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ABSTRACT OF THE DISSERTATION

Characterizing and quantifying information conveyed by large neuronal

populations

by

John Berkowitz

Doctor of Philosophy in Physics
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Professor Tatyana Sharpee, Chair

Professor Massimiliano Di Ventra, Co-Chair

How neurons in the brain collectively represent stimuli is a long standing open problem.

Studies in many species from leech and cricket to primate show that animals behavior,
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such as gaze direction or arm movement, often correlates with a measure of neural activity

termed the population vector. To construct it, one averages preferred stimuli for each neuron

proportionately to their responses. However, the population vector discards much of the

information contained in the activity of the population. In the first part of this thesis we

show that for a broad class of common models of neural populations a sufficient statistic of the

population response can be constructed that is guaranteed to transmit as much information

about the stimulus as the population response. The statistic has fixed dimension, independent

of the population size, and is valid even in the presence of intrinsic interneuronal correlations.

This statistic turns out to be a re-weighted version of the population vector. We validate the

performance of this statistic on a dataset of visual neural responses. Additionally we show

that under certain conditions, this statistic can serve as a reconstruction of the stimulus itself.

Quantifying mutual information between inputs and outputs of a large neural circuit is

an important open problem in both machine learning and neuroscience. However, evaluation

of the mutual information is known to be generally intractable for large systems due to the

exponential growth in the number of terms that need to be evaluated. Here we show how

information contained in the responses of large neural populations can be effectively computed

for a class of models that generalize those considered in the first part of the thesis. Neural

responses in this model can remain sensitive to multiple stimulus components. We show that

the mutual information in this model can be effectively approximated as a sum of lower-

dimensional conditional mutual information terms. The approximations become exact in the

limit of large neural populations and for certain conditions on the distribution of receptive

fields across the neural population. We empirically find that these approximations continue

xv



to work well even when the conditions on the receptive field distributions are not fulfilled.

The computing cost for the proposed methods grows linearly in the dimension of the input,

and compares favourably with other approximations.
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Chapter 1: Introduction

1.1 The Neural Code

A central problem in sensory neuroscience is determining how semantic and task-

relevant information about external stimuli is communicated by the outputs of neural pop-

ulations in lower level sensory areas to higher level decision making parts of an organism’s

brain. Making progress on understanding this neural code requires answering several related

questions such as how to quantify the stimulus, how to characterize the neural outputs, and

how to model the variability in neural responses. A common and useful approximation that

we assume for the duration of this thesis is that time has been discretized into discrete bins

where the stimulus in bin t is (~st) is considered constant and the neural response (~rt) recorded

over the corresponding bin is considered to be drawn from a stationary stimulus conditioned

distribution:

~rt ∼ Pt(~r) = P (~r|~st, t) = P (~r|~st) (1.1)

The important approximation implied by (1.1) is that the distribution over ~r depends

only on time t through ~st. This precludes, among other processes, adaptation in spike rate
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[Fairhall et al., 2001], rescaling of neural dynamic range for contrast adaptation [Wainwright,

1999, Brenner et al., 2000a, Kastner and Baccus, 2011], as well as certain forms of predictive

coding [Hosoya et al., 2005]. While this may seem like a strong simplification, the assumption

of stationarity vastly simplifies the analysis of stimulus-response relationships. Additionally,

unless otherwise noted we will assume that the stimuli are also drawn from a stationary

distribution: ~st ∼ P (~s). We also have to formalize our representations of the stimulus

and the neural responses. The stimulus ~s is modelled simply as a D-dimensional vector

in euclidean space. This is a very general representation, where components of ~s could

represent the intensity of light coming from pixels on a screen or velocity components in

some coordinate frame. Modelling ~r is a more open ended task. We first assume that the

population is of a fixed size, denoted N . A very general representation for ~r would be a list

of spikes during the time bin, including the time of spiking and index of the neuron that

spiked. Including all of this information would be necessary for analysing codes based upon

precise spike-timing [Srivastava et al., 2017, Theunissen and Miller, 1995]. For this thesis we

instead treat ~r as a length N vector, where ri represents the number of times the ith neuron

spiked during the time bin. Furthermore, we will generally assume that the time bin is short

enough that ri is binary, but address the more general case in Chapter 2. Finally, we must

determine how to model the stochasticity in neural responses. The measured response of

real neurons display varying outputs even when presented with repetitions of the exact same

stimulus. Rate codes discard all information about variability, and simply treat ~rt as a vector

where each each entry represents the average number spikes from the corresponding neuron

over repeated presentations of ~st. However, multiple studies have demonstrated that the
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magnitude of the variability in individual neuron responses, as well as intrinsic correlations

between the variability of different neurons, plays an important part in cortical population

codes [Berkes et al., 2011, Orban et al., 2016]. In this thesis we consider the ramifications

of considering a particular form of parametric probability distribution for P (~r|~s) (see section

1.2.2) which, among other effects, determines the precise stochastic relationship between ~r

and ~s. Once we have made the relevant modelling assumptions about ~r, ~s, and P (~r|~s) we may

ask if there are reduced representations of ~r that are both succinct and useful. That is, does

an organism need to retain the entire description of the population response ~r to perform

accurate inference about the stimulus or to choose the correction response, or can information

about ~r be discarded without loss of performance? In order to answer that question we must

settle upon a metric by which to determine the performance of such representations.

1.2 Efficient Coding and Shannon Information

There are many ways to judge the quality of a neural code. If one views the role of

the early sensory system as providing to higher cortical areas a representation of the stimulus

that is optimal for decision making, e.g. choosing the correct motor response based upon

visual input, then there are two two properties a high performing neural code should achieve.

The first property is that a good code should distinguish between different stimuli. That is,

the output of a neural response for two different stimuli should be separated, by some metric,

as much as possible. If the number of different stimuli is large or infinite then this equates to

high diversity in the set of neural responses. One choice for quantifying this diversity is the

Shannon Entropy of the response distribution:

3



H(~R) = −
∑
~r

P (~r) logP (~r) (1.2)

Where P (~r) is the probability of population response ~r, averaged over all stimuli. The

second property is that, for a fixed stimulus, the neural response should vary as little as

possible upon repeated presentations of the stimulus. This variability can be summed up

with conditional Shannon Entropy:

H(~R|~S) = 〈−
∑
~r

P (~r|~s) logP (~r|~s)〉~s (1.3)

These two quantities are in obvious tension as illustrated by two extreme patholog-

ical cases. A completely random neural code that assigned ~r uniformly at random without

dependence on ~s, so that P (~r) = P (~r|~s) = |R|−1, would have maximal H(~R) (= log |R|) but

also maximal H(~R|~S) (= log |R|). On the other hand, a code that deterministically assigned

a single particular value of ~r, denoted ~r∗, to every stimulus so that P (~r) = P (~r|~s) = δ(~r∗)

would have H(~r) = H(~r|~s) = 0. This tradeoff is most directly embodied in the Shannon

Mutual Information [Cover and Thomas, 2012]:

I(~R, ~S) = H(~R)−H(~R|~S) (1.4)

We note that while there are a number of alternative equivalent expressions for I(~R, ~S),

we will stick mostly with the formulation in (1.4). In both of the pathological cases mentioned

above I(~R, ~S) = 0, which corresponds to statistical independence between ~r and ~s, signifying

an uninformative code. The mutual information has a number of useful characteristics as
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a measure of the quality of a code. It is non-negative and upper-bounded when at least

one of ~r or ~s have finite support. I(~R, ~S) depends only on P (~s) and P (~r|~s), and does not

require making any further assumptions about the perceptually relevant distinctions between

different stimuli. Additionally, the data processing inequality [Cover and Thomas, 2012]

guarantees that no representation that is just a transformation of the neural response ~r can

carry more information about the stimulus than ~r itself. That is, if ~v = ~v(~r) is a function of

~r, deterministic or stochastic, and does not depend on ~s, then I(~V , ~S) ≤ I(~R, ~S). This is a

useful guarantee because it ensures that if we find a biologically feasible representation of ~r

with other desirable properties that saturates this inequality, we don’t have to worry about

considering tradeoffs with another representation that carries more information but has other

undesirable quantities.

Finally, I(~R, ~S) is task-agnostic: The performance of a code does not directly depend

on how much a response is correlated with the correct task response. While this may seem like

a negative quality at first glance, it is actually important for lower levels of sensory systems to

have task-agnostic codes as their responses may be used for many different tasks. However,

we note that the addition of task-related performance (or other forms of supervision) can be

integrated with information theoretic objectives using the information bottleneck framework

[Schneidman et al., 2001]. There is ample evidence that sensory systems are designed to

optimize the mutual information between stimuli and neural responses. In the retina, the

presence of the well-document center-surround receptive fields of Retinal Ganglion Cells is

predicted by maximizing the information transmitted by RGC responses under the assump-

tion that stimuli are translation invariant and gaussianly distributed with spatial correlations
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that follow a power law decay [Atick and Redlich, 1990]. When response nonlinearities are

taken into account, the presence of ON and OFF pathways in the retina follows from the prin-

ciple of maximizing information in the presence of changing stimulus contrast. Additionally,

information maximization predicts that retinal pathways should split into subpopulations

with different nonlinearity thresholds [Kastner et al., 2015], and that ON and OFF pathways

should have differently sized receptive fields [Ratliff et al., 2010]. Furthermore, the localized

and orientation sensitive receptive fields observed in the lower layers of the visual cortex bear

striking similarity to the filters produced by applying information-maximization independent

component analysis to natural images [Bell and Sejnowski, 1997].

1.2.1 Additional Desirable Properties of Informative Codes

Transmitting full information is not the only metric by which to judge a neural code

because there are, in general, an infinite number of ways to construct a sufficient statistic

of the population response. For discrete (e.g. binary) neural responses, random linear pro-

jections of the population response will form an isomorphism, and thus a sufficient statistic,

with high probability if the random weights are drawn from a continuous distribution. Ran-

dom projections have been proposed as a neural coding mechanism for the olfactory system

[Zhang and Sharpee, 2016], where the stimuli are themselves represented as sparse binary

vectors. However, if the stimuli are continuous and/or not sparse, then performing inference

on the stimulus given a sample of the encoded neural response will be difficult. A good neural

code should be easily decodable, in addition to transmitting as much information as possible.

This means that the decoder should be an explicit function of the decoded representation

6



and be implementable in terms of feedforward operations. For instance, maximum likelihood

decoding will often require solving an implicit non-linear maximization problem, an operation

that is not straightforwardly mapped to neural circuitry. We note that there is a fundamen-

tal link between decodability and mutual information [Agakov and Barber, 2004]. H(~S|~R)

can be viewed as the average reconstruction error of a decoder distribution q(~s|~r), when the

decoder distribution is bayes-optimal, i.e. equal to the true posterior: q(~s|~r) = P (~s|~r). How-

ever, the true posterior is generally intractable for high-dimensional continuous stimuli, and

optimizing over q(~s|~r) can yield very complex non-linear estimates. Additionally, the code

should itself be biologically feasible. Locality sensitive hashing produces highly informative

codes for continuous, high dimensional vectors, but most algorithms use data structures that

are unlikely to be implemented in biological systems [Dasgupta et al., 2017]. While overly

complex codes are biologically infeasible, there is a tradeoff between code complexity and

information loss. Even in perhaps the simplest case where the population of neurons code

for identical features, the so called redundant case, it is an open question as to how the

combine the outputs of individual neurons. Previous studies have demonstrated that simply

pooling separate neurons, summing their responses together, discards significant amounts of

information [Osborne et al., 2008a, Reich et al., 2001]. Generalizations of pooling, such as

the population vector where neural responses are linear combined according to their receptive

fields [Georgopoulos et al., 1986], exhibit high correlation with relevant stimuli but we shall

show they also lose information. However, in chapter 2 we shall use the theory of exponential

families to derive a modified form of the population vector that is guaranteed to preserve full

information under certain circumstances.

7



1.2.2 Exponential Families

There are a natural class of statistical models that yield sufficient statistics with useful

and intuitive properties. Exponential families are conditional distributions, P (~r|~s), that obey

a particular functional form relating ~r to ~s [Wainwright and Jordan, 2008]:

P (~r|~s) = h(~r) exp(~t(~r) · ~γ(~s)− A(~s))

A(~s) ≡ log

(∑
~r

h(~r) exp(~t(~r) · ~γ(~s))

)

The mappings ~t(~r): RN → RD′ and ~γ(~s): RD → RD′ are known as the sufficient

statistic and natural parameter mapping respectively. h(~r) is known as the base measure, and

A(~s) is a stimulus dependent normalizing term often denoted as the log-partition function.

A single exponential family is considered to have fixed h(~r), ~t(~r), and ~γ(~s) with different

elements of the family indexed by different values of ~s. If ~γ(~s) = ~s then the exponential

family is in canonical form, though an equivalent exponential family may be defined by

applying an invertible affine transformation to ~s and the inverse of that transformation to ~t.

Exponential families have many useful properties, which will be elaborated upon in chapters

2 and 3, but the primary property we make use of is the preservation of mutual information

by the sufficient statistic. If P (~r|~s) is an exponential family in canonical form with sufficient

statistic ~t then the following equality holds:

I(~R, ~S) = I(~T , ~S) (1.5)
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If D � N , then (1.5) implies a substantial dimensionality reduction in the response,

which we take advantage of in chapter 3. Additionally, in this same asymptotic limit, under

certain conditions, we show that ~t itself can be linearly decoded to produce an estimate of

the direction of ~s without having to perform nonlinear, iterative estimation.

1.2.3 Algorithmic Obstacles for Mutual Information

Though the mutual information is considered a gold-standard measure for how effective

a sensory encoding is, there are several reasons why it is not often used in practice. Evalu-

ating the Shannon Entropy, Mutual Information, and other information-theoretic quantities

requires full knowledge of the probability distributions, joint and/or marginal, of the variables

involved. Unless exact expressions are available for these distributions, the probabilities have

to be estimated from samples drawn from those distributions. Such estimation processes in-

variably lead to statistical biases in the finite-sample limit [Paninski, 2003], although various

methods have been proposed to try and correct for these biases in the relatively simple case of

discrete variables with known support [Treves and Panzeri, 1995, Strong et al., 1998, Nemen-

man et al., 2002]. For continuous variables the situation is even more difficult, as identifying

a density generally requires strong parametric assumptions [Gao et al., 2018]. While there

are non-parametric sample based estimators for mutual information calculations involving

one or more continuous variables [Kraskov et al., 2004, Gao et al., 2015], these methods are

statistically biased for high dimensional variables [Gao et al., 2018]. However, we shall re-

turn to these methods after assuming an exponential family model of response distributions.

Even in the case where a model for the population response conditional distribution P (~r|~s)
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is known, which is the situation we assume in this thesis, there can still be computational

difficulties in evaluating mutual information. For discrete neural responses, the number of

possible response patterns grows exponentially with the population size. After marginaliz-

ing over the stimulus the resulting marginal distribution over the response patterns will not

factor, in general, even if the neural responses are independent conditioned on the stimulus.

Thus, the computational cost of evaluating the Shannon Entropy of the marginal distribu-

tion grows exponentially with the population size, rendering this calculation intractable for

realistic populations. Once again, the generalization to continuous responses introduces addi-

tional complexities, so that the calculation is prohibitive even for lower dimensional responses

patterns. Though we make use of the properties of exponential families to reduce the rele-

vant response variable from the high dimensional population response ~R to the relatively low

dimensional sufficient statistic ~T , this does not necessarily make the calculation any easier.

There is no guarantee that the cardinality of ~T will be significantly smaller than ~R, nor that

the marginal distribution over ~T will factor. Additionally, forming an expression for P (~t|~s)

or P (td|~s) can be difficult, as P (~t|~s) is implicitly a marginalization over all ~r that map to the

same ~t. Even when this mapping is linear, understanding the resultant probability distribu-

tion over ~T from a geometric perspective is challenging. The Littlewood-Offord problem is a

simplified version of this problem, and only very recently has there been any progress [Tao

and Vu, 2010]. However, both because of the dimensionality reduction involved in going from

~R to ~T as well as properties of exponential families that we will elaborate upon in chapter

3, the aforementioned nonparametric estimators of [Kraskov et al., 2004, Gao et al., 2015]

become vastly more efficient in this case. Thus, we can make use of these methods to estimate

10



the information transmitted by a neural population, sidestepping the issues of computational

complexity and intractable marginalization. Additionally, in cases where even after reducing

in dimension the mutual information is still intractable to estimate, we can use the properties

of exponential families to drive much more tractable lower bounds on the information.

1.3 Outline of Thesis

The rest of this thesis is organized as follows. Chapter 2 introduces a broad class

of models for a population of spiking neurons, shows that this model class has a sufficient

statistic of fixed dimension, and compares this statistic with related quantities proposed in the

neuroscience literature. Additionally we consider the question of how to decode this statistic

in a biologically feasible way and show it has favorable properties in an asymptotic limit. In

chapter 3 we consider the related algorithmic problem of estimating the information trans-

mitted by members of the aforementioned model class. We introduce several decompositions

of the mutual information, and provide sufficient conditions for when the mutual information

can be reduced to a sum of low dimensional terms. Finally we conclude in chapter 4 with a

summary of our work and ideas for future extensions.

11



Chapter 2: Information Transmission

and Sufficient Statistics in

Exponential Families

In this chapter we show that for a broad class of common models of neural populations

a linear statistic of the population response can be constructed that is guaranteed to transmit

as much information about the stimulus as the population response. The statistic has fixed

dimension, independent of the population size, and is valid even in the presence of intrinsic

interneuronal correlations. We validate the performance of this statistic on a dataset of visual

neural responses. Additionally we show that under certain conditions this statistic itself can

serve as a reconstruction of the stimulus.

