susceptible to a wide range of 
neurological insults. For instance, dementia and associated memory dysfunction are reaching 
epidemic levels as our population ages [1]. We must understand the precise neural mechanisms 
governing memory to make inroads into the understanding of normal as well as disordered 
memory. Subdural and depth recordings — termed electrocorticography (ECoG) or intracranial 
electroencephalography (iEEG) — offer superb temporal and spatial resolution that is 
unparalleled in the study of human cognition. The present review focuses on the contributions of 
subdural and depth recordings obtained during the successful encoding and immediate or delayed 
retrieval of memories in humans. We argue that ECoG/iEEG informs unresolved questions in the 
study of human memory and is yielding insights necessary for the development of novel 
interventions to facilitate memory function in the damaged brain. We will use the term ECoG to 
subsume both subdural (epicortical) and depth (subcortical) recordings. 
 
It is well-known that the hippocampus and surrounding medial temporal lobe (MTL) structures 
are necessary for episodic memory (long-term memory for personal events) [1,2], and that lateral 
prefrontal cortex (PFC) is necessary for working memory (active storage and processing in 
memory) [3,4]. However, working and episodic memory, although often approached as separate 
topics in psychology, both depend on MTL–PFC interactions. What is the nature of these and 
other inter-regional interactions, and might they be fractionated depending on the type of 
memory in question? Furthermore, how do neural networks differentially support encoding and 
retrieval operations, even within a given type of memory? Might the PFC play a domain-general 
role in memory — that is, a global role that is not specific to stimulus modality or encoding or 
retrieval operation — that is comparable and/ or complementary to the role of the MTL? 
 
Lesion studies and functional magnetic resonance imaging (fMRI) reveal the where of memory 
function. Scalp EEG and magnetoencephalography (MEG) reveal the when and, for low-
frequency spectral activity and event-related potentials (ERPs), the how of memory. In contrast, 
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ECoG has superb spatiotemporal resolution and can measure an expanded frequency range of 
activity, including high-frequency responses and, in rare instances, single-unit activity (SUA). 
Thus, ECoG can reveal the how of human memory across an extended scope of the 
neurophysiology of memory in humans. For instance, Burke and colleagues [5] reported the 
results of a large-scale ECoG study of subsequent memory (SM) — that is, measures of neural 
activity correlated with or predictive of later remembering (see [6]). Their data reveal that 
regions previously identified using fMRI fall into two networks that exhibit spatiotemporally 
distinct patterns of 64–95 Hz gamma band power activity within the first 1.5 s following 
encoding of each later recalled word — first in the ventral visual pathway and MTL, and then 
across association regions including left-lateralized inferior frontal, posterior parietal, and 
ventrolateral temporal cortices. The authors suggest that these networks reflect higher-order 
visual processes followed by top-down control mechanisms [5]. Jacobs et al. [7] used MTL depth 
recordings to reveal that neuronal firing is phase-locked to oscillatory activity in the delta, theta, 
and gamma frequency bands in humans. Comparable invasive recording has been traditionally 
restricted to animals; thus, human ECoG recording provides a powerful bridge to the animal 
literature on memory processing. 
 
3.2. Event-Related Potentials and Medial Temporal Lobe Function 
 
Intracranial recordings provide the spatial resolution needed to explore temporal dynamics of 
memory within subregions of the MTL. Axmacher and colleagues [8] examined SM using ECoG 
and fMRI, and found that, unlike words that were successfully recalled, words that were later 
forgotten deactivate the hippocampus at encoding — manifested by a positive direct current 
response in ECoG and negative blood-oxygen-level dependent (BOLD) response in fMRI. This 
effect was apparent for words presented both early and late in a list, suggesting a continuum of 
hippocampal involvement over long and short retention durations. Other studies of encoding as a 
function of subsequent recall demonstrate that the successful encoding of words is associated 
with an early (300–400 ms) negative ERP in the rhinal cortex, followed by a late (500 ms or 
later) positive hippocampal ERP [9,10]. Viewing encoding as a function of subsequent 
recognition, as opposed to recall, several studies suggest that SM is linked to negative ERPs in 
the hippocampus. In preparation for immediate recognition, a negative ERP is observed 300–500 
ms after stimulus presentation and again upon presentation of the probe at retrieval [11]. In 
preparation for delayed recognition, a late hippocampal negative ERP is observed following 
stimulus presentation [12–14]. The differential ERP effects observed in hippocampal activity 
depending on whether SM is measured by recall or recognition suggest that the hippocampus 
plays a selective role in recollection (i.e., specific memory, in contrast to strength-based 
familiarity; see [15]). However, additional data indicate that there is more to the human MTL 
story than ERPs. For instance, negative-polarity ERPs have been shown to correlate with high-
gamma activity [14] (see section on high-frequency responses, below). 
 
Intracranial recordings have also informed the long-standing debate over the difference between 
recollection and familiarity [15]. Staresina et al. [16] demonstrated that the perirhinal cortex and 
hippocampus are qualitatively dissociable at retrieval, revealing that the magnitude of the ERP in 
each MTL subregion region differs between the successful recognition of an item versus a source 
detail (e.g., background color), versus correct rejection of an item. The hippocampus shows 
enhanced ERP activity during the retrieval of source information as compared to item retrieval or 
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correct rejection [16]. Rutishauser et al. [17] used microelectrodes to record activity of single 
neurons (SUA) in the hippocampus and amygdala. Encoding is associated with sustained local 
SUA — with the highest spike rate observed during encoding of items later recollected (here, 
retrieved with correct source information), followed by items considered familiar (retrieved 
without source information), and the lowest SUA rate observed for items not recognized — 
supporting a continuous strength model of retrieval. Together, the high spatiotemporal resolution 
of ECoG provides evidence supporting both a continuous strength model of hippocampal 
function [16,17] and a dual-process model of retrieval by MTL subregion [16]. 
 
3.3. Low-Frequency Responses and Memory 
 
The animal literature has provided robust evidence of oscillations in the theta frequency band (3–
8 Hz) at encoding in MTL structures (e.g., [18]). In humans, direct intra-MTL depth recordings 
and/or cortical surface recordings have shown that presentation of a subsequently remembered 
stimulus resets theta activity or alters theta power in the hippocampus, rhinal cortex, and/ or 
amygdala [10,12–14,19,20], as well as temporal, frontal, and/or parietal–occipital association 
cortices [21–23,24]. Shifts in other frequency bands tend to co-occur with these shifts in theta. 
Specifically, theta and alpha phase resets in temporal, parietal, and occipital cortices [21]; theta, 
alpha, and beta phase resets [12] or power decreases [20] in the MTL; and right cortical theta 
power increases in the midst of widespread gamma increases [25] have been linked to SM. 
Employing SUA measurements, Rutishauser et al. [19] reported that theta phase resets are tightly 
coupled with local spiking activity — that is, theta phase-SUA coupling (see [26]). Critically, 
hippocampal theta phase-SUA coupling predicts subsequent long-term recognition as well as 
participants’ confidence in their responses at retrieval. Suthana and colleagues [27] found that 
stimulation of the entorhinal cortex during encoding resets the theta phase in the hippocampus 
and enhances spatial memory, suggesting a causal role for hippocampal theta activity in SM. 
 
Patterns of theta and successive alpha band power increases in the hippocampus and rhinal 
cortex just before stimulus presentation have also been shown to predict subsequent recognition 
[28] (Fig. 3.1). Fell et al. [28] proposed that this pattern reflects the coupling of activated 
contextual information (theta) and top-down control processes (alpha). This intracranial finding 
demonstrates the importance of preparatory membrane excitability in successful encoding. 
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Fig. 3.1. Normalized power difference plots for the contrast of subsequently remembered > 
forgotten words in the rhinal cortex (left) and hippocampus (right) reported in [28]. Power 
increases are shown primarily in the theta and alpha bands before stimulus presentation at 
encoding. Adapted from [28] with permission. 
 
There is activity in multiple frequencies occurring simultaneously during memory encoding and 
retrieval. Successful encoding in humans has been linked to two distinct hippocampal 
oscillations at the edges of the theta band. Lega et al. [29] found that the ‘slow-theta’ exhibits 
higher power at stimulus presentation and is selectively coupled with power in the gamma 
frequency band. (See Box 3.1 for a description of interactions between different frequency 
bands, i.e., cross-frequency coupling.) This pattern is also observed just prior to recall; taken 
together, Lega et al. [29] argue that this 3 Hz activity may be the human analogue of the theta 
oscillations observed in animals. At retrieval, Watrous et al. [30] showed that coherence between 
MTL, PFC, and parietal cortex is increased for correctly retrieved source information. Spatial 
memory is linked to 1-4 Hz oscillations while temporal memory is linked to 7-10 Hz oscillations 
in these regions, supporting a multiplexing mechanism wherein different frequency bands 
support distinct memory operations (Fig. 3.2). Although multiplexing is not specific to memory, 
these results suggest that the phenomenon of frequency multiplexing within and across regions 
may be central to human memory capacity [31]. 
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Box 3.1. Phase-Amplitude Coupling in Memory 
 
Cross-frequency coupling refers to interactions between different frequency bands; it can 
refer to the coupling of different phases or amplitudes, or the phase of one frequency and the 
amplitude of another (that is, phase-amplitude coupling). Coupling between higher-frequency 
amplitude and lower-frequency phase has been linked with a variety of cognitive and motor 
functions [62–64], and proposed as a mechanism for the short-range coding and inter- 
regional communication and integration of information [51,52]. Axmacher and colleagues 
[44] reported that successful maintenance of multiple items in working memory is associated 
with enhanced coupling between theta phase and beta and low-gamma (14–50 Hz, peak at 28 
Hz) amplitudes in the hippocampus (also [46]). Further- more, memory load modulates theta 
phase to incorporate additional envelopes of higher-frequency activity, with theta peaking at 7 
Hz. At retrieval, Foster et al. [33] reported that recognition of remote autobiographical 
memories correlates with enhanced coupling between theta phase and high-frequency 
amplitude. The magnitude of phase-locking between the hippocampus and retrosplenial 
cortex in the theta band peaks 300–400 ms before high-frequency (70–180 Hz) peak 
amplitude. 
 
Phase-amplitude coupling also supports communication pathways between the thalamus and 
frontal cortex during successful memory encoding and retrieval. Staudigl et al. [49] revealed 
that successful retrieval is linked to thalamus-frontal synchrony and enhanced coupling 
between inter-regional beta phase and 55-80 Hz gamma amplitude. Furthermore, they found 
that the beta activity modulated patterns of gamma power. 
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Fig. 3.2. Individual subdural recording sites from the patients studied in [30]; blue, prefrontal; 
green, parietal; orange, precuneus; yellow, parahippocampal. The red oscillation (1–4 Hz) 
represents coherence between brain regions during spatial memory and the orange oscillation (7–
10 Hz) represents coherence between these regions during temporal memory. Adapted from 
[30,31] with permission. 
 
Evidence from multiple studies indicates that theta is involved in timing coordinated activity 
within and across regions during successful encoding and retrieval. Within the hippocampus, 
theta power first increases and later decreases following presentation of stimuli that are 
subsequently recognized [14]. Fell et al. [13] showed that synchrony between the hippocampus 
and rhinal cortex varies as a function of frequency, with increased synchrony in delta and theta 
bands, but increased followed by decreased synchrony in the low-gamma band (28-46 Hz); 
phase-locking within each region also varies over time as a function of frequency. Using both 
subdural and depth recordings to examine network activity, Burke et al. [24] showed that theta 
and gamma power increase in a posterior-to-anterior direction with time over widespread cortical 
as well as hippocampal regions. Importantly, while some spectral modulations co-occur with 
local inter-regional synchrony and others with local or global asynchrony, synchronous activity 
for verbal SM is hubbed in the left PFC. An outstanding question in the intracranial recording of 
memory concerns whether the PFC may serve a domain-general, causal role as part of an MTL–
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PFC network, or whether the role of neocortical regions is dictated by domain-specific 
representations at encoding and/or cognitive operations at retrieval. 
 
Anderson and colleagues [32] showed that increased theta power in the MTL precedes increased 
theta power in the PFC during successful recall, and serves to synchronize the two regions. Two 
studies reported that retrieval of remote autobiographical memories (that is, memories encoded 
before entering the laboratory) is associated with theta band coherence between the MTL and 
other regions — such as phase-locking between the MTL and retrosplenial cortex [33]. 
Steinvorth et al. [34] showed that layers of the entorhinal cortex that project outward to the 
cortex exhibit theta activity during retrieval that is synchronized with theta activity in the frontal 
and temporal cortices. Layers that project inward to the hippocampus, however, show increased 
gamma activity. Taken together, these findings suggest that theta is important in long-range 
communication during successful retrieval. 
 
3.4. High-Frequency Responses and Memory 
 
Activity in gamma and higher-frequency bands (50-500 Hz) is important for representing 
information within neural regions. Notably, activity in frequency ranges above 70–80 Hz 
correlates with local spiking activity [35,36], suggesting that these high-frequency responses 
reflect SUA. High-frequency power increases [37] and oscillatory activity [38] have been shown 
to represent individual stimuli in the neocortex, and gamma band activity is sensitive to 
differences between stimuli [39]. High-frequency signals are less than a microvolt in amplitude 
at the scalp, placing them in the noise range of scalp EEG recording. Thus, reliable data in high-
frequencies is generally limited to subdural or depth recording (cf. [22]). Importantly, ECoG 
studies demonstrate that low-frequency and high-frequency activity often share an inverse 
relationship [5,20,24,25,38-40]. Likewise, while measures of high-frequency amplitude show 
overlap with the BOLD measures of fMRI, low-frequency activity is anatomically dissociated 
with BOLD measures [41]. 
 
Intracranial recordings reveal an important role for high-frequency responses in successful 
episodic memory encoding and retrieval. Sederberg and colleagues [42] demonstrated that SM is 
linked to power increases in the 28–100 Hz gamma range in subdural and depth electrodes in the 
hippocampus, temporal cortex, and PFC at encoding (also [5,20,22]), and that this pattern is 
reinstated just before correctly recalling words. Kucewicz et al. [38] reported that encoding 
images induces oscillations from 50 to 500 Hz within the primary visual cortex as well as limbic 
and higher cortical regions, consistent with the visual processing stream (also [5]), and 
successful recall is linked with increased 50–500 Hz oscillatory activity in widespread higher 
cortical regions. Within the hippocampus, Park et al. [40] revealed a role for high-gamma (51–
100 Hz) but not low-gamma, delta, or theta, in successful encoding during navigation. Axmacher 
et al. [14] found that 70–90 Hz high-gamma power is selectively increased during processing of 
unexpected items at multiple points during encoding in preparation for a recognition test. In 
addition to subserving encoding in conjunction with synchronization and desynchronization in 
the theta band, this high-gamma activity is also correlated with the hippocampal N500 ERP. 
Foster et al. [43] showed that 70–180 Hz power peaks in the hippocampus-connected 
posteromedial cortex after 400 ms during retrieval of autobiographical memories. 
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Gamma and higher-frequency band power responses have also been used to study working 
memory, suggesting a complex picture of working memory function that involves oscillations 
and sequenced spiking activity. Axmacher et al. [44] demonstrated that maintenance of multiple 
items in working memory is linked to the coupling of neural assemblies in the 25–100 Hz 
gamma range with theta phase in the hippocampus. Furthermore, increasing the number of items 
(i.e., memory load), is associated with modulating this cross-frequency coupling by increasing 
the length of theta cycles to incorporate additional pockets of higher-frequency power increases 
(Box 1). Indeed, Roux and Uhlhaas [45] argued that ‘theta-gamma’ (gamma range: 30–200 Hz) 
coupling subserves the organization of items maintained in sequence (also [46]), while alpha-
gamma coupling may also support the active inhibition of task-irrelevant processes integral to 
complex working memory. 
 
3.5. Inter-Regional Coherence and Memory 
 
Memory is supported by both the local connectivity of MTL subregions, and the distributed 
connectivity of the MTL to other cortical and subcortical regions [1]. Intracranial recordings can 
provide insight into the dynamics of both short-range and long-range communication. Fell and 
colleagues reported that successful encoding is associated with hippocampus–rhinal cortex 
coherence in the delta and theta bands [13,47] and, in the gamma band, with early hippocampus–
rhinal cortex synchronization and later desynchronization [13,48] (also [49]). Comparable 
patterns of within-theta and within-gamma bands also occur over left cortical regions [24]. 
Synchronization within theta and gamma bands is both multiplexed and dissociable throughout 
the MTL and cortex in SM [24]. At retrieval, multiplexing occurs as a function of the source 
being retrieved — with spatial and temporal information traveling along different frequency 
bands but within comparable MTL–PFC-parietal networks (Fig. 3.2) [30,31]. Anderson et al. 
[32] suggested that one mechanism of coherence between the MTL and PFC is supported by 
synchronous activity in the theta band during successful recall. 
 
Intracranial recordings of human cognition also suggest how communication might occur 
between synchronized regions. Staudigl and colleagues [50] recorded activity in a patient with 
intrathalamic depth electrodes as well as frontal cortex coverage with scalp EEG. They found 
that successful retrieval is associated with increased synchrony between the thalamus and PFC in 
the beta band as well as coupling between beta oscillations and gamma power. Indeed, it has 
been has proposed that coupling between the phase of lower frequencies and the amplitude of 
higher frequencies enhances local cortical processing, facilitating transmission of information 
across synchronized brain regions (Box 1) [51,52]. 
 
3.6. Intracranial Recordings and Reinstatement 
 
Episodic retrieval often involves the reinstatement of neural activity patterns elicited during 
encoding [53]. This phenomenon is frequently studied using fMRI, limiting precise timing of 
these spatially localized patterns. Several ECoG studies report data from both the encoding and 
retrieval phases of long-term memory paradigms. Kucewicz et al. [38] recorded 50–500 Hz 
activity and reported a dissociation such that encoding of pictures induces more oscillatory 
activity in the occipital and parahippocampal cortices than retrieval, consistent with a model of 
bottom-up visual processing. Retrieval, in contrast, induces more high-frequency activity in the 
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temporal and frontal cortices than encoding, consistent with top-down cognitive processing. 
Ekstrom and colleagues [54] recorded SUA and local field potentials in the hippocampus and 
entorhinal cortex during a navigation task and at subsequent recognition. Their data reveal a 
dissociation between SUA and power increases in broadband potentials, theta and gamma (30–
100 Hz) bands, with increased SUA at encoding and increased local field potential activity at 
retrieval. Reinstatement may be specific to a subset of neurons in these MTL regions. 
 
Context reinstatement — that is overlap of perceptual, conceptual, and/or categorical details 
based on similarity between encoding and retrieval — is evident in association cortices. Manning 
and others identified semantic components of neural activity during the encoding of words and 
reported that the resultant power spectra are reactivated in temporal and frontal cortices 
according to semantic clustering on subsequent free recall [55-57]. Overlap in neural activity 
between encoding and recall is not only similar, but also predictive of recall of items similar in 
context [55,56]; this pattern is more evident in the cortex than in the hippocampus [57]. Morton 
et al. [56] further reported that reactivation occurs at all frequencies studied (2–100 Hz) in the 
temporal cortex but does not occur at any frequency in the occipital cortex. Finally, these studies 
as well as [29] and [42] reported that reactivation of neural activity observed at encoding occurs 
just before retrieval, revealing that context reinstatement may be part of preparing to retrieve 
information and not part of retrieval itself. 
 
3.7. Open Questions and Directions in Intracranial Recordings and Memory 
 
Intracranial recordings offer unparalleled spatiotemporal resolution in the study of human 
memory and capture high-frequency band responses, effectively bridging the study of memory 
across human and animal species, and raising the possibility of answering important, unresolved 
questions in the neuroscience of memory. ECoG studies of working and episodic memory in 
humans demonstrate the relationships between neuronal spiking and high-frequency activity with 
oscillations of different frequency bands, which regions interact to support memory and how 
these regions interact at different stages of memory processing, and the precise source of ERPs 
generated in memory performance. Recent ECoG data suggest that the PFC is a key hub for 
successful encoding in humans [24], providing evidence that the frontal cortex plays a domain-
general, causal mechanism in memory networks, Furthermore, emerging subcortical depth 
recordings in both animals and humans suggest that the driving source of neocortical oscillations 
may be thalamic [50,58]. 
 
Subdural and depth recordings also shed light on multiple questions posed in the psychology of 
memory. For instance, ECoG provides support on the neural level for multiple models of 
recollection-based versus familiarity-based retrieval [15–17], and Hanslmayr and Staudigl [59] 
argued that encoding and retrieval data support Endel Tulving’s principle of encoding specificity 
[60]. ECoG data also indicate that the relationship between successful encoding and retrieval 
operations – that is, reinstatement – is both spatially and temporally complex. 
 
Intracranial recordings will also provide guidance on how to create stimulation protocols to 
facilitate function in the damaged brain (see [27,61]). For instance, what is the precise nature of 
MTL–PFC interactions, and which mechanisms of inter-regional interaction play a causal role in 
successful memory formation and/or retrieval? Much of the extant neocortical data support a role 
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of the PFC in the representation of encoded information, but suggest that the PFC may be a hub 
for multiplexing and successful encoding of stimuli (see [24]). Might the PFC support memory 
processes in a domain-general way, irrespective of the type of encoding modality or retrieval 
operation? Finally, because of its fine spatiotemporal resolution, ECoG offers the means for 
determining the oscillatory and phase parameters of potential therapeutic stimulation, as well as 
the precise location and timing of application to best facilitate function (also [61]). If there is a 
causal and domain-general frontal mechanism governing memory function, and if the source of 
that mechanism is indeed thalamic, these regions may present alternative stimulation sites — 
allowing possibility of memory facilitation for patients with MTL damage. 
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Ch. 4: Public Outreach: How Brain Cells Make Memories 
 
Citation: Johnson, E. L. & Helfrich, R. F. How brain cells make memories. Front. Young Minds 
4 (2016). 
 
Remembering a lot of things at the same time is difficult. As an experiment, read these numbers: 
07041776. Then, close your eyes and try to say them aloud, in order. How did you do? We 
would guess that you remembered around half of the numbers. Now, try again but think of the 
same numbers as a date: 07-04-1776. Did you remember more of the numbers this time? You 
just demonstrated something called working memory. Working memory (“WM” for short) is the 
ability to hold onto and process pieces of information. WM activates when you experience and 
remember events in your life, learn new facts, talk to people, read, and do math. WM is a basic 
human behavior. As shown in the numbers experiment, WM has limited capacity. How does the 
brain support WM? And, what is happening in the brain that limits our capacity to store multiple 
memories at the same time? 
 
4.1. How does the brain build memories? 
 
Remembering is a complicated process. We will tell you about a few tricks that the human brain 
uses to remember a lot of things at the same time; but, first it is important to understand how 
memory works in the brain. The memory system is built into different parts of the brain. One key 
player is the part of your brain directly behind your forehead. This part is called the frontal lobe. 
When you think (or think about thinking!), you use your frontal lobe. Another key player in the 
memory system is buried deep inside your brain. This part is called the hippocampus, and it is 
very important for long-term memories, for instance, what you remember about how the brain 
builds memories tomorrow or another time in the future. For a picture of these brain structures 
and more information about the hippocampus, have a look at Ref. [1]. While looking at the brain 
structures tells us where memories are built, it does not tell us how memories are built. This 
article explains how brain cells build memories. We will explain why it is difficult to remember 
many things at the same time and then show you a few ways to improve your own memory. 
 
To investigate the working memory (WM) system, we record electrical signals from people’s 
brains while they hold onto and process pieces of information. We ask people to remember 
things, such as numbers, words, or pictures. Then, our electrical recordings show us what brain 
cells called “neurons” do when people remember things after a short time (usually between 1 s 
and 1 min) [2]. When neurons are active, they deliver very small electric currents (much smaller 
than currents from wall sockets). These WM experiments show that the electric currents change 
depending on how much information you remember. 
 

 
 
Normally, you have to remember a lot of things at once. For example, to understand this article, 
you have to remember what you just read while you are still reading. Maybe you’re also thinking 
about what is for dinner, where you’re having dinner, and when you have to be there. 
Remembering all of these different things depends on an electric current that cycle three to eight 

Working memory (WM) is the ability to hold onto and process pieces of information. 
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times per second [2–5]. This means that some neurons in the human brain fire together over and 
over again between three and eight times in 1 s [3]. 
 
We use computer tools to analyze different components of the brain signal. In Fig. 4.1, we show 
you a picture of what the brain signal looks like and what the component for WM looks like. We 
also show you the component that is active when you process sensory information, such as the 
things you see or hear. You can see that sensory processing is much faster (between 30 and 100 
cycles per second) than the WM component. Our brains have a trick to make memories out of 
this very fast sensory activity. The brain uses the slower, three to eight cycle waves from the 
WM system to group the faster sensory activity together [4]. Fig. 4.1 shows that you can have, 
for example, seven faster cycles of sensory information within one WM cycle. This is a very 
effective trick for organizing seven pieces of information in WM. This trick also explains why it 
is hard to remember more than seven things at the same time. The speed of the WM system 
seems to be limited to three to eight cycles per second; that is, the same seven things cycle over 
and over again three to eight times per second in WM. This limitation seems to restrict the 
number of items that we can remember at the same time. 
 

 
 
Fig. 4.1. Recording from a human brain: the brain signal (top) looks noisy and random. We can 
break down the signal into different components, which have different functions. For example, 
electric currents that cycle three to eight times per second are involved in memory function. 
Much faster currents (30 or more cycles per second) represent sensory information, such as the 
things you see or hear. So, the brain signal shown at the top seems to be a combination of 
different currents, allowing our brains to do a lot of things simultaneously. As shown in the gray-
shaded area, one cycle of the slow WM activity can include, for example, seven cycles of the 
sensory information. 
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It should come as no surprise that the brain’s WM function, which helps you think, read, and do 
math, is complicated. One reason for WM is so complicated is that the memory system is built 
into different parts of the brain, and these different parts of the brain need to talk to each other. 
Different parts of the brain talk to each other when neurons fire at the same time. To understand 
what this means, think about how several different people play instruments together in a band. 
The tune sounds good when the rhythms are coordinated, which means they go together in time. 
In the brain, we can see the memory rhythm cycling in different parts of the brain at the same 
time [2]. 
 
Another reason for WM is complicated is that the electrical signals in any one part of the brain 
are already very complex. As we showed you in Fig. 4.1, researchers have to break down the 
brain signal in order to make sense of it. The brain signal is so complicated, because the brain 
does a lot of things at the same time. Our brains do these different things at different speeds, a 
phenomenon called “multiplexing.” Think about a song being played with different instruments 
together. By breaking down these sounds, we are able to differentiate the guitar’s rhythm from 
rhythms made by the saxophone or drums. It is similar with the brain signal, where we use 
computer analysis to separate the memory rhythm (the slow component) from other rhythms, 
such as the sensory processing rhythm (the faster component). 
 
4.2. Why is our ability to remember limited? 
 
Think back to the WM experiment where we asked you to memorize the numbers 07041776 in 
order, and then to try again with the date 07-04-1776. Notice that it was easier to remember the 
numbers as a date, or set of three pieces of information, than it was to remember all eight 
numbers in order. And, have you noticed that 07-04-1776 is another way to write July 4th, 1776, 
the day the United States declared independence? You will probably have no trouble 
remembering this one piece of information. We show you more examples in Box 1. 
 



59 
 

Box 4.1. What is one piece of information? 
 
Remembering a lot of different things at the same time is difficult, especially if something 
does not have a meaning to you. We asked you to remember the following eight numbers in 
order: 07041776. Then, we asked you to think about the numbers as a set of three pieces of 
information in a date: 07-04-1776. Finally, we told you that was another way of writing the 
single piece of information: July 4th, 1776, the day the United States declared independence. 
All of a sudden, eight meaningless numbers became one meaningful piece of information – 
and that was easier to remember. If you did not remember the eight numbers in order, but you 
could remember Independence Day, then you successfully “chunked,” or grouped together, 
the information in your memory. Here are two more examples: 

1. Let us say you meet five new friends at school and you have to remember their names: 
Daniel, Emily, Colin, Anna, and Bob. Try to recall their names in 1 min. How did you 
do? Maybe you forgot one or two! Well, what if we tell you that your five new 
friends’ names start with the first five letters of the alphabet? A ... B ... C ... 

2. Try to remember random colors; let us say: red, white, blue, black, red, and yellow. 
Again, that is difficult, but if you know that the first three colors are in the American 
flag and the last three colors are in the German flag, it might be easier. We show you 
how your brain might fit this information into a WM cycle in Fig. 4.2. 

 

 
 
Fig. 4.2. Chunking information in one WM cycle: let us say you have to remember a set of 
different colors in the right order. Holding onto two colors in your memory is simple. It gets 
more complicated if you have to remember six colors, especially if one color (here, red) 
appears twice. As you can see, the order becomes more important with more information to 
hold in memory. It probably helps if we tell you that all the colors appear in the American and 
German flags, in that order. That is, it probably helps if we show you a trick to put these six 
colors into two “chunks,” making the colors easier to remember. The brain uses another trick 
to organize multiple pieces of information in three to eight cycles of electrical activity per 
second. First, different pieces of information are put into different time slots within one 
memory cycle. Then, our brains can automatically use timing to group different pieces of 
information together into chunks. When we chunk a lot of information into fewer, more 
meaningful pieces of information (such as two-colored flags versus six colors), we are 
helping our brains use their own organizational tricks! 
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We have long understood that WM capacity is limited to approximately five to seven pieces of 
information [4]. As shown in Box 1, a piece of information can refer to something relatively 
meaningless like a single number or a color, or something more meaningful like a date or a flag. 
 
As seen in Fig. 4.1 (gray-shaded area), approximately seven cycles of sensory information fit 
into one WM cycle. To understand what this means, consider how we represent pieces of 
information in the brain. Think about Box 4.1 (Fig. 4.2), where you used the sensory process of 
vision to study the colors and the colored flags. To memorize a list of numbers, you would use 
vision to read the numbers; alternatively, you would use hearing if someone were to read the 
numbers to you. Electrical activity that cycles 30 or more times per second is involved in 
representing brain activity during sensory processing [4]. So, if you try to remember more than 
seven pieces of information at the same time, your brain might process all of the sensory 
information, but you might not actually remember all of the information later. This may be 
because more than seven items exceeds the capacity of the slower memory component – that is, 
the WM cycle [4]. 
 
Now, let us do the math. If faster electrical currents cycle an average of 30 times in a second and 
slower electrical currents cycle an average of 5 times in a second, how many faster electrical 
cycles fit into each slower electrical cycle (30 ÷ 5)? The answer is 6, which is consistent with our 
limited WM capacity of five to seven pieces of information. The number of times faster electrical 
currents fit into the slower WM electrical cycles might actually determine our WM capacity 
limits [4]! Have another look at Fig. 4.1 for a picture of how the number of pieces of information 
(represented in electrical activity that cycles 30 or more times per second) can fit into a memory 
cycle (three to eight cycles per second). This relationship between fast- and slow-cycling 
electrical activities is important to how neurons make memories. Depending on how much 
information needs to be processed, the brain can speed up or slow down the slower, WM wave 
within the range of three to eight repeating cycle per second. Therefore, this slow rhythm can 
adapt, which helps the brain group the fast rhythm into meaningful pieces of information. 
 
Thinking again to Box 4.1 (Fig. 4.2), it may be easier to remember two-colored flags than to 
remember six colors in order, but it is more complicated to remember two flags of three colors 
each than it is to remember two single colors. Scientists are currently doing experiments to figure 
out how the brain supports WM for more complicated pieces of information – or, “chunks” of 
multiple pieces of information. 
 
As mentioned above, the slower-cycling WM electrical activity is adaptive. This means that the 
WM cycle might slow down, from eight to three cycles per second, to incorporate more pieces of 
sensory information in one WM cycle [4]. Another way that the brain supports WM for chunked 
information is that the WM cycle organizes the sensory information in order based on timing [5]. 
In Fig. 4.2, the first red-colored item occurs before the blue item, and the two red items occur at 
different times, separated in order by three other items. When we only have to remember two 
items, red and blue, the order of red-then-blue is simple. But, when we have to remember six 
items, the timing becomes more complicated – and important. This means that as we hold onto 
and process more and more pieces of information, the order in which different pieces of 
information enter the WM cycle becomes more and more important to WM function. The fast-
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cycling electrical activity, which represents pieces of sensory information and reflects the firing 
of neurons [2], actually occurs in ordered time slots within the slower WM cycle [5]. 
 
Putting it all together, electrical signals recorded from the human brain show us that we hold 
onto and process pieces of information in coordinated patterns of activity [2–5]. Neurons make 
memories by firing together in specific parts of the brain. That might be one mechanism for 
remembering multiple pieces of information at the same time. This complicated WM system 
allows us to make memories, and it may also be the reason why remembering a lot of things at 
the same time is so hard! 
 
4.3. Improve Your Memory with Science 
 
Think back to Fig. 4.2 again. In order to remember all six-colored items, we asked you to think 
about them as two-colored flags. As we described, this is called “chunking,” in which you 
combine a lot of information into fewer, more manageable chunks. Chunking is a very effective 
strategy for remembering multiple things at the same time. As mentioned above, the brain uses 
the timing of the faster electrical waves to incorporate more and more information into each 
slower WM cycle. By chunking a lot of information into a single item or event, we are allowing 
our brains to handle more pieces of information. Usually, the brain automatically breaks 
incoming information into manageable pieces, making the information easier to process. You can 
also actively use chunking to improve your memory, for example, when you study to learn 
information. 
 
You can associate and combine different pieces of information, however, you would like in order 
to make chunks. Your brain can actually use the timing of different cycles of electrical activity to 
make sense of relationships based on time, space, emotions, or anything else that holds meaning 
for you [6]. For example, think about two events that happened yesterday, such as talking to a 
friend and eating dinner. Which one happened first? Did they happen in different places? Did 
one make you laugh? Each of these questions adds meaning to the events, allowing you to chunk 
the events together in WM. So, make stories! 
 
You may have guessed from our example WM experiments that the first author of this review is 
from the United States. Barring extensive brain damage, she will never forget the image of the 
American flag or the date July 4th, 1776, because it has particular meaning for her. What country 
do you think the second author is from? We showed you the American flag first and the German 
flag second (... yes, Germany!). It also helps to visualize your stories. 
 
Finally, because we hold onto pieces of information through cycles of repetitive electrical 
activity, memory improves with repetition. Make sure to tell your stories to help your brain hold 
onto your memories. 
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Conclusion and Future Directions 
 
By applying advanced neuroscientific techniques to human memory research, the current 
projects uncovered the dynamic and rhythmic nature of frontal and posterior control over 
information in working memory (WM). Intracranial data revealed parallel theta-modulated 
frontal-medial temporal (MTL) systems for WM (Johnson et al., in prep.; see Johnson & Knight, 
2015), including a bidirectional prefrontal (PFC)-MTL system and a unidirectional MTL-to-
orbitofrontal cortex (OFC) system. Importantly, PFC-MTL interactions depended on which 
episodic feature (identity, spatial relation, or temporal relation) subjects focused on in WM. This 
is the first demonstration of bidirectional PFC-MTL interactions in the human brain (cf. Place et 
al., 2016; Brincat & Miller, 2015; Hallock, Wang & Griffin, 2016) – and critically shows that 
executive demands drive the direction of interaction. Local MTL, PFC, and OFC activities also 
shifted as a function of executive demand, such that focusing on one episodic feature or another 
during maintenance recruited the MTL, while subsequent selection recruited frontal regions. The 
concurrent persistence of dynamic, bilateral PFC-MTL interactions pinpointed a distributed 
system for executive control in the context of WM. 
 
At the same time, the PFC ostensibly does not govern WM unless additional executive demands 
are imposed for active processing (cf. D’Esposito & Postle, 1999). Contrary to traditional views 
of WM as tantamount to PFC integrity (Goldman-Rakic, 1995; see Postle, 2016; Sreenivasan et 
al., 2014; Lara & Wallis, 2015; Eriksson et al., 2015), lesion data revealed that alpha-beta 
rhythms originating in posterior regions provided adequate resources for proficient, albeit not 
consistent, WM function. However, when the PFC was fully intact, dissociable PFC-driven slow 
rhythms traveled in the opposite direction, so that multiplexed rhythms precessing in different 
directions between frontal and parieto-occipital regions together subserved optimal WM function 
(Johnson et al., in prep.). PFC-sourced low theta activity increased commensurate with executive 
demand, while the directionality of PFC-parieto-occipital slow rhythmic interactions shifted as a 
function of whether information was being encoded or maintained in WM. Taken together, 
results of the current projects delineate the fundamentally dynamic nature of PFC control in 
WM, and show that oscillations in the theta range coordinate distributed frontal interactions per 
available neural resources. 
 
As the cornerstone of memory formation and thinking, it is paramount that we understand how 
WM works. These results illuminate phenomena in the human brain that corroborate and 
critically extend non-human animal data (cf. Fusi et al., 2016; McKenzie et al., 2014; Stokes et 
al., 2013; Warden & Miller, 2010; Barak et al., 2010; see Johnson & Knight, 2015), and bolster 
millennia of inquiry into the nature of human memory. Moreover, they show that dynamic 
association cortex activity also manifests at the network level, with theta oscillations influencing 
long-range interactions as dual functions of executive demand and individual structural integrity. 
 
An accurate understanding of memory is especially pertinent as the technology sector aims to 
enhance human memory function (Reardon, 2015), and given the high rates of dementia in our 
aging population (Van Cauwenberghe et al., 2016). By bringing the field closer to such an 
understanding, the current results propel basic science – but raise more questions than they 
answer. A dynamic perspective of WM suggests that, instead of mnemonic demands initiating a 
particular cascade of synchronizations through a distributed network, available systems quickly 
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adapt to match current goals with an available trajectory through state space (Stokes, 2015; also 
Rose et al., 2016). The current results demonstrate that the network synchrony and dynamic state 
accounts are not mutually exclusive. Future research may consider an updated proposal: what 
makes memory function so intricate is the interaction of careful synchrony and dynamic state 
space. 
 
Results of the current projects illuminate the potential of analytic approaches which track 
information that exists outside the scope of overtly measurable activity. For instance, 
bidirectional interactions between the PFC and distal regions were contingent on frequency, 
highlighting multiplexed rhythms for successful WM (cf. Watrous, Tandon, Conner, Pieters & 
Ekstrom, 2013) in the absence of variations in region-specific activity. Additional analyses may 
adopt multivariate approaches designed to pinpoint patterns in the spatial underpinnings of WM 
(Stokes et al., 2013; Wolff, Ding, Myers & Stokes, 2015; Rose et al., 2016) – and crucially 
explore outcomes across WM, long-term memory, and other cognitive domains. Finally, state-
space analysis is ideally suited to detect patterns of dynamic potential during the pretrial intervals 
that precede successful versus unsuccessful encoding; that is, such novel analytic approaches 
may uncover the neural substrates that predict subsequent memory accuracy. Joint application of 
multiple analytic techniques to single datasets would not only address the interaction proposal 
directly, but also address the prospect of effectively recreating neural states for memory function. 
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Appendix 1: Public Outreach: The Resilience of Our Memory for Music 
 
Citation: Foo, F.* & Johnson, E. L.* The resilience of our memory for music. Front. Young 
Minds (submitted). *equal contribution 
 
Have you ever wondered what happens in your brain when you think about your favorite songs? 
Recent research has revealed an area of the brain that is active when we listen to music that we 
know. This musical memory area is separate from the parts of your brain you use to remember 
things you have learned in school, and details about events in your life. In this article, we will 
show you where the musical memory area is, and why our memory for music is often resilient to 
brain diseases that cause memory loss. 
 
A1.1. Our Memory for Music 
 
Try this simple exercise: go to your music library, pick a song, and play the first 3 seconds of it. 
Give yourself 1 point if you managed to sing or hum at least the next 5 seconds of that song. Do 
this for 20 songs. How many points did you score? We would not be surprised if it is more than 
15. Now, think about what you just did. You effortlessly recalled the pitch, rhythm, and maybe 
even lyrics of more than 15 songs in a short amount of time. That is a lot of data you managed to 
summon from your brain, just like that. 
 
Our brains possess a remarkable ability to form and retrieve memories of music, even when we 
are not conscious of doing so. For example, if you hear a catchy song, you would most likely be 
able to remember parts of it a few days later. After hearing it several times, you might know it by 
heart. Think about how much more effort it takes to learn information from a textbook, or 
remember the details of day-to-day events in your life. Even more intriguing, musical memories 
seem to be exceptionally preserved in people who suffer from amnesia – that’s the clinical term 
for memory loss. 
 
In his popular book Musicophilia, Dr. Oliver Sacks recounted the story of musician and 
musicologist Clive Wearing who, after suffering a devastating brain infection called herpes 
encephalitis, was unable to “retain an impression of anything for more than a blink” [1, Ch. 15]. 
He was also unable to remember almost his entire past, but he could play pieces of music on the 
piano from memory and mouth the melodies while conducting a choir. The case of Mr. Wearing 
is not unique – non-musicians with severe amnesia can also show lasting traces of musical 
memory [1, Ch. 29]. What, then, is so special about their ability to remember music, even when 
they cannot remember just about anything else? In this article, we will show you where musical 
memories may be imprinted in the brain, and how these traces can survive while other memories 
are lost. 
 
A1.2. How do musical memories differ from other long-term memories? 
 
The formation and retrieval of long-term memory traces (i.e., pieces of personal experiences and 
knowledge) involve the coordinated participation of multiple brain regions. For instance, when 
you remember what something looked like, you are using your occipital lobe, which is involved 
in vision. When you remember what you were thinking about, or wonder how something may 
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have happened differently, you are using your frontal lobe (which is important for thinking). 
When you think about other moments in time, such as your own past (or future!), you engage a 
network of brain regions including both the temporal and frontal lobes [2-3]. All of these 
representations are put together in a specific region called the hippocampus, located within the 
temporal lobes, to form a memory. 
 
Mr. Wearing’s brain infection destroyed his hippocampus and nearby regions, causing amnesia. 
The famous patient Henry Molaison, known by his initials as “H.M.,” also suffered severe 
memory loss after doctors surgically removed his hippocampus and the tips of both temporal 
lobes (see Fig. A1.1). By studying the cases of Mr. Wearing, H.M., and other individuals with 
amnesia, we can conclude that the hippocampus and neighboring regions of the temporal lobe 
are crucial for long-term memory function. 
 

 
 
Fig. A1.1. Patient H.M.’s brain after surgery on the temporal lobes. The picture on the left shows 
a side view of the outside of the brain. The arrow is pointing at the tip of the temporal lobe. The 
picture on the right shows a cross-section of H.M.’s brain, from the viewpoint of someone 
looking up from his feet. The arrow is pointing to the bright portions of his temporal lobes, 
which are filled with fluid after removal of the brain tissue. Without these portions of the 
temporal lobes, H.M. could not form new memories or retrieve memories of events that 
happened in the years leading up to surgery. Adapted from [2] with permission. 
 
Another condition that is associated with damage to the hippocampus and nearby regions of the 
temporal lobe is dementia – a neurological illness that affects one’s memory, thinking, and social 
abilities. Individuals with dementia show progressive cognitive decline, which usually begins 
with mild amnesia and then gradually worsens over many years to the point where they can no 
longer care for themselves [3]. As the disease progresses, their brains show more and more 
damage throughout the network of temporal, frontal, and other regions involved in thinking 
about themselves in time [2-4]. Yet, despite profound memory loss and a warped sense of self, 
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these individuals often show striking memory for music [1, Ch. 29]. Their musical memory 
traces somehow survive widespread brain damage when other long-term memory traces do not. 
Might musical memories be processed somewhere else in the brain, in an area separate from the 
network of regions involved in long-term memory? 
 