2.4 Population Models

We begin by modelling neural responses from individual neurons as a binary variable r

taking a value 1 when the neuron produces a spike and 0 otherwise. To account for response
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saturation and rectification, we model the probability of a spike (r = 1) as a saturating

function of the stimulus projection onto the neuron’s receptive field ~w(k). Specifically, we

choose the logistic function in order to take advantage of the properties of exponential families

described below.

P (rk = 1|~s) =
1

1 + exp(−2β(k)(x(k)(~s)− α(k)))
, x(k)(~s) = ~w(k) · ~s (2.6)

Here, vector ~s represents the current stimulus, ~w(k) represents the preferred stimulus

or receptive field (RF) of the kth neuron, and x is the component of the stimulus along the

receptive field. The parameters α(k) and β(k) describe, respectively, the midpoint and slope

of the logistic function (Figure 2.1A). β(k) will always be assumed to be positive. As a matter

of notation neurons will be indexed by the letters i, j, and k and dimensions of the stimulus

or neural receptive fields will be indexed by a, b, c, and d. The RF can be thought of as

a pattern that, if presented, would elicit the strongest response from the neuron. Both ~s

and ~w(k) ∈ IRD and ~w(k) is assumed to be normalized. Additionally, the rescaled variables

yk = 2rk − 1 will be used repeatedly for the sake of notational brevity. The expected value

and variance of yk when rk is distributed like (2.6) have simple forms:

µk(~s) ≡ 〈yk|~s〉 = tanh(β(k)(x− α(k)))

νk(~s) ≡ 〈(yk − µk(~s))2|~s〉 = 1− tanh2(β(k)(x− α(k))) = 1− µk(~s)2 (2.7)
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The population response is denoted as ~r ≡ (r1, ..., rN)T or, equivalently, ~y = (y1, ..., yN)T .

We will also make frequent use of the vectors ~µ(~s) and ~ν(~s) and the following two D × N

matrices:

W ≡
(
~w(1), ..., ~w(N)

)
(2.8)

W̃ ≡
(
β(1) ~w(1), ..., β(1) ~w(N)

)
(2.9)

We focus on two models of population response: A conditionally independent popu-

lation and a population with intrinsic pairwise correlations. Though the former is a special

case of the latter, for clarity of exposition we begin with the special case of conditional

independence.

2.4.1 Independent Neurons

To begin, we rewrite (2.6) in fully exponential form:

P (rk|~s) =
eykβ

(k)(~w(k)·~s−α(k))

2 cosh(β(k)(~w(k) · ~s− α(k)))

= eh
(k)(rk)+~s· ~M(k)(rk)−A(k)(~s) (2.10)

Where we have defined the functions h(k)(rk), ~M
(k)(rk), and A(k)(~s) for notational

convenience:
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h(k)(rk) = −β(k)α(k)yk (2.11)

~M (k)(rk) = β(k) ~w(k)yk (2.12)

A(k)(~s) = ln(2 cosh(β(k)(~w(k) · ~s− α(k)))) (2.13)

In the conditionally independent model the conditional distribution of ~r factors over

each neuron.

P (~r|~s) =
∏
k

P (rk|~s) (2.14)

Given (2.10) and (2.14) we can write the full distribution in exponential form.

P (~r|~s) = exp(h(~r) + ~s · ~M(~r)− A(~s)) (2.15)

Where the functions h(~r), ~M(~r) and A(~s) are the summations of the corresponding

individual neuron functions:

h(~r) =
∑
k

h(k)(rk)

~M(~r) =
∑
k

~M (k)(rk)

A(~s) =
∑
k

A(k)(~s)

(2.16)
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The function ~M(~r) is a mapping from {0, 1}N to a finite subset of Rd. Additionally,

it can be seen as a linear (affine) transformation of ~y, (~r)

~M(~r) = W̃ · ~y = 2W̃ · ~r − W̃ ·~1N (2.17)

Since the neurons are conditionally independent, A(~s) takes the form of a sum over

neurons but in general A(~s) serves as a normalizing constant given the forms of h(~r) and

~M(~r):

A(~s) = ln

(∑
~r

exp(h(~r) + ~s · ~M(~r))

)
(2.18)

=
∑
k

ln
(
2 cosh

(
β(k)(~w(k) · ~s− α(k))

))
(2.19)

When performing calculations with A(~s) the hyperbolic cosine may cause numerical

overflow so the following alternative functional form for A(~s) may be preferable:

A(~s) =
∑
k

|β(k)(~w(k) · ~s− α(k))|+ ln(1 + e−2|β(k)(~w(k)·~s−α(k))|) (2.20)

We note that the function g(x) = ln(2 cosh(x)) has been utilized previously in the

context of image processing as a softened version of the standard L1 penalty |x| [Hyvärinen

et al., 2009].
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2.4.2 Correlated Neurons

We also consider a population response model where the neurons are intrinsically

correlated such that neuronal response variability from trial to trial is correlated between

neurons, as is often observed in electrophysiological studies of the cortex [Zohary et al., 1994,

Huang and Lisberger, 2009]. Importantly, we require that the strength of the correlations are

independent of the stimulus. This is consistent with experimental results, at least on short

timescales [Kohn and Smith, 2005, Granot-Atedgi et al., 2013]. We implement this by adding

a term to h(~r):

h(~r,J) =
∑
i 6=j

Jijyiyj −
∑
k

ykβ
(k)α(k) (2.21)

In general we make two standard assumptions on the coupling matrix J: That Jij = Jji

and Jii = 0. The joint distribution on population responses is again an exponential family:

P (~r|~s,J) = exp(h(~r,J) + ~s · ~M(~r)− A(~s,J)) (2.22)

~M(~r) is the same as before. A(~s,J) is defined similarly as a stimulus dependent nor-

malizing term but in general lacks a closed-form expression similar to A(~s). In order to

examine the effects of weak correlations between neurons, we can approximate A(~s) pertur-

batively to first order in J [Kardar, 2007]:

17



A(~s,J) ≈ A(~s,J = 0) +
∑
i 6=j

Jij
∂A(~s,J)

∂Jij

∣∣∣∣
J=0

= A(~s) +
∑
i 6=j

Jij〈yiyj〉0

= A(~s) +
∑
i 6=j

Jijµi(~s)µj(~s) (2.23)

Where we have introduced the notation that 〈·〉0 = 〈·〉~y|~s,J=0. Similarly, for non-zero J,

computing P (rk|~s) requires marginalizing over the states of all other neurons in the population

and will in general differ from (2.6). However, we can once again compute approximate the

expected value of yk to first order in J [Kardar, 2007]:

〈yk〉~y|~s,J ≈ 〈yk〉0 − (〈yk
∑
i,j

Jijyiyj〉0 − 〈yk〉〈
∑
i,j

Ji 6=jyiyj〉0)

= µk(~s)− 2
(
1− µ2

k(~s)
)∑
i 6=k

Jikµi(~s)

= µk(~s)− 2νk(~s)
∑
i 6=k

Jikµi(~s) (2.24)

Equation 2.24 can be expressed more compactly in matrix and vector notation:

〈~y〉~y|~s,J ≈ ~µ(~s)− 2Υ(~s) · J · ~µ(~s)

= (IN − 2Υ(~s) · J) · ~µ(~s) (2.25)

Where we have introduced the N ×N diagonal matrix Υ(~s):
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Υ(~s)ii = νi(~s) (2.26)

We note that for J = 0 the two models are equivalent, and we will henceforth omit

the explicit dependence of h(~r) and A(~s) on J.

2.5 Exponential Families and Sufficient Statistics

The population response models we consider in (2.15) and (2.22) belong to exponential

families with natural parameter ~s and sufficient statistic ~M(~r) [Wainwright and Jordan, 2008].

As a matter of terminology, a single exponential family is considered to have fixed values of

Jij, {α(k)}, {β(k)}, and {~w(k)} with different members of the family indexed by different values

of ~s.

2.5.1 Information Preservation

An important result of P (~y|~s) being an exponential family is that the mutual infor-

mation is preserved by the sufficient statistic [Cover and Thomas, 2012]:

I(~r, ~s) = I( ~M,~s) (2.27)

To show this directly we first define a few functions for notational convenience. Specif-
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ically, we define C( ~M) as the sum of eh(~r) over all ~r that map to the same value of ~M :

C( ~M) =
∑
~r

eh(~r)δ( ~M − ~M(~r)) (2.28)

The conditional and marginal distribution of ~M can be expressed in terms of C( ~M),

without reference to ~r:

P ( ~M |~s) = C( ~M) exp(~s · ~M − A(~s))

P ( ~M) = C( ~M)

∫
P (~s) exp(~s · ~M − A(~s)) d~s

We note the relationships between P (~r|~s), P (~r) and P ( ~M |~s), P ( ~M) respectively:

P ( ~M |~s) =
∑
~r

P (~r|~s)δ( ~M − ~M(~r)) (2.29)

P ( ~M) =
∑
~r

P (~r)δ( ~M − ~M(~r)).

We now have the following important identity:

P (~r|~s)
P (~r)

=
exp(h(~r) + ~s · ~M(~r)− A(~s))∫

P (~s′) exp(h(~r) + ~s′ · ~M(~r)− A(~s′)) d~s′

=
exp(~s · ~M(~r)− A(~s))∫

P (~s′) exp(~s′ · ~M(~r)− A(~s′)) d~s′

=
C( ~M) exp(~s · ~M(~r)− A(~s))∫

P (~s′)C( ~M) exp(~s′ · ~M(~r)− A(~s′)) d~s′

=
P ( ~M |~s)
P ( ~M)

. (2.30)
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This equality yields Eq. (2.27) as follows:

I(~r, ~s) =

∫
P (~s)

∑
~r

P (~r|~s) ln

(
P (~r|~s)
P (~r)

)

=

∫
P (~s)

∑
~r

P (~r|~s) ln

(
P ( ~M(~r)|~s)
P ( ~M(~r))

)

=

∫
P (~s)

∑
~M

P ( ~M |~s) ln

(
P ( ~M |~s)
P ( ~M)

)
= I( ~M,~s). (2.31)

Another corollary of (2.30) is that the posterior distribution of ~s given ~r depends only

on ~M(~r):

P (~s|~r) = P (~s| ~M(~r)) (2.32)

Therefore, a Bayes optimal decoder needs only to carry out the weighted summation

rather than keep track of which response (out of 2N possible) was observed. Similar sufficiency

properties are known for Gaussian rk [Ma et al., 2006, Beck et al., 2008].as well as binary

population models with independent and identically distributed neurons (so that the sufficient

statistic follows a binomial distribution), since these population models are also examples

of exponential families. To the best of our knowledge this is the first demonstration of a

population model for binary neurons that are neither independent nor identically distributed

that has a sufficient statistic with dimension independent of population size.
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2.5.2 Cumulants of ~M

An important question to ask given any probabilistic model P (~r|~s) is whether the

model is identifiable with respect to ~s. That is, do distinct values of ~s produce distinct

distributions? As it turns out, the answer to this question has an elegant geometric structure

for exponential families and a simple sufficient condition for identifiability can be stated for

the conditionally independent model. We begin by noting the connection between cumulants

of ~M with respect to P (~r|~s) and derivatives of A(~s). In statistical physics, the cumulants of

the degrees of freedom of a system at equilibrium can be calculated by adding a conjugate

field to the hamiltonian, deriving the log-partition function as a function of the field, and

then taking gradients of the log-partition function with respect to the field. By construction,

~s is exactly the conjugate field to ~M in an exponential family model and we thus have the

following formulae for the mean and covariance of ~M .

M̄(~s) = 〈 ~M〉 ~M |~s = ~∇~sA(~s) (2.33)

Va,b(~s) = 〈(Ma − M̄a(~s))(Mb − M̄b(~s))〉 ~M |~s =
∂2A(~s)

∂sb∂sa
(2.34)

Since covariance matrices are always positive semi-definite we see here that A(~s) is

a convex function. The function M̄(~s) is sometimes referred to as the mean value mapping

of the family and is a mapping from RD to a convex, open subset of RD. We see that the

covariance matrix V is the jacobian of M̄(~s) and thus if V is positive-definite then M̄(~s) is a

diffeomorphism (one to one) and A(~s) is a strictly convex function. Any exponential family
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can be parameterized in terms of the mean value of the sufficient statistic as opposed to in

terms of the natural parameter ~s. If the family is identifiable with respect to ~s then there

is a one to one correspondence between the two parameterizations [Banerjee et al., 2005].

Therefore, an exponential family is identifiable if and only if the following three equivalent

conditions hold:

1. A(~s) is a strictly convex function.

2. M̄(~s) is a diffeomorphism.

3. V(~s) is positive definite.

The third condition is usually the easiest to show directly, and is what we will focus

on for the J = 0 case. In this setting, M̄(~s) and Va,b(~s) take simple forms:

M̄(~s) =
∑
k

β(k) ~w(k) tanh(β(k)(~w(k) · ~s− α(k))) (2.35)

Va,b(~s) =
∑
k

(β(k))2w(k)
a w

(k)
b

(
1− tanh2(β(k)(~w(k) · ~s− α(k)))

)
(2.36)

Again, these cumulants can be expressed more compactly in matrix-vector notation:

M̄(~s) = W̃ · ~µ(~s)

V(~s) = W̃Υ(~s)W̃
T

(2.37)

We note that the Υ(~s) is a diagonal matrix with strictly positive elements and is
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thus positive definite for all ~s. Thus, V(~s) will be positive definite if and only if W̃
T

has

full rank. In addition to relating identifiability of P (~r|~s) to M̄(~s), we can make a stronger

statement about the behavior of M̄(~s). A vector valued mapping ~g(~s) from IRD to IRD is

called multivariate monotone ([Rockafellar and Wets, 2009], definition 12.1) if the following

holds:

[~g(~s1)− ~g(~s2)] · (~s1 − ~s2) ≥ 0 ∀~s1, ~s2 ∈ IRD (2.38)

If strict inequality holds in (2.38) when ~s1 6= ~s2 then ~g(~s) is called strictly multivariate

monotone. We note that this is a stronger condition than ~g(~s) being one-to-one. Nevertheless,

M̄(~s) is always multivariate monotone, and strictly so if P (~r|~s) is identifiable.

As stated before A(~s) is intractable for nonzero J, however we can take gradients of

(2.23) to express M̄(~s,J) and V(~s,J) to first order in J.

M̄(~s,J) ≈ M̄(~s,J = 0)− 2W̃Υ(~s)J · ~µ(~s)

= W̃ (IN − 2Υ(~s) · J) · ~µ(~s) (2.39)

V(~s,J) ≈ W̃Υ(~s)W̃
T − 2W̃Λ(~s)W̃

T − 2W̃Υ(~s)JΥ(~s)W̃
T

= W̃ [Υ(~s)− Λ(~s)−Υ(~s)JΥ(~s)] W̃
T

(2.40)
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Where the diagonal matrix Λ(~s) is defined as follows:

Λii(~s) = −2νi(~s)µi(~s)
∑
j

Jijµj(~s) (2.41)

We note that while V(~s,J) is guaranteed to be positive semi-definite, the approximate

result in (2.40) is not. It is sometimes the case that the stimulus parameter is embedded in

a higher dimensional space as the natural parameter so that ~s = t(~z) where the dimension

of ~z is less than that of ~s (c.f. sections 2.7 and 2.8.1). In this case the family is said to be

curved with respect to ~z. We note that full information transmission is preserved for curved

exponential families, however when calculating the cumulants it is necessary to take gradients

with respect to ~s and not θ.

2.6 ~M and The Population Vector

~M(~r) is closely related to the well studied ”Population Vector” [Georgopoulos et al.,

1986, Salinas and Abbott, 1994, Hohl et al., 2013]. For our population model, the population

vector is easily expressed in terms of the yk and ~w(k):

~U(~r) =
∑
k

~w(k)yk = W · ~y (2.42)

Similar to M̄(~s) we can define the expected value of ~U conditioned on ~s. As expected,

it takes a simple form when the the components ~r are conditionally independent.
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Ū(~s) =
∑
k

~w(k)µk = W · ~µ (2.43)

When D = 1 the standard population vector reduces to a signed version of the spike

count:

Ucount(~r) =
∑
k

yk = 2Rcount −N

Rcount =
∑
k

rk

Both Ucount and Rcount take N + 1 distinct values, whereas the scalar version of ~M

can take as many distinct values as ~r (2N) if all the βk are distinct. We explore the relative

information transmitting capabilities of ~U and ~M in a number of settings in Section 2.8.2.

2.7 Quadratic Terms

The results presented thus far can be extended in part to neural coding models with

quadratic tuning of the following form:

P (rk = 1|~s) =
1

1 + exp(−2f (k)(~s))

f (k)(~s) = β
(k)
1 (~w(k) · ~s− α(k)) + β

(k)
2 ~sTγ(k)~s (2.44)

Where γ(k) is now aD×D symmetric matrix representing the quadratic part of the RF.
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For a population of neurons with such tuning curves we can still write the joint distribution

over population responses as an exponential family with a linear sufficient statistic:

P (~r|~s) = exp(h(~r) + ~η(~s) · ~M(~r)− A(~s)) (2.45)

Where now the natural parameter ~η(~s) and sufficient statistic ~M(~r) separated into

linear and quadratic terms:

~η(~s) ≡ {~ηlin(~s), ~ηquad(~s)}

~M(~r) ≡ { ~M lin(~r), ~M quad(~r)}

The linear terms are the same D-dimensional vectors as before:

~ηlin(~s) = ~s

~M lin(~r) =
∑
k

β
(k)
1 ~w(k)yk

The quadratic terms are D ×D matrices:

~ηquad(~s) = ~s~sT

~M quad(~r) =
∑
k

β
(k)
2 γ(k)yk
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The notation ”~η(~s) · ~M(~r)” is understood as elementwise multiplication of all cor-

responding elements in ~η(~s) and ~M(~r) followed by a summation. This procedure can be

generalized to any parametrized family of f (k)(~s) that are order n polynomials of ~s, yielding

a natural parameter and sufficient statistic of dimension
∑n

l=1 D
l.