To answer this question, researchers recorded the brain responses of 32 healthy young adults as 
they listened to carefully pre-selected snippets of well-known, recently known, and completely 
unknown pieces of music [5]. The well-known pieces were selected from Top 10 songs between 
1977-2007, nursery rhymes, and oldies, while the unknown songs were individually selected by 
looking at people’s listening habits and choices on Amazon and Pandora. An hour before the 
participants’ brains were scanned, they heard half of the songs in the unknown group twice, so 
that these songs would make up the ‘recently known’ group. The researchers observed that two 
specific regions, called the ventral pre-supplementary motor area and the caudal anterior 
cingulate gyrus, were significantly more active when participants heard well-known songs 
compared to recently known or unknown songs. These regions are collectively marked in red in 
the top row of Fig. A1.2. Additionally, a computer could accurately predict whether a particular 
song was well-known, recently known, or unknown just by analyzing the patterns of brain 
activity in these regions. Taken together, the results of this study reveal a “musical memory area” 
(MMA) that enables us to remember our favorite songs. Importantly, this MMA is separate from 
the hippocampus and the temporal lobe that we know are necessary for long-term memory 
function. 
 
A1.3. Why might musical memory be preserved in patients with Alzheimer’s disease? 
 
Now that we have identified the MMA, let’s take a closer look at what happens in the brains of 
people who have Alzheimer’s disease (AD). AD is the most common form of dementia, and it 
most frequently afflicts people close to your grandparents’ age. People who suffer from AD start 
to lose their memories of who they are, where they have been, and what they have done. In later 
stages of the disease, they begin to lose their ability to speak, do simple everyday tasks, plan, 
solve problems, and interact well with other people. In other words, AD progresses beyond 
amnesia, impacting their sense of self in time and, eventually, every aspect of their lives [2-3]. 
 
In order to diagnose AD, doctors look for multiple symptoms in the brain. These include [4]: 

I) Cortical or grey matter atrophy (shrinkage of the brain because brain cells are dying);  
II) An increased presence of β-amyloid plaques (a sticky buildup that causes brain cells to 

die); and 
III) A reduced amount of glucose uptake, otherwise known as cerebral glucose 

hypometabolism (the brain is not consuming enough sugar to function properly). 
 
To visualize structural damage from cortical atrophy (I), doctors use magnetic resonance 
imaging (MRI). To visualize buildup of β-amyloid plaques (II) and glucose hypometabolism 
(III), doctors use positron emission tomography (PET). If you would like to learn more about AD 
and its diagnosis, check out ref. [3]. 
 
This brings us to the second, third, and fourth rows of Fig. A1.2. Following identification of the 
MMA in healthy young adults (top row), the researchers took MRI and PET scans of 20 



70 

individuals diagnosed with AD who did not have musical training [5]. They found that the MMA 
showed some of the lowest amounts of cortical atrophy and glucose hypometabolism out of the 
entire brain (second and third rows, Fig. A1.2). In contrast, cortical atrophy was observed in the 
same portions of the temporal lobe that, once removed, caused amnesia in patient H.M. (Fig. 
A1.1). The other regions showing high amounts of cortical atrophy or glucose hypometabolism 
are part of the widespread network of regions involved in thinking about oneself in time [2]. If 
AD damages those regions and spares the MMA, it makes sense that musical memories survive 
while other long-term memories, as well as one’s sense of self in time, are lost. 
 
The researchers also observed a similar amount of β-amyloid plaque buildup in the MMA 
compared to other brain regions (fourth row, Fig. A1.2) [5]. As β-amyloid plaques generally 
appear first in the development of AD, sometimes even before noticeable memory loss [4], they 
argued that the MMA remains in the early stages of AD longer than the temporal lobe and other 
regions. AD progression typically follows from β-amyloid plaque buildup  glucose 
hypometabolism  cortical atrophy, making the MMA among the last brain regions to 
degenerate [4]. To understand what this means, think about how a sticky buildup causing brain 
cells to die would appear first before brain cells actually die; this progression happens earlier in 
the temporal lobe than in the MMA. As such, the MMA is well-preserved over the course of AD, 
even when it has ravaged most other parts of the brain. 
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Fig. 5.2. The “musical memory area” (MMA) and its resilience to Alzheimer’s disease. Each row 
shows a picture of the left hemisphere of the brain from the inside (left) and outside (right) 
views. The top row displays the MMA in red; it is also present in a symmetrically located region 
in the right hemisphere. In the second, third, and fourth rows, the MMA is denoted with a white 
or black border (you’ll have to take a closer look to see it). The second, third, and fourth rows 
show the amount of 3 different kinds of damage in the brains of AD patients: cortical or grey 
matter tissue atrophy, glucose hypometabolism, and β-amyloid plaque buildup. The MMA shows 
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the least damage from grey matter tissue atrophy and glucose hypometabolism, compared to 
other brain regions. Adapted from [5] with permission. 
 
A1.4. Conclusion 
 
Identification of the MMA provides key neuroscientific evidence to explain the brain basis of 
lasting musical memory traces in the face of amnesia and dementia. As beautifully described by 
Dr. Sacks [1], individuals who have lost their long-term memories may appear to be stuck in the 
present, having lost access to their autobiographies and their ability to think about a future time, 
but they can amaze us with their memories for music. If musical memories can outlast damage to 
the hippocampus and a network of temporal, frontal, and other regions, they must be different 
than other long-term memories. This explains why Dr. Sacks was able to witness “mute, isolated, 
confused individuals warm to music, recognize it as familiar and start to sing and bond” [1, Ch. 
29], and is testament to the strange yet magical power of music. 
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Appendix 2: Task-Evoked Pupillometry Provides a Window into the Development of 
Short-Term Memory Capacity 
 
Citation: Johnson, E. L., Miller Singley, A. T., Peckham, A. D., Johnson, S. L. & Bunge, S. A. 
Task-evoked pupillometry provides a window into the development of short-term memory 
capacity. Front. Psychol. 5 (2014). 
 
The capacity to keep multiple items in short-term memory (STM) improves over childhood and 
provides the foundation for the development of multiple cognitive abilities. The goal of this 
study was to measure the extent to which age differences in STM capacity are related to 
differences in task engagement during encoding. Children (n = 69, mean age = 10.6 years) and 
adults (n = 54, mean age = 27.5 years) performed two STM tasks: the forward digit span test 
from the Wechsler Intelligence Scale for Children (WISC) and a novel eyetracking digit span 
task designed to overload STM capacity. Building on prior research showing that task-evoked 
pupil dilation can be used as a real-time index of task engagement, we measured changes in pupil 
dilation while participants encoded long sequences of digits for subsequent recall. As expected, 
adults outperformed children on both STM tasks. We found similar patterns of pupil dilation 
while children and adults listened to the first six digits on our STM overload task, after which the 
adults’ pupils continued to dilate and the children’s began to constrict, suggesting that the 
children had reached their cognitive limits and that they had begun to disengage from the task. 
Indeed, the point at which pupil dilation peaked at encoding was a significant predictor of WISC 
forward span, and this relationship held even after partialing out recall performance on the STM 
overload task. These findings indicate that sustained task engagement at encoding is an important 
component of the development of STM. 
 
A2.1. Introduction 
 
The ability to maintain information for a short period of time, known variably as short-term 
memory (STM) or the storage component of working memory, increases over childhood (for 
meta-analysis see Simmering and Perone, 2013). STM capacity is tied to the ability to perform 
complex cognitive tasks, such as reading and math (Baddeley, 1992; Cowan et al., 2011), and the 
development of STM capacity partially governs age-related gains in higher-order cognitive 
functions (Bayliss et al., 2005; Magimairaj and Montgomery, 2012). The goal of the present 
study was to gain mechanistic insights into developmental changes and individual differences in 
STM capacity. 
 
One of the most commonly used indices of STM in children is the digit span task, a measure of 
verbal STM (Bayliss et al., 2005; Cowan et al., 2005). The digit span task requires the encoding 
and immediate serial recall of a list of numbers presented aurally, and the length of an 
individual’s span depends on how well s/he can attend to, rehearse, and subsequently repeat back 
the stimuli. The ability to remember long lists in simple span tasks has been validated as a robust 
correlate of higher-order cognitive functions as measured by complex span tasks in children 
(Cowan et al., 2005) and adults (Unsworth and Engle, 2007a,b). Age-related changes and 
individual differences in digit span could in theory reflect differences in cognitive resource 
allocation at encoding, rehearsal, and/or recall. Here, we sought to assess the extent to which 
age-related changes and individual differences in STM capacity could be explained by 
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differences in cognitive effort during stimulus encoding, as measured via the task-evoked 
pupillary response to cognitive load (Hess and Polt, 1964; Beatty, 1982; Beatty and Lucero-
Wagoner, 2000; Karatekin, 2007; Laeng et al., 2012). 
 
Pupil size is governed both by ambient light levels and physiological arousal (Kahneman, 1973; 
Beatty, 1982; Beatty and Lucero-Wagoner, 2000; Karatekin, 2007; Laeng et al., 2012). Pupil 
dilation related to physiological arousal is mediated by the simultaneous activation of 
sympathetic pathways and inhibition of parasympathetic pathways (Beatty and Lucero-Wagoner, 
2000), and evidence suggests that task-evoked pupil dilation results from cortical inhibition of 
the parasympathetic oculomotor nucleus (Wilhelm et al., 1999; Steinhauer et al., 2004). During a 
state of heightened attention, neurons in the locus coeruleus fire rapidly, supplying high levels of 
noradrenaline to numerous targets throughout the body, including both the eyes and brain. In the 
eye, this neurotransmitter mediates pupil dilation; in the brain, it regulates attention through its 
modulatory effects on brain activity (see Gilzenrat et al., 2010; Laeng et al., 2012; Donner and 
Nieuwenhuis, 2013; Eldar et al., 2013). 
 
Task-evoked pupil dilation in well-controlled experimental settings has been referred to variably 
as a peripheral marker of heightened attention, mental effort, or allocation of cognitive control 
when the task prompts focus or conscious engagement. Kahneman (1973) described it as 
reflecting the “intensive aspect” of attention; more recently, Gilzenrat et al. (2010) have 
described task-evoked pupillary dilation as reflecting task engagement. Indeed, a large body of 
research provides compelling evidence that task-evoked pupil dilation is sensitive to cognitive 
load (Beatty, 1982; Beatty and Lucero-Wagoner, 2000). Beginning with Kahneman and Beatty 
(1966), researchers have consistently shown that adults’ pupils dilate incrementally with each 
digit encoded in a digit span task until the length of the digit sequence exceeds STM capacity, at 
which point pupil size begins to plateau or diminish (Kahneman et al., 1968; Peavler, 1974; 
Granholm et al., 1996, 1997; Cabestrero et al., 2009). Pupils also tend to constrict during recall 
as items are offloaded from STM (Kahneman and Beatty, 1966; Cabestrero et al., 2009). These 
findings are consistent with the idea that cognitive resources are dedicated in a manner 
proportionate to the cognitive load. 
 
Pupil dilation patterns have also been used to examine individual differences in cognitive 
functioning among adults. Ahern and Beatty (1979, 1981) showed that cognitively higher-
functioning adults—as defined based on their scores on the Scholastic Aptitude Test—exhibited 
consistently smaller dilation amplitudes on STM, mental multiplication, and sentence 
comprehension tasks than lower-functioning adults. These patterns of pupil dilation were 
interpreted as indices of mental effort, suggesting that performance of the same cognitive task 
was less challenging for higher-functioning adults. Taken together, the results of prior studies 
validate pupil dilation as a measure of task engagement, with pupils dilating as cognitive effort is 
expended. 
 
Simmering and Perone (2013) have argued that the field of cognitive development would benefit 
from research linking theory to real-time behavior; specifically, they call for approaches that 
combine evidence from “micro-behavior”—i.e., indices of mechanisms underlying cognitive 
processes—and “macro” measures such as performance accuracy. We propose that task-evoked 
pupillometry represents a “micro” index of mental effort that can be used to probe developmental 
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changes in task engagement. Given its high temporal resolution, well-validated use in studies of 
adult cognition, and non-invasive nature, task-evoked pupillometry has the potential to provide 
important insights with regard to cognitive development (cf. Karatekin, 2007; Laeng et al., 
2012). 
 
Thus far, there have been only a few studies of task-evoked pupillometry involving children 
(Boersma et al., 1970; Karatekin, 2004, 2007; Karatekin et al., 2007a,b; Chatham et al., 2009), 
and only one of these studies involved a digit span task (Karatekin, 2004). In this study, 10-year-
olds (n = 15) and young adults (n = 21) performed a digit span task in which they listened to 
sequences of 4, 6, and 8 digits. Although the 10-year-olds did not perform as well as the adults 
on either the 6- or 8-digit sequences, their patterns of pupil dilation differed only when they 
encoded the 8-digit sequences (Karatekin, 2004). On these long sequences, children exhibited 
shallower mean rates of dilation per digit than did adults, which the authors interpreted as 
indicating that they allocated fewer cognitive resources to the task. 
 
Here, we sought to more closely examine the relationships between task engagement at encoding 
and developmental changes and individual differences in STM capacity. To this end, we 
measured pupil diameter continuously as participants encoded digit sequences that exceeded 
typical STM capacity, i.e., an STM overload task. If, as the results of Karatekin (2004) suggest, 
children are unable to recruit cognitive resources sufficient to encode at high loads, then their 
pupils should stop dilating (Cabestrero et al., 2009) and/or constrict (Peavler, 1974; Granholm et 
al., 1996) earlier in the sequence as compared to adults. Seeking to explore the relationship 
between these task-evoked pupillary responses and differences in STM capacity, we also 
administered the forward span task from the Digit Span subtest of the Wechsler Intelligence 
Scale for Children (Wechsler, 2003) to both children and adults. We hypothesized that if the 
point at which pupil diameter asymptotes is related to the amount of information encoded into 
STM, then this value should be related to STM capacity. 
 
A2.2. Methods 
 
A2.2.1. Participants 
 
Sixty-nine healthy children (36 males, 33 females; ages 7.5–14.0 years, mean 10.6 ± 1.1 years) 
and 54 healthy adults (27 males, 27 females; ages 18.3–60.8 years, mean 27.5 ± 10.8 years) 
participated in this study.1 Children were recruited through the Berkeley Chess School outreach 
program at public schools in Oakland, CA, or surrounding San Francisco Bay Area communities, 
and thanked via a classroom gift by request of the school administration. Adults were recruited 
from the University of California, Berkeley, or the San Francisco Bay Area via advertisements, 
and received monetary compensation or—for UC Berkeley students in the Research Participation 
Pool—course credit. All participants had normal or corrected-to-normal vision and hearing, and 
were fluent in English. 
  

                                                           
1 Three adults and one child who reported having taken medications on the day of testing were excluded from the 
current sample. Two adults took an antihistamine and one took Flomax; the child’s medication is not known. Six of 
the young adults recruited through the UC Berkeley Research Participant Pool did not provide their exact ages. 
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A2.2.2. Behavioral Forward Digit Span 
 
To assess STM capacity, we used the forward span task in the Digit Span subtest on the 
Wechsler Intelligence Scale for Children— Fourth Edition (WISC-IV; Wechsler, 2003). The 
forward span task is a commonly used behavioral measure of verbal STM in multiple 
populations (Kane et al., 2004; Bayliss et al., 2005; Cowan et al., 2005; Alloway et al., 2009). 
The Digit Span subtest procedure is identical in the children and adult Wechsler test batteries; we 
chose to use the WISC subtest across age groups to keep the digit lists constant. Participants are 
read a series of digits (e.g., “9, 4, 2”) at a rate of one digit per second and are asked to repeat the 
digits back to the experimenter in the same serial order presented. Two trials are presented at 
each span length, starting with two digits per trial. If the participant repeats at least one of the 
two trials of the same sequence length successfully, the experimenter presents two trials of a 
sequence that is one digit longer. This procedure continues until the participant misses both trials 
of a particular span length or completes the trials with the maximum 9-digit span. 
 
In tests of verbal STM, healthy adults remember an average of seven digits, plus or minus two 
(Miller, 1956); children tend to remember fewer digits than adults (Simmering and Perone, 
2013). An individual’s STM span is calculated as the length of the longest sequence of digits 
successfully repeated back to the experimenter, for a maximum of 9. The forward total score 
reflects the number of trials each participant completed correctly, for a maximum of 16. 
 
A2.2.3. STM Overload Task 
 
Following administration of the WISC forward digit span, participants completed a computerized 
STM overload task while undergoing eyetracking. Our task was adapted from Peavler (1974), 
Granholm et al. (1996, 1997), Karatekin (2004), and Cabestrero et al. (2009). As in the WISC 
task, participants heard a sequence of digits, presented at the rate of one digit per second, and 
were asked to repeat them back immediately in the same order presented (Wechsler, 2003). In 
our adaptation of the task, participants completed a total of four trials, all involving the same 
number of digits. Children were asked to encode sequences of nine digits, whereas adults were 
asked to encode sequences of 11 digits (the same nine digits as for the children, with two 
additional digits added at the end of the sequence). These digit sequence lengths were chosen 
because they exceed average WISC forward spans, allowing us to examine pupillary responses 
once participants surpassed their individual encoding limitations (Granholm et al., 1996, 1997; 
Karatekin, 2004; Cabestrero et al., 2009). For the present purposes, we were interested in 
average pupil dilation and subsequent serial recall accuracy for each digit. 
 
All participants were informed that they would hear a series of numbers. They were instructed to 
remember the digits as presented and then do their best to recall the full sequence of digits in the 
correct order. Each trial began with a 1-s auditory cue (“memorize”), alerting participants to the 
beginning of a trial. After the last digit for the trial was presented, the word “recall” signaled the 
participant to repeat the numbers back; as in the WISC forward digit span, the recall phase was 
self-paced. Participants completed all four trials irrespective of recall accuracy. The 
experimenter manually recorded participants’ responses during the recall phase. 
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Both children and adults completed the same two practice trials before the experimental trials: a 
3-digit trial followed by a 5-digit trial. They were permitted to repeat this round by request. After 
practice, participants underwent a 5-point eyetracking calibration procedure, and then began the 
experimental trials. Within each age group, all participants completed the same four 
experimental trials, with the order of trials randomized. 
 
Participants were instructed to look at a 1×1inch fixation cross in the middle of the screen, 
presented in white on a black background, throughout the computer task. This design permitted 
the recording of pupil data at fixed luminance for the duration of the task, ensuring that pupillary 
responses were independent of pupillary light reflexes (Beatty, 1982; Beatty and Lucero-
Wagoner, 2000). To allow participants’ pupil diameters to return to a neutral baseline before the 
start of each trial (e.g., Cabestrero et al., 2009; van der Meer et al., 2010), we programmed the 
task in such a way that it proceeded automatically to the next trial only after the eyetracker had 
captured 2 s of continuous data. 
 
A2.2.4. Eyetracking Apparatus 
 
Stimuli were presented using the Tobii E-Prime Software Extensions (Psychology Software 
Tools, Pittsburgh, PA), which syncs the timing of stimulus presentation with a second computer 
that records pupil data. Participants were seated comfortably in front of the Tobii T120 Eye 
Tracker (17-inch monitor, 1280×1024 pixel resolution); distance was calibrated individually so 
that each participant focused on the middle of the screen, within a range of 50–80 cm. The Tobii 
T120 built-in camera captures data with a temporal resolution of 120 Hz, producing a data point 
every 8.3 ms, and average spatial resolution of 0.3◦ of visual angle. Because the camera can 
automatically compensate for small head movements (within a 30×22cm area at 70cm distance), 
participants’ heads were not restrained. The camera simultaneously recorded the pupil diameter 
of the left and right eyes. 
 
A2.2.5. Data Analyses 
 
Nineteen children and eight adults were excluded from the sample due to insufficient recording 
of eyetracking data, yielding data from 69 children and 54 adults. We considered recordings 
insufficient if pupil data were absent across all four trials of at least one digit or while hearing the 
“memorize” cue (i.e., the cue period), or if less than 25% of data remained overall after cleaning 
the data to remove artifacts (adapted from Granholm et al., 1996; Siegle et al., 2011). These were 
cases of either technical error or excessive blinking or head motion on the participant’s part, and 
so using such stringent cutoffs permitted us to perform analyses without need for interpolating 
data points to fill gaps in data collection. 
 
Data were cleaned using a local fit procedure. We manually inspected graphic displays of a 
subset of data in each group sample for artifacts (e.g., partial eyelid closures, apparent changes in 
diameter resulting from motion), and then implemented a computer algorithm to automate this 
process for all subjects. A local regression model was applied to the full datasets (loess model; 
Cleveland et al., 1992), such that data points were removed from analysis if they fell out of the 
range of five standard errors above or below the locally defined, weighted mean. We applied this 
process separately to the raw pupil diameter of each eye, fitting locally over 400-ms segments of 
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data around each diameter data point.2 Because subjects’ heads were not restrained, we also 
applied this procedure to the mean distance between subjects’ eyes and the camera. We used a 
more conservative fit based on 200 ms around each distance data point in order to pick up 
artifacts due to abrupt changes in head position. Overall, data were discarded if they fell out of 
range in either eye based on pupil diameter, or based on distance; fewer than 4% of data points 
were removed in this procedure. 
 
To measure pupil dilation during encoding, we calculated the average pupil diameter across both 
eyes at each remaining data point (8.3 ms). Data for one eye were used when data for both were 
not available. We then calculated the mean diameter over each second, time-locked to the 
presentation of each stimulus, averaged across the four experimental trials. This procedure 
yielded one data point for the “memorize” cue, and either nine or eleven data points for the digit 
sequence, depending on whether the participant was a child or an adult. 
 
The absolute diameter of the pupil at rest is known to decrease from childhood into adulthood. 
This age-related change is posited to reflect a gradual decrease over childhood in the influence of 
the sympathetic branch concurrent with a decrease in central inhibition of the parasympathetic 
pathway (Karatekin et al., 2007a). Thus, to compare patterns of pupil dilation between children 
and adults, it is necessary to control for these differences in baseline pupil diameter. 
 
Task-evoked pupil dilation was defined as the percentage of dilation at each digit, over 1 s, 
relative to the mean pupil diameter over the 1-s cue period, i.e., dilationdigit = (diameterdigit - 
diametercue) / diametercue (Karatekin, 2004; also Hess and Polt, 1964; Beatty and Lucero-
Wagoner, 2000). Pupil dilation data were submitted to a mixed-model, repeated-measures 
analysis of variance (ANOVA), with digit as the within-subjects factor and age group as the 
between-subjects factor. Planned post-hoc comparisons between dilation at each digit and the 
next consecutive digit in the sequence were performed within each age group. 
 
Recall accuracy was defined as the proportion of digits correctly recalled as a function of serial 
position on the STM overload task (Cowan et al., 2005). If a participant correctly recalled the 
first digit on all four trials, s/he was given an accuracy of 1 on the first digit. If, however, a 
participant correctly recalled a digit on three of the four trials, and missed it or recalled it 
incorrectly on one trial, s/he was given an accuracy of 0.75 for that digit. This procedure yielded 
values of 1, 0.75, 0.5, 0.25, or 0 for each digit. We conducted a mixed-model, repeated-measures 
ANOVA, and performed post-hoc comparisons between each digit and the next digit in the 
sequence within each age group. We also conducted regression analyses to further explore the 
relationships between measures of STM capacity and pupillary dilation at encoding, controlling 
for age group. 
  

                                                           
2 A wider range of data points, up to 700 ms on pupil diameter and 500 ms on distance, was used on datasets with 
fewer recorded data points, as required by the loess model. 
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A2.3. Results 
 
A2.3.1. Age-Related Differences in STM 
 
First, we tested for group differences in STM capacity on the WISC digit span test and on our 
computerized STM overload test. As expected, adults had significantly higher WISC forward 
spans and scores than children, tspan(115.1) = 7.6, tscore(117.8) = 7.9; both p < 0.001 (Table A2.1). On 
our STM overload task, adults recalled more digits than children (Fig. A2.1, Table A2.1). A 9 
(digit: 1 through 9) × 2 (age group) ANOVA revealed significant main effects of digit, F(8, 960) = 
258.92, MSE = 0.03, p < 0.001, ηp

2 = 0.68, and age group, F(1, 120) = 68.87, MSE = 0.15, p < 
0.001, ηp

2 = 0.37. 
 

 
 
Fig. A2.1. Behavioral performance on the STM overload task. Mean proportion of digits 
correctly recalled as a function of serial position, plotted separately for children and adults. Error 
bars represent standard mean error. 
 



80 

 
 
Table A2.1. Descriptive statistics for WISC, pupillary, and recall accuracy data by age group. 
 
Both groups exhibited a primacy effect, such that proportion of correctly recalled digits was high 
at the beginning of the digit sequence and diminished with each additional digit (i.e., serial 
position), consistent with prior research on immediate serial recall (Kane et al., 2004; Unsworth 
and Engle, 2007a,b). In adults, there were significant incremental decreases from positions 1 to 
2, 2 to 3, 3 to 4, 6 to 7, 7 to 8, 8 to 9, and 9 to 10 [all t(53) > 3.0, p < 0.01]; and in children, from 
positions 1 to 2, 3 to 4, 6 to 7, 7 to 8, and 8 to 9 [all t(67) > 2.7, p < 0.01]. A follow-up one-way 
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ANOVA showed that adults were significantly more accurate than children on all digits, all p < 
0.001, and an independent samples t-test confirmed that adults recalled 12% more digits than 
children overall (p < 0.001, see Table A2.1). This finding is consistent with prior literature on the 
development of STM, showing that capacity increases with age from childhood into adulthood 
(Simmering and Perone, 2013). 
 
Next, we used partial correlation analyses to test whether the standardized WISC digit span 
subtest and our STM overload task elicited similar behaviors, controlling for age group. This 
analysis showed that recall accuracy on the STM overload task was significantly, albeit 
modestly, correlated with WISC score after controlling for group [r(119) = 0.19, p < 0.04]. The 
partial correlation between recall accuracy and WISC span, however, did not retain significance 
[r(119) = 0.14, p < 0.12]. 
 
These findings suggest that the cognitive factors that contribute to performance on our STM 
overload task overlap partially with those of the standard digit span task, in which the length of 
the test sequence increases only after mastery is demonstrated at a particular sequence length. 
Indeed, behavioral performance on a memory test reflects the combined outcome of cognitive 
processes operating during encoding, maintenance, and retrieval. Given the high temporal 
resolution of pupillometry, by contrast, it is possible to examine measurements taken during a 
specific task phase. Here, we probe the relationships between STM capacity and pupil dilation 
during the encoding phase of our STM overload task. 
 
A2.3.2. Age-Related Differences in Pupil Dilation at Encoding 
 
In accordance with our research aim of investigating the relationship between task-evoked 
pupillary responses and STM capacity, we tested for group differences in dilation relative to the 
cue period immediately prior to task. Consistent with prior work (Karatekin, 2004; also Beatty 
and Lucero-Wagoner, 2000), children had larger pupils at all timepoints than adults (Table 
A2.1); thus, we plotted pupil dilation in terms of percentage change from the cue period (Fig. 
A2.2). 
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Fig. A2.2. Temporal dynamics of pupil dilation and constriction on the STM overload task. 
Mean percentage of pupil dilation for each digit relative to mean pupil diameter over the cue 
period (set to a starting point of 100%; Karatekin, 2004), by age group. Adults encoded four 
sequences of 11 digits each, and children encoded four sequences of 9 digits each. Error bars 
represent standard mean error. 
 
A 9 (digit) × 2 (age group) ANOVA revealed significant main effects of digit, F(8, 968) = 59.24, 
MSE = 7.23, p < 0.001, ηp

2 = 0.33, and age group, F(1, 121) = 4.09, MSE = 168.03, p < 0.05, ηp
2 = 

0.03, and a significant digit × group interaction, F(8, 968) = 13.51, MSE = 7.23, p < 0.001, ηp
2 = 

0.10. Both age groups demonstrated an increase in pupil dilation as a function of digit, to a point. 
Adults’ pupils showed incremental increases from cue to digit 1, and digits 1 to 2, 3 to 4, 4 to 5, 
5 to 6, and 6 to 7 [all t(53) > 2.8, p < 0.01], and continued to dilate until almost digit 9 on 
average (8.7 ± 2.2). Children’s pupils dilated until digit 6 on average (6.1 ± 2.0), with 
incremental increases from cue to digit 1, digit 2 to 3, and digit 4 to 5, [all t(68) = 2.7, p < 0.01], 
and a marginally significant increase from digit 1 to 2 [t(68) = 2.0, p = 0.05]. In contrast, a 
significant decrease was observed from digit 7 to 8, t(68) = 2.1, p < 0.05. 
 
A one-way ANOVA with age group as the between-subjects factor confirmed that adults’ pupils 
were significantly more dilated than children’s while encoding digits 7, 8, and 9 (all p < 0.01), 
indicating that where adults’ pupil diameters continued to dilate or reached a stable plateau, 
children’s pupils reached an asymptote or began to constrict. The age groups did not differ 
significantly in pupil dilation on digits 1 through 6 (all p > 0.12), suggesting a similar rate of 
dilation within the constraints of STM capacity. 
 
To directly compare the latency to peak pupil dilation—i.e., digit-at-peak—between groups, we 
also conducted a planned comparison based on the digit (1–9) at which pupils reached maximum 
dilation. Adults’ maximum pupil dilation occurred on average at digit 7.7 ± 1.8, which was 
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significantly greater than children’s maximum at digit 6.1 ± 2.0, t(118.7) = 4.5, p < 0.001 (Table 
A2.1). 
 
A2.3.3. Relationship Between Pupil Dilation and STM 
 
The correspondence between average digit-at-peak values (7.7 and 6.1 for adults and children, 
respectively) and average WISC spans (7.2 and 5.5) hints at a relationship between STM 
capacity and the dynamics of pupil dilation during STM encoding. To test this hypothesis 
directly, we first conducted linear regression analyses between the pupillary measure of digit-at-
peak dilation and each behavioral STM measure: recall accuracy on the STM overload task, 
WISC span, and WISC score. Digit-at-peak was significantly correlated with all three measures 
(βrecall = 0.30, βspan = 0.38, βscore = 0.37; all p ≤ 0.001). The correlation between digit-at-peak and 
each WISC measure retained significance after partialing out recall accuracy on the STM 
overload task [rspan(119) = 0.30, rscore(119) = 0.29; both p = 0.001]. 
 
Next, we measured the extent to which individual variability in digit-at-peak explained 
individual differences in STM capacity, controlling for age group. In a multiple regression 
analysis, we modeled STM capacity as a function of digit-at-peak and group. This analysis 
revealed a strong effect of group on all three STM measures, as expected, as well as an 
independent contribution of digit-at-peak to each measure, p < 0.05 (see Table A2.2 for full 
results). These results indicate that cognitive resource allocation at encoding, as measured by the 
point of maximal pupil dilation on our STM overload task, can explain individual differences in 
STM capacity on a standard digit span task. 
 

 
 
Table A2.2. Multiple regression analyses for WISC score, WISC span, and recall accuracy 
 
A2.4. Discussion 
 
Consistent with decades of prior research in adults, the present results corroborate a close link 
between cognitive demands imposed by the digit span task and task-evoked pupil dilation 
(Kahneman and Beatty, 1966; Kahneman et al., 1968; Peavler, 1974; Granholm et al., 1996, 
1997; Cabestrero et al., 2009), and show that children also exhibit this link (also Karatekin, 
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2004). Our findings extend prior work in two ways. First, we provide evidence that the children 
disengaged from the task as soon as the cognitive load surpassed their STM capacity, whereas 
adults stayed engaged while encoding additional items beyond their span. Second, we show that 
the point at which pupil dilation peaks is related to STM capacity—independent of age, and even 
after partialing out recall accuracy on the STM overload task. 
 
With our STM span overload paradigm, we obtained similar trajectories of pupil dilation for 
children and adults until the sixth digit, after which the age groups diverged. Whereas adults 
showed dilation during encoding up to the ninth digit and then exhibited a plateau in pupil 
diameter until the end of the 11-digit sequence, children’s pupils plateaued from digit 6 to 7, 
constricted from 7 to 8, and then plateaued until the end of the 9-digit sequence. In contrast to 
Karatekin (2004), who showed that children exhibited shallower dilation than adults during 
encoding of an 8-digit sequence, this finding shows children and adults dilate at similar rates up 
to digit 6, after which the groups’ dilation patterns diverge. 
 
Analyses focused on digit-at-peak revealed a significant relationship between the ordinal number 
corresponding to the digit at which maximal pupil dilation was reached on digits 1–9 and STM 
capacity, as reflected in our STM task and the WISC Digit Span subtest. That is, individual 
children or adults whose pupils peaked later in the encoded sequence were more likely to have a 
higher STM span, as reflected in multiple measures. This pupil-behavior relationship, observed 
independently of age group, is all the more noteworthy because performance on our STM 
overload task was not significantly related to WISC forward span after partialing out the effect of 
group. Thus, pupillometry reveals a relationship between encoding on one task and recall on 
another that would not have been detected via comparison of behavioral performance on the two 
tasks. These findings suggest that the allocation of cognitive resources—what Kahneman (1973) 
called the “intensive aspect” of attention—during encoding of information at high cognitive 
loads is an important contributor to the development of STM. 
 
However, the group difference in STM performance suggests that attention is not the only factor. 
The groups exhibited the same rate of dilation for digits 1 through 6, indicating a similar level of 
cognitive effort on those digits, yet adults outperformed children on recall for all digits, not just 
digits 7 and higher. Thus, similar levels of cognitive resource allocation in children and adults 
could not fully account for the group difference in recall performance (also Karatekin, 2004). 
Success on the digit span task requires participants to maintain encoded digits in STM while 
additional digits are presented, as well as during the recall phase. Attention, echoic memory, 
rehearsal, and mnemonic strategies are all components of maintenance that contribute to STM 
performance, and it is likely that each of these cognitive components contributes to the more 
global measure offered by the task-evoked pupillary response. Further, STM capacity is 
operationalized in the digit span task as the number of digits that one can accurately recall in the 
right order via verbal report. This number is likely to be smaller than the number of digits in a 
sequence that one could accurately identify as “old” on a test of recognition memory (e.g., 
Unsworth and Engle, 2007b). Pupillometry has been employed in the context of long-term 
recognition memory (for review see Goldinger and Papesh, 2012), and given the relationship we 
have found between peak pupil dilation and STM span, it would be of interest to examine how 
the dynamics of pupil dilation and constriction at encoding relate to subsequent recognition 
memory as well as recall.  
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In summary, this study provides insight into the unique relationship between task engagement at 
encoding and STM capacity, and highlights the role that pupillometry can play in elucidating 
developmental changes and individual differences in cognition. This work supports Simmering 
and Perone’s (2013) thesis that measures of “micro-behaviors” combined with “macro” 
performance measures can inform research on cognitive development. Our results further 
highlight the potential of pupillometry to address inquiries that extend well beyond the study of 
prototypical adult cognition. 
 
The methodological approach reported here also has practical applications. Our STM overload 
task could provide insights regarding the cognitive deficits observed in specific patient 
populations (e.g., in amnesics, Laeng et al., 2007)—or, perhaps in the future, in individual 
patients. More generally, the task-evoked pupillary response could in theory be used to evaluate 
the effectiveness of a targeted cognitive intervention, pinpointing precisely at what stage(s) of a 
task the intervention influences cognitive processing. 
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Appendix 3: Development of Neural Networks Supporting Goal-Directed Behavior 
 
Citation: Johnson, E. L., Munro, S. E. & Bunge, S. A. Development of neural networks 
supporting goal-directed behavior, in Minnesota Symposia on Child Psychology: Developing 
Cognitive Control Processes: Mechanisms, Implications, and Interventions (eds. P. D. Zelazo & 
M. Sera) (John Wiley & Sons, Inc., 2014). 
 
Improvements in cognitive control over childhood and adolescence have long been attributed to 
the “coming online” of prefrontal cortex (PFC). However, fMRI studies reveal that children can 
engage PFC for cognitive control just as much as adults do—if not more so. We argue that gains 
in cognitive control are linked most closely to strengthening of the anatomical pathways that 
enable PFC to communicate efficiently and reliably with distant brain regions. 
 
A3.1. Introduction 
 
One of the most salient facets of cognitive and socioemotional development is the emergence of 
goal-directed thought and behavior, a concept referred to as cognitive control, executive 
function, or self-regulation (Bunge & Wright, 2007; Luna, Padmanabhan, & O ’Hearn, 2010; 
Somerville & Casey, 2010). We begin life with a broad focus of attention, registering incoming 
stimuli without attempting to filter them. Over childhood, we begin to selectively attend to, 
manipulate, and act on goal-relevant information; in so doing, we exhibit greater volitional 
control over our attention, memory, action, and emotions (Bunge & Crone, 2009; Munakata, 
Snyder, & Chatham, 2012). 
 
Implications of the healthy development of cognitive control are far-reaching. Self-control has 
been linked to health, wealth, and public safety on a population level (Moffitt et al., 2011). 
Moffitt and colleagues (2011) followed a cohort of 1,000 children from birth to age 32, and 
found that physical health, substance dependence, personal finances, and criminal offense in 
adulthood were predicted by a gradient of self-control in childhood, even after accounting for IQ 
and social class origins. Recent evidence has also linked failure of self-regulation to a host of 
neuropsychiatric problems—including attention deficit hyperactivity disorder, addiction, risk-
taking behaviors, and conduct disorders—as well as suboptimal performance in school (Fjell et 
al., 2012). However, the mechanisms by which this important ability develops are not well 
understood. 
 
A3.2. Cognitive Control in the Developing Brain 
 
Crucial to understanding goal-directed behavior is an understanding of what it means to be goal-
directed; it is deliberate, volitional, and governed by top-down processing. We have a limited 
capacity for processing information, and successful control depends on our ability to focus on 
relevant information and filter out irrelevant information. The prefrontal cortex (PFC) is 
integrally involved in top-down processing, as discussed in an influential theoretical review by 
Miller and Cohen (2001). Following on the theoretical work of Desimone and Duncan (1995), 
Miller and Cohen proposed that cognitive control rests on the active maintenance of patterns of 
PFC activity that represent goals, which signal “bias” to other brain structures and permit 
mappings between inputs, outputs, and internal states appropriate to achieve those goals. 



89 

Goal-directed behavior is subserved by widespread neural networks. Several frontal regions—
including the anterior cingulate cortex (ACC), inferior frontal gyrus (IFG), ventrolateral PFC 
(VLPFC), dorsolateral PFC (DLPFC), and frontal eye fields—and regions outside the PFC, 
including the posterior parietal cortex (PPC), striatum, thalamus, and cerebellum, are associated 
with inhibitory control and working memory (Hwang & Luna, 2013). 
 
The protracted development of the PFC and parietal cortex into young adulthood (Gogtay et al., 
2004) underscores the extended developmental trajectory of cognitive control from early 
childhood through adolescence. Until now, literature on the development of goal-directed 
behavior has focused on the PFC; we propose, along with others (Hwang & Luna, 2013), that 
changes in interactions between PFC and other cortical regions are at least as important as 
changes in the PFC itself. 
 
The adult state is implicitly viewed as the ideal in developmental research (Poldrack, 2010). 
Developmental cognitive neuroscience (DCN) asks questions like: Do we perform a particular 
task better as adults than as children because of increased efficiency of one or more cognitive 
processes? Or, do we perform the task better as adults because an additional, or different, 
cognitive process is involved? (Bunge, 2008). For instance, many developmental theories have 
assumed that in the temporal dynamics of how goal representations are activated, children are 
like adults, only less skilled (Munakata et al., 2012). However, recent work suggests that 
children use a qualitatively different, reactive form of cognitive control, which is recruited on an 
as-needed basis (Andrews-Hanna et al., 2011; Chatham, Frank, & Munakata, 2009) and is 
supported by neural networks that are differentiable from those supporting the proactive control 
more likely to be observed in adults (Madsen et al., 2010). 
 
Basic processes underlying cognitive control are evident early in development; gains in goal-
directed thought appear to be linked to the reliable engagement of specific processes that fi ne-
tune cognitive control (Hwang & Luna, 2013). Maturational changes in white and gray matter 
enhance the ability of the brain to integrate function between the PFC and other distributed 
cortical and subcortical regions, which is critical for processing complex information. 
Underlying these improvements in functional integration is the coupling of neural synchrony 
across neuronal assemblies. Prefrontally guided top-down connectivity continues to strengthen 
through early adulthood, supporting flexible executive control of behavior. 
 
Executive functions develop most rapidly during preschool years and undergo another period of 
relative plasticity in the transition to adolescence (Zelazo & Carlson, 2012). Children become 
more flexible in attentional control during the preschool years, and at as young as 4 years of age 
can switch between two sets of rules in a card sorting task when instructed (Hanania & Smith, 
2010). However, a hallmark of early executive function is externally driven behavior; without 
being told what rule to switch to, children tend to perseverate, demonstrating an immature 
capacity for generating goals internally (Kharitonova & Munakata, 2011; Munakata et al., 2012). 
 
Bunge and Zelazo (2006) proposed that gains in flexible rule use reflect the growth of regions in 
lateral PFC. Specifically, the ability to represent hierarchical rule systems depends on the 
development of an increasingly complex hierarchical network of PFC regions. The order of 
acquisition of rule types—first one rule, then two rules, then two incompatible pairs of rules—
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corresponds to the order in which each of the implicated brain regions matures, with the 
orbitofrontal cortex (OFC) maturing earliest, and the dorsolateral (DLPFC) and rostrolateral PFC 
(RLPFC) maturing last. Bunge and Zelazo (2006) observed that 8-year-olds showed greater 
lateral PFC activation for bivalent than univalent rules, and that age differences in the pattern of 
PFC activation across rule conditions differs between 8- and 12-year-olds, 13- and 17-year-olds, 
and young adults. Other brain regions showed mature patterns of activation across age-groups, 
suggesting that age-related gains in rule use between 8 years of age and adulthood are associated 
with development of the lateral PFC. 
 
Regions within the PFC also interact with multiple brain systems through complex networks, and 
development marks a period of mass neural network shifts. If we hope to understand why 
behavior becomes increasingly goal-directed over childhood and adolescence, it is imperative 
that we discover how the specific brain networks that regulate cognitive and emotional processes 
emerge over development (Fjell et al., 2012; Somerville & Casey, 2010; Stevens, 2009), and 
how they are shaped by genetic and environmental factors (Johansen-Berg, 2010). DCN calls for 
research on the underlying anatomy of pathways that support the development of cognitive 
control (Fjell et al., 2012). One likely suspect is myelination; reliable and timely transmission of 
signals is necessary to influence activity in a distal brain region, as is the case in PFC modulation 
of the parietal cortex and other regions. The child and adolescent brain undergoes substantial 
myelination and white matter growth (Fields, 2008; Giedd, 2008; Hua et al., 2009; Tamnes, 
Østby, Fjell, et al., 2010). Another likely suspect is the reorganization of local circuitry, achieved 
in part via cortical thinning (Gogtay & Thompson, 2010), enabling long-range fiber connections 
to play a greater role in altering local network dynamics. 
 