2.8 Numerical Simulations

In order to verify the claim that ~M transmits all the information about ~s contained

in ~r even in cases where ~U did not, we carried out a series of numerical evaluations of I(~r, ~s),

I( ~M,~s), and I(~U,~s). To better elucidate the effects of correlations, stimulus dimensionality,

and receptive field arrangements we work with a consistent model of population coding and

stimulus distribution described below.

2.8.1 Model Orientation Tuning

While the linear-nonlinear (LN) modeling framework of Eq. (2.6) is standard for de-

scribing how sensory neurons respond to stimuli, it is not a typical starting point for studies of

population responses that have historically relied on tuning curves, a simplification possible

when neural responses depend on one variable, such as orientation for visual or motor neu-

rons. To facilitate easier comparison of our numerical simulations with previous literature on

population coding, we will work with exponential family models that respond to an angular

variable.

We note that if a neuron with an orientation sensitive receptive field, such as the one

shown in Figure 2.1B), were probed by stimuli of oriented gratings with fixed contrast level
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Figure 2.1: Illustration of the correspondence between receptive field (RF) and
tuning curve descriptions of the neural response. (A) Three representative model
nonlinearities that describe neural response as a logistic function of stimulus component along
RF. Black and dashed lines have the same midpoints α but different β. Black and gray lines
have same β but different α. (B) an example of an orientation selective receptive field. (C)
Corresponding tuning curves from (A) but as a function of angle as described in the text.

then the tuning curve described in (2.6) would qualitatively display a peak firing probability

at the preferred orientation. Instead of considering such a high dimensional receptive field we

work with a simplified model of orientation tuning in order to provide a clearer link between

the parameters α(k), β(k) and the shape of the orientation tuning curve.

For a neuron with preferred orientation ϕ(k) we define ~w(k) = (cos(ϕ(k)), sin(ϕ(k)))T

and ~s(θ) = (cos(θ), sin(θ))T . Thus, in the framework of the linear-nonlinear model, the

probability to observe a spike is given by:

P (rk = 1|θ) =
1

1 + e−2β(k)(cos(ϕ(k)−θ)−α(k))
(2.46)

The maximal spike rate is achieved for θ = φ(k), which is given by:

P
(k)
0 =

1

1 + e−2β(k)(1−α(k))
(2.47)

The width of the orientation tuning curve, which we define as the inverse of the second
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derivative of the negative logarithm of the tuning curve is:

δ(k) ≡

(
− d2

dθ2
ln (P (rk = 1|θ))

∣∣∣∣
θ=ϕ(k)

)−1

=
1

2β(k)(1− P (k)
0 )

(2.48)

We can invert the above equations to express α(k) and β(k) in terms of P
(k)
0 and δ(k):

α(k) = 1− δ(k)(1− P (k)
0 ) ln

(
P

(k)
0

1− P (k)
0

)
β(k) =

1

2δ(k)(1− P (k)
0 )

(2.49)

We note that the explicit mathematical relationships given above apply only for the sim-

plified orientation tuning model, under the assumption that the neurons are conditionally

independent, and not for more general orientation selective RFs, stimuli, and correlations.

We will generally specify the values of ϕk, αk, and βk ahead of time. In all the simulations

presented θ is uniformly distributed on [0, 2π], unless explicitly stated otherwise.

2.8.2 Results

We start by considering populations with conditionally independent neurons, so that

J = 0. The most striking demonstration of information loss from the standard population

vector has been observed in cases where all of the neurons in the population have identical

receptive fields [Osborne et al., 2008b]. We modelled this case by setting ϕk = 0 for all

neurons. Thus the stimulus is effectively one dimensional and as stated before ~M and ~U

reduce to scalars, Mcount and Ucount respectively. We consider two kinds of populations. In

the first population, the βk values are distributed uniformly on a log10 scale between 0.1
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and 10.0 and the αk values are tuned so that every neuron has P0 = 0.8. The information

transmission properties of this population as a function of the number of neurons are plotted

in Fig 2.2A. As expected, I( ~M,~s) = I(~r, ~s) whereas I(~U,~s) is significantly less than I(~r, ~s),

especially for larger values of N . Because all the βk are distinct for this population Mcount

takes 2N distinct values, resulting in a one to one correspondence between Mcount and ~r.

In light of this, the statement that ~M transmits full information may seem trivial for this

case. However we can take advantage of the fact that Mcount, Ucount ∈ IR and consider the

information transmitted by binned versions these variables. Specifically we consider the

smallest intervals containing the support of Mcount and Ucount, [−
∑

k βk,
∑

k βk] and [−N,N ]

respectively, and divide them uniformly into 15 bins. We then form coarse grained versions of

Mcount and Ucount, Mbin and Ubin , corresponding to the index of the bin the variables fall into.

The information transmitted by these coarse grained variables is plotted in Fig 2.2A as red

and gray circles. It is notable that Mbin transmits close to full information (96.1 percent at

N = 10) even when the cardinality of Mcount is much larger than 15. We conjecture that the

near optimality of Mbin results from the monotonicity of its mean value mapping, displayed

in Fig 2.2C, such that samples drawn from P (Mcount|s) and P (Mcount|s′) for very different s

and s′ are unlikely to fall into the same bin. This binning procedure can be generalized to

vector valued ~s and ~M by first taking advantage of the multivariate monotonicity of M̄(~s)

and then choosing an appropriate vector quantization technique.

For the second population we considered a situation where the cardinality of Mcount

is considerably less than 2N . Specifically we set βk = 1 for all neurons and adjusted the αk

so that P0 ranged linearly between 0.4 and 0.8. In this case there is a one to one relationship
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Figure 2.2: Test of the information-preserving expression in neural populations
tuned to the same stimulus. (A) Information available in the full combinatorial pop-
ulation response (black), spike count (dashed gray), and information-preserving spike count
mcount (red line). Circles show the results computed with binned (red) and spike count values
(gray). Insets shows example tuning curves for N=5. (B) The standard and information-
preserving spike count both capture (the curves overlap) full information when saturating
nonlinearities have the same steepness, even though tuning curves have different peaks. (C)
The expected value of the information-preserving spike count from panel (A) varies smoothly
as a function of the stimulus component along the RF. Gray shading represents one standard
deviation around the mean (black line).

between Ucount and Mcount. As displayed in Fig 2.2B, Mcount still transmits full information

and in this case Ucount does as well. We note that in addition to varying P0, the neurons also

vary slightly in the curvature of their orientation response tuning curve (Fig 2.2B inset). Thus,

in addition to validating that Mcount transmits full information even in nontrivial situations,

this population is an example of when the spike count of an inhomogeneous population is

a sufficient statistic of the full population response. While prior work has investigated the

efficient computation and optimization of information transmitted by the spike count of a

neural population [McDonnell et al., 2006, McDonnel and Stocks, 2008], we believe that this

work is the first demonstration of sufficient conditions for the spike count to be sufficient. For

the multivariate case we also consider two different populations. For the first population the

preferred orientations were distributed uniformly in [0, π] so that ϕi = i−1
N
π. βi = 1 for all
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neurons and the αi were once again adjusted so that P0 = 0.8 for all neurons. The information

transmission of this populations is plotted in Fig 2.3B. Because of the effective diversity of

the receptive fields in this situation there is once again a one-to-one correspondence between

~M, ~U and ~r, and all three variables transmit the same amount of information about ~s. In the

second population, half the neurons are assigned ϕi = −π
2

and the other half assigned ϕi = π
2
.

In each half the βk values are distributed uniformly on a log10 scale between 0.1 and 10.0

and the αk values are tuned so that every neuron has P0 = 0.8, as in 2.2A. This situation,

with redundancy in the receptive fields and diversity in β values, once again produces a gap

between I( ~M,~s) and I(~U,~s).

In Section 2.4.2 we claimed that the definition of the sufficient statistic is invariant

under the presence of stimulus independent intrinsic correlations of the form defined in 2.21.

To validate this claim and examine other effects of intrinsic correlations, we start by taking

the populations in Fig 2.3A,B and adding correlations defined by the difference in preferred

orientation:

Jij =
1 + cos(ϕ(i) − ϕ(j))

10
√
N

(2.50)

This form of J is consistent with the observation that correlations are stronger between

neurons with similar stimulus preferences [Ecker et al., 2011, Moreno-Bote et al., 2014]. The

addition of 1 in the numerator ensures that the elements of J are all nonnegative. The scaling

by
√
N is a standard practice in spin glass models to ensure that the effect of the couplings

on individual neurons does not blow up for large systems. Finally we chose to additionally

scale by 10 in order to distinguish the effects of weak and strong correlations, for reasons
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Figure 2.3: Information-preserving vector captures full information in diverse
populations and with correlated variability across neurons. The standard popula-
tion vector fails to capture full information as soon as populations contain multiple neurons
with the same RF but different values of β. Insets show example population tuning curves for
N=6, and θ ∈ [−2π, 2π]. In all panels, we compare information transmitted by population re-
sponse (black line) with that of information-preserving population vector (red) and standard
population vector (dashed gray). Populations in panels C and D have the same parameter
values as in A, B, respectively, but with the added presence of correlated variability between
neurons as described in the text.

described below. All other parameters (ϕi, αi, and βi) remain unchanged. Fig 2.3C displays

altered population from Fig 2.3A. As before, both ~U and ~M remain sufficient. The more

interesting case is displayed in Fig 2.3D. Similar to Fig 2.3B there is a gap between I( ~M,~s)

and I(~U,~s). However the gap is significantly smaller compared to Fig 2.3B, especially for

larger N , even though the presence of weak correlations has marginal effect on I(~r, ~s).

As a more direct illustration of the effect of J on the difference between I( ~M,~s) and

I(~U,~s) we consider a simplified two neuron population where ϕ1 = ϕ2 = 0, β1 = 0.1, β2 = 10
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Figure 2.4: Stronger intrinsic correlations reduce the gap between I( ~M,~s) and

I(~U,~s). Top Panel: Information transmitted by ~r (black line), ~M (red), and ~U (dashed
gray) for the heterogeneous and redundant two neuron population described in the text, as
a function of J . Bottom Panel: The orientation tuning curves of the population at different
values of J . Blue curve is for β = 10 and green curve is β = 0.1.

and the α are adjusted so that both neurons have the same peak firing rate for J = 0. We

denote this population as being heterogenous (different β) and redundant (equal ϕ). We

define J12 ≡ J . The top panel of Fig 2.4 shows I(~r, ~s), I( ~M,~s), and I(~U,~s) as a function

of J . We note that all three values increase monotonically in J , and eventually saturate at

the same value. However as soon as J ≥ 1, ~U captures greater than 99% of the information

transmitted by ~M or ~r. Intuitively we can understand this phenomenon by first noting that

since the stimulus and sufficient statistics are scalars. There are two configurations of ~r that

Ucount does not differentiate: ~r = (1, 0) and ~r = (0, 1). Both of these map to Ucount = 0,
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whereas Mcount((1, 0)) = β1 − β2 and Mcount((0, 1)) = β2 − β1. However, it is exactly these

two configurations that become increasingly improbable for larger values of J . Understanding

how strong inter-neuronal correlations affect the gap between I( ~M,~s) and I(~U,~s) in more

general cases is a promising direction of future work.

Another notable result displayed in Fig 2.4 is that I(~r, ~s), I( ~M,~s), and I(~U,~s) all increase

as a function of J . Some previous studies, both theoretical and experimental, have reported

that increasing interneuronal correlations limit the encoding performance of the population

response [Zohary et al., 1994, Cohen and Maunsell, 2009]. Other studies have shown that

certain forms of correlations can increase coding performance [Ecker et al., 2011], particularly

for stimulus-dependent correlations [Josić et al., 2009], or that the effect can depend upon the

sign of the correlations [Sompolinsky et al., 2001]. However, these studies have focused upon

surrogate information measures such as Fisher Information, or the performance of maximum-

likelihood or optimal-linear estimators, as opposed to the Shannon Information. Additionally

most of these studies assume rate models of populations, not spiking neurons.

In order to better understand the effect of intrinsic correlations on I(~r, ~s) we analysed

two distributed two-neuron populations. For these populations we set ϕ1 = −π
4

and ϕ2 = −π
4
.

We considered both a heterogeneous and a homogeneous population. For the heterogeneous

population we set β1 = 0.1 and β2 = 10. For the homogeneous population β1 = β2 = 1.0.

All α were set so that P0 = 0.8 when J = 0. J was varied from 0 to 2 as before. As can

be seen in figures 2.5 and 2.6, the heterogeneous population benefits from increased J while

the homogeneous population does not. This result is in agreement with the results of [Ecker

et al., 2011], which considered other measures of information transmission. We note that the
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Figure 2.5: Populations with different noise levels benefit from correlations. Top
Panel: Information transmitted by ~r (black line), ~M (red), and ~U (dashed gray) for the
heterogeneous and distributed two neuron population described in the text, as a function of
J . Bottom Panel: The orientation tuning curves of the population at different values of J .
Blue curve is for β = 10 and green curve is β = 0.1.

task of determining the J that optimizes I(~r, ~s) for a model of the same kind as considered

here has been explored numerically for small populations in other work [Tkačik et al., 2010].

2.9 Application to V1 Data

To test if these properties of ~M hold for real neural populations we analyzed the

responses of simultaneously recorded neurons in the primary visual cortex (V1) to natural

stimuli using tetrode electrodes [Sharpee et al., 2006a] that record clusters of nearby neu-
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Figure 2.6: The information transmission of homogeneous populations is dimin-
ished by correlations Top Panel: Information transmitted by ~r (black line), ~M (red), and
~U (dashed gray) for the homogeneous and distributed two neuron population described in
the text, as a function of J . Bottom Panel: The orientation tuning curves of the population
at different values of J . Both neurons have β = 1.

rons, often with highly overlapping receptive fields. For each neuron, we estimated ϕ based

on receptive fields and nonlinearities computed previously [Sharpee et al., 2006a]. The es-

timates of preferred orientation matched direct measures obtained using moving gratings

[Sharpee et al., 2008b]. β values were estimated by fitting logistic functions to the neurons’

firing probability as a function of stimulus projection onto ~w. Based on these estimates, we

computed the information transmitted by ~r, ~M , ~U , Ucount, and Mcount. We only considered

populations of neurons that were recorded simultaneously, and subsets therein, so that the

largest population had seven neurons despite having 86 neurons in the whole dataset. For all
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variables, computation of the information transmitted was done according to [Strong et al.,

1998] in order to account for the finite sample estimation bias.

Reproducing previous reports [Reich et al., 2001, Osborne et al., 2008b], we found that Ucount

loses substantial information (Fig 2.7). For all populations studied the variables ~M , ~U , and

Mcount were in one to one correspondence with ~r because no pairs of neurons had exactly

equal values of ϕ or β. Thus all three of those variables transmitted full information. How-

ever it is not always possible to measure ϕ, or differences in ϕ between neurons, to arbitrary

precision. Each ϕ has an associated confidence interval ∆ϕ [Sharpee et al., 2006a]. We can

define a measure of distinguishability between neurons i and j:

dij =
∠(ϕi, ϕj)

1
2

(∆ϕi + ∆ϕj)
(2.51)

Where the numerator is simply the angular difference between ϕi and ϕj. We consider

a ”worst case degeneracy” situation where the preferred orientation of pairs (or larger sets)

of neurons with di,j < 1 are replaced by a weighted average. This was achieved with the

following greedy algorithm:

1. Find the pair of neurons (or subpopulations if multiple neurons have the exact same ϕ)

with the smallest value of dij.

2. Compute ϕ̄, the weighted angular average of all ϕ for the set of neurons in step 1, where

the weights are given by ∆ϕ−1
j . Similary compute the average value of ∆ϕ.

3. For all neurons in the set found in step 1, replace ϕ with ϕ̄ and ∆ϕ with its average.

4. Repeat steps 1-3 until no pair of neurons with distinct ϕ have dij < 1
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Figure 2.7: ~M accounts for simultaneously recorded responses of nearby V1 neu-
rons. Information contained in the full population response ~r (solid black line) is much
higher than that provided by the population spike count Ucount (dashed gray line) and is fully

captured by either ~M , ~U , or Mcount (red circles, curves overlap). Blue line is information
provided by Ũ , the population vector computed based on the worst case distinguishability of
preferred orientations as described in the text. Error bars are standard deviations across all
sub populations of the given size.

We thus computed coarse grained versions of ~M and ~U , M̃ and Ũ respectively, using

the reduced set of preferred orientations produced by the above algorithm. Reducing the

resolution with which the orientations of different neurons are distinguished causes the Ũ to

lose information, but M̃ nevertheless transmits full information. This stability even in the

worst case of angular resolution illustrates one of the practical advantages of using ~M over

~U .