A3.3. Developmental Shift from Reactive to Proactive Control 
 
Flexible rule-guided behavior develops gradually, and is essential for success in life (Munakata 
et al., 2012); it entails the ability to remember rules, switch between them as needed, and 
implement them in the face of competing information (Wendelken, Munakata, Baym, Souza, & 
Bunge, 2012). In a recent review, Munakata and colleagues outlined three key developmental 
transitions toward more flexible behavior (Munakata et al., 2012). First, children develop an 
increasing ability to overcome habits by engaging cognitive control in response to environmental 
signals. At first, infants rapidly detect regularities in their environments to bring order to what 
they see and hear (Romberg & Saffran, 2010), but show limitations in breaking out of habitual 
behaviors or responding flexibly to novel situations. Young children begin to show signs of 
overcoming this inflexibility (Hanania & Smith, 2010). Second, children shift from recruiting 
cognitive control reactively, as needed in the moment, to recruiting cognitive control proactively, 
in preparation for needing it. Goal representations also provide top-down support to speed 
responses and to support generalization to new situations. Finally, children become more self-
directed. As their capacity for active maintenance increases across development—linked to 
maturation of lateral PFC regions (Bunge & Zelazo, 2006)—it increasingly becomes sufficient to 
support proactive control (Munakata et al., 2012). 
 
Chatham and colleagues tested the temporal dynamics of cognitive control in 3.5- versus 8-year-
old children on the AX-Continuous Performance Task using high-resolution pupillometry 
(Chatham et al., 2009). In this task, participants provide a target response to a frequent sequential 
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pair of stimuli, and a nontarget response to all other pairs. The authors found that 8-year-old 
children resembled adults in their proactive use of cognitive control, whereas 3.5-year-olds 
exhibited a qualitatively different, reactive form of cognitive control, responding to events only 
as they unfold and retrieving information from memory as needed in the moment. These 
contrasting approaches were evident in distinct profiles of errors, reaction times, and 
pupillometric indices of mental effort. Three-year-olds exerted more effort—indexed by pupil 
diameter (Beatty & Lucero-Wagoner, 2000)—after the second stimulus in a pair was presented, 
an effect consistent with reactive engagement of cognitive control in that moment, whereas 8-
year-olds exerted more effort after the first stimulus was presented, an effect consistent with 
proactive maintenance of this information until it is needed. 
 
With regard to neural networks, proactive control is associated with sustained and/or anticipatory 
activation of lateral PFC, which reflects the active maintenance of task goals (Braver, 2012). 
This activity serves as a source of top-down bias that can facilitate processing of expected 
upcoming events that have a high cognitive demand (Miller & Cohen, 2001). By contrast, 
reactive control should be reflected in transient activation of lateral PFC, along with a wider 
network of additional brain regions (Bunge, 2004). In addition, the two control mechanisms 
should differ in terms of the involvement of the dopaminergic system (Braver, 2012; also 
Ezekiel, Bosma, & Morton, 2013), which changes through adolescence. 
 
Building on Bunge and Zelazo ’s (2006) account of hierarchical rule representation, a recent 
study from our group probed the development of arbitrary rule representation (Wendelken et al., 
2012). We collected task-related functional magnetic resonance imaging (fMRI) in children ages 
8 to 13 years and young adults performing our so-called Nemo task, in which participants must 
switch flexibly from one task rule to another. One rule involves an arbitrary response mapping—
“press the left button if the character is blue”—and the other a nonarbitrary response mapping—
“press the left button if the character is facing left.” The task involves three distinct 
manipulations: (1) rule type: a manipulation of rule representation, comparing arbitrary with 
nonarbitrary stimulus-response mappings, (2) switching: whether the rule switches or repeats, 
and (3) incongruency: whether a stimulus would elicit the same response or a different response 
depending on whether participants are required to make a judgment based on the color or the 
orientation of the stimulus. 
 
Children performed fairly well overall on the Nemo task, although they were less accurate than 
adults and exhibited slower responses (Wendelken et al., 2012). Two key questions were 
addressed: First, are overlapping or distinct networks taxed by these manipulations? Second, are 
there differences between children and adults in the networks engaged for these various aspects 
of rule use? Several regions—left DLPFC, left posterior parietal cortex (PPC), and 
presupplementary motor area (pre-SMA)—were recruited by both the rule representation and the 
rule-switching manipulations, across age-groups. This is consistent with theoretical frameworks 
that emphasize the role of task-relevant activation in supporting a variety of executive functions, 
including shifting, inhibition, updating, and monitoring (Ezekiel et al., 2013; Miller & Cohen, 
2001). However, evidence from functional selectivity and temporal dynamics also suggested that 
adults engage in more proactive control processing while children engage in more reactive 
control processing. 
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Fig. A3.1 shows a hypothesized progression of an arbitrary rule trial in the Nemo task, 
accompanied by brain regions associated with proactive versus reactive control (Fig. A3.1), and 
by brain regions differentially engaged by adults and children (Fig. A3.2). Importantly, we found 
a difference in the networks engaged by better and worse performers that applied not only to 
developmental differences, but also individual differences. Top performers recruited the left 
frontoparietal network, especially the ventrolateral PFC (VLPFC; Bunge, 2004), posited to be 
associated with proactive control, while worse performers recruited the right cingulo-operculum 
network, posited to be associated with reactive control (Dosenbach, Fair, Cohen, Schlaggar, & 
Petersen, 2008; Madsen et al., 2010). 
 

 
 
Fig. A3.1. Hypothesized progression of a single trial. From the cognitive control task: the 
“Nemo” task. Participants view the task instruction, followed by an image of a fish from Finding 
Nemo (protected by copyright), and respond by pressing one of two buttons. Best-performing 
participants engaged a brain network previously associated with rule representation, whereas 
worst-performing participants engaged a network associated with performance monitoring and 
conflict detection. We hypothesize that the best performers engaged in proactive control, 
retrieving and holding in mind the currently relevant rule prior to the onset of the target stimulus, 
whereas the worst performers engaged in reactive control, exhibiting heightened monitoring at 
the time that a response is required.  
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Fig. A3.2. Age-related differences in PFC activation. The left arrow points to areas where 
activation was greater in children than adults; the right arrow points to areas that were more 
activated in adults than children. From the cognitive control task: the Nemo task. 
 
The time course of activation in left DLPFC also suggested that the children were more reactive, 
updating task rules more slowly than adults. In children, but not in adults, activation at the 
beginning of each trial reflected the previous trial ’s rule, rather than the current rule. This 
finding is consistent with developmental transitions observed in the temporal dynamics of 
cognitive control (Andrews-Hanna et al., 2011; Chatham et al., 2009; Finn, Sheridan, Kam, 
Hinshaw, & D’Esposito, 2010). 
 
Employing a hybrid block/event-related fMRI Stroop design in conjunction with self-report 
measures, Andrews-Hanna and colleagues investigated the shift to proactive control in a cohort 
of individuals aged 14 to 25 years (Andrews-Hanna et al., 2011). They found that adolescents 
under-activated a set of brain regions implicated in proactive top-down control, especially left 
posterior DLPFC (Bunge & Crone, 2009; Gogtay et al., 2004; Paus, 2005). Furthermore, 
adolescents who exhibited greater activation of the inferior frontal junction (IFJ; which includes 
posterior DLPFC) exhibited better self-report composite measures of impulse control, foresight, 
and resistance to peer pressure, and tended toward more successful Stroop task performance. 
Although no differences in activation were observed between adults and adolescents for the 
ACC, heterogeneous patterns of ACC/pre-SMA activation within the adolescent group suggest a 
compensatory reactive response. 
 
In contrast, adults exhibited the opposite relationship with Stroop performance, such that adults 
who activated IFJ to a lesser degree trended toward more successful Stroop behavior (Andrews-
Hanna et al., 2011). The relationship between prefrontal activity and age was curvilinear, 
peaking approximately at age 21 years and decreasing thereafter. 
 
Taken all together, these results suggest that children are more likely than adults to maintain 
prior rule information when it is no longer relevant, and to retrieve current rule information 
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reactively rather than maintaining it proactively (Munakata et al., 2012). Results in adolescents 
suggest that maturation of cognitive control may be partly mediated by earlier development of 
neural systems supporting reactive control and delayed development of systems supporting 
proactive control (Andrews-Hanna et al., 2011). Future work is needed to determine whether the 
developmental progression from reactive to proactive control is governed by qualitatively 
distinct mechanisms or by a continuous developmental shift (Chatham et al., 2009). 
 
A3.4. Structural Development 
 
Recent findings from developmental neuroimaging studies suggest that the enhancement of 
cognitive processes during development results from a fi ne-tuning of the structural and 
functional organization of brain. But the mechanisms by which this takes place are not yet 
understood. Looking at regional topological properties and inter-regional connectivity, 
Khundrakpam and colleagues found a “time window of plasticity” during late childhood, which 
they suggested may accommodate the changes that come with pubertal development 
(Khundrakpam et al., 2012). Importantly, they report early maturation of primary sensorimotor 
regions and protracted development of higher-order association and paralimbic regions, which 
have been linked to cognitive control (Hwang & Luna, 2013). However, studies that have 
compared structural and functional MRI measures of brain development have not provided 
evidence for a simple relationship between them (Lu et al., 2009). 
 
A3.4.1. Developmental Changes in Cortical Thickness 
 
Cortical thickness is the distance from the gray matter/white matter boundary to the outer surface 
of the brain (i.e., the pial surface), which likely reflects the number of cells within cortical 
columns (Fjell et al., 2012). Thanks to the development of powerful analytic tools for measuring 
longitudinal changes in brain structure, we now have detailed information about within-person 
changes in cortical thickness over development (Gogtay & Thompson, 2010; Tamnes, Østby, 
Fjell et al., 2010). These data reveal piecemeal cortical thinning over childhood and adolescence, 
with association cortices—including but not limited to PFC—maturing later than primary 
sensory cortices. Within PFC, medial and ventral regions undergo thinning most quickly, such 
that DLPFC matures later than other prefrontal subregions. In another analysis, Fjell et al. (2012) 
found that developmental gains in cognitive control, as measured by a flanker task in a cohort of 
725 individuals ages 4 to 21, were associated with changes in surface area in the anterior 
cingulate (ACC), an area that has been previously linked to impulse, attention, and executive 
problems across a range of neurodevelopmental disorders. Specifically, surface area of the right 
caudal ACC accounted for a significant proportion of the variance in cognitive performance. 
 
Cortical thinning is likely to reflect multiple changes at the cellular level, including decreased 
gray matter as a result of synaptic pruning and increased white matter as a result of myelination 
and/or increased axon diameter (Giedd, 2008; Tamnes, Østby, Fjell et al., 2010). Indeed, recent 
structural MRI analyses by Gogtay and Thompson (2010) and Hua et al. (2009) suggest that 
there is white matter growth underlying areas of thinning gray matter. Longitudinal studies of 
individuals ages 3 to 30 years have demonstrated general patterns of peaks of gray matter in 
childhood followed by declines in adolescence, increases in long-range structural and functional 
connectivity, and a shift of activation from limbic and subcortical regions to the frontal lobe in 
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cognitive tasks (Giedd, 2008; also Finn et al., 2010). Histological studies have shown that 
sensory areas may develop first, followed by a longer trajectory in frontal executive regions 
linked to the late development of executive function (Casey, Tottenham, Liston, & Durston, 
2005). 
 
The functional significance of these changes in cortical thickness is not yet clear. While it is 
possible to find evidence for positive and/or negative relationships between cortical thickness 
and cognitive performance, recent work from our lab suggests a positive relationship between 
performance on a complex reasoning task and thinning in the inferior parietal lobule (IPL) across 
children and adolescents (Wendelken, O ’Hare, Whitaker, Ferrer, & Bunge, 2011). Karama and 
colleagues previously found a positive relationship between cognitive ability and thinning across 
most multimodal association areas (Karama et al., 2009). These brain-behavior relationships can 
also be influenced by age, gender, and their interaction (Christakou et al., 2009), although such 
differences are not always linked to differences in cognitive performance (Lenroot & Giedd, 
2010). 
 
A3.4.2. Developmental Changes in White Matter Pathways 
 
The development of goal-directed behavior partly reflects the maturation of white matter 
pathways; for instance, white matter maturation has been shown to explain additional variance in 
cognitive control beyond cortical thinning (Fjell et al., 2012). Importantly, tracts that provide 
connections between frontal and other cortical and subcortical regions demonstrate the most 
protracted developmental trajectory, occurring in parallel with changes in gray matter (Hwang & 
Luna, 2013). The large number of reciprocal connections between PFC and other cortical regions 
position it nicely to coordinate, influence, and integrate information needed for executive 
control. As these connections develop to enhance neuronal transmission, the ability to form 
functional networks to support complex function improves, consistent with gains in executive 
control. 
 
The advent of diffusion tensor imaging (DTI) has made it possible to measure within-individual 
changes in white matter tracts over development, and their relationship to changes in cognition. 
DTI provides an indirect measure of white matter tracts in vivo in the human brain (Fields, 
2008). A diffusion-weighted MRI scan is sensitive to the movement of protons in the brain, 
particularly those within water molecules. Water molecules in white matter diffuse preferentially 
along axon bundles because the myelin sheath surrounding the axons impedes their diffusion 
across a tract. Water molecules that have high directionality are said to exhibit anisotropic 
diffusion. Two DTI measures are reported below: fractional anisotropy (FA), a widely used 
measure of white matter coherence, and perpendicular diffusivity, thought to be sensitive to 
levels of myelination. 
 
Although white matter maturation takes place throughout the brain, it is possible to link 
cognitive performance to the strength of specific tracts (Johansen-Berg, 2010; Madsen et al., 
2010; Niogi, Mukherjee, Ghajar, & McCandliss, 2010; Olson et al., 2009; Uddin, Supekar, Ryali, 
& Menon, 2011). Johansen-Berg (2010) found that, independent of age, white matter anatomy 
was linked with cognitive skills in healthy adults. 
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As shown in Fig. A3.3, McCandliss and colleagues provided evidence of a triple dissociation in 
the brain-behavior relationships of three white matter tracts (Niogi et al., 2010). They examined 
performance across three dissociable functional components of attention—alerting, orienting, 
and conflict processing—identified by the Attention Network Task (ANT). The ANT is a simple 
computerized task that measures the speed and accuracy with which a participant can press one 
of two buttons to indicate whether the central arrow in a row of visually presented arrows points 
left or right. This task has three critical manipulations that tax different aspects of attention. To 
measure the alerting response, researchers measure how much better participants perform when 
the stimulus array is preceded by a visual warning cue versus when it is not. To measure the 
orienting response, they measure how much better they respond when the visual cue indicates 
where on the screen the stimulus array will appear versus when it is not spatially predictive. 
Finally, to measure executive/conflict processing, researchers measure how much better the 
participant performs when the arrows in the stimulus array all point in the same direction versus 
when the flanking stimuli point in the opposite direction from the central, target arrow. 
 

 
 
Fig. A3.3. A triple dissociation is shown in the interindividual relationships between white 
matter integrity of three tracts and cognitive performance on the three components of the 
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Attention Network Task (ANT): alerting, orienting, and executive function (specifically, conflict 
resolution). Fig. modified with permission from Niogi et al., 2010. 
 
Interindividual performance on each functionally distinct component was differentially 
correlated with coherence in a distinct set of white matter tract regions. Correlations were found 
between alerting and the left anterior limb of the internal capsule, orienting and the splenium of 
the corpus callosum, and conflict and the left anterior corona radiata. Analyses revealed a triple 
dissociation providing evidence of three anatomically and functionally separable networks. 
 
It stands to reason, then, that the development of these and other white matter tracts may be 
partly accountable for the development of cognitive skills such as goal-directed behavior. 
Whole-brain analyses in individuals aged 9 to 23 years revealed that success on a delay 
discounting task—that is, less impulsive performance—was associated with increased FA in 
tracts in and across the bilateral frontal and temporal lobes (Olson et al., 2009). In a stop-signal 
task, faster response inhibition was associated with higher FA in the right inferior frontal gyrus 
(IFG) and right presupplementary motor area (pre-SMA) in typically developing children 
(Madsen et al., 2010). Furthermore, individuals with high verbal abilities may show accelerated 
white matter development compared to the steadier and prolonged development observed in their 
average-ability counterparts (Tamnes, Østby, Walhovd, et al., 2010). 
 
Lebel and colleagues recently reported the results of longitudinal studies of white matter 
maturation that demonstrate clear age-related microstructural changes throughout the brain in 
individuals aged 5 years through adulthood (Lebel et al., 2012; Lebel & Beaulieu, 2011). The 
corpus callosum and fornix mature in early childhood, reaching peak FA by young adulthood. In 
contrast, they found that major tracts that connect PFC with posterior regions and have been 
hypothesized to support cognitive control, namely the cingulum, uncinate fasciculus, and 
superior longitudinal fasciculus, develop slowly. Because these changes in FA were driven by 
perpendicular diffusivity, results suggest that they result from changes of myelination and/or 
axonal density (Lebel et al., 2012). The researchers also found volume increases in several 
association tracts post-adolescence (Lebel & Beaulieu, 2011). Corroborating evidence for the 
prolonged maturation of association tracts comes from an earlier cross-sectional study (Lebel, 
Walker, Leemans, Phillips, & Beaulieu, 2008). Other findings provide converging anatomical 
data suggesting that developmental gains in goal-directed behavior in adolescence may be 
associated with structural changes enhancing long-distance connections, coupled with synaptic 
pruning in the cortex (Giorgio et al., 2010). 
 
A3.5. Developmental Changes in Functional Networks 
 
While techniques like DTI help us to characterize the development of white matter tracts, 
research on patterns of correlated brain activation provide a complementary picture of 
developing cortical networks. Functional connectivity analyses identify regions with strongly 
correlated patterns of functional MRI activation over time, either during performance of a 
cognitive task or at rest. Brain regions that are not directly connected to one another via white 
matter tracts may nonetheless act in concert as part of a distributed network. Conversely, two 
brain regions that are anatomically connected may not yet be fully integrated into a shared 
network (Barnes et al., 2012; Biswal et al., 2010; Supekar et al., 2010). Therefore, a promising 
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approach is to integrate these complementary measures of brain connectivity (Rykhlevskaia, 
Gratton, & Fabiani, 2008) to address inquiries regarding how and why changes in the “wiring” of 
neural networks promote the development of cognitive control (Stevens, 2009). 
 
A3.5.1. Developmental Shift from Local to Long-Range Functional Connectivity 
 
Imaging the brain during rest (i.e., in the absence of task demands) reveals low-frequency 
fluctuations in the fMRI signal that are temporally correlated across regions presumed to be 
functionally related. Reproducibility across resting-state fMRI datasets suggests that the human 
functional connectome has a common architecture, yet each individual ’s connectome is unique; 
age and gender are notable as significant determinants (Biswal et al., 2010). Over the past few 
years, there have been a number of studies characterizing changes in network connectivity in 
typically and atypically developing populations (Fan et al., 2011; Gao et al., 2009; Supekar et al., 
2010; Thomason et al., 2008; for review, see Stevens, 2009). 
 
These developmental changes in resting-state functional connectivity are sufficiently robust that 
multivariate pattern analysis can be used to predict an individual ’s age with a fairly high degree 
of accuracy (Dosenbach et al., 2010). Wang and colleagues (2012) found that these age-related 
changes in interregional functional connectivity exhibited spatially and temporally specific 
patterns over the lifespan (Wang, Su, Shen, & Hu, 2012). Functional connectivity decreased 
linearly in the sensorimotor system, increased linearly in the emotion system, and followed a 
quadratic trajectory—with increases through childhood and early adulthood, followed by 
decreases later in life—in systems associated with higher-order cognition, from childhood 
through old age. 
 
In a recent functional connectivity MRI study, Barnes and colleagues (2012) demonstrated that 
cortical parcellation of the left lateral parietal cortex—part of a left lateral frontoparietal network 
correlated with proactive control (Wendelken et al., 2012)—in school-aged children resembled 
that of adults. However, age-related differences were found in its functional connectivity with 
other brain regions, suggesting that structure and function in this region mature along different 
developmental trajectories, with functional connectivity following a prolonged trajectory (Barnes 
et al., 2012). In contrast, Supekar and colleagues (2010) found that functional connectivity in 
children can reach adult-like levels despite immature structural connectivity. They proposed that 
the prolonged maturation of the posterior cingulate cortex (PCC)-medial PFC structural 
connectivity may be linked with development of the self-related and social-cognitive functions 
that emerge during adolescence (Supekar et al., 2010). 
 
The maturation of executive function is dually supported by functional specialization—regional 
neural support of specific processes—and functional integration—large-scale neural network 
support (Hwang & Luna, 2013). One of the central developmental findings in recent functional 
connectivity work is the progression from short-range connections within cortical areas to 
longer-range cortico-cortico connections (Fair et al., 2009; Jolles, van Buchem, Crone, & 
Rombouts, 2011; Stevens, Pearlson, & Calhoun, 2009). As children mature, short-range 
functional connections become weaker, and long-range connections strengthen (Church et al., 
2009). At first, the distributed network is composed of many weak connections, but as children 
move into adolescence and adulthood, functional connections tend to become stronger but 
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sparser, reflecting the increasing specificity of emerging functional networks (Fair et al., 2009; 
Supekar et al., 2010). Jolles and colleagues investigated whole-brain functional connectivity in 
middle-aged children and young adults (Jolles et al., 2011). Interestingly, they found that while 
children and adults displayed similar patterns of functionally connected regions, the size (number 
of voxels) and strength (correlation value) of connectivity differed between brain regions into 
young adulthood. Regions associated with higher cognitive and emotional functions became 
more tightly coupled with age, while connectivity between regions linked to basic visual and 
sensorimotor functions showed the opposite effect (Jolles et al., 2011). 
 
A study by Barber and colleagues (2013) showed developmental differences between late 
childhood and adulthood in the “default mode” network, comparing task-positive and task-
negative regions, that is, the regions that are engaged and disengaged during task performance 
relative to when the participant is asked to rest, respectively (Barber, Caffo, Pekar, & Mostofsky, 
2013). They found that task-positive regions showed greatest age-related discrepancy in the left 
DLPFC, a region strongly implicated in cognitive control. In contrast, task-negative regions, 
posited to play a role in social cognition and self-referential thought, showed greatest age-related 
differences in medial PFC and right parahippocampal gyrus. Connections between the task-
positive and task-negative regions also displayed developmental differences. Importantly, there 
was a significant relationship between anticorrelations—that is, the extent of inverse correlation 
between activations in task-positive versus task-negative regions—in a swath of task-negative 
regions (right anterior insula, right IFG, right PCC, and bilateral parietal cortex), exhibited in 
adults, and successful inhibitory control performance on Go/No-Go tasks. This result suggests 
that the development of certain anticorrelations into adulthood supports mature inhibitory control 
(Barber et al., 2013). 
 
A3.5.2. Functional Connectivity in the Development of Cognitive Control 
 
A lateral frontoparietal neural network underlies goal-directed behavior across diverse contexts 
(Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012; Wendelken et al., 2012). Cole et al. (2012) 
have pointed to global connectivity—that is, the mechanisms by which regions in the 
frontoparietal network might coordinate other cortical networks—as the driving force of 
cognitive control. They found that a lateral PFC region ’s activity exhibited global connectivity 
and predicted performance in a high-demand working memory task. Furthermore, individual 
differences in lateral PFC global connectivity were related to individual differences in fluid 
intelligence (Cole et al., 2012). 
 
Work from our lab has shown age-related changes in the temporal dynamics of DLPFC 
activation, such that children appeared to update rules more slowly than adults, engaging in 
reactive rather than proactive control (Wendelken et al., 2012; described earlier). Ezekiel and 
colleagues (2013) recently investigated a similar possibility, consistent with our finding of an 
age-related shift from the cingulo-operculum to the frontoparietal network (see Fig. A3.1): Age 
is associated with changes in the functional integration of lateral PFC with a larger cognitive 
control network (Ezekiel et al., 2013). They tested middle-school-aged children and adults on a 
card sort/switch cognitive control task. Results demonstrated that adults engaged regions within 
a “cognitive control” network, including bilateral DLPFC, right IFG, ACC/medial PFC, inferior 
parietal cortex, and the ventral tegmental area (VTA). Children showed engagement of a 
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different network; regions included anterior frontal gyri, bilateral rostrolateral PFC, right anterior 
insula, and left posterior temporal cortex. These findings are consistent with observations that 
children and adults may both have relatively efficient systems for cognitive processing, but that 
they solve problems in different ways (Fair et al., 2009). 
 
Signals for updating representations in lateral PFC—a crucial aspect of a switch task like this 
one and our Nemo task (Wendelken et al., 2012)—originate in dopamine neurons in ventral 
tegmental area (VTA), which Ezekiel et al. (2013) found to be more strongly connected to lateral 
PFC in adults than children. They hypothesized that functional connectivity between lateral PFC 
and VTA is associated with the speed with which rule representations may be updated in lateral 
PFC (Ezekiel et al., 2013). Taken together, it is suggested that complex cognitive operations may 
be emergent products of rapid bidirectional interactions between functionally specialized brain 
regions; and shift or improve concurrently with various aspects of neural development. 
 
Broadly, the differences between children and adults in patterns of functional connectivity are 
consistent with the trajectories of gray and white matter development. At the same time that local 
functional connections within the cortex are weakening, cortical gray matter is thinning—and, as 
long-range white matter tracts are getting stronger, so, too, is long-range functional connectivity. 
Supekar et al. (2010) found that some, but not all, changes in functional connectivity had obvious 
anatomical correlates. Thus, these structural and functional measures provide valuable and 
complementary views of brain development. 
 
A3.6. Developmental Cognitive Neuroscience and the Study of Cognitive Control 
 
As discussed earlier, developmental cognitive neuroscience (DCN) has begun to uncover the 
neural mechanisms governing the development of goal-directed behavior. First, fMRI has 
revealed that patterns of activation observed in the performance of cognitive control tasks in 
children versus adults are consistent with those observed in reactive versus proactive control. 
Second, structural MRI has shown that cortical thinning in association cortices is correlated with 
gains in behavioral performance. Third, DTI and functional connectivity analyses have shown 
that projections between the PFC and other cortical regions shift from local to long-range with 
development. Taken together, DCN has enabled us to show that gains in cognitive control 
observed with age are subserved by a confluence of factors in the developing brain. 
 
The field of cognitive neuroscience, which straddles the gap between the mind and brain, is the 
right level at which to begin to understand how cognitive developmental trajectories are 
influenced by such important factors as genetic variants, hormonal changes during puberty, 
schooling, and socioeconomic and cultural contexts. Indeed, behavioral findings have often been 
considered controversial until accompanied by discovery of an underlying biological mechanism 
(Diamond & Amso, 2008). Neuroimaging has allowed, for instance, the delineation of how task-
related and resting-state brain networks develop through strengthening and weakening of 
functional connections (e.g., Fair et al., 2009). 
 
In both the temporal and spatial domains, the scale at which we examine brain development is at 
once an important strength and an important limitation of DCN. In the spatial domain, the fact 
that we can take neural measurements across the entire brain means that we can identify brain 
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networks: sets of tightly coupled brain regions that underlie specific cognitive processes. Until 
recently, the bulk of DCN research has focused on specific brain regions of a priori interest—for 
example, studies focusing on maturational changes in the PFC that underlie improvements in 
cognitive control. Current DCN research is focusing more and more on analyses of neural 
networks. In the temporal domain, the fact that we can measure brain structure and function in 
vivo at multiple times in the life of an individual child means that we can examine true 
developmental change, rather than merely extrapolating from comparisons between samples of 
children from different age-groups. The possibility for longitudinal brain research is a clear 
advantage of noninvasive imaging techniques that has yet to be used to its full potential. We 
briefly discuss next promising future directions for DCN in the study of the development of goal-
directed behavior. 
 
A3.6.1. Early Brain Development 
 
Although most of the behavioral literature on cognitive development has focused on the period 
of rapid changes observed during early childhood, most of the DCN studies to date have, for 
practical reasons, focused on older children and adolescents (Poldrack, 2010). In recent years, 
researchers have refined pediatric imaging protocols that make it possible to obtain high-quality 
structural and functional MRI data from infants (Dehaene-Lambertz et al., 2010; Fan et al., 2011; 
Gao et al., 2009) and young children (Cantlon, Pinel, Dehaene, & Pelphrey, 2011; Nordahl et al., 
2008). This advance makes it possible to measure the functional organization of the newborn 
brain, and to examine the neural changes that support the emergence of new cognitive abilities 
over early childhood. 
 
DCN has revealed that even at 2 weeks of age, infants exhibit spontaneous resting-state activity 
in some of the same regions as adults (Gao et al., 2009). At 1 month, infants already display 
modular functional connectivity (Fan et al., 2011), and by 2 years of age, children have the 
beginnings of adult-like connectivity and modular organization (Fan et al., 2011; Gao et al., 
2009). Friedman, Miyake, Robinson, and Hewitt (2011) showed, in a longitudinal study of 950 
twins, that self-restraint in toddlers predicted individual differences in three executive 
functions—inhibition, updating, and shifting—in late adolescence (Friedman, Miyake, Robinson, 
& Hewitt, 2011). Self-restraint was measured by showing the children an attractive toy and 
instructing them not to touch it for 30 seconds; capacity for self-restraint was measured by how 
long the toddler waits before touching the toy. The twin models indicated relative contributions 
of genetics and environmental factors to gains in these components of executive function; results 
suggested a biological relationship between individual differences in self-restraint and executive 
functions that begins in infancy and persists through adolescence. 
 
A3.6.2. Genetic, Hormonal, and Environmental Influences on Brain Development 
 
An important next step in DCN is the elucidation of genetic, hormonal, and environmental 
factors that interact to influence brain and cognitive development. There has been research on 
gene x environment influences on behavior during development (Wiebe et al., 2009). Until 
recently, this work has left the brain out of the equation, but DCN is beginning to examine 
genetic and/or environmental influences on brain structure and function (Casey, Soliman, Bath, 
& Glatt, 2010; Chiang et al., 2009; Hackman & Farah, 2009; Lenroot et al., 2009; Thomason et 
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al., 2010), and is also beginning to look at the influence of changing pubertal hormone levels 
(Blakemore, Burnett, & Dahl, 2010). 
 
Links between cognitive control and dopamine suggest that the neurodevelopment of cognitive 
control should interact with age-related variability in the dopaminergic system (Braver, 2012; 
Ezekiel et al., 2013). Indeed, gene × environment effects—including variation in a 
polymorphism related to D2 dopamine receptor transmission—have been shown to differentially 
impact slow-developing functions such as self-regulation depending on the developmental period 
(Wiebe et al., 2009). Another study showed that typical white matter development was related to 
a common genetic variant in the dopamine signaling pathway, COMT, that influences dopamine 
levels in PFC (Thomason et al., 2010). Using a visual working memory task, Dumontheil et al. 
(2011) reported age × genotype interactions in the effects of the COMT genotype observed in the 
intraparietal sulcus (IPS), with greater gray matter volumes bilaterally and greater right IPS 
activation in the Val/ Val group compared with the Met carriers. Genetic maps have also 
revealed the complex heritability of white matter integrity, cortical thickness, and even IQ 
(Chiang et al., 2009; Lenroot et al., 2009). Chiang and colleagues (2009) found that white matter 
integrity was highly heritable in a number of regions, including bilateral frontal, bilateral 
parietal, and left occipital lobes, and that common genetic factors mediated the correlation 
between IQ and white matter integrity. Lenroot et al. (2009) investigated gender differences in 
brain volume, and found, among other things, that males and females exhibited dissociable 
patterns of activation on cognitive tasks, without differences in performance. 
 
A3.6.3. Longitudinal Research 
 
To examine—and interrelate—developmental trajectories for cognition, brain structure, and 
brain function, it is necessary to acquire data at multiple time-points per individual. Longitudinal 
research can provide important insights regarding typical and atypical cognitive development 
(Reichenberg et al., 2010). Although there are few published longitudinal MRI studies of 
children (Giedd et al., 2009; Gogtay & Thompson, 2010), and even fewer that include functional 
as well as structural measures (Fan et al., 2011; Shaw et al., 2009), a number of research groups 
are conducting this important work now. 
 
Durston and colleagues conducted the first combined cross-sectional and longitudinal fMRI 
study on the development of cognitive control (Durston et al., 2006). They directly compared 
between-group measurements of brain activation with within-person changes in brain function 
during performance of a Go/No-Go task. These two analyses yielded somewhat different results 
in the lateral PFC, with only longitudinal findings showing attenuated activation in DLPFC areas 
and increased activation in focal VLPFC areas. These data underscored the need for further 
longitudinal brain imaging studies. 
 
The past few years have seen several promising results from longitudinal behavioral and brain 
imaging research involving children and adolescents. Childhood self-control has been found to 
predict physical health, substance dependence, personal finances, and criminal behavior in 
adulthood (Moffitt et al., 2011), and early childhood self-restraint to predict executive functions 
in late adolescence (Friedman et al., 2011). Within-person tracking of brain structure and 
function shows peaks and dips in gray matter volume and white matter integrity over 
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development (Giedd, 2008; Giorgio et al., 2010; Lebel & Beaulieu, 2011; Lebel et al., 2012), and 
a shift in neural networks engaged during performance of cognitive tasks (Finn et al., 2010). 
Finally, Moriguchi and Hiraki (2011) demonstrated how PFC engagement interacted with 
performance on cognitive shifting tasks in children studied at age 3 and again at 4 years of age. 
They found that better-performing children at age 3 showed significant activation of right 
inferior PFC, and that better-performing children at age 4 showed this activation bilaterally. 
These intriguing results underscore the importance and future potential of the longitudinal 
method to address the link between cognitive and neural development (Moriguchi & Hiraki, 
2011). 
 
A3.7. Considerations and Future Directions in Developmental Cognitive Neuroscience 
 
As neuroimaging methods have grown more sophisticated, so, too, has DCN. Many new 
investigators have joined the field, including individuals with strong statistical and computational 
backgrounds. Researchers have developed procedures that facilitate pediatric fMRI data 
acquisition and analysis (Fonov et al., 2011; Ghosh et al., 2010), and have addressed many of the 
basic questions and concerns surrounding pediatric MRI methodology (Church, Petersen, & 
Schlaggar, 2010; Luna, Velanova, & Geier; 2010). Many have also moved on to tackle greater 
challenges, such as the acquisition of longitudinal MRI data (Fan et al., 2011; Lebel et al., 2012; 
Moffitt et al., 2011; Moriguchi & Hiraki, 2011; Shaw et al., 2009) and the integration of multiple 
measures in the study of brain development (Fjell et al., 2012; Paus, 2010; Thomason et al., 
2010). 
 
We have learned a lot over the past few years about the typical developmental trajectory of 
cortical thickness and white matter tracts. However, we still know little about how these changes 
relate to developmental changes or individual differences in brain function or behavior, and 
imaging the developing brain continues to pose unique challenges. With regard to functional 
connectivity MRI, Power and colleagues recently revealed that subjects’ head motion in the 
scanner causes systematic but spurious correlations between brain regions (Power, Barnes, 
Snyder, Schlaggar, & Petersen, 2012). Specifically, they found that subject motion produces 
substantial changes in time-course data; many long-distance correlations may appear less robust 
than they are and short-distance correlations may appear more robust than they are. This is 
especially pertinent for DCN, not only because functional network analyses are integral to the 
study of cognitive development, but also because motion artifacts are more pronounced in 
children than adults. The authors also noted explicitly that connections between lateral PFC and 
the anterior cingulate—which carry import for successful goal-directed behavior, as described in 
this chapter—may appear distorted from subject motion (Power et al., 2012). 
 
This confound is important to consider, both because motion artifacts are more pronounced in 
children than adults, and because long-distance connections are thought to mature more slowly 
than short-distance ones. It is precisely the slow development of long-distance connections that 
has been linked to delayed maturation of the ability of one region to influence neural activity in 
distal regions. Thus, DCN research focused on functional brain networks must address this 
potential confound. 
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It is also important to note that most of the structural data purporting to characterize typical brain 
development are based on a fairly homogeneous sample of children, despite efforts to diversify 
the samples. It is necessary to cast a wider net to determine how well such findings generalize to 
children across a wide range of intellectual abilities, and from a variety of socioeconomic and 
cultural backgrounds. 
 
There is still much to be discovered regarding the interplay of external and internal factors on 
cognitive and brain development, and an endeavor of this level of complexity necessitates a 
multidisciplinary approach with large research teams, large sample sizes, and data collection at 
multiple time points per individual. At the same time, it will be important in the coming years for 
DCN to strike the right balance between data-driven research—so-called discovery science 
(Biswal et al., 2010)—and hypothesis-driven research grounded in theories of cognitive 
development. 
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Appendix 4: Hemispheric Differences in Relational Reasoning: Novels Insights Based on an 
Old Technique 
 
Citation: Vendetti, M. S.*, Johnson, E. L.*, Lemos, C. J. & Bunge, S. A. Hemispheric 
differences in relational reasoning: Novel insights based on an old technique. Front. Hum. 
Neurosci. 9 (2015). *equal contribution 
 
Relational reasoning, or the ability to integrate multiple mental relations to arrive at a logical 
conclusion, is a critical component of higher cognition. A bilateral brain network involving 
lateral prefrontal and parietal cortices has been consistently implicated in relational reasoning. 
Some data suggest a preferential role for the left hemisphere in this form of reasoning, whereas 
others suggest that the two hemispheres make important contributions. To test for a hemispheric 
asymmetry in relational reasoning, we made use of an old technique known as visual half-field 
stimulus presentation to manipulate whether stimuli were presented briefly to one hemisphere or 
the other. Across two experiments, 54 neurologically healthy young adults performed a 
visuospatial transitive inference task. Pairs of colored shapes were presented rapidly in either the 
left or right visual hemifield as participants maintained central fixation, thereby isolating initial 
encoding to the contralateral hemisphere. We observed a left-hemisphere advantage for encoding 
a series of ordered visuospatial relations, but both hemispheres contributed equally to task 
performance when the relations were presented out of order. To our knowledge, this is the first 
study to reveal hemispheric differences in relational encoding in the intact brain. We discuss 
these findings in the context of a rich literature on hemispheric asymmetries in cognition. 
 
A4.1. Introduction 
 
Relational reasoning is a cognitive process that requires the joint consideration of relations in 
order to generate an inference to support a conclusion. Although there is a wide range of 
theoretical models for relational reasoning (for review, see Goodwin and Johnson-Laird, 2005; 
Knowlton et al., 2012), all of these models present relational reasoning as a unitary system. 
However, work from neuropsychological and neuroimaging literatures indicates that some 
cognitive functions may be supported by multiple, redundant systems in the brain (Roser and 
Gazzaniga, 2004; Marinsek et al., 2014). Here, we sought to test whether one hemisphere 
displays an advantage over the other during relational encoding, or whether this function can be 
carried out equally well by each hemisphere. 
 
Hints of a possible left-hemisphere advantage in relational reasoning have emerged over the 
course of a number of neuroimaging experiments (e.g., Goel and Dolan, 2004; Green et al., 
2006; Bunge et al., 2009; Wendelken et al., 2011). Importantly, similar patterns have been 
observed for tasks involving either verbal or non-linguistic/pictorial stimuli, suggesting that the 
observed differences are not entirely stimulus-driven and do not completely overlap with regions 
supporting language (Monti and Osherson, 2012). However, the conclusions we can draw from 
these fMRI studies about lateralization of function are limited in several ways. Namely, brain 
imaging provides correlational rather than causal evidence, and results depend on the specific 
contrasts used as well as the choice of statistical threshold. All of these factors can mask whether 
both hemispheres are indicated as being involved in a particular task, and thus, any conclusions 
about localization should converge with experimental findings using multiple approaches.  
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The neuropsychological literature also hints at possible hemispheric differences in contributions 
to reasoning. Much of the early work investigating differential hemispheric contributions to 
cognitive function came from work on split-brain patients (e.g., Sperry et al., 1969). These 
studies indicated an improved ability for hypothesis testing during problem solving in the left 
relative to the right hemisphere (LeDoux et al., 1977) and has led to the idea of the left 
hemisphere being an “interpreter” of events – i.e., the hemisphere with a major role of 
integrating newly acquired perceived information with previously constructed theories 
(Gazzaniga, 2000; Marinsek et al., 2014). 
 
Following the seminal work of Gazzaniga et al. (1962) indicating how cognitive function 
differed in the two hemispheres following sectioning of the commissures, hemispheric 
asymmetries in cognition have alternately been characterized as a dichotomy between local and 
global (van Kleeck, 1989), categorical and coordinate (Kosslyn, 1987; van der Ham et al., 2014), 
or serial and parallel (e.g., Cohen, 1973) processes (for review, see Bradshaw and Nettleton, 
1981). In the present study, we did not set out to evaluate these competing accounts of 
hemispheric specialization; rather, we sought to characterize the contribution of each hemisphere 
to performance of a relational reasoning task adapted from one used in a prior fMRI study from 
our group (Wendelken and Bunge, 2010). 
 
There is not a consistent pattern relating relational reasoning ability to damage in a particular 
hemisphere. Neuropsychological work on relational reasoning has demonstrated the necessity of 
prefrontal and posterior parietal regions during transitive inference (Waltz et al., 1999; Krawczyk 
et al., 2008; Waechter et al., 2012), analogical reasoning (Morrison et al., 2004; Krawczyk et al., 
2008), and matrix reasoning (Baldo et al., 2010; Woolgar et al., 2010). Additionally, studies 
employing voxel-based lesion symptom mapping to investigate relationships between patterns of 
brain damage and resulting cognitive deficits in fluid intelligence (Barbey et al., 2014) have 
suggested that damage to the right hemisphere plays a more critical role. However, Baldo et al. 
(2010) demonstrated that patients who have incurred strokes in the left hemisphere have been 
shown to also have significant deficits in a visuospatial relational reasoning task; therefore, more 
research is needed to provide a better understanding of each hemisphere’s role in relational 
reasoning. 
 
We designed the current study to test the role of each hemisphere in relational encoding through 
the use of a visual half-field stimulus presentation procedure. This paradigm was originally 
developed for use in split-brain patients, who have either minimal or no connection between the 
two hemispheres (e.g., Gazzaniga et al., 1962). Here, our participants were healthy adults whose 
hemispheres are presumed to interact closely in the coordination of task performance (Weissman 
and Banich, 2000). Nevertheless, we sought to test for differences in response times and/or 
accuracy when relational information is initially encoded by the left or the right hemisphere. This 
visual half-field stimulus presentation procedure allowed us to test whether left and right 
hemispheres differentially support relational encoding. 
 
In the present study, we used a transitive inference task adapted from an fMRI task that we have 
used previously (Wendelken and Bunge, 2010). When reasoning using transitive inference, the 
logical conclusion is deduced through transferring relational inferences among terms expressed 
in the premises (e.g., if A > B and B > C, then A must be greater than C). On this task, shown in 
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Fig. A4.1, participants view a new set of relations on every trial and are expected to integrate 
them in working memory. There has been a rich literature on this form of reasoning (e.g., 
Halford, 1984; Cohen et al., 1997; Andrews and Halford, 1998; Greene et al., 2001). 
Importantly, this form of relational reasoning bears only a passing resemblance to transitive 
inference paradigms that involve learning paired associations over many trials (e.g., Acuna et al., 
2002; Zalesak and Heckers, 2009; Koscik and Tranel, 2012; for discussion, see Wendelken and 
Bunge, 2010). The major difference between our transitive inference paradigm and those based 
on learning paired associations is that our task does not rely on remembering associations to be 
transferred; instead, participants must infer the spatial relationship based on the relations from 
the most recent trial only. Having to perform this inference anew each trial reduces any tendency 
to assume an object-order relationship when attempting to solve the task. 
 