Estimating Mutual Information from V1 Recordings

We represent the responses of a set of N simultaneously recorded V1 cells to a stimulus

binned into T segments and repeated K times as a tensor D of shape (T,K,N). T is typically

330, corresponding to time bins of 30 milliseconds. Dtij represents the number of times neuron
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j fired in response to stimulus t on repeat i, and can be any nonnegative integer.

Converting Data to Binary Words

Since the definitions of {rj}, ~M , and ~U assume the rj are binary we must convert D

into a binary form. Let νmax be the largest value in D; the maximum number of spikes over

all neurons, stimuli segments, and repeats. We form a binary tensor D̃ of shape (νmax × T

,K,N) by resampling each slice Dt·· into a sub tensor D̃(t) of shape (νmax,K,N) according to

the following algorithm:

1. For a given value of i and j we let n = Dtij. We sample without replacement a set

L = {τl}nl=1 of n indices from the integers {1, ..., νmax}

2. We set D̃
(t)
τij to 1 if τ ∈ L, and to 0 if not.

3. Steps 1 and 2 are repeated for all i and j.

After all the time slices of D are resampled, the set {D̃(t)} of binary tensors are

concatenated to form a binary data tensor D̃ of shape (νmax · T ,K,N). Each row of D̃ti·

corresponds to a sample of {rj}. We note that the samples described by D̃ correspond to

time bins of length 30/νmax milliseconds.

Fitting Tuning Parameters and Computing ~U and ~M

In order to transform samples of the population response {rj} into samples we need

estimates of ~wk and βk for every neuron. For the analysis in figure 3 we assume that ~wk =

(cos(ϕk), sin(ϕk))
T . ϕk are preferred orientations computed in [Sharpee et al., 2006a, Sharpee
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et al., 2008a], along with their standard deviations ∆ϕk. Additionally, in figure 2.7 we plot

the information computed under a coarse grained realization of orientation values ϕk to take

into account experimental errorbars ∆φk accociated with them. The coarse graining is based

on the following measure of distinguishability between orientation values for neurons i and j:

dij =
∠(ϕi, ϕj)

1
2

(∆ϕi + ∆ϕj)
(2.52)

The coarse grained realization is such that all pairs of neurons with dij < 1 are assigned

the same value of ϕ. This is not strictly achievable for all sets of neurons since, for example,

one neuron in a set of three may overlap in orientation with the two other neurons but the

other two neurons do not. Thus, the reduced realization was approximated using the following

greedy algorithm:

1. Find the pair of neurons (or subpopulations if multiple neurons have the exact same ϕ)

with the smallest value of dij.

2. Compute ϕ̄ as the weighted angular average of all ϕ for the set of neurons in step 1,

with weights are given by ∆ϕ−1
j . Similary compute the average value of ∆ϕ.

3. For all neurons in the set found in step 1, replace ϕ with ϕ̄ and ∆ϕ with its average.

4. Repeat steps 1-3 until no pair of neurons with distinct ϕ have dij < 1

We use this reduced set of ϕk to compute ~wk for the blue and red lines in figure 2.7.

In order to estimate βk, we fit the response rate of the kth neuron evoked by stimulus
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~s (averaged across the repeated presentation of this stimulus) using a logistic function:

rk(~s) =
rmax

1 + e−2(βk(x−αk))
x = ~vk · ~s (2.53)

In this expression ~vk is estimated as the maximally informative dimension for the neu-

ron[Sharpee et al., 2006a], distinct from the ~wk defined above. The parameters rmax, αk,

and βk are fit by minimizing the mean square error between rk(~s) and experimentally mea-

sured firing rates. We use the value of βk fit according to this procedure in conjunction with

~wk to compute the mapping between {rk} and ~M , ~U .

We note that because {rk} is a discrete variable with finite cardinality and the mapping

between {rk} and ~M or ~U is deterministic, ~M and ~U are also of finite cardinality. Thus, a

data tensor D̃ of samples of {rk} can be mapped to a data tensor of samples of ~M or ~U

deterministically.

Adjusting for finite sample effects

We now describe how we estimate the information transmitted by {rk} given a data

tensor D̃ of samples. The process for estimating the information transmitted by ~M and ~U is

analogous, as they are also discrete variables of known cardinality. Our information estimate

is the finite sample approximation of Shannon’s Mutual Information

Î(D̃) = −
∑
{rk}

P̂ ({rk}) log2 P̂ ({rk})−
1

T

∑
t

−∑
{rk}

P̂t({rk}) log2 P̂t({rk})

 (2.54)
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P̂t({rk}) is the empirical probability of the population response equalling {rk} at time

bin t, computed across repeats. The marginal distribution P̂ ({rk}) is simply the average of

P̂t({rk}) across time bins:

P̂ ({rk}) =
1

T

∑
t

P̂t({rk}) (2.55)

Î will be in bits, and we multiply by νmax/0.03 to convert Î to bits per second. Since

Î is a biased estimate of the true mutual information for finite samples, we corrected for

finite sample effects by subsampling D̃. We computed Î using a fraction f of the repeats,

for f ∈ {1.0, 0.95, 0.90, 0.85}, sampling repeats without replacement. We performed this

subsampling ten times for each value of f . We perform linear regression on the values of Î

vs f−1 and extrapolate to f−1 = 0, the limit of infinite sample size [Strong et al., 1998]. We

report the extrapolated value as our final estimate.

In figure 2.7 we include only sets of neurons recorded simultaneously, and all subsets.

Thus a set of 4 simultaneously recorded neurons yields one set of size 4, 4 sets of size 3, and

6 sets of size 2.

2.10 Superiority of ~M over random projections

So far we have developed a statistic of the population response that is guaranteed to be

sufficient as long as the population follows an exponential family distribution. Notably, this

statistic transmitted full information in cases where the population vector does not. However,

since the population response is inherently a discrete valued variable with finite cardinality,
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it is actually quite easy to construct a linear mapping of ~r that will transmit full information.

Consider the mapping M̂(~r) = β̂ · ~r. If the components of β̂ are drawn from a non-atomic

distribution distribution on IR, such that the probability that βi = βj is 0 for i 6= j, then

M̂(~r will take 2N distinct values with probability one. Thus, the random mapping M̂(~r) is

trivially information preserving. Understanding the distribution of such random projections

is an open area of research in mathematics [Tao and Vu, 2010], and many compressed sensing

algorithms rely upon a combination of such random projections and binning [Candès and

Wakin, 2008].

In light of how easy it is to create a sufficient linear statistic simply by taking random

projections, one may wonder what is useful about using the sufficient statistic ~M . Yet

information transmission is not the sole performance measure of an encoded representation.

For most neural systems it is imperative that downstream neurons are able to decode useful

information about the stimulus from the representation at a previous layer, and to do so

in a biophysically plausible way. In the next section we turn to the complementary task of

decoding the stimulus from ~M , and show that ~M has certain properties that make it easily

decodable or that allow it to serve as a decoder of the stimulus directly.

2.11 Treating ~M as a stimulus estimate

A central task for higher cortical areas involved in sensory processing is to estimate or

infer the stimulus, or relevant information about the stimulus, from the activity of sensory

neurons in previous layers. In the previous sections we demonstrated that the information

preserving population vector ~M was guaranteed to transmit all the information contained
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in the population response, as long as the population was well modelled by an exponential

family. However, a variable that optimally encodes data is not guaranteed to be easily decoded

[Schneidman et al., 2003]. The quality of a decoding is assessed by an error metric, which must

be specified independently. It is not always clear what the appropriate error metric even is,

particularly for continuous vector-valued variables like ~s. In this chapter we consider the task

of decoding or estimating ~s given ~M or ~r. The mathematical field of statistical estimation and

probabilistic inference is incredibly broad with numerous methods and frameworks suitable

for different models and types of data. However, not all algorithms that can operate on ~r can

be feasibly implemented in a neural circuit. We propose a method of decoding that can be

implemented with simple feed forward operations.

Our decoding mechanism is a linear transform of ~M itself. By construction, ~M and

~s inhabit the same vector space, and changes in ~s are reflected in geometrically consistent

changes in ~M (c.f. (2.38)). In light of this, we show that a linearly transformed version of

~M , can serve as an estimate of the direction of ~s. For large populations with w̃ distributed

according to a multivariate gaussian we show that this estimate becomes exact, whereas a

similar estimate made according to ~U fairs poorly. For a class of non-gaussian distributions

we provide numerical evidence and analytic intuition that this estimation procedure yields a

reasonable approximation.

Throughout this section we continue assume that P (~r|~s) is an exponential family of

the same sort as described above. We make no attempt to identify the components of our

proposed decoding schemes with actual specific neurobiological structures or processes, and

indeed it is likely that the variables and transformations involved are at best abstractions of
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more complicated underlying phenomena.

As shown above the variable ~M is guaranteed to capture all information about ~s

contained in ~r. In this section we demonstrate that under certain conditions, ~M also explicitly

captures geometric information about ~s. Specifically we show that a linear transformation

on ~M yields an estimate of the orientation of ~s. Though the information about vector

amplitude is discarded, this may be acceptable for certain sensory applications such as motion

discrimination.

We specifically consider the regime where N
D
� 1 and the individual neurons are

conditionally independent (J = 0). We first define a rescaled weight vector w̃(k) = β(k) ~w(k).

We next define population-size normalized versions of ~U and ~M in terms of {w̃(k)}:

~m =
1

N

∑
k

w̃(k)(2r(k) − 1)

~u =
1

N

∑
k

w̃(k)

|w̃(k)|
(2r(k) − 1)

We assume that the w̃(k) are drawn independently from a distribution P (w̃). We set

〈w̃〉 = 0 for simplicity, but will show to adjust for nonzero 〈w̃〉 later. The covariance matrix

of w̃ under P (w̃) is denoted C and assumed to be positive definite. We also assume that

probability measure of w̃ = 0 is zero, which is the case for a smooth distribution. For now

we assume that α(k) = 0 but will demonstrate how to generalize later. For fixed ~s 6= 0, ~m is

the sample average of w̃(2r − 1) where w̃ and r are drawn from P (r, w̃|~s) = P (r|~s, w̃)P (w̃).

P (r|~s, w̃) is just the firing probability in (2.6). ~u can be viewed similarly. An application of
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the weak law of large numbers shows that ~m and ~u converge in probability to their expected

value as N grows large:

~m
p−→ m̄(~s) ≡

∫
P (w̃) w̃ tanh(w̃ · ~s) dw̃

~u
p−→ ū(~s) ≡

∫
P (w̃)

w̃

|w̃|
tanh(w̃ · ~s) dw̃

We henceforth work with m̄(~s) and ū(~s). Additionally we will also denote averaging

with respect to P (w̃) by 〈·〉. We propose the following correspondence between m̄ and ~s:

C−1m̄(~s) ≈ ~sF (~s) (2.56)

Where F (~s) is a non-negative scalar function of ~s. We note that this is not the same as

the typical whitening transforms that use either C−
1
2 [Bell and Sejnowski, 1997], the cholesky

decomposition of C, or the eigendecomposition of C [Hastie et al., 2009]. From (2.56), an

estimate of the direction of ~s can be obtained by taking a normalized version of C−1m̄(~s)

[Carandini and Heeger, 2011]. We measure the performance of this estimator using the vector

correlations:

Corr(C−1m̄(~s), ~s) =
C−1m̄(~s) · ~s
|C−1m̄(~s)| |~s|

(2.57)

We begin by demonstrating that for gaussianly distributed w̃, (2.56) becomes exact

and thus (2.57) goes to 1 in the large N limit. In contrast, we provide evidence that an

estimator based on ū(~s) instead of m̄(~s) performs poorly.
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2.11.1 Gaussian w̃ distributions

We first state the following identity due to Stein [Stein, 1981], and later generalized

in [Janzamin et al., 2014]: If f(w̃) is a scalar function of w̃ such that ∇w̃f(w̃) exists almost

everywhere and 〈∇w̃f(w̃)〉 also exists then the following equality in expectation holds:

〈f(w̃)∇w̃ logP (w̃)〉 = −〈∇w̃f(w̃)〉 (2.58)

We note that generalizations exist of (2.58) to tensor valued functions f(w̃) and higher

order derivatives [Janzamin et al., 2014]. Stein originally considered the case where w̃ is

gaussianly distributed which we assume as well. For simplicity we assume w̃ to have zero

mean, with the aforementioned covariance matrix C:

P (w̃) =
1√
2πC

e−
1
2
w̃TC−1w̃ (2.59)

In this case (2.58) reduces to the following:

〈w̃f(w̃)〉 = C〈∇w̃f(w̃)〉 (2.60)

Simplified expressions for m̄(~s) and ū(~s) are obtained by setting g(w̃) in (2.60) equal

to tanh(w̃ · ~s) and tanh(w̃·~s)
|w̃| respectively:
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m̄(~s) = C~s

∫
P (w̃)

(
1− tanh2(w̃ · ~s)

)
dw̃

ū(~s) = C~s

∫
P (w̃)

(
1− tanh2(w̃ · ~s)

)
|w̃|

dw̃ − C
∫
P (w̃)

tanh(w̃ · ~s)
|w̃|2

w̃

|w̃|
dw̃

It is assumed that all the relevant integrals exist. Finally we multiply both m̄(~s) and

ū(~s) by C−1:

C−1m̄(~s) = ~s

∫
P (w̃)

(
1− tanh2(w̃ · ~s)

)
dw̃ (2.61)

C−1ū(~s) = ~s

∫
P (w̃)

(
1− tanh2(w̃ · ~s)

)
|w̃|

dw̃

−
∫
P (w̃) w̃

tanh(w̃ · ~s)
|w̃|3

dw̃ (2.62)

We see now that C−1m̄(~s) and the first term in C−1ū(~s) are equal to ~s times an ~s-

dependent non-negative scaling factor. It is easy to show that the second term in C−1ū(~s)

is parallel to ~s if P (w̃) is a spherical distribution. That is, if P (w̃) depends only on |w̃|.

Combined with the requirement that P (w̃) is Gaussian, this implies that w̃ is distributed like

white noise. If P (w̃) is spherical then the integrand in the second term of C−1ū(~s) is equal

to w̃ times a function that depends only on |w̃| and the angle between w̃ and ~s. A simple

argument based on symmetry shows that the component of w̃ perpendicular to ~s cancels out

when integrating over RD. For non-spherical gaussian distributions, this term will in general
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Figure 2.8: Nonlinear compression as a function of ~s Value of C−1m̄(~s) projected onto
ŝ0 = ~s

|~s| . P (~w) is gaussian with 1− SD ellipse overlayed in red.

evaluate not to be parallel to ~s.

Because P (w̃) is gaussian, we can simplify the compressive factor in C−1m̄(~s) into a

one dimensional integral:

F (~s) ≡
∫
P (w̃)

(
1− tanh2(w̃ · ~s)

)
dw̃

=

∫
1√

2πσ2(~s)
e
− x2

2σ2(~s)
(
1− tanh2(x)

)
dx

σ2(~s) = ~sTC~s (2.63)

We investigate the dependence of F (~s) on ~s in 2.8 by plotting the projection of

C−1m̄(~s) onto the unit vector in the same direction as ~s. Since we know that C−1m̄(~s)

is parallel to ~s this figure displays how F (~s) compresses C−1m̄(~s) in different directions.

Notably, directions of higher variance in ~w display higher compression.

It is possible consider more general nonlinearities f(·) than tanh(·) as long as f(·)
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satisfies the conditions of Stein’s lemma and f ′(·) > 0. We note that this does not require

per se the neurons to have a monotonic response as a function of stimulus projection onto w̃

but rather that the nonlinearity describing the firing rate is monotonic as a function of scalar

input. For example one could take an average over a distribution of thresholds P (α):

f(w̃ · ~s) =

∫
P (~α) tanh(w̃ · ~s− α) dα (2.64)

We note that α or any other structural parameters determining the shape of f(·) must

be distributed independently of w̃. To compensate for a non-zero 〈w̃〉, one can subtract from

m̄(~s) a vector of 〈w̃〉〈f(w̃ ·~s)〉, the average w̃ scaled by the population firing rate in response

to ~s. This procedure could be implemented using the same sorts of operations necessary to

represent ~M(~s).

2.11.2 Non-Gaussian symmetric w̃ distributions

In this section we examine the accuracy of (2.56) under a more general class of distri-

butions over w̃: Symmetric distributions, where P (w̃) = P (−w̃). For simplicity we consider

distributions symmetric about w̃ so that 〈w̃〉 = 0, but all of the arguments can easily be

generalized to nonzero 〈w̃〉.

We start by expanding f(w̃ · ~s) to second order in w̃ around w̃ = 0.

f(w̃ · ~s) ≈ f(0) + f ′(0)
∑
i

w̃isi +
f ′′(0)

2

∑
ij

w̃iw̃jsisj +O((w̃ · ~s)3) (2.65)
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Because we have assumed that P (w̃) is symmetric, odd (cross) moments of w̃ disap-

pear. We can thus express the ith component of 〈w̃f(w̃ · ~s)〉 to the first two leading orders in

w̃:

〈w̃if(w̃ · ~s)〉 ≈ f ′(0)〈w̃i
∑
j

w̃j〉sj +
f ′′′(0)

3
〈w̃i
∑
jkl

w̃jw̃kw̃l〉sjsksl (2.66)

In vector notation this reduces to a familiar form:

〈w̃f(w̃ · ~s)〉 ≈ f ′(0)C~s+O(w̃4). (2.67)

We assume that we are in the weak coupling regime so that |~w| < ε for some small ε

so that we can drop terms past second order in w̃. Since we have assumed f ′(x) > 0, we once

again have that C−1〈w̃f(w̃ · ~s)〉 ∝ ~s. As an aside we note that (2.56) is trivially true when

f(x) ∝ x because C~s = 〈w̃
(
w̃T~s

)
〉.

2.11.3 Simulation Results

In order to validate the convergence of (2.56) for the two classes of w̃ distributions

considered, we carried out numerical evaluations of Corr(C−1m̄(~s), ~s) as a function of pop-

ulation size for two different model distributions. We set D = 2, let P (~s) = N (0, I2), and

drew 100,000 stimulus samples. As a test of the gaussian prediction we set P (w̃) = N (0, Σ)

where the covariance matrix Σ is diagonal but highly non-spherical:
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Figure 2.9: Correlation for gaussian distributed w̃ Correlation as a function of pop-
ulation size for C−1m̄ (red) and C−1ū (grey). Circles are mean across realizations of the w̃
and error bars are SEM across realizations.

Σ =

9 0

0 0.25

 (2.68)

This distribution is the same as plotted in 2.8. For a given value of N we drew N

samples from P (w̃), and computed 〈~w〉 and C as finite sample estimates. We then computed

the average value of Corr(C−1m̄(~s), ~s) and Corr(C−1ū(~s), ~s) across all samples of ~s. We

repeated this process for 50 realizations of the set of receptive fields for each N to reduce

the variance due to finite sample effects, and computed both the mean across realizations

and standard error of the mean across realizations. We plot the results in Fig 2.9 for N ∈

{10, 50, 100, 500}. The estimate based on m̄ clearly converges to ~s while ū performs visibly

worse.

The other distribution we consider is an asymmetric uniform distribution P (w̃) =

U
([
−3
√

3, 3
√

3
]
×
[
−0.5

√
3, 0.5

√
3
])

. We chose these bounds so that the population covari-
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Figure 2.10: Correlation for uniform distributed w̃ Correlation as a function of pop-
ulation size for C−1m̄ (red) and C−1ū (grey). Circles are mean across realizations of the w̃
and error bars are SEM across realizations.

ance matrix would be the same as above. The results for this distribution are plotted in Fig

2.10. We observe similar behaviour as in the gaussian case.

2.12 Summary

In this chapter we presented a general model of a spiking neural population and

demonstrated the existence of a linear sufficient statistic of bounded dimension. This statistic,

the information preserving population vector ~M , is highly interpretable as it can also serve as

a reconstruction of the input stimulus under certain conditions. Yet, for many applications we

may wish to explicitly compute I(~r, ~s) and examine how different settings of the W affect the

transmitted information in populations of realistic size. Although ~M can either be of lower

or higher dimension than ~r it may not be any easier to compute I(~s, ~M) than I(~s, ~r) because

the cardinality of the state space of ~M may still be quite large (and in fact will generally be
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the same as that of ~r barring any exact symmetries in the set of receptive fields). In the next

chapter we develop a more tractable estimator of I(~r, ~s) and examine its properties.
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Chapter 3: Quantifying information

conveyed by large neuronal

populations

3.14 Introduction

Information theory has the potential of answering many important questions about

how neurons communicate within the brain. In particular, it can help determine whether

neural responses provide sufficient amounts of information about certain stimulus features,

and in this way determine whether these features could possibly affect the animal’s behavior

[Rieke et al., 1997, Bialek, 2012]. In addition, a number of previous studies have shown that

one can understand many aspects of the neural circuit organization as those that provide

maximal amounts of information under metabolic constraints [Laughlin et al., 1998, Bialek,

2012]. Key to all of these analyses is the ability to compute the Shannon mutual informa-

tion [Cover and Thomas, 2012]. When estimating the information transmitted by neural

populations from experimental recordings, all empirical methods produce biased estimates
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[Paninski, 2003]. There are several approaches to trying to reduce or account for this bias

[Nemenman et al., 2004, Strong et al., 1998, Brenner et al., 2000b, Treves and Panzeri, 1995],

but these approaches do not have finite-sample guarantees and are generally ineffective when

the population response is high dimensional. In order to make progress on this problem,

we consider the case where the response functions of individual neurons can be measured

and where the stimulus-conditional (“noise”) correlations between neural responses can be

described by pairwise statistics [Schneidman et al., 2006]. Historically, even with these as-

sumptions the mutual information is notoriously difficult to compute in part due to the large

number of possible responses that a set of neurons can jointly produce [Nemenman et al.,

2004, Strong et al., 1998]. The number of patterns grows exponentially with both the number

of time points [Strong et al., 1998, Dettner et al., 2016] and the number of neurons.

In this paper we will describe a set of approaches for computing information conveyed

by responses of large neural populations. These methods build on recent advances for com-

puting information based on linear combinations of neural responses across time [Dettner

et al., 2016, Yu et al., 2010] and/or neurons [Berkowitz and Sharpee, 2018]. We will show

that when each individual neuron’s firing probability depends monotonically on a (poten-

tially nonlinear) function of the stimulus, the information contained in the full population

response can be completely preserved by a linear transformation of the population output.

This calculation still involves computing information between high dimensional vector vari-

ables. Therefore, we further show how the full information can be effectively approximated

using a sum of conditional mutual information values between pairs of low-dimensional vari-

ables. The resulting approach makes it possible to avoid the “curse of dimensionality” with
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respect to the number of neurons when computing the mutual information from large neural

populations.

3.15 Framework setup

Our analysis will target neural responses considered over sufficiently small time win-

dows such that no more than one spike can be produced by any given neuron. We model

the neural population as a set of binary neurons with sigmoidal tuning curves with response

probability described by:

P (rn = 1|~s ) =
1

1 + e2fn(~s )
, (3.69)

where ~s ∈ RD is the input, rn ∈ {−1, 1} is the activity of the nth neuron, and fn(~s ) is a scalar

function of ~s representing the activation function of the nth neuron. The population consists

of N such neurons, and the population response is denoted as ~r = (r1, ..., rN). For clarity of

the derivation, we will initially assume that neural responses are independent conditioned on

~s:

P (~r |~s ) =
∏
n

P (rn|~s ), (3.70)

and later discuss under what conditions our results generalize to the case where neural re-

sponses are correlated for a given stimulus ~s. A few lines of algebra suffice to show that

Eq. (3.70) can be expressed in the following form:

P (~r |~s ) = exp

(∑
n

rnfn(~s )− An(~s )

)
,

An(~s ) = log(2 cosh(fn(~s )). (3.71)
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This formulation will assist all of the approaches described below for computing the mutual

information.

3.16 An unbiased estimator of information for large

neural populations

In order to test the approaches described in subsequent sections, we first developed a

Monte-Carlo method for computing the “ground-truth” mutual information that works for

large neural populations. The approach relies on the knowledge of neural response parameters

{fn(~s )} to produce unbiased estimates of mutual information between ~R and ~S for different

choices of {fn(~s )} or P (~s ). Here and in what follows, upper case letters (e.g. ~S) represent

random variables, while lower case letters (e.g. ~s) represent specific values of the associated

random variables. The input distribution P (~s ) is defined by drawing Nstim samples; we

denote this set of samples as {~sµ}. Because of this approximation however, I(~R, ~S ) will be

bounded above by log(Nstim) (as will be any unbiased estimator of mutual information).

Although there are several formulations of the mutual information in terms of the

entropies of ~R and ~S it serves to examine just one:

I(~R, ~S ) = H(~R )−H(~R |~S ). (3.72)

Here, H(~R ) is the Shannon entropy of the marginal distribution of ~R and H(~R |~S ) is the

conditional entropy of ~R given ~S. Because we intend to use this estimator as a way to

test the quality of other approximations, we will only consider here the case of conditionally
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independent neural responses ~R. In this case, the noise entropy H(~R |~S = ~S ) decomposes

into a sum over neurons:

H(~R |~S = ~s ) =
∑
n

r̄n(~s )fn(~s )− An(~s ), (3.73)

where r̄n(~s ) is the expected value of Rn given ~s:

r̄n(~s ) = tanh(fn(~s )). (3.74)

We denote Ĥ(~R |~S ) as the finite sample approximation to H(~R |~S ):

Ĥ(~R |~S ) = − 1

Nstim

∑
µ

∑
n

r̄n(~sµ)fn(~sµ)− An(~sµ). (3.75)

The conditional entropy Ĥ(~R |~S ) can be evaluated in O(N ∗ Nstim) time, not including the

cost of evaluating fn(~s ). However, the marginal distribution of ~r will in general not factor.

Thus evaluating H(~R ) requires computing the marginal P (~r ) for all ~r ∈ {−1, 1}N . This

computation grows like O(N ∗Nstim ∗2N). Thus, evaluation of Eq. (3.72) is known to become

intractable for realistic population sizes. To derive our estimator, we begin by rewriting

H(~R ):

H(~r ) = −
∑
~r

P (~r ) log(P (~r )) = −〈F (~r )〉~r,

F (~r ) = log (〈P (~r |~s )〉~s) . (3.76)
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We approximate the log-marginal F (~r ) with an empirical average:

F̂ (~r ) = log

(
1

Nstim

∑
µ

P (~r |~sµ)

)
= log

(
1

Nstim

∑
µ

exp

(∑
n

rnfn(~sµ)− An(~sµ)

))
(3.77)

In terms of numerical implementation, F̂ (~r ) can be efficiently and stably evaluated inO(Nstim)

time using the logsumexp function that is implemented in many numerical libraries. To ap-

proximate the averaging with respect to P (~r ) we draw B samples of ~r for every ~sµ, which is

easily done with (3.69) and (3.70), and denote these samples as {~rν}. We can thus produce

an unbiased estimate of −〈F̂ (~r )〉~r:

Ĥ(~R ) =
1

BNstim

∑
ν

log

(
1

Nstim

∑
µ

exp

(∑
n

rnνfn(~sµ)− An(~sµ)

))
(3.78)

Importantly, the response entropy Ĥ(~R ) requires O(N ∗B ∗N2
stim) operations, a substantial

improvement over exact evaluation of H(~r ) when B ∗ Nstim � 2N . We note that even

though we are able to produce unbiased estimates of Ĥ(~R ), this estimator systematically

underestimates the “infinite sample” entropy computed with respect to P (~s ) explicitly, i.e.

not defined by input samples (see Appendix 3.20). Our Monte-Carlo estimator of I(~R, ~S ) is

the straightforward combination of Ĥ(~R ) and Ĥ(~R |~S ):

Î(~R, ~S ) = Ĥ(~R )− Ĥ(~R |~S ) (3.79)

Although Î(~R, ~S ) is an unbiased estimator of the mutual information (after accounting for

the approximation of P (~s ) by samples {~sµ}) the variance of Ĥ(~r ) and thus of Î(~R, ~S ) can be
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difficult to quantify. However, F (~r ) is a bounded function because ~r has finite support (or,

more generally, F (~r ) can be treated as a continuous function on the compact set [−1, 1]N).

Thus, standard concentration bounds show that Ĥ(~R ) is a consistent estimator of H(~R ).

In order to test our derivation that Î(~R, ~S ) is an unbiased estimator of I(~R, ~S ), we

analyzed the statistics of Î(~R, ~S ) on a tractable neural population where I(~R, ~S ) can be

computed exactly. We let N = 10 and fn(~s ) = ~φn ·~s with ~φn uniformly distributed along the

unit circle. P (~s ) is a spherical, two-dimensional Gaussian distribution and Nstim = 8, 000. We

evaluate I(~R, ~S ) exactly, and get that I(~R, ~S ) = 1.3384 nats. This is well below the upper

bound of log(8, 000) ≈ 8.987 nats. We computed Î(~R, ~S ) 100 times for B = 1 and B = 3,

with {sµ} fixed. For each repetition we record the residual Î(~R, ~S ) − I(~R, ~S ). Distribution

plots of the residuals are shown in Figure 3.11. For both distributions the sample mean is

not significantly different from zero with P = 0.848 (B = 1) and P = 0.851 (B = 3) in a

two-sided t-test. The simulation results therefore support the derivation of zero-bias in the

proposed model-based Monte-Carlo estimator.

3.17 Simplifying the mutual information with sufficient

statistics

3.17.1 A vector-valued sufficient statistic

The method introduced in Section 3.16 can be applied for very general formulations

and parametrizations of the activation functions. However, when we constrain the activation

functions to be affine we can show that P (~r |~s ) has especially useful properties. Specifically,
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Figure 3.11: Distribution of the residuals between exact calculation and the Monte Carlo
results for the test neural population described in Section 3.16. Dashed black line indicates
zero, while red marker and error bar are the sample mean and standard deviation.

we assume the following parametrization of fn(~s ):

fn(~s ) = ~wn · ~s− αn, ∀n (3.80)

While Eq. (3.80) implies a strong restriction on how stimuli drive the neural responses, some

results of this section can be generalized to other activation functions. The reason for this

is that even the general formulation of P (~r |~s ) given in Eq. (3.71) can be viewed as an

exponential family, with sufficient statistic ~r and natural parameter ~f (~s ). In particular, the

framework can be extended to quadratic activation functions, which are an important model

for describing neurons that are sensitive to multiple stimulus features. See Appendix 3.24 for

further discussion.
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If Eq. (3.80) holds, then Eq. (3.70) can be rewritten as follows:

P (~r |~s ) = h(~r ) exp(~s · ~t (~r )− A(~s )), (3.81)

where,

~t (~r ) = W · ~r, W ≡ (~wT1 , ..., ~w
T
N) (3.82)

h(~r ) = e−
∑
n rnαn , (3.83)

A(~s ) =
∑
n

log (2 cosh(~wn · ~s− αn)) . (3.84)

Equation (3.81) is an exponential family with sufficient statistic ~t ∈ RD, natural parameter

~s, base measure h(~r ), and log-partition function A(~s ) [Wainwright and Jordan, 2008].

The stimulus-conditional probability distribution P (~t |~s ) can be defined by marginal-

izing over all ~r that map to the same ~t:

P (~t |~s ) =
∑
~r

δ
(
~t,~t (~r )

)
h(~r ) exp(~s · ~t (~r )− A(~s ))

= exp(~s · ~t− A(~s ))
∑
~r

δ
(
~t,~t (~r )

)
h(~r )

= exp(~s · ~t− A(~s ))h(~t ). (3.85)

Note that h(~t′) = 0 if there does not exist an ~r such that ~t′ = ~t (~r ). An important property

of sufficient statistics is the conservation of information [Cover and Thomas, 2012]:

I(~S, ~R ) = Ivector(~S, ~T ) (3.86)
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with ~T defined by Eq. (3.82). Although ~T does not lose information relative to ~r, it is worth

making a few comments on ~T and Eq. (3.86). Because ~R is a discrete variable (with cardinality

of at most 2N) and ~T is a deterministic function of ~R, then ~T is also a discrete variable with

finite cardinality. Indeed, outside of cases of degeneracy between the columns of W, there

will generally be a one-to-one mapping between values of ~R and ~T . Thus, even in cases

where D � N , computing H(~T ) can be just as difficult as computing H(~R ). Furthermore,

unlike ~R, the components of ~T will generally not be conditionally independent. H(~T |~s ) will

thus be similarly intractable. While it may seem that we have not gained any computational

advantage by transforming from ~R to ~T we will now show that Eq. (3.86) can be expressed

in a convenient form that facilitates several useful approximations.

3.17.2 Decomposition of mutual information based on sufficient

statistics

We start by noting that the ordering of the components of ~S and ~T is arbitrary,

because applying any matching permutation to the components of ~S and ~T does not affect

I(~S, ~R ). We will use the following notations for components of vectors ~s = (s1, ..., sD) :

s¬d = (s1, ..., sd−1, sd+1, ...sD), s<d = (s1, ..., sd−1), and similarly for s>d, s≥d, and s≤d. Note

that S¬d = (S<d, S>d). Additionally, we will at times consider information theoretic quantities

involving variables that are the concatenation of two other variables, such as X and Y . Such

compound variables will be denoted as {X, Y }. Using these notations and applying the chain
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rule for mutual information to Eq. (3.86) yields: [Cover and Thomas, 2012]:

Ivector(~S, ~T ) =
D∑
d=1

I(Sd, ~T |S<d). (3.87)

In Eq. (3.87), I(Sd, ~T |S<d) is the mutual information between ~T and Sd conditioned on S<d.

I(Sd, ~T |S<d) = H(Sd, S<d) +H(~T , S<d)−H(Sd, ~T , S<d)−H(S<d)

= TC(S<d, Sd, ~T )− I(S<d, Sd)− I(S<d, ~T )

= I(~T , {S<d, Sd})− I(~T , S<d) = I(~T , S≤d)− I(~T , S<d)

= 〈I(Sd, ~T |s<d)〉s<d , (3.88)

where TC(S<d, Sd, ~T ) is the total correlation between S<d, Sd, and ~T . All four formulations

of I(Sd, ~T |S<d) are equivalent provided they all exist. A notable situation is when there

is functional dependence between Sd and S<d, such as when the support of S≤d lies on a

manifold of intrinsic dimension < d. In this case I(S<d, Sd) diverges and the second line of

Eq. (3.88) is ill-defined. However, it easy to show that I(Sd, ~T |S<d) = 0 if such a functional

dependency exists using the fourth line of Eq. (3.88). Formally, let sd ≡ g(s<d) where

g(s<d) : Rd−1 → R is a function defined explicitly or implicitly. Then we note that the

mutual information between two variables is zero if at least one variable is constant:

I(Sd, ~T |s<d) = I(g(s<d), ~T |s<d) = 0. (3.89)
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Thus, I(Sd, ~T |S<d) will also be zero:

I(Sd, ~T |S<d) = 〈I(Sd, ~T |s<d)〉s<d = 〈I(g(s<d), ~T |s<d)〉s<d = 0. (3.90)

Computing just I(Sd, ~T |s<d) remains challenging for the same reasons as computing Ivector(~S, ~T ).