 
 
Fig. A4.1. Example trial from Study 2 (including the visual mask). Participants were shown three 
pairs of colored shapes. Following each pair, participants were shown a visual mask overlaying 
the previous shapes, and then a fixation cross. After the third pair was presented in a given trial, 
participants had up to 10 s to decide the correct linear order of two shapes based on the spatial 
relationships observed among the pairs. This is an example of a reordered trial, in which 
participants would presumably have to manipulate their memory of the pairs in order to deduce 
that the square goes on top of the pentagon. Study 1 was similar in design except for the absence 
of the visual mask presentations. 
 
Inspired by neuropsychological research demonstrating that prefrontal patients have difficulty 
with transitive inference when the relations are presented out of order (e.g., “Sam is taller than 
Roy,” “James is taller than Sam”; Waltz et al., 1999; Krawczyk et al., 2008), we manipulated the 
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sequence of presentation of the three relations. On half of the trials, the relations were ordered (A 
> B; B > C; C > D), and on the other half, they were reordered (A > B; C > D; B > C or C > D, A 
> B, B > C).We hypothesized that manipulating encoding in this manner would have an 
influence on the downstream integration process, and sought to test for hemispheric differences 
in performance on trials whose relations could be integrated readily (ordered trials) and those 
that could not (reordered trials). 
 
A4.2. Materials and Methods 
 
A4.2.1. Participants 
 
Experiment 1: Twenty-three healthy adults (14 female, aged 18–34 years; M ± SD age, 22 ± 3.08 
years). Experiment 2: Thirty-one healthy adults (24 female, aged 18–25 years; M ± SD age, 20 ± 
1.80 years). All participants attended the University of California, Berkeley, and participated in 
either Experiment 1 or 2 for partial fulfillment of a course requirement. All participants had 
normal or corrected-to-normal vision, were right-handed, and were fluent in English. Participants 
had no reported history of neurological or psychiatric disorders. All participants gave their 
informed consent to participate in the study, which was approved by the Committee for 
Protection of Human Subjects at the University of California, Berkeley. 
 
A4.2.2. Design 
 
We ran two studies with a similar design except for the addition of brief visual masks 
immediately following presentation of each object pair (100 ms) and an additional 48 trials, both 
of which were implemented in Experiment 2. We chose to insert the visual masks in Experiment 
2 to reduce any after-image perceptual influences on decision making, in effect making the 
participant’s deduction solely based on information stored and manipulated in working memory 
(Kim and Blake, 2005). The task designs were identical with the exception of these additions in 
Experiment 2; therefore, all of the information below applied to both studies unless explicitly 
stated. The stimulus set consisted of four colored shapes: blue triangle, orange circle, green 
pentagon, and pink square. On each trial, three sets of relations – pairs of shapes arranged 
vertically, with one colored shape positioned directly above another colored shape – were 
presented in sequence (Fig. A4.1). One-third of the transitive inference trials involved ordered 
problems, in which the source relations were presented in order (e.g., A > B, B > C, C > D; A – 
D?); the other two-thirds involved reordered problems, in which the middle relation was 
presented last (e.g., A > B, C > D, B > C; A – D? or C > D, A > B, B > C; A – D?). Placing the 
middle relation last instead of the final relation of the sequence assured that participants could 
not rely on simple memory for the most recent pair when making their decision. 
 
Prior to the onset of each trial, white arrows appeared coming from the four corners of the screen 
for 400 ms in order to direct eyegaze to the center of the screen. Trials began with a white central 
fixation cross displayed on screen for 50 ms. Each pair of shapes was presented in the left or 
right visual hemifield for 200 ms, followed by a visual mask for 100 ms (Experiment 2 only) and 
a central fixation inter-stimulus interval (ISI) for 50 ms, and then a different pair of shapes in 
either the same or opposite visual hemifield for 200 ms. After being shown three pairs 
individually, participants were asked to deduce the correct linear order of two items (e.g., square 
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and pentagon) based on the spatial relations presented in the sequence of object pairs (e.g., 
square above triangle, triangle above circle, and circle above pentagon). Participants had ≤10 s to 
make their decision regarding the correct linear order of two colored shapes (i.e., which of the 
two objects would be on top following the spatial relations represented in the trial). 
 
A4.2.3. Procedure 
 
Participants placed their heads in a chinrest affixed at arm’s length from the screen, and were 
instructed to maintain their gaze on a central fixation cross. Vertical pairs of shapes were 
displayed between 4° and 6° of visual angle from central fixation (Buschman et al., 2011). 
 
In Experiment 1, the task included 96 trials total: 24 in which all three shape pairs were 
presented to the left hemisphere (LLL), 24 in which they were presented to the right hemisphere 
(RRR), 24 in which they were presented to alternating hemispheres (12 LRL and 12 RLR trials), 
and 24 in which they were presented to opposite hemispheres but did not alternate (12 LRR and 
12 RLL trials). The LRL, RLR, LRR, and RLL trials were inserted so that participants could not 
reliably predict where the second and third pairs would be presented. Experiment 2 included an 
additional 48 trials, but the balance of trial types was consistent with Experiment 1. Trials were 
evenly counterbalanced by hemispheric presentation and ordering condition, and the trial order 
was fully randomized. 
 
The final prompt displayed two shapes next to each other and participants were instructed to 
indicate via key press which shape should “go on top” based on the information in the three pairs 
of relations. The “z” key corresponded to the shape on the left and the “?/” key to the shape on 
the right; participants were instructed to keep their left hand on the “z” key and right hand on the 
“?/” key throughout the trials. In half the trials, the correct answer appeared on the left and half 
on the right. Participants were given a short break at the mid-point of the task. Experiment 2 
contained a third block of trials, so participants were given a second break. 
 
A4.3. Results 
 
A4.3.1. Fully Lateralized Trials 
 
We first investigated whether the small differences in task design between Experiments 1 and 2 
would lead to any reliable differences in the results. A three-way mixed effects analysis of 
variance (ANOVA) with experiment number as the between-subjects variable, and hemispheric 
presentation (LH versus RH) and ordering condition (ordered versus reordered) as within-
subjects variables indicated neither a main effect of experiment nor any interaction with other 
factors, F’s < 1, p’s > 0.54. Thus, all subsequent reported effects were generated from models 
collapsing across studies.3 We analyzed accuracy and response time data in separate two-way 
repeated measures ANOVAs, with hemispheric presentation and ordering condition as within-

                                                           
3 Including gender as a factor in the full model, we found that the males in this study were more accurate than the 
females. Given the large gender imbalance in our relatively small sample, this result should not be over-interpreted. 
Notably, both males and females exhibited higher accuracy when the relations were presented to the left hemisphere 
than to the right hemisphere. 
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subjects factors. In this first section, we discuss only those trials that were solely presented to the 
left or right hemisphere. Behavioral results are presented in Fig. A4.2. 
 

 
 
Fig. A4.2. (A) Average proportion correct as a function of hemisphere and ordering condition. A 
significant interaction was found such that when pairs of objects were presented in order, 
performance was significantly better when information was initially presented to the left versus 
the right hemisphere. However, no reliable difference was observed between hemispheres when 
pairs needed to be reordered in memory. Additionally, an overall main effect was found 
indicating that accuracy improved when pairs were initially encoded by the left hemisphere as 
opposed to the right hemisphere. (B) Average response time in milliseconds as a function of 
hemisphere and ordering condition, for correct trials. No reliable differences were observed for 
response time. **p < 0.01. 
 
The ANOVA revealed a significant main effect of hemisphere on accuracy, F(1, 53) = 27.15, 
MSE = 0.012, p < 0.01, ηp

2 = 0.34, such that participants performed better when relational 
information in the reasoning problem was initially encoded by the left hemisphere (M = 0.76, SD 
= 0.17) as compared to the right hemisphere (M = 0.68, SD = 0.16). A significant interaction 
between hemispheric presentation and ordering condition was also observed, F(1, 53) = 8.2, 
MSE = 0.013, p < 0.01, ηp

2 = 0.13. Post hoc t-tests using Bonferroni correction showed that 
participants were significantly more accurate when ordered pairs were presented to the left 
hemisphere (M = 0.79, SD = 0.19) as compared to the right hemisphere (M = 0.66, SD = 0.16), 
t(53) = 6.02, p < 0.001, ηp

2 = 0.41. By contrast, no significant differences were found in accuracy 
between the left hemisphere (M = 0.74, SD = 0.17) and right hemisphere (M = 0.70, SD = 0.19) 
on reordered trials, t(53) = 1.51, p > 0.13, ηp

2 = 0.04. We could also describe this interaction by 
looking at differences between trial types within each hemisphere. Although neither of these 
comparisons passed Bonferroni correction, in the left hemisphere, performance on ordered trials 
was better than on reordered trials, whereas the opposite was true in the right hemisphere. These 
results suggest that, although performance was best when stimuli were presented in order to the 
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left hemisphere, both hemispheres performed similarly when relations were not presented in an 
order that is conducive to integration before solving the transitive inference problem. 
 
When including response times from correctly performed trials as the dependent variable, the 
ANOVA produced a marginally significant effect of hemispheric presentation, such that 
participants were faster to produce the correct decision on trials that were presented to the left 
hemisphere (M = 1218.41, SD = 433.56) as compared to the right hemisphere (M = 1273.10, SD 
= 448.26), F(1, 53) = 3.93, MSE = 41115.21, p = 0.053, ηp

2 = 0.07. No other effects in relation to 
response time were found to be statistically significant, F’s < 1.26, p’s > 0.26. These results 
suggest that the left-hemisphere boost in performance was not due to a speed-accuracy tradeoff; 
rather, when object pairs were presented to the left hemisphere, participants tended to respond 
faster than they would have if information had been presented to the right hemisphere. 
 
A4.3.2. All Trials 
 
In this section, we describe analyses investigating performance across both fully lateralized and 
mixed hemisphere trials (Fig. A4.3). We ran 4×2 repeated measures ANOVAs with number of 
times in the left hemisphere (0, 1, 2, 3) and order (ordered versus reordered) as within-subject 
factors, predicting accuracy and response time scores in separate models. 
 

 
 
Fig. A4.3. Accuracy as a function of ordering condition and number of times premise was 
presented in the left hemisphere (0, 1, 2, 3). For ordered trials, accuracy increased monotonically 
with the number of times a premise was presented in the left hemisphere. For reordered trials, a 
simple pattern was not observed; rather, accuracy decreased when premises were presented in the 
left hemisphere two times (i.e., on LRL and RLL trials) relative to one or three times. No effects 
were observed for response times. 
 
No significant effects were found for response times, F’s < 1.8, p’s > 0.18. In terms of accuracy, 
we found a significant main effect of number of times in the left hemisphere, F(3,159) = 8.79, 
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MSE = 0.013, p < 0.001, ηp
2 = 0.14, such that greater accuracy was observed the more often 

premises were presented in the left hemisphere. We also observed a trend for the effect of order, 
such that accuracy on ordered trials (M = 0.74, SD = 0.16) was marginally higher than on 
reordered trials (M = 0.72, SD = 0.15), F(1,53) = 3.45, MSE = 0.017, p < 0.07, ηp

2 = 0.06. We 
observed a significant interaction between number of times in the left hemisphere by order, F(3, 
159) = 5.55, MSE = 0.013, p < 0.001, ηp

2 = 0.1. We found that for ordered trials there was a 
significant monotonic increase in accuracy as premises were presented to the left hemisphere, 
F(1, 53) = 38.11, MSE = 0.011, p < 0.001, ηp

2 = 0.42. For reordered trials, no such linear trend 
was observed, F(1,53) < 1, p > 0.5. These results suggest that when information is already 
ordered, increases in accuracy can be significantly predicted by how many times the premises are 
presented in the left hemisphere, and support our finding that participants performed better when 
ordered trials were presented only to the left hemisphere than to the right. 
 
A4.3.3. Follow-Up Analyses 
 
In testing for hemispheric differences in performance on this transitive inference task, we sought 
to ensure that participants were performing this task in the manner expected. When three 
relations are presented in order, it is possible to produce the correct response even without 
integrating multiple relations (Bryant and Trabasso, 1971). In our design, this simpler, non-
integrative strategy could be undertaken by paying attention only to the top item in the first 
premise rather than encoding all premises and integrating the relations between them. If 
participants were to take this strategy, they would be expected to achieve roughly 100% accuracy 
on ordered trials, but only around 50% accuracy on reordered trials (because the first item of the 
first premise only appeared in the final prompt on two-thirds of the trials). Six out of 54 
participants exhibited a pattern consistent with the use of this strategy. The findings reported 
here hold even when excluding these six participants. 
 
A4.4. Discussion 
 
Inspired by findings from the neuroimaging and neuropsychological literatures, we tested 
whether healthy young adults’ performance on a reasoning task would differ on whether the 
stimuli were presented to the left or right hemisphere. By designing a transitive inference task 
with visual half-field stimulus presentation, we were able to show differences in reasoning 
performance as a function of the hemisphere that initially encoded the sets of visuospatial 
relations. Given that the two hemispheres communicate freely in the intact brain, we had 
expected only modest differences in response times for left- versus right-hemifield stimulus 
presentation. As such, we were surprised by the magnitude of the behavioral difference elicited 
by visual half-field presentation in this study, with an average difference in accuracy of 11% 
between left-lateralized and right-lateralized ordered trials. Although claims of inter-hemispheric 
differences in cognition have been made for many years (Gazzaniga et al., 1962; Cohen, 1973), 
our study is the first to demonstrate hemispheric differences in relational encoding in 
neurologically intact participants. 
 
Although task performance (i.e., accuracy) improved overall when participants encoded the 
visuospatial relations in the left hemisphere, this effect was driven by performance on the 
ordered trials. That is, we observed a left-hemisphere advantage when the relations were ordered 
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linearly and, therefore, could be integrated directly, but not when it was necessary to rearrange 
the relations before integrating them. For right-hemisphere trials, participants did not show the 
predicted pattern of worse performance for reordered versus ordered trials. This pattern was 
unexpected, and warrants further investigation. Surprisingly, given that reordered trials are 
hypothesized to require additional processing relative to ordered trials (Waltz et al., 1999; 
Krawczyk et al., 2008), left-hemisphere encoding of reordered relations was superior even to 
right-hemisphere encoding of ordered relations. These results suggest that the left hemisphere 
excels at relational encoding. 
 
The present results fit well with neuroimaging studies that have pointed toward a left-hemisphere 
specialization in relational reasoning (Wendelken et al., 2008; Bunge et al., 2009; Green et al., 
2010). In light of these findings, it is interesting to consider a recent resting-state functional 
connectivity study showing that the left-hemisphere interacts more exclusively with itself, 
whereas the right hemisphere demonstrates connectivity patterns associated with both 
hemispheres (Gotts et al., 2013). This result suggests that the left hemisphere may operate 
independently, whereas the right hemisphere functions, at least partly, with assistance from the 
left hemisphere. Given these findings, we would predict a left-hemisphere advantage if relational 
encoding hinges more on intra-hemispheric interactions, and indeed this prediction was 
supported by our analysis including the mixed trials. 
 
A4.4.1. A Left-Hemisphere Advantage for Relational Encoding 
 
The behavioral improvement observed in our study does not indicate that the right hemisphere 
cannot encode relational information, but rather suggests that relational encoding may be 
processed more effectively in the left hemisphere. Although the stimuli were visuospatial in 
nature, they nonetheless were easily identifiable verbally (e.g., circle, square, pentagon). Given 
how quickly premises were presented, it does not seem feasible that very many participants 
would have had enough time to verbally label objects while they solved the task; however, we 
cannot conclusively rule out this possibility. The present study establishes a paradigm that could 
be used for further examination of the necessity of verbal labeling for relational reasoning. 
 
Numerous dichotomies have been used to explain hemispheric asymmetries in cognitive 
functioning (Bradshaw and Nettleton, 1981), and so we do not claim that the left-hemisphere 
advantage observed in our study is unique to relational encoding, per se. Beyond the verbal/non-
verbal distinction (Gazzaniga et al., 1962), other theories have focused on local versus global 
(van Kleeck, 1989), serial versus parallel (Cohen, 1973), holistic versus analytic (Nebes, 1978; 
Cooper and Wojan, 2000), categorical versus coordinate (Kosslyn, 1987), or syntactical versus 
intuitive/“gist” (Bogen, 1975; Phelps and Gazzaniga, 1992) processing, to name a few. Such 
dichotomies are useful in that they demonstrate how a higher level cognitive task such as 
reasoning might be represented as a combination of lower order cognitive processes. Our 
transitive inference task could be construed as being syntactical, serial, and analytic, and 
previous work focusing on these distinctions has consistently demonstrated a left-hemispheric 
specialization (for review, see Bradshaw and Nettleton, 1981). Additionally, encoding spatial 
relations in the premises categorically (e.g., identifying the square as above the triangle) would 
also fit with previous work demonstrating a left-hemispheric advantage for categorical encoding 
of spatial relations (Kosslyn, 1987; van der Ham et al., 2012).  
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A4.5. Conclusion and Future Directions 
 
Our results shed light on cognitive theories of relational reasoning, as they provide evidence for 
differential processing of relations by the two hemispheres. Specifically, we found that 
participants performed better on our transitive inference task when the premises were presented 
to the left hemisphere. This effect was driven by an interaction such that there was a greater 
difference in performance when the premises were ordered than when participants presumably 
had to reorder the premises before making their conclusion. Theories describing a unitary 
mechanism of relational reasoning (e.g., Hummel and Holyoak, 2003; Goodwin and Johnson-
Laird, 2005) may need to incorporate multiple components in order to fully represent 
interhemispheric differences used during relational reasoning. 
 
The present results are consistent with theoretical predictions concerning hemispheric 
specialization of cognitive functions. Specifically, participants are expected to perform better 
when information is presented to the left hemisphere for tasks that could be solved using a 
stepwise and analytical strategy. Our findings extend previous work given that our transitive 
inference task not only exemplifies these types of strategies but also relies on the comparison of 
relational information between premises in order to arrive at a solution. 
 
These behavioral results warrant further investigation with neuroscientific techniques. First, 
functional imaging techniques could be used to measure the dynamic interplay between 
hemispheres during performance of this lateralized transitive inference task. Second, transcranial 
direct current stimulation could be used to increase or reduce cortical excitability within a 
hemisphere and test whether relational reasoning performance in each hemisphere changes as a 
function of cortical excitability (Nitsche and Paulus, 2001; Ardolino et al., 2005). Finally, 
patients with unilateral brain injuries could be tested on this lateralized task to assess whether 
relational encoding is primarily a left-hemisphere function, or whether the right hemisphere 
could specialize in this function after left-hemisphere damage. Thus, reapplying this well-
established stimulus presentation procedure in these multiple contexts will help us to better 
understand the underlying mechanisms required for processing relational information during 
reasoning. 
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Appendix 5: Eyegaze Patterns Reveal Optimal Strategies During Analogical Reasoning 
 
Citation: Vendetti, M. S., Johnson, E. L., Modavi, K. & Bunge, S. A. Eyegaze patterns reveal 
optimal strategies during analogical reasoning (in revision). 
 
Analogical reasoning is a complex cognitive process in which inferences are made based on the 
relational similarity between two domains. Although analogical reasoning has been the focus of 
inquiry for many years, most models rely on measures that cannot capture participants' thought 
processes moment by moment. Measuring participants' eye movements provides a way to 
investigate reasoning strategies in real time. Previous eyetracking research studying analogical 
reasoning has identified eyegaze patterns that participants make most often while reasoning, but 
it is still unclear which strategies are optimal for solving analogy problems in the face of 
distracting information. The current study used patterns of eye movements to infer participants' 
strategies while solving visual propositional analogy problems (A:B::C:D), and then identified 
which strategy was associated with best overall performance. Analysis of eye movements 
revealed that participants were initially drawn to perceptual lures when looking at response 
choices, spent more time fixating among analogy terms and the target relative to other response 
choices, and made more AB saccades relative to other saccades patterns. We then used 
participants' gaze sequences to classify each trial as representing either a project-first, structure-
mapping, or semantic-constraint strategy and found that the more often participants used a 
project-first strategy, the higher their overall analogy accuracy. These findings provide new 
insight into the role of strategic processing while solving analogy problems. 
 
A5.1. Introduction 
 
Analogical reasoning – the process of generating inferences based on relational correspondences 
between two domains – is ubiquitous in most forms of thought (Hofstadter & Sanders, 2013). 
Numerous models have been put forth to explain the processes involved in analogical reasoning 
(see Gentner & Forbus, 2011). Although most of these models share many core processes (e.g., 
mapping items based on shared roles), what differentiates them is what information is considered 
most useful to compare while generating inferences. 
 
Project-first models (e.g., Sternberg, 1977) stem from the psychometric tradition of using 
propositional analogies (i.e., A:B::C:? – see Fig. A5.1) to study fluid intelligence. In this model, 
analogies are solved by first generating a rule that relates the A and B terms before mapping the 
A and C terms, and finally applying a similar rule that generates D. According to this model, 
when presented with the analogy GLOVE : HAND :: SOCK : FOOT, the reasoner would first 
identify a rule relating glove and hand (e.g., a glove covers a hand for warmth). Then s/he would 
identify a rule that relates glove and sock (e.g., they are both articles of clothing). After mapping 
the rule between the two domains, a solution is produced (e.g., a sock covers a foot for warmth). 
Thus, the project-first model focuses on generating a rule between the A and B terms to guide 
subsequent judgments. 
 



125 

 
 
Fig. A5.1. Example analogy trial. Participants were asked to choose which item best fills the 
position of the question mark. Each trial contained four response choices: the correct choice, a 
perceptual lure, a semantic lure, and an unrelated lure. See main task for detailed instructions. 
The position of each response choice was randomized across trials. The letters and the response 
choice labels are for illustrative purposes only. 
 
Structure-mapping models (e.g., Falkenhainer, Forbus, & Gentner, 1989; Gentner, 1983; 2010) 
assume that knowledge is structured hierarchically with relations connecting items, and that 
analogies are solved by mapping items from one structured representation to another. Using the 
same analogy example, structure-mapping models would propose that generating a rule to relate 
glove and sock would be the integral step; other inferences would then be guided by how well 
the two structures correspond (Gentner & Forbus, 2011). 
 