However, we can achieve a further reduction by taking advantage of the fact that P (~t |~s ) is an

exponential family. To see this we first express two important marginalized forms of (3.82):

P (~t |sd, s<d) = h(~t ) exp(s<d · t<d + sdtd)〈exp(s>d · t>d − A(~s ))〉s>d|s≤d . (3.91)

P (~t |s<d) = h(~t ) exp(s<d · t<d)〈exp(s≥d · t≥d − A(~s ))〉s≥d|s<d . (3.92)

The notation 〈f(~s )〉s>d|s≤d denotes the expectation of f(~s ) with respect to P (s>d|s≤d), with

analogous meanings for 〈f(~s )〉s≥d|s<d and so forth. Marginalization over conditioned variables

is expressed implicitly: P (~t |s<d) = 〈P (~t |~s )〉s≥d . The important consequence of (3.91) and

(3.92) is that the log-likelihood ratio of P (~t |sd, s<d) and P (~t |s<d) is independent of t<d. From

this we can show that I(Sd, ~T |s<d) = I(Sd, T≥d|s<d):

I(Sd, ~T |s<d) =

〈∑
~t

P (~t |sd, s<d) log

(
P (~t |sd, s<d)
P (~t |s<d)

)〉
sd

=

〈∑
t≥d

P (t≥d|sd, s<d) log

(
P (t≥d|sd, s<d)
P (t≥d|s<d)

)〉
sd

.

= I(Sd, T≥d|s<d) (3.93)
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This leads to our next reduction:

Ivector(~S, ~T ) =
D∑
d=1

I(Sd, T≥d|S<d). (3.94)

We note that the dth term in (3.87) hasD+d+1 degrees of freedom, whereas the corresponding

term in (3.94) has D+1 degrees of freedom. This effective dimension reduction has important

algorithmic implications for the nonparametric estimators we use to compute the individual

terms of (3.94) (c.f. Section 3.18). In section 3.18.1 and 3.18.2, we use Eq. (3.94) to evaluate

Ivector(~S, ~T ).

3.17.3 Lower bounds for the mutual information

While Eq. (3.94) represents a significant improvement in complexity over naive evalu-

ation of I(~S, ~T ), individual terms of Ivector(~S, ~T ) may be still too high dimensional to reliably

evaluate. In this section, we will present a series of lower bounds on Ivector(~S, ~T ) that are

more easily estimated. In particular we consider bounds that arise by replacing T≥d in the dth

term of Eq (3.94) by a lower dimensional, deterministic transformation of T≥d denoted Zd.

Applying the Data Processing Inequality (DPI) to each term in Eq (3.94), will yield a lower

bound for the mutual information. There are many possible lower bounds to Ivector(~S, ~T ) of

this form. We focus on a variable Zd = {Td, |T>d|} where |T>d| is the L2-norm of T>d. This

leads to the following lower bound approximation to Ivector(~S, ~T )

Iiso(~S, ~T ) =
∑
d

I(Sd, {Td, |T>d|} |S<d), (3.95)
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which we term isotropic. In Appendix 3.21, we show that this approximation becomes exact in

the asymptotic limit of large neural populations, meaning that Iiso(~S, ~T ) = Ivector(~S, ~T ), when

the stimulus distribution is isotropic and the distribution of receptive fields (RF) ~w across the

population is such that A(~s ) = A(|~s|). Notably, this is achieved when RFs uniform cover the

stimulus space, meaning that P (~w) is described by an uncorrelated Gaussian distribution.

For finite number of neurons, A(~s ) will never be perfectly isotropic. However, for large

populations (N � 1) where the receptive fields ~w are drawn from an isotropic distribution

and the distribution of α is independent of ~w, A(~s ) will become isotropic asymptotically as

N → ∞, cf. appendix 3.21.1 for further details. The analogue of approximation Eq. (3.95)

for the case where RFs and ~s are described by a matching correlated Gaussian distribution

is described in appendix 3.21.2.

The next reduction we consider is to drop |T>d| from each term of Eq. (3.95):

Icomp-cond(~S, ~T ) =
D∑
d=1

I(Sd, Td|S<d). (3.96)

By the data-processing inequality, it again follows that Iiso(~S, ~T ) ≥ Icomp-cond(~S, ~T ). Overall,

one obtains a series of bounds:

Ivector(~S, ~T ) ≥ Iiso(~S, ~T ) ≥ Icomp-cond(~S, ~T ). (3.97)

Our final, simplest approximation is to drop the conditioning on S<d in each term of Eq. (3.96).

Icomp-ind(~S, ~T ) =
D∑
d=1

I(Sd, Td). (3.98)
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We show in Appendix 3.22, that this last approximation becomes exact in the case where

neural populations split into independent sub-populations with orthogonal RFs between sub-

populations. Mathematically, this corresponds to the case where both the stimulus distribu-

tion P (~s) and the function A(~s) factor in the same basis:

P (~s ) =
D∏
k=1

P (s′k), A(~s ) =
D∑
k=1

A(s′k). (3.99)

In general, Icomp-ind(~S, ~T ) may be greater or less than Icomp-cond(~S, ~T ) (or Ivector(~S, ~T ))

[Renner and Maurer, 2002]. However when P (~s ) =
∏

d P (sd), the following additional in-

equality holds:

Icomp-cond(~S, ~T ) ≥ Icomp-ind(~S, ~T ). (3.100)

To derive (3.100) we first note that we can decompose I(Sd, {Td, S<d}) (for d > 1) in two

different ways:

I(Sd, {Td, S<d}) = I(Sd, Td|S<d) + I(Sd, S<d)

= I(Sd, S<d|Td) + I(Sd, Td) (3.101)

Equating the first and second lines of (3.101) we can rewrite the residual I(Sd, Td|S<d) −

I(Sd, Td):

I(Sd, Td|S<d)− I(Sd, Td) = I(Sd, S<d|Td)− I(Sd, S<d) (3.102)

Though either side of (3.102) may be positive or negative in general, when we make the

assumption that P (~s ) factors across dimension, then I(Sd, S<d) = 0. Thus (3.102) is non-
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negative and I(Sd, Td|S<d) ≥ I(Sd, Td), implying (3.100).

In the opposite extreme case where the value of Sd is a deterministic function of S<d,

Eq. (3.90) can be generalized to show that I(Sd, Td|S<d) = 0. Thus, in this case I(Sd, Td) ≥

I(Sd, Td|S<d), which in turn indicates that Icomp-ind(~S, ~T ) ≥ Icomp-cond(~S, ~T ). For example,

when the support of P (~s ) lies on a one-dimensional curve, e.g. ~S represents position along

a one-dimensional nonlinear track, Sd is fully determined from the values of other variables

S<d ∀d regardless of component ordering. In this case, Icomp-ind(~S, ~T ) ≥ Icomp-cond(~S, ~T ).

In the intermediate cases with some statistical dependencies between stimulus compo-

nents, Icomp-ind(~S, ~T ) is not generally guaranteed to be a lower bound to either Icomp-cond(~S, ~T )

or Ivector(~S, ~T ). Nevertheless, we observed that even for some correlated P (~s ) Icomp-ind(~S, ~T ) <

Icomp-cond(~S, ~T ), c.f. section 3.18.2.

3.17.4 Alternative Approximations of I(~R, ~S )

Previous authors have proposed other approximations to the mutual information.

There exists a non-parametric upper bound to the mutual information computed in terms

of pairwise relative entropies between P (~r |~s ) and P (~r |~s ′) [Haussler et al., 1997, Kolchinsky

et al., 2017]:

Ik-w(~R, ~S ) = −
∫
d~sP (~s ) log

(∫
d~s ′P (~s ′) exp (−DKL(P (~r |~s )||P (~r |~s ′))

)
(3.103)
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The model we consider for P (~r |~s ) is an exponential family and thus has a tractable relative

entropy [Banerjee et al., 2005]:

DKL(P (~r |~s )||P (~r |~s ′) =
∑
n

(tanh(fn(~s ))fn(~s )− An(~s ))− (tanh(fn(~s ))fn(~s ′)− An(~s ′))

(3.104)

In Eq. (3.103) we have used the generalized definitions of Section 3.16. The evaluation of the

upper bound (3.103) is quadratic in the sample size Nstim as opposed to O(Nstim log2Nstim)

for the estimator in section 3.18. In the limit where N � D, another popular approxima-

tion exist based on Fisher information [Brunel and Nadal, 1998]; it can be computed with

O(Nstim) operations. Recent work has shown that this approximation is valid only for certain

classes of input distributions [Huang and Zhang, 2018]. In appendix 3.23 we discuss the re-

lationship between this approximation and IFisher(~R, ~S ). We include numerical comparisons

between Ik-w(~R, ~S ) and the methods proposed in this paper in sections 3.18.1 and 3.18.2.

However, we found that the Fisher Information approximation drastically overestimated the

true mutual information. Therefore to avoid obscuring differences between other results, the

approximation based on Fisher Information is not included in Figures 3.12-3.13. Full plots

including this approximation can be found in Appendix 3.23.

We note that there are other variational approximations to mutual information [Belg-

hazi et al., 2018, Barber and Agakov, 2003]. However, because comparing the information for

different choices of the parameters of P (~r |~s ) and P (~s ) requires training a different variational

approximation each time, direct comparison requires substantial computational resources and

we leave them for future work.
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3.18 Numerical Simulations

We now test the performance of the above described bounds under several representa-

tive situations that include correlated and uncorrelated stimulus distributions, and isotropic

and anisotropic receptive field distributions, including experimentally recorded receptive fields

from the primary visual cortex, as well as the case where intrinsic “noise” correlations are

present.

To empirically estimate the bounds on mutual information [I(Sd, Td), I(Sd, Td|S<d),

I(Sd, {Td, |T>d|} |S<d), and I(Sd, T≥d|S<d)], we use the KSG estimator [Kraskov et al., 2004], a

non-parametric method based on distributions of K nearest-neighbor distances. We chose to

use the KSG estimator because even though we have reduced the mutual information between

two high-dimensional variables into a sum over pairs of scalars, computing even just I(Sd, Td)

can still be a daunting task, even more so for terms involving conditional informations. Td

may still have exponentially large cardinality, and complicated interdependencies between

components of ~T present difficulties in forming explicit expressions for P (td|sd), so exact

evaluation of H(Td) and H(Td|Sd) is not feasible at present. The KSG estimator requires only

that we can draw Nstim samples of ~S and ~T from P (~s,~t ), discarding the unused components.

Sampling from P (~s,~t ) is easily done given samples from P (~s ). Given a sample ~s, we draw ~r

from P (~r |~s ), which is easily done because of Eq. (3.70), and transform ~r into ~t using (3.82).

This estimator has complexity O(Nstim log2Nstim) when implemented with KD-Trees. For the

case of two scalar variables the `2 error of the estimate decreases like 1/
√
Nstim [Gao et al.,

2018], though if the true value of the mutual information is very high then the error may still
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be large [Gao et al., 2015]. In order to partially alleviate this error, we use the PCA based

Local Nonuniformity Correction of [Gao et al., 2015] (KSG-LNC). We extend this estimator

to compute the conditional mutual information terms using a decomposition analogous to the

second line of Eq. (3.88), and set the nonuniformity threshold hyperparameter according to

the heuristics suggested in [Gao et al., 2015]. Additionally, we assume that the distribution

of ~S (and thus S≤d, S<d, and Sd ∀d) is non-atomic. Thus, because ~T is discrete but real

valued, the KSG estimator is applicable as neither ~T nor ~S is a mixed continuous-discrete

variable [Gao et al., 2017].

3.18.1 Large populations responding to uncorrelated stimuli

We evaluated the performance of the bounds on information developed in section 3.17.3

for large populations ranging from N ≈ 100 to 1, 000. Specifically, to test the performance

of Iiso(~S, ~T ) we chose a highly isotropic population and stimulus distribution. We set D =

3, M = 8, 000, and let P (~s ) be a zero mean gaussian with unit covariance matrix. For

each value of N , the ~wn were placed uniformly on the surface of the unit sphere, using the

regular placement algorithm of [Deserno, 2004]. Because N is too large for exact evaluation

of H(~r ) ground truth values were estimated using the Monte Carlo estimator Î(~R, ~S ) of

section 3.16 with B = 3. Results are plotted in Figure 3.12. We find that for large N ,

Iiso(~S, ~T ) tightly approximates Ivector(~S, ~T ) and both are accurate approximations to Î(~R, ~S ),

strongly outperforming Ik-w(~R, ~S ). We note that for this case the upper bound of log(Nstim) =

log(8, 000) ≈ 9 (nats) is well above all of the curves other than Ik-w(~R, ~S ), which is already

known to be an upper bound to I(~R, ~S ), demonstrating that we are in the well-sampled
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Figure 3.12: Information curves for neural populations with uncorrelated RF and stimulus
distributions. Lines and error bars are mean and standard deviation over ten repeats of the
estimator. Insets show RF distribution for several population sizes.

regime. Once again we see that inequalities (3.97) and (3.100) hold.

3.18.2 Correlated stimulus distributions

We now consider the case of correlated Gaussian stimuli. and model P (~s ) as a zero-

mean Gaussian with a full-rank non-diagonal covariance matrix C. To better understand

the effects of stimulus correlations we also perform computations in stimulus bases where

components are independent. For this, we decompose C as C = VΛVT where V is an
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orthogonal matrix whose columns are the eigenvectors of C.

Ŝ = VT ~S, T̂ = VT ~T . (3.105)

Note that we have t̂ · ŝ = ~t · ~s. It is easy to see that P (t̂|ŝ) is also an exponential family.

Additionally because the mappings from ~s to ŝ and ~t to t̂ are diffeomorphisms the information

is preserved:

Ivector(~S, ~T ) = Ivector(Ŝ, T̂ ). (3.106)

We note that while Eq. (3.106) holds in principle, in practice we may see variation as the KSG

family of estimators is not invariant to under diffeomorphisms. Importantly we also note that

Eq. (3.93) holds for (Ŝ, T̂ ). Given samples from P (~s,~t ), we automatically have samples from

P (ŝ, t̂). We can straightforwardly generalize Ivector(~S, ~T ), Icomp-cond(~S, ~T ), Icomp-ind(~S, ~T ),

and Iiso(~S, ~T ) to I(Ŝ, T̂ ), Icomp-cond(Ŝ, T̂ ), Icomp-ind(Ŝ, T̂ ), and Iiso(Ŝ, T̂ ) respectively. Eq.

(3.106) does not generalize to Iiso, Icomp-cond, or Icomp-ind as they are not expressible as mutual

information quantities between two variables. We note that I(~R, ~S ) = I(~R, Ŝ) so we do not

modify Î(~R, ~S ).

Simulations in Figure 3.13 were done using the following stimulus covariance matrix

C =


1.74716093 1.3103707 0.87358046

1.3103707 1.74716093 1.3103707

0.87358046 1.3103707 1.74716093


. (3.107)

For this choice of C ρ1,2 = ρ2,3 = 0.75, ρ1,3 = 0.5, and |C| = 1. The covariance matrix of Ŝ
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is diagonal:

Ĉ =


0.283 0 0

0 0.868 0

0 0 4.032


. (3.108)

The receptive field configurations are the same as in Section 3.18.1. We note that in the ~s

coordinates, all components have the same variance, whereas this symmetry is broken in the

decorrelated components ŝ. We compared sorting the components of ŝ in increasing and de-

creasing order of variance (triangles and squares respectively) in Figure 3.13A-C. Component

order does not matter for Icomp-ind(Ŝ, T̂ ), Figure 3.13D. We find that for both Ivector and Iiso

it is optimal to perform computation in the original basis, with both quantities accurately

matching Î(~R, ~S ). For Icomp-cond and Icomp-ind accuracy is increased by using decorrelated

components and, for Icomp-cond, sorting components by decreasing variance.

3.18.3 Highly asymmetric receptive field distributions

Next, we consider a small population (N = 9) with a highly asymmetric distribution

of redundant receptive fields in two stimulus dimensions. In particular we are interested in

a population where many different configurations of ~R map to the same configuration of ~T ,

demonstrating the utility of using ~T as a non-trivial sufficient statistic of ~R. With this in mind,

we chose a heavily redundant configuration of {~wn}: ~wn = (0, 1) (n = 1, 2, 3), ~wn = (1, 0)

(n = 4, 5, 6), ~wn = (1, 1) (n = 7, 8, 9). The cardinalities of ~R, ~T , T1 and T2 are 512, 37, 7, and

7 respectively. Because N is small, ground truth values of I(~R , ~S ) were computed by exactly

evaluating P (~r |~s ) ∀~r ∈ {−1, 1}N , for every sample of ~s. Given P (~r |~s ) we average across ~s
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Figure 3.13: Information curves for neural populations with correlated RF distributions,
cf. section 3.18.2. Lines and errorbars are mean and standard deviation over ten repeats
of the estimator. In all panels, circles represent information computed in the original basis,
while squares and triangles are computations performed in decorrelated basis. Ivector (A) and
Iiso (B) recover full information. These two computations do not benefit from working in
the decorrelated stimulus basis. Stimulus decorrelation improves the performanceof Icomp-cond

(C) and Icomp-ind (D)). In (D), computations are invariant to ordering of components.
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to get P (~r ) explicitly, and calculate H(~R ), H(~R |~S ), and I(~R, ~S ) from these distributions.

P (~s ) is gaussianly distributed with diagonal covariance matrix, in accordance with (3.100).

We set Nstim = 10, 000. To test how the relative values of I(S1, T1) and I(S2, T2) impact the

optimal ordering of components in Icomp-cond(~S, ~T ) we fixed σ2 = 1 and varied σ1 between 0.5

and 2.5. Results are plotted in Figure 3.14. As predicted, the hierarchy of bounds (3.97) and

(3.100) holds for all σ1. It is also notable that in this case, just like in the case of large neural

populations, for computing Icomp-cond(~S, ~T ), it always seems best to start the information

computation with the stimulus component that has the largest variance. As expected, the

ordering or components does not strongly impact Ivector(~S, ~T ).

3.18.4 Experimental stimuli and receptive fields

In the previous three experimental sections we considered synthetic distributions of

low-dimensional stimuli and artificial configurations of receptive fields. In this section we

analyze a population of model neurons with receptive fields and α values that were fit to

responses of primary visual cortex neurons (V1) elicited by natural stimuli [Sharpee et al.,

2006b]. We use 147 pairs of (~wn, αn) values that were fit using the Maximally Informative

Dimension (MID) algorithm as in [Sharpee et al., 2006b]. Stimuli are 10 pixel by 10 pixel

patches extracted from the same set of images used to fit the model parameters. Receptive

fields are normalized and centered on the patch, and we chose a 10 × 10 sub-patch of the

original 32× 32 shaped receptive fields so that all dimensions are well sampled by receptive

fields. That is, for all pixels of the 10 × 10 patch, at least 115 of the 147 neurons have

a nonzero value in the corresponding component of their receptive field. Additionally, the
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Figure 3.14: Information curves for the example population with highly redundant RFs
from Sec. 3.18.3. Lines and errorbars are mean and standard deviation over ten repeats of the
estimator. Although neither the component-conditional nor the component information are
guaranteed to tightly approximate the information, both provide good approximation to the
full information (as estimated via unbiased Monte Carlo method), reaching values within ≥
80% of the maximum. For the vector-sufficient statistic, both component orderings accurately
reproduced the full information. The next best approximation to the full information is
provided by the component-conditional computation with components added in the order
from largest to smallest variance. This approximation reaches accuracy within 95% of the
full value over the range of neural population sizes.
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stimuli are z-scored by subtracting the mean and dividing by the standard deviation, with

both quantities computed across all samples and pixels collectively.

Because of high stimulus dimensionality we could only compute the Icomp-ind(~S, ~T )

bound (via the KSG estimator) and the ground truth information (via the Monte Carlo

method). Because the pixels of natural image patches are clearly not independent, we also

computed Icomp-ind in two additional coordinate systems. The first coordinate system is simply

the linearly decorrelated components Ŝ and ~T defined in Eq. (3.105). The second coordinate

systems uses independent components derived using independent component analysis on ~S

S̃ = U~S, , T̃ = (U−1)T ~T (3.109)

Here, U is an unmixing matrix computed using Infomax ICA [Bell and Sejnowski, 1997] on

the samples of ~S. As is done in [Bell and Sejnowski, 1997], U includes a linear whitening

matrix. We note that in Eq. (3.109), ~T is multiplied by (U−1)T and not U because the ICA

unmixing matrix is generally not orthogonal and we require that ~t · ~s = t̃ · s̃. As before

Ivector(~S, ~T ) = Ivector(Ŝ, T̂ ) = Ivector(S̃, T̃ ). However, the same cannot be said for Icomp-ind

expressed in different coordinate systems.

To evaluate the effect of using different coordinate systems to evaluate Icomp-ind for

different population sizes we first ranked the 147 neurons in descending order by the infor-

mation each neuron carried about the stimulus. We computed I(Rn, ~S ) ∀n ∈ {1, ..., 147},

which is easily done exactly since Rn is a binary variable, and then sorted neurons so that

I(Rn, ~S ) >= I(Rn+1, ~S ) ∀n. We considered populations of size N = 60, 70, ..., 140, where

each population contained the first N neurons under the aforementioned ordering. For each
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value of N we computed Î(~R, ~S ) (B = 3), Icomp-ind(~S, ~T ), Icomp-ind(Ŝ, T̂ ), and Icomp-ind(S̃, T̃ ).

We note that log(Nstim) = log(49, 152) ≈ 10.8 nats. Results are plotted in Figure 3.15.

We observe that both Icomp-ind(~S, ~T ) and Icomp-ind(Ŝ, T̂ ) overestimate the true informa-

tion, especially Icomp-ind(~S, ~T ). This overestimation occurs because stimulus components are

not independent. By comparison, computation performed in the ICA basis, Icomp-ind(S̃, T̃ ),

lower bounds the mutual information for all N , achieving ≥ 75% of the full information across

the range of population sizes.

3.18.5 Handling intrinsically correlated neurons

In order to simplify derivations, we assumed that the neural responses were indepen-

dent after conditioning on ~s. However, all of the analytic results in Section 3.17.2 can be

extended to specific forms of intrinsic interneuronal correlation to allow for the presence of

correlations in neural responses for a given stimulus ~s. Formally, we modify the base measure

h(~r ) to include a pairwise coupling term:

h(~r,J) = e
∑
mn Jmnrmrn−

∑
n rnαn . (3.110)

In Eq. 3.110, J is a symmetric N × N matrix where Jmn describes the intrinsic coupling

between the mth and nth neurons. In this case P (~r |~s,J) can still be written as an exponential
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Figure 3.15: Information curves for populations based on experimentally recorded RFs
and probed with D = 100 natural visual stimuli. The full information (solid black line) is
computed via the Monte Carlo method and is compared to Icomp-ind approximations computed
in two different bases: the PCA basis (blue dashed line) and the ICA basis (blue dotted line).

We do not show the calculation in the original pixel basis, because itIcomp-ind(~S, ~T ) is omitted
as it was yielded values ∼ 25 nats across the range of population sizes and obscured the
other curves. Because of non-Gaussian statistics of natural stimuli, PCA components remain
correlated, and as a result the approximation is no longer guaranteed to be a lower bound of
the true information. Computation in the ICA basis respects the lower bound requirements,
and achieves ≥ 75% of the full information across the range of population sizes.
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family in a canonical form:

P (~r |~s ) = h(~r,J) exp(~s · ~t (~r )− A(~s,J)),

A(~s,J) = log

(∑
~r

h(~r,J) exp(~s · ~t (~r ))

)
. (3.111)

The form of the sufficient statistic remains unchanged, though A(~s,J) generally lacks a closed

form. Nevertheless, all of the decompositions, equalities, and inequalities in Section 3.17.2

require only for the exponential family to be in canonical form and remain valid.

We tested the accuracy of our approximations on a small (N = 10) population of

intrinsically correlated neurons. Receptive fields are uniformly distributed on the unit circle,

αn = 0 ∀n, and P (~s) is a standard two-dimensional Gaussian (Nstim = 20, 000). Intrinsic

coupling is set proportional to the overlap between receptive fields with a coupling strength J0,

the sign of which determines whether the intrinsic couplings perform stimulus decorrelation

or error-correction [Tkačik et al., 2010].:

Jmn = J0 ~wm · ~wn. (3.112)

The algorithms of Sections 3.18 and 3.16 all depend on being able to sample easily from

P (~r |~s ). For large N and general J this is usually difficult, particularly for configurations of J

that exhibit glassy dynamics. Additionally, evaluating Eq. (3.77) requires explicit knowledge

of A(~s ), though methods such as mean-field theory or the TAP approximation may be used to

approximate A(~s ) [Opper et al., 2001]. Since this population is small, we evaluate the ground

truth information exactly as in Section 3.18.3. Likewise, we sample ~r from P (~r |~s ) exactly by
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Figure 3.16: Information curves for populations with intrinsic correlations. Lines and er-
rorbars are mean and standard deviation over ten repeats of the estimator.

computing all 2N (1, 024) probabilities for every sample of ~s. Analyzing the error introduced

in using approximate sampling strategies such as Markov Chain Monte Carlo is left to future

investigation. Results are plotted in Figure 3.16. As predicted, Ivector(~S, ~T ) matches the

ground truth values of the information. Similarly the hierarchy of bounds (3.97) and (3.100)

is preserved, though for strongly negative couplings Icomp-cond(~S, ~T ) ≈ Icomp-ind(~S, ~T ). In

sum, the presence of noise correlations does not invalidate the approximations and bounds

that are derived above. However, numerical computation can become more difficult in the

presence of noise correlations.
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3.19 Conclusions and Future Work

We have presented three approximations that can be used to estimate the information

transmitted by large neural populations. Each of these three approximations represents differ-

ent trade-offs between accuracy and computational ease and feasibility. The best performance

in terms of accuracy was provided by the isotropic approximation Iiso. This approximation

worked well even in cases where is not guaranteed to become asymptotically exact with in-

creasing population size. For example, the isotropic approximation was derived assuming a

matching covariance matrix for both the stimulus and RF distributions, cf. Appendix 3.21.

Yet, this approximation matched the full ground-truth information values even for correlated

stimuli with RFs remaining uncorrelated across the neural population (Fig. 3.13.) This ap-

proximation provided the best overall performance among the bounds tested, consistent with

the theoretically expected inequalities between these bounds, cf. Eq. (3.97).

The component-conditional information Icomp-cond offered the second-best performance.

This approximation performed especially well when computed in the stimulus basis where

stimulus components were not correlated. This approximation is less computationally dif-

ficult compared to Iiso, because each conditional information is evaluated between just two

quantities Sd and Td compared to Sd and a conjunction of Td and |T>d| as in Iiso. For this rea-

son, the finite-sample bias of Icomp-ind can also be less than Iiso, because bias in the evaluation

of the mutual information is usually larger for higher-dimensional calculations.

The last approximation Icomp-ind is the least accurate of the three approximation but

is computationally the easiest. It is the only approximation among the three we considered
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here that we were able to implement in conjunction with high dimensional stimuli. This

approximation becomes most accurate in the stimulus bases where stimulus components are

independent. There is strong evidence that neural receptive fields are organized along the ICA

components of natural stimuli [Bell and Sejnowski, 1997, Olshausen and Field, 2004, Smith

and Lewicki, 2006]. This raises the possibility that the approaches proposed here will fair

well when applied to recorded neural responses. Indeed, we found that Icomp-ind ≥ 75% of the

full information value for large neural populations constructed using experimentally recorded

RFs and probed with natural stimuli.

At present, the main limitation for computing the conditional approximations Icomp-cond

and Icomp-iso is not the number of neurons but rather the stimulus dimensionality. For stimulus

distributions where P (s≥d|s<d) can be easily sampled from, such as Gaussian distributions,

we can take advantage of the fourth line of Eq. (3.88) to compute unbiased estimates of

Icomp-cond and Iiso, albeit with possibly high variance. Developing methods that can effi-

ciently approximate these conditional computations represents an important opportunity for

future research.

3.20 Appendix A: Bias of Ĥ(~R)

In this section we give a self-contained proof that Ĥ(~R ) systematically underestimates the

”true” entropy H(~R ). We first assume that P ({~sµ}) =
∏
µ P (~sµ): The ~sµ are drawn independently

from P (~s ), whether P (~s ) is a smooth density on RD or some larger set of samples. We define a an

empirical version of the marginal distribution on P (~r ):
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P̂ (~r |{~sµ}) =
1

M

∑
µ

P (~r |~sµ) (3.113)

The true marginal distribution is the expected value of P̂ (~r |{~sµ}): 〈P̂ (~r ; {~sµ})〉P ({~sµ}) =

P (~r ). The shannon entropy is a concave function of P̂ (~r ; {~sµ}), which can be considered a random

vector in the 2N dimensional probability simplex. Thus, by Jensen’s inequality we have the following:

〈
Ĥ(~R )

〉
P ({~sµ})

≤ H(~R : P = 〈P̂ 〉) ≡ H(~R ) (3.114)

This bias holds even in the case of evaluating Ĥ(~R ) through exact enumeration. We note that we

are able to produce unbiased estimates of Ĥ(~R ) because we have full access to P (~r |~sµ): We can

evaluate P (~r |~sµ) explicitly and deterministically, and thus F̂ (~r ) as well (up to factors of numerical

precision). If we were always constrained to drawing samples from P (~r |~sµ), then we would once

again be limited to making biased estimates of Ĥ(~R ) [Paninski, 2003].

3.21 Appendix B: On the asymptotic tightness of Iiso(~S, ~T )

Consider a large population (N � 1) where the distribution of ~w and α is such that A(~s ) =

A(|~s |) (in some sense to be made more precise later). Consider the likelihood ratio in the definition

of (3.93):

P (t≥d|sd, s<d)
P (t≥d|s<d)

=
〈exp(sdtd + s>d · t>d −A(~s ))〉s>d|s≤d
〈exp(sdtd + s>d · t>d −A(~s ))〉s≥d|s<d

=
〈exp(sdtd + s>d · t>d −A(|~s|))〉s>d|s≤d
〈exp(sdtd + s>d · t>d −A(|~s|))〉s≥d|s<d

(3.115)
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Additionally we consider a stimulus distribution that is similarly isotropic so that the conditional

distribution P (s>d|s≤d) can be written in a convenient factored form:

P (~s ) = P (|~s |) = P

(√
s2
<d + s2

d + s2
>d

)

P (s>d|s≤d) =
P (~s )

P (s≤d)
=
P
(√

s2
<d + s2

d + s2
>d

)
P (s≤d)

We will show that in this situation, we can replace T≥d in (3.93) with the variable that is the

concatenation of Td and |T>d| without loss of information:

I(Sd, T≥d|s<d) ≈ I(Sd, {Td, |T>d|} |s<d) (3.116)

To show this using the Fisher-Neyman factorization theorem, it suffices to show that the numerator

and denominator in (3.115) can be factored as follows:

〈exp(sdtd + s>d · t>d −A(|~s |))〉s>d|s≤d = g1(s<d, sd, td, |t>d|)g2(t>d)

〈exp(sdtd + s>d · t>d −A(|~s |))〉s≥d|s<d = f1(s<d, td, |t>d|)f2(t>d) (3.117)

With the requirement that f2(t>d) = g2(t>d), so that dependence on t>d cancels out in (3.115). We

note that the first line of (3.117) implies the second so we examine that term in more detail.

〈exp(sdtd + s>d · t>d −A(|~s |))〉s>d|s≤d = exp(sdtd)

∫
exp

(
s>d · t>d −A

(√
s2
<d + s2

d + s2
>d

))
× P (s>d|s≤d)ds>d

=
exp(sdtd)

P (s≤d)

∫
exp

(
s>d · t>d −A

(√
s2
<d + s2

d + s2
>d

))
× P

(√
s2
<d + s2

d + s2
>d

)
ds>d (3.118)
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We note that s>d is a K = D − d dimensional vector. We assume that d < D − 1, so that K > 1,

otherwise no further reduction of (3.118) is possible. We convert the integral over RK in (3.118)

into spherical coordinates and break it into three parts: Integration over ρ ∈ [0,∞) where |s>d| = ρ;

integration over θ ∈ [0, π] where s>d · t>d = ρ|t>d| cos(θ), and ϕ ∈ ΩK−1 is the set of all directions

in RK with constant θ. The integrand of (3.118) doesn’t depend on ϕ so we can integrate over it

automatically, yielding a constant BK that is a function only of K. We can now restate (3.118) in

these coordinates:

. . . =
BK exp(sdtd)

P (s≤d)

∫ ∞
0

∫ π

0
dρdθρK−1 sinK−2(θ)P

(√
s2
<d + s2

d + ρ2

)
× exp

(
ρ|t>d| cos(θ)−A

(√
s2
<d + s2

d + ρ2

))
=

BK exp(sdtd)

P (s≤d)

∫ ∞
0

dρρK−1P

(√
s2
<d + s2

d + ρ2

)
× exp

(
−A

(√
s2
<d + s2

d + ρ2

))∫ π

0
dθ sinK−2(θ) exp (ρ|t>d| cos(θ)) (3.119)

We next evaluate the integral over θ in (3.119).

∫ π

0
dθ sinK−2(θ) exp(ρ|t>d| cos(θ)) =

√
π

Γ
(
K
2 −

1
2

)
Γ
(
K
2

) 0F1

(
K

2
,
ρ2|t>d|2

4

)
≡ FK(ρ|t>d|) (3.120)

Where Γ(x) is the Gamma function, and 0F1(a, z) is the confluent hypergeometric limit function.