A third model is based on the idea that there could be a large number of rules that relate the A 
and B terms in an analogy problem. Using the example analogy, a glove and hand may be related 
as, “clothing used to warm body parts”. However, many other relations may exist between these 
two items depending on the context, such as “things that are smaller than a breadbox”. Therefore, 
many possible solutions for solving the analogy could influence one’s ultimate decision. This 
model, referred to hereafter as the Semantic-constraint Model (e.g., Chalmers, French & 
Hofstadter, 1992; Glady, Thibaut, French, & Blaye, 2012; Thibaut, French, Missault, Gerard, & 
Glady, 2011), assumes that mapping relations between one’s search space and the C term in the 
analogy is the most useful step for solving an analogy. 
 
Most models rely on behavioral findings, including comparing word passages (e.g., Day & 
Gentner, 2007; Gick & Holyoak, 1983), complex visual scenes (e.g., Markman & Gentner, 1993; 
Richland, Morrison, & Holyoak, 2006), and propositional analogies (e.g., Cho, Holyoak, & 
Cannon, 2007; Krawczyk, et al., 2008; Sternberg, 1977). One potential limitation of behavioral 
data is its low temporal specificity: recording a behavioral response can provide a measurement 
for the outcome of a trial, but it does not capture the possible strategy used to arrive at that 
response.  



126 

One approach that allows researchers to gain insight into strategies is eyetracking (e.g., Hayes, 
Petrov, & Sederberg, 2011; Hodgson, Bajwa, Owen, & Kennard, 2000; Salvucci & Anderson, 
2001; von der Malsburg & Vasishth, 2011). This approach records eye movements around the 
screen space to infer what participants were thinking based on where they were looking while 
solving a task (e.g., Just & Carpenter, 1976; Rayner, 2009; Yarbus, 1967). In our study, we were 
interested in several eyetracking measures, delineated below. 
 
The first fixation after trial onset reflects immediate information processing, and thus suggests 
what participants might deem most important when trying to glean information from an analogy 
problem (Antes, 1974). The amount of time spent fixating in an area of interest (AOI), or 
fixation duration, represents which aspects of the visual scene are most informative (Mackworth 
& Morandi, 1967). Finally, first-order fixation transitions measure where participants are likely 
to fixate next given their current fixation location, and can provide a reliable marker of relational 
processing based on the idea that transitioning between two objects is likely to represent shared 
information (e.g., Gordon & Moser, 2007). 
 
Each of the three strategies would predict different patterns of eye movements that would be 
more informative for solving analogy problems (see Fig. A5.2). According to the project-first 
strategy, solving analogy problems involves looking earlier at the A and B terms of the analogy 
problem, making 1st-order fixation transitions between the AB terms, and then making 1st-order 
fixation transitions between the C term and the Target. The structure-mapping strategy would 
predict earlier fixations on the A and C terms, more saccades between the A and C terms, and 
between the B term and the Target. Finally, the semantic association strategy would predict 
earlier fixations on, and more saccades between, the C term and response choices. 
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Fig. A5.2. Patterns of eye movements as predicted by (A) Project-first, (B) Structure-mapping, 
and (C) Semantic-constraint strategies.  
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Recently, several studies used eyetracking to identify where participants fixated while solving 
analogies (e.g., Glady, French & Thibaut, 2014; Gordon & Moser, 2007; Thibaut et al., 2011). 
These studies found that participants tend to make more mappings between the A and B terms, 
especially towards the beginning of a trial. Thus, these studies have demonstrated a preference 
for a project-first strategy while solving analogy problems. In the current study, we used 
eyetracking to describe what participants attended to while solving propositional analogy 
problems in the face of distracting information. We then used patterns of eye movements to 
classify participants’ trials as resembling the project-first, structure-mapping, or semantic-
constraint strategy. Finally, we tested whether using a particular strategy more often would 
predict overall analogy accuracy. 
 
A5.2. Methods 
 
A5.2.1. Participants 
 
Twenty-eight healthy young adults (17 female, aged 18-25 years; M ± SD age, 20.39 ± 2.01 
years) participated in the study. All participants attended the University of California at 
Berkeley, had normal vision, were fluent in English, had no reported history of neurological or 
psychiatric disorders, and gave their informed consent to participate in the experiment for partial 
fulfillment of a course requirement. The study was approved by the Committee for Protection of 
Human Subjects at the University of California at Berkeley. We excluded two participants: one 
whose proportion correct was more than two standard deviations below our sample’s average 
performance and another whose eyetracking data was incomplete due to an error in data 
collection. 
 
A5.2.2. Eyetracking Apparatus 
 
Stimuli were presented using the Tobii E-Prime Software Extensions (Psychology Software 
Tools, Pittsburgh, PA), which synchronizes stimulus presentation timing with a second computer 
that records eyegaze position. Participants were seated comfortably in front of the Tobii T120 
Eye Tracker (17-inch monitor, 1280×1024 pixel resolution). Distance was calibrated individually 
so that each participant focused on the middle of the screen, within a range of 50-80 cm. The 
Tobii T120 built-in camera captures data with a temporal resolution of 120 Hz and average 
spatial resolution of 0.3° of visual angle. The camera can automatically compensate for small 
head movements (within a 30 x 22 cm area at 70 cm distance); thus, participants’ heads were not 
restrained. The camera independently recorded eyegaze position of the left and right eyes. 
 
A5.2.3. Materials 
 
Our lab designed the analogy trials using Adobe Photoshop, and made use of line drawings from 
“The Big Box of Art: 1 Million”. All stimuli were pictures of common objects. Analogy 
problems consisted of an incomplete propositional analogy (i.e., A:B::C:?) above a row of four 
items. For example, in Fig. A5.1, participants were asked to indicate with a button press which of 
the four bottom pictures best completes the analogy. Participants were told that there may be 
several pictures that they think go with the C term, but that they should choose the picture that 
goes with the C term in the same way that the A term goes with the B term. Responses consisted 
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of the correct response, a perceptual lure (i.e., an item that shared a similar shape and color to the 
C-term), a semantic lure (i.e., an item whose meaning was associated with the C-term, but did 
not match the relation shared between the A- and B- terms), and a lure that was designed to be 
unrelated both perceptually and semantically. The location of each response type was 
randomized across trials. 
 
A5.2.4. Procedure 
 
Participants completed seven practice trials with feedback followed by 40 experimental trials 
without feedback. Experimental trials were split evenly into two blocks of trials. Each trial began 
on a black screen with a white central fixation cross. After 1000 ms, an analogy problem was 
presented and remained on the screen until a response was made, or until the trial timed out after 
10 seconds. Participants pressed a button on the keyboard to reflect which of the four response 
choices they thought best completed the analogy problem, and were instructed to respond as 
quickly and accurately as possible. The stimulus display then disappeared and participants were 
immediately presented with the next trial. 
 
A5.3. Results 
 
A5.3.1. Behavioral Results 
 
The average overall proportion correct (M = 0.91, SD = 0.05) and response times on correct trials 
(M = 3078 ms, SD = 563 ms) were similar to performance levels obtained in a previous study 
using similar analogy problems (e.g., Wright, Matlen, Baym, Ferrer, & Bunge, 2008). Although 
participants performed well overall, when they did make errors they were most likely to choose 
the semantic lure (~64%), followed by perceptual (~26%) and unrelated lures (~10%). This 
pattern of errors was significantly different than what would be expected if error types were 
equally likely, 𝛸𝛸2(2) = 89.13, p < 0.001. 
 
A5.3.2. Eyetracking Results  
 
In this section, we report analyses concerning the eyetracking measures described above. 
Looking at trials in which participants correctly solved the analogy problem, we first tested 
whether there were differences in the frequency of the eyetracking measures, and then examined 
how these patterns predicted individual differences in overall analogy accuracy. 
 
First fixations among analogy terms. One potentially important component underlying 
participants’ strategy is where they decide to look first when presented with the analogy 
problem. Fig. A5.3A shows average first fixations to analogy terms (i.e., those areas containing 
the A, B, C terms – see Fig. A5.1). There was a main effect of location, F(2, 50) = 43.64, p < 
0.001, 𝜂𝜂p

2 = 0.64, such that participants made significantly more first fixations to the C term in 
the analogy than to any other term. 
 
First fixations among response choices. We were also interested in testing whether participants 
were influenced by a particular lure when beginning their search among response choices. In our 
dataset, participants were more likely to first look at the analogy terms (i.e., A, B, or C) before 
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looking at the response choices (see Fig. A5.3D for example scan sequences); therefore, we only 
included participants’ first fixations among response choices that followed fixating at least one 
of the analogy terms. The pattern of first fixations among response choices is shown in Fig. 
A5.3A. There was a significant difference among the number of first fixations within the 
response choice AOIs, F(3,75) = 39.24, p ≤ 0.001, 𝜂𝜂p

2 = 0.61, such that participants made 
significantly more first fixations to the perceptual lure (M = 12.96, SD = 2.49) than to the target 
(M = 7.92, SD = 1.62), semantic lures (M = 7.58, SD = 1.96), or unrelated lures (M = 7.54, SD = 
1.90). 
 
Proportion of time spent fixating in AOIs. We measured the proportion of time that participants 
fixated at each AOI (i.e., Analogy terms: A, B, C; and response choices: Target, Perceptual Lure, 
Semantic Lure, Unrelated Lure). As shown in Fig. A5.3B, participants spent significantly more 
time fixating on the A (M = 0.20, SD = 0.11), B (M = 0.16, SD = 0.09), and C (M = 0.21, SD = 
0.11) terms as well as the Target (M = 0.20, SD = 0.08), relative to the perceptual (M = 0.09, SD 
= 0.08), semantic (M = 0.08, SD = 0.07), and unrelated lures (M = 0.05, SD = 0.05), all t’s(25) > 
2.5, p’s < 0.01, d > 0.47. 
 
First-order fixation transitions. Following from previous research investigating first-order 
fixation transition patterns while solving analogy problems (e.g., Gordon & Moser, 2007), we 
investigated where participants were likely to fixate next given their current fixation location 
(i.e., first-order fixation transitions, or saccades). As described earlier, the three strategies would 
predict different fixation transitions to be most useful while solving our analogy problems. Given 
the large number of possible saccades, we calculated participants’ number of saccades between 
A  B, A  C, and C  response choices relative to all other possible saccades. Our 
score reflected the proportion of these transitions between AOIs rather than absolute number of 
transitions. Participants were significantly more likely to produce AB 1st-order transitions (M = 
0.17, SD = 0.04) as compared to both AC 1st-order transitions (M = 0.11, SD = 0.03) and C  
response choices (M = 0.05, SD = 0.01), F(2, 50) = 87.57, p < 0.001, 𝜂𝜂p

2 = 0.79 (Fig. A5.3C). 
 



131 

 
 
Fig. A5.3. (A) Left: Number of first fixation for analogy terms A, B, & C. Participants made 
more first fixations to the C term than either A or B terms of the analogy. Right: Number of first 
fixation for response choices conditional on having already looked at the analogy terms. 
Participants made significantly more first fixations to the perceptual lure than to any other 
response choice. T = Target, S = Semantic Lure, P = Perceptual Lure, U = Unrelated Lure. (B) 
Proportion Fixation Durations for analogy terms and Response Choices. Participants spent 
significantly more time looking at the analogy terms and the target than for the lures. (C) 
Proportion number of Fixation Transitions for AB, AC and C to Response Choices. Participants 
made significantly more AB transitions than the other types. (D) Plot showing sequences of 
fixations among fixation AOIs across trials, beginning at the bottom. Fixation durations are in 
milliseconds. Left: Fixation sequence for participant with the highest analogy accuracy. Right: 
Fixation Sequence for participant with the lowest analogy accuracy. 
 
Using eyegaze sequences to identify optimal strategies. For this analysis we used participants’ 
fixation sequences and corresponding fixation durations to calculate a score that was used to 
classify a participant’s strategy for each trial (see Supplementary Materials for further 
information). We then calculated the number and proportion of trials classified according to each 
strategy, and used this information to describe the distribution of strategy use across all trials and 
to predict participants’ overall analogy accuracy. We found that strategies were not classified 
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equally, X2(2) = 151.63, p < 0.001, such that the majority were classified as project-first trials (n 
= 446), followed by structure-mapping (n = 307) and semantic-constraint (n = 145). 
 
We then correlated participants’ proportion of trials classified as each strategy with analogy 
accuracy and found that the proportion of trials classified as project-first was positively 
correlated with accuracy (r = 0.624, p < .001). The proportion of structure-mapping trials was 
not significantly related to accuracy (r = –0.30, p = 0.14), and the proportion of semantic-
constraint trials was negatively correlated with accuracy (r = –0.50, p < 0.01). Using the cocor 
statistical package (Diedenhofen & Musch, 2015) we compared the correlation values for these 
analyses, accounting for the dependent nature of the correlations (Zou, 2007), and found that the 
correlation coefficient between project-first and analogy accuracy was significantly different 
than the correlation values for the other two strategies’ relationships with accuracy (95% 
confidence interval for the difference = 0.30 – 1.37). Thus, our analysis indicates that even 
though a majority of the participants used the project-first strategy, those who used it more often 
had greater analogy accuracy, and those who used the semantic-constraint strategy more often 
had worse performance. 
 
A5.4. Discussion 
 
The current study used participants’ eyegaze to identify optimal strategies for solving visual 
analogy problems in the face of distracting information. Thus, we were interested in how 
eyetracking could reveal how perceptual and relational similarity guides our analogical 
judgments, what types of eye movements and fixations were used most often, and whether 
patterns of eye movements could predict one’s overall analogy accuracy. Our strategies were 
based on previous theories describing how participants might solve analogical reasoning 
problems: 1) project-first (e.g., Sternberg, 1997), in which information between items in the 
source domain are used to generate a solution for the target domain; 2) structure-mapping (e.g., 
Gentner, 1983; 2010), in which comparing items between source and target domains is most 
fruitful for generating an analogy; and 3) semantic-constraint (e.g., Chalmers et al., 1992; 
Thibaut, et al., 2010), in which participants rely on the semantic associations between the C term 
and response choices to guide their interpretation of the shared relationship in the source domain. 
Each of these strategies predicts different steps taken while solving analogy problems, and we 
leveraged participants’ eye movements as a proxy of their strategies. 
 
How might perceptual and semantic distracting information influence one’s process of solving 
analogy problems? Previous work manipulated the number of semantic distractors while solving 
analogy problems and found that participants made more fixations to semantic distractors as the 
number of distractors increased (e.g., Glady et al., 2014; Gordon & Moser, 2007; Thibaut et al., 
2010). The current study extended this work by including both perceptual and semantic lures on 
each trial, thus allowing us to examine whether participants were influenced by perceptual 
similarity, or whether they have learned to ignore this information and instead map items using 
relational information (i.e., semantic associations). 
 
Theories of analogical reasoning development propose that the similarity processes used to guide 
one’s analogical decision may either be purely due to insufficient knowledge of a particular 
domain (i.e., relational primacy hypothesis; Goswami & Brown, 1990), or is a function of both 
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object and relational similarity (i.e., relational shift hypothesis; Rattermann & Gentner, 1998). 
According to the relational primacy hypothesis, once someone has sufficient knowledge of a 
domain they should not be influenced by perceptual similarity; this could still be the case 
according to the relational shift hypothesis. Using eyetracking we observed that participants’ first 
fixations among response choices were predominantly on the perceptual lure. Contrary to 
participants’ behavior, which indicated more semantic than perceptual errors – and this 
eyetracking result indicates that perceptual similarity can still influence initial similarity 
judgments, even if relational information ultimately guides one’s analogy decision. As such, this 
finding demonstrates that even adults can indicate – with eye movements – the types of 
similarity judgments that children demonstrate behaviorally. 
 
We found that participants spent more time looking at the analogy terms and the target AOIs, 
with much less time spent fixating on the lure response choices, even the semantic lure. Contrary 
to the semantic-constraint hypothesis (e.g., Chalmers et al., 1992; Thibaut et al., 2010), 
participants did not allocate time equally among the response choices to identify a relation to 
constrain possible relationships between the A and B terms of the analogy. Moreover, our 
strategy classification analysis indicated that those participants who used the semantic-constraint 
strategy more often had lower overall accuracy. This pattern of results resonates with previous 
work indicating that younger children – who are less experienced with solving analogy problems 
– use the semantic-constraint strategy (Glady et al., 2012; Thibault et al., 2011). Thus, the 
semantic-constraint strategy represents a suboptimal approach to solving analogy problems. 
 
Ultimately, we were interested in which strategy was optimal for solving analogy problems. 
Using both the average number of 1st-order fixation transitions across trials and our strategy 
classification analysis within trials, we found that participants were much more likely to use the 
project-first strategy. Even though the project-first strategy was the most common, many trials 
were also classified as representing the structure-mapping strategy across participants, and even 
across trials within participants. After we identified the proportion of trials classified as each 
strategy type within individual subjects, we used this information to show that the project-first 
strategy was optimal for solving the analogy problems. 
 
In conclusion, we have presented work that used eyetracking measures to identify what types of 
strategies participants used while solving visual analogy problems in the face of distracting 
information. By taking an individual differences approach, we were able to show which patterns 
were correlated with higher overall accuracy scores, thus indicating which patterns of eye 
movements were most useful for solving the analogies correctly. Finally, by using our strategy 
classification analysis, we were able to show that the project-first strategy was the optimal 
strategy participants could use, and the semantic-constraint strategy was the worst strategy. 
Measuring eye movements allows researchers to go beyond the final behavioral decision and into 
the realm of real-time strategies used while thinking analogically. Future work in this area will 
allow greater precision for the steps necessary for effective reasoning and thus can be incredibly 
useful for informing theories of analogical reasoning as well as interventions aimed at improving 
one’s reasoning ability. 
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A5.6. Supplementary Methods 
 
Expanded description of strategy classification analysis. In this analysis, we used AOI location, 
fixation duration, and position within the fixation sequence to generate a score reflecting 
participants’ strategy within each trial. The score is based on the assumption that fixations that 
occur earlier in a trial and those that occur longer are more representative of AOIs that are more 
useful for solving the analogy problem. Therefore, for each fixation in the fixation sequence for a 
trial, we calculated the score as the product of its duration and inverse of its location in the 
sequence. Thus, longer fixations occurring earlier get higher scores and shorter fixations 
occurring later in the trial get lower scores. Although the idea to weight scores by position in the 
fixation sequence was the authors’ idea, the notion that longer durations be more representative 
of deliberate thinking follows from previous eyetracking research investigating fixation 
sequences (e.g., von der Malsburg & Vasishth, 2011). 
 
Each of the three strategies has differential predictions about which fixations and first-order 
transitions would be most informative while solving analogy problems. The project-first model 
(e.g., Sternberg, 1979) states that initial fixations and transitions within the source domain (i.e., 
the A and B terms) are most useful for generating a relation to be applied between the C term 
and the target. Therefore, the project-first equation would be the sum of the scores associated 
with these eye-gaze components: 
 
Eq. 1. Project-First Strategy = Scoreinitial fix.A + Scoreinitial fix.B + ScoreAB + ScoreBA + ScoreCT 
 
Where initial fix. corresponds to the first fixation occurrence in the sequence for the specified 
AOI (i.e., not necessarily the first fixation within the sequence), AB corresponds to 1st-order 
fixation transitions from the A to the B terms, and T stands for the target in the analogy problem. 
Under the project-first model, transitions are reciprocal between the A and B terms, but are 
directed from the C term to the target. 
 
As described in the main text, the structure-mapping model (e.g., Gentner, 1983) posits that 
initial fixations to and transitions between the A and C terms are most informative for generating 
a relation that could be applied between the B term and the Target. The structure-mapping 
equation was scored as follows: 
 
Eq. 2. Structure-Mapping Strategy = Scoreinitial fix.A + Scoreinitial fix.C + ScoreAC + ScoreBT 
 
Finally, the semantic-constraint model (Chalmers et al., 1992) claims that relations between the 
C term and the response choices can be used to constrain the appropriate relation shared between 
the A and B terms in the analogy. Therefore, initial fixations to the C term and response choices, 
as well as bidirectional transitions would be most informative when solving the analogy problem. 
Thus, the semantic-constraint equation was scored as follows: 
 
Eq. 3. Semantic-Constraint Strategy = Scoreinitial fix.C + Scoreinitial fix.T + Scoreinitial fix.S +  
Scoreinitial fix.P + Scoreinitial fix.U + ScoreCS + ScoreSC + ScoreCP + ScorePC + ScoreCT + ScoreTC 
 



137 

Where S, P, and U correspond to the semantic, perceptual, and unrelated lure response choices, 
respectively. 
 
Once a score was calculated for each strategy based on the information in a trial, we classified 
each trial as belonging to a particular strategy if its respective score was greater than the score 
generated by either of the other two strategies. Therefore, for a trial to be classified as project-
first, the score in Eq. 1 had to be greater than both the score from Eq. 2 and the score from Eq. 3. 
If the scores happened to be equal, no strategy classification would be given. Such an occurrence 
was rare, occurring in only 36 out of 934 trials included in the analysis. Therefore, for each 
participant we calculated the number of trials that were classified as each strategy. 
 
We then calculated the proportion of each strategy for each participant to account for the 
different number of trials included in the analysis. From here, we took these proportions and 
correlated them with analogy accuracy to investigate whether using a particular strategy would 
allow us to predict a participant's analogy accuracy. We found that project-first was positively 
correlated with accuracy (r = 0.624, p < 0.001), structure-mapping was not significantly related 
(r = -0.30, p = 0.14), and semantic-constraint was negatively related with analogy accuracy (r = -
0.50, p < 0.01). Thus, from our results, project-first was the most optimal strategy. 
 
For access to the code used to generate the scores for the strategy classification, please follow the 
link below: 
 
https://github.com/msv0915/bungelab_eyetracking/blob/master/VisAn_eyetracking_supplementa
l.py 
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