We have our final expression for the first term in (3.117):

. . . =
BK exp(sdtd)

P (s≤d)

∫ ∞
0

dρρK−1P

(√
s2
<d + s2

d + ρ2

)
exp

(
−A

(√
s2
<d + s2

d + ρ2

))
FK(ρ|t>d|)

=
BK exp(sdtd)

P (s≤d)
g(s<d, sd, |t>d|) (3.121)

By setting g1 in (3.117) equal (3.121), and letting g2 = f2 = 1, we have established (3.116).
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3.21.1 Approximating A(~s ) for Gaussian P (~w )

In the previous section we assumed that the distribution P (~w ) and P (α) are such that

A(~s ) = A(|~s |). In the special case when N � 1, P (α) = δ(α), and ~w are Gaussianly distributed

we can approximate A(~s ) in a semi-closed form. Let P (~w ) be a zero-mean Gaussian with with

positive-definite covariance matrix C:

A(~s ) = N

∫
d~w

exp
(
−1

2 ~w
TC−1 ~w

)√
det(2πC)

log(2 cosh(~w · ~s ))

= N

∫
dx

exp
(
−x2
2σ2
x

)
√

2πσ2
x

log(2 cosh(x)) (3.122)

σx =
√
~sTC~s (3.123)

Where we have taken advantage of the fact that ~w · ~s is a scalar gaussian variable with standard

deviation that depends on ~s and C. We next take an infinite series expansion of log(2 cosh(x)).

log(2 cosh(x)) = |x|+ log (1 + exp(−2|x|)) = |x|+
∞∑
m=1

(−1)m+1

m
exp(−2m|x|) (3.124)

As an aside, the first equality in (3.124) is a useful and numerically stable expression for A(x). The

”softplus” function l(y) = log(1 + exp(y)) is implemented in many scientific computing packages,

and using this alternate form for A(x) sidesteps computing the hyperbolic cosine. We next take the

appropriate Gaussian average of each term in (3.124):

1√
2πσ2

x

∫ ∞
−∞

dx exp

(
−x2

2σ2
x

)
|x| =

√
2

π
σx (3.125)

1√
2πσ2

x

∫ ∞
−∞

dx exp

(
−x2

2σ2
x

− 2m|x|
)

= erfcx(
√

2mσx) (3.126)
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Where erfcx(y) is the scaled complementary error function. Thus we have our final form for A(~s ):

A(~s ) = N

√
2

π
σx +N

∞∑
m=1

(−1)m+1

m
erfcx(

√
2mσx) (3.127)

We note that erfcx(y) monotonically decreases to zero, so for large values of
√
~sTC~s, A(~s ) is well

approximated by the first term in (3.127). Regardless we see that A(~s ) depends on ~s only through

√
~sTC~s:

A(~s ) = A
(√

~sTC~s
)

= A (|U~s |) (3.128)

Where U = C
1
2 is the cholesky decomposition of C.

3.21.2 Generalizing Iiso(~S, ~T ) for matched anisotropy

In this section we will show that a generalized form of Iiso(~S, ~T ) will also asymptotically

converge to Ivector(~S, ~T ) when both P (~s ) and A(~s ) obey a certain form of ”matched” anisotropy.

Specifically we assume that P (~s ) and A(~s ) depend on on ~s through a quadratic function of ~s with

positive-definite kernel C.

P (~s ) = P
(√

~sTC~s
)

= P (|U~s |) (3.129)

A(~s ) = A
(√

~sTC~s
)

= A (|U~s |) (3.130)

Where, as in Section 3.21.1, U = C
1
2 is the cholesky decomposition of C. Let us transformed

versions of ~S and ~T :

S̃ = U~S (3.131)

T̃ = U−T ~T (3.132)
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Where U−T is the transpose of the inverse of U, which is well defined since C was positive definite.

We note that t̃ · s̃ = ~t ·~s and P (t̃|s̃) can once again be written as an exponential family in canonical

form:

P (t̃|s̃) = exp(s̃ · t̃−A(s̃))h(t̃) (3.133)

As the mappings from ~S to S̃ and ~T to T̃ are diffeomorphisms, we have that Ivector(~S, ~T ) =

Ivector(S̃, T̃ ). Furthermore, equation (3.133) implies that an analogous form of equation (3.94) holds

for Ivector(S̃, T̃ ):

I(S̃d, T̃ |S̃<d) = I(S̃d, T̃≥d|S̃<d) (3.134)

Additionally, A(s̃) = A(|s̃|) and P (s̃) = P (|s̃|). Thus, we may reuse the derivation of section 3.116

to derive the following analogy of equation (3.116):

I(S̃d, T̃≥d|s̃<d) ≈ I
(
S̃d,
{
T̃d, |T̃>d|

} ∣∣∣∣s̃<d) (3.135)

Therefore Iiso(S̃, T̃ ) is asymptotically equal to Ivector(~S, ~T ):

Iiso(S̃, T̃ ) =
∑
d

I

(
S̃d,
{
T̃d, |T̃>d|

} ∣∣∣∣S̃<d) ≈ Ivector(~S, ~T ) (3.136)

We note that an example of such a matched isotropy situation would be where both the stimuli and

receptive fields (for a large population) are distributed according to a gaussian distribution with

covariance matrix C (c.f. section 3.21.1).
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3.22 Appendix C: Independent Sub-populations

In this section we present an example where one of our proposed approximations, Icomp-ind(~S, ~T )

in this case, is equal to Ivector(~S, ~T ). Let (ê′1, ..., ê
′
D) be an orthonormal basis for RD. Suppose that

the distribution of ~s and ~w are such that both P (~s ) and A(~s ) factor when expressed in this basis

(s′k = ~s · ê′k):

Similarly defining t′k = ~t·ê′k we have that ~t·~s = ~t′ ·~s′. Because mutual information is invariant

under bijective transformations of the variables (e.g. a change of basis) [Cover and Thomas, 2012]

we have that Ivector(~S, ~T ) = I(~S′, ~T ′). It is easy to show that P (~t′|~s′) can be written as follows:

P (~t′|~s′) = h(~t′)
∏
k

exp(s′kt
′
k −A(s′k)) (3.137)

Eq (3.137) implies that the log-likelihood ratio of P (~t′|~s′) to P (~t′) decomposes across s′k:

log

(
P (~t′|~s′)
P (~t′)

)
=
∑
k

log

(
P (t′k|s′k)
P (t′k)

)
(3.138)

Thus we have the following reduction of Ivector(~S, ~T ):

Ivector(~S, ~T ) = Ivector(~S
′, ~T ′) =

∑
k

I(S′k, T
′
k) = Icomp-ind(~S′, ~T ′) (3.139)

We note that (3.99) includes the case where for some k, ~wn · ê′k = 0 ∀n. In such a case A(s′k) =

A(0) = log(2), t′k = 0 with probability one, and I(S′k, T
′
k) = 0. Thus, in the case of independent

subpopulations, Ivector(~S, ~T ) can be reduced to computing Icomp-ind(~S, ~T ) following a change of

basis.
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3.23 Appendix D: Relationship between Ik-w(~R, ~S ) and

IFisher(~R, ~S )

In this appendix we relate Ik-w(~R, ~S ) to the Fisher Information based approximation of

[Brunel and Nadal, 1998]:

IFisher(~R, ~S ) = H(~S ) +
1

2

∫
d~sP (~s ) log

(
|J(~s )|
(2πe)D

)
(3.140)

Where J(~s ) is the Fisher Information Matrix of P (~r |~s ):

Jab(~s ) =

〈
∂2

∂a∂b
logP (~r |~s )

〉
P (~r |~s )

(3.141)

We begin by considering the inner expectation over ~s ′ in Ik-w(~R, ~S ):

L(~s ) =

∫
d~s ′P (~s ′) exp

(
−DKL(P (~r |~s )||P (~r |~s ′)

)
(3.142)

We next assume that the activation function fn(~s ) is affine (e.g. (3.81)), and thus in canonical form.

We also assume that, P (~r |~s ) is identifiable:

DKL(P (~r |~s )||P (~r |~s ′) = 0⇔ ~s = ~s ′ (3.143)

For (3.81) a necessary and sufficient condition for identifiability is that the matrix W has full rank,

a reasonable assumption when N � D. We utilize the following properties of exponential families

in canonical form:
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1. ∂2

∂ ′a∂
′
b
DKL(P (~r |~s )||P (~r |~s ′) = ∂2

∂ ′a∂
′
b
A(~s ′) = J(~s ′).

2. A(~s ′) is convex and J(~s ′) is positive semi-definite. When P (~r |~s ) is identifiable replace A(~s ′)

becomes strictly convex, J(~s ′) positive definite, and DKL(P (~r |~s )||P (~r |~s ′) has a global mini-

mum with respect to ~s ′ of 0 at ~s ′ = ~s.

In the limit N � D we approximate L(~s ) using Laplace’s Method [Bender and Orszag, 1999],

expanding around ~s ′ = ~s:

L(~s ) ≈ P (~s )

√
(2π)D

|J(~s )|
(3.144)

Plugging (3.144) into the definition of Ik-w(~R, ~S ) we have the following asymptotic expression for

Ik-w(~R, ~S ):

Ik-w(~R, ~S ) ≈ H(~s ) +
1

2

∫
d~sP (~s ) log

(
|J(~s )|
(2π)D

)
= IFisher(~R, ~S )− D

2
(3.145)

For stimulus distributions where the entropy H(~S ) is known a priori, such as the gaussian distribu-

tions in sections 3.18.1 and 3.18.2, IFisher(~R, ~S ) can be computed in O(M) time. If not, then H(~S )

must be estimated, a challenging task in high dimensions. In figure 3.17, we replot the results of

sections 3.18.1 with the inclusion of IFisher(~R, ~S ). We see that IFisher(~R, ~S ) is a very loose upper

bound of I(~R, ~S ) and of Ik-w(~R, ~S ), indicating that the convergence of Laplace’s Method may be

very slow in this situation.
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Figure 3.17: Information curves for the population of section 3.18.1 compared
to Fisher approximation. Lines and errorbars are mean and standard deviation over
ten repeats of the estimator. Î(~R, ~S ) (solid black line), Ik-w(~R, ~S ) (dashed black line),

Ivector(~S, ~T ) (solid yellow line), Ifisher(~R, ~S ) (dotted black line), Icomp-cond(~S, ~T ) (solid red

line), Icomp-ind(~S, ~T ) (solid blue line), Iiso(~S, ~T ) (solid green line)
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3.24 Appendix E: Extension to polynomial activation

functions

In section 3.17.1 we assumed that the activation functions were affine functions of the stim-

ulus vector ~s. In this appendix we will show how to generalize some of the results of section 3.17.1

to polynomial activation functions. For clarity of exposition we will demonstrate this generalization

for quadratic functions as the procedure for higher order polynomials follows quickly. To begin, we

add a quadratic term to Eq (3.80):

fn(~s ) = ~sTγn~s+ ~wn · ~s− αn (3.146)

γn ∈ RD×D is a symmetric D × D matrix representing the quadratic kernel of the nth neuron’s

activation function. We note that ~sTγn~s = ~s~sT ◦ γn where A ◦B is the hadamard product between

equally shaped matrices A and B and ~s~sT ∈ RD×D is the outer product of ~s with itself. We define

a vector embedding of ~s into RD+D2
, ~ψ(~s ):

ψ(~s )d =


sd if d ≤ D

sa ∗ sb if d > D

Where a = d mod D and b = bd/Dc are index mappings that map a D ×D matrix into a

vector of length D2. We define a similar vector embedding of ~wn and γn, ~τn(~wn, γn):

τn(~wn, γn)d =


wn,d if d ≤ D

γn,ab if d > D
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For the sake of brevity we henceforth omit the dependence of ~τn on ~wn and γn. By construc-

tion we have the following equivalence:

~sTγn~s+ ~wn · ~s = ~τn · ~ψ(~s ) (3.147)

If all neurons have activation functions of the form in (3.146) then P (~r |~s ) may once again be written

as an exponential family

P (~r |~s ) = h(~r ) exp(~t quad(~r ) · ~ψ(~s )−A(~s ))

A(~s ) =
∑
n

log(2 cosh(~τn · ~ψ(~s )− αn))

~t quad(~r ) =
∑
n

~τnrn (3.148)

As ~t quad(~r ) ∈ RD+D2
is the sufficient statistic for this family, and ~ψ(~s ) is the natural parameter.

As before, I(~R, ~S ) = I(~T quad, ~S ). However, we note that P (~r |~S ) can be written entirely in terms

of ~ψ. Additionally, we note that the support of ~ψ lies on a D-dimensional manifold in RD+D2
and

~s maps injectively into this manifold. Thus I(~T quad, ~S ) = I(~T quad, ~Ψ ).

We note several properties of I(~T quad, ~Ψ ). First, we can in principle expand I(~T quad, ~Ψ )

like Eq. (3.87):

I(~T quad, ~Ψ ) =
d=D+D2∑
d=1

I(~T quad,Ψd|Ψ<d) (3.149)

Secondly, the same reduction as Eq. (3.94) holds for I(~T quad,Ψd|Ψ<d):

I(~T quad,Ψd|Ψ<d) = I(T quad
≥d ,Ψd|Ψ<d) (3.150)

Most notably however, is that I(~T quad,Ψd|Ψ<d) = I(T quad
≥d ,Ψd|Ψ<d) = 0 for d > D. This holds
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because ψd = g(ψ≤D) for d > D, where g(ψ≤D) is just the product of the two relevant components

of ψ≤D. Because of this functional dependence we can just apply the generalization of Eq. (3.90).

Therefore the expansion of I(~T quad, ~Ψ ) can be truncated after D terms.

I(~T quad, ~Ψ ) =
d=D∑
d=1

I(T 2
≥d,Ψd|Ψ<d) =

d=D∑
d=1

I(T quad
≥d , Sd|S<d) (3.151)

In fact, we can make an even stronger reduction by noting that conditioning on components of

~S = ψ≤D effectively also conditions on elements of ψ>D. For clarity of exposition we break down

~T quad into vector and matrix valued components:

~T quad ≡
{
T≤D, T

≤D
≤D

}
T quad
≤D → T≤D ∈ RD

T quad
>D → T≤D≤D ∈ R

D×D

We note that conditioning on Sd conditions on the components of ~ψ corresponding to Td and T dd .

Additionally conditioning on S<d conditions on the components of T<d and on the components of

T d2d1 for all indices d1 and d2 such that 1 ≤ d1, d2 < d. Thus Eq. (3.151) can be further generalized:

I(~T quad, ~S ) =

d=D∑
d=1

I

({
T≥d, T

≥d
≥d

}
, Sd

∣∣∣∣S<d) (3.152)

The dth term in Eq (3.151) has D2 +D+ 1 degrees of freedom while the dth term in Eq (3.152) has

D2 + D + 1 − (d − 1)2 degrees of freedom. The above procedure can be generalized to polynomial

activation functions of arbitrarily high but finite order, though the dimensionality of the sufficient

statistic and natural parameter grow exponentially with the order. However, Eq. (3.152) holds for

any order of polynomial, so that one one needs only compute the first D terms of the expansion of
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the mutual information between the sufficient statistic and natural parameter.
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Chapter 4: Conclusion

In this thesis we have taken a broad look at issues in identifying optimal representations of

neural population responses from an information theoretic point of view. While there may be many

representations that preserve all information in the full population response, a good representation

should also be biologically plausible and easily decodable. This constraint has also been highlighted

in recent work on representation learning in deep neural networks [Amjad and Geiger, 2018]. The

success of finding an optimal representation is dependent upon the ability the evaluate a represen-

tation’s performance, e.g. the mutual information. Thus, in addition to studying the properties of

our proposed representation, we also examined the task of estimating the amount of information

transmitted by such a population.

In chapter 2 we showed that a broad class of models of spiking neural populations yield a

sufficient statistic with dimensionality independent of the population size. This result hold true

even in the case of certain types of intrinsic correlation between neurons. The key requirement

underlying this result is that the neural population follows a maximum entropy distribution, a

common assumption in many analyses of neural data [Granot-Atedgi et al., 2013]. Additionally

we showed that, under certain conditions on the receptive field distribution, the sufficient statistic

itself can serve as a decoder of the stimulus subspace, meriting its use as a representation of the

population code compared to other information preserving transformations.
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There are several natural directions of further inquiry for this work. The decoder we proposed

in chapter 2 produces a point estimate, that is it returns a single value for any given value of the

sufficient statistic. An increasingly popular framework for understanding neural codes is probabilistic

inference, where the neural response is used to infer properties of the posterior distribution over the

stimulus, either implicitly or explicitly. Knowledge of the posterior distribution can be used to derive

various point estimates and quantify uncertainty in the stimulus estimate, and there is evidence that

uncertainty quantification occurs during decision making (citation here). One popular approach to

probabilistic inference includes treating the posterior density or, equivalently, the likelihood profile

as a linear combination of basis functions with weights determined by firing rates of individual

neurons [Jazayeri and Movshon, 2006]. Exponential families are well suited for this approach. An

alternative approach, the sampling hypothesis, focuses on transforming samples from the population

response into samples from the posterior. We believe that variations on the decoder presented in

chapter 2 could be used to approximate such a response-posterior transformation.

In chapter 3 we explored approaches to estimating the information transmitted by models

in the same class as those considered in the previous chapter. We showed that decompositions

based upon the chain rule for mutual information combine synergistically with the properties of

exponential families to yield efficient estimators and lower bounds of the generally intractable mutual

information. In particular, decompositions over the corresponding coordinates of the stimulus and

sufficient statistic provide a tractable lower bound that compares favorably to other non-parametric

approaches to estimating the mutual information.

While we chose to approximate the decomposition in terms of pairs of scalar variables for

computational expediency, there are other motivations for studying decompositions of the mutual

information between two multicomponent variables. The partial information decomposition is an

approach to characterizing the semantic content of transmitted information by decomposing the
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mutual information between the full stimulus and response into a series of terms corresponding to

the mutual information between different subsets of the stimulus and response [Kay et al., 2017].

The PID also suffers from the same tractability issues as the computation of the full information,

but we conjecture that the aforementioned properties of exponential families can be used to derive

accurate and tractable approximations of the PID. Additionally, though we found the ordering

heuristic presented in chapter 3 to perform well for low dimensions, there may be more principally

motivated orderings based upon approximating P (~t|~s) by a graphical model of bounded degree

[Chow and Liu, 1968].
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