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Research Article
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Soil biogeochemical cycles and their interconnections play a critical role in regulating functions and services of environmental
systems. However, the coupling of soil biogeochemical processes with their mediating microbes remains poorly understood.
Here, we identified key microbial taxa regulating soil biogeochemical processes by exploring biomarker genes and taxa of
contigs assembled from metagenomes of forest soils collected along a latitudinal transect (18° N to 48° N) in eastern China.
Among environmental and soil factors, soil pH was a sensitive indicator for functional gene composition and diversity. A
function-taxon bipartite network inferred from metagenomic contigs identified the microbial taxa regulating coupled
biogeochemical cycles between carbon and phosphorus, nitrogen and sulfur, and nitrogen and iron. Our results provide novel
evidence for the coupling of soil biogeochemical cycles, identify key regulating microbes, and demonstrate the efficacy of a new
approach to investigate the processes and microbial taxa regulating soil ecosystem functions.

1. Introduction

Elemental fluxes in soils are largely driven by microbially
catalyzed, but thermodynamically constrained, redox reac-
tions. Soil biogeochemical cycles are the foundation of
ecosystem function and affect nutrient and energy flows
that regulate productivity within both terrestrial and
aquatic ecosystems [1]. Given the central role of soil
microbial communities in regulating global biogeochemical
processes, managing soil communities provides a powerful
tool to combat several increasingly important global chal-
lenges, such as feeding the world’s increasing population,

soil pollution, biodiversity loss, and climate change [2].
Despite the critical importance of microorganisms in regu-
lating soil biogeochemical processes, fundamental ques-
tions concerning the linkage between specific microbial
taxa and biogeochemical functions remain poorly under-
stood, thereby limiting scientific advances. A major chal-
lenge is rooted in the fact that the vast majority of soil
microbial taxa remain uncharacterized, hindering our
efforts to untangle their unresolved roles in biogeochemi-
cal functions [3]. Given that different microorganisms per-
form a myriad of roles in biogeochemical processes,
linking biogeochemical functions to specific soil microbial
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taxa is critical for improving management and conserva-
tion policies to maintain key ecosystem functions.

From the simplest perspective, microbial biogeochemical
cycling is composed of redox half-cell reactions. The sub-
strates for coupled half-cells in biologically driven redox
reactions are sourced from the environment directly or as
waste products of microbial metabolism, thereby construct-
ing linked metabolic systems driving biogeochemical cycles
[4, 5]. While biogeochemical cycles logically interact with
each other, they are generally studied in isolation. Theoretical
coupling among soil biogeochemical cycles can be inferred
from thermodynamic modeling [6], as well as some field evi-
dence. For example, methane oxidation is linked with N
cycling [7], C utilization rates vary with P bioavailability
[8], and ammonia oxidation couples with ferric reduction
or thiosulfate reduction under anaerobic conditions [9, 10].
However, the coupling of some biogeochemical cycles is pre-
dicted to exist only on a thermodynamics basis [6]. More-
over, in all these approaches, there is little information
concerning the specific microbes regulating the coupling of
biogeochemical cycles.

Functional genes that encode enzymes for specific redox
reactions have the potential to reveal the functioning of spe-
cific microbes in various biogeochemical cycles. However,
the coupling of biogeochemical cycles is often spatially or
temporally separated, hindering the efficiency of coupled oxi-
dation/reduction reactions [11]. Hence, microbial taxa have
the potential to greatly enhance the understanding of cou-
pling between biogeochemical cycles when their genomes
contain genes for both components of the coupled cycles.
Despite pioneering conceptual research [12], there is a pau-
city of information concerning the connection of microbial
community composition to biogeochemical functions.
Recent advances in cultivation-independent metagenomic
sequencing provide a powerful new approach to link biogeo-
chemical functioning with their marine microbial drivers
[13], opening opportunities to explore the coupling of soil
biogeochemical processes with their specific microbial taxa.

To examine the coupling of soil biogeochemical func-
tions and their potential microbial drivers, we associated
biomarker genes for soil biogeochemical cycles with their
corresponding microbial taxa by investigating the func-
tional profiles and taxonomy of contigs assembled from
the metagenomes of 45 forest soils from forests along a
4000 km latitudinal transect (18 to 48° N) in eastern China
(Figure S1). This dataset contains soils spanning five Köp-
pen climate classifications (Aw, Cfa, Cwa, Dwa, and Dwb)
ranging from tropical to warm summer continental. We
hypothesize that certain biogeochemical cycle couplings
are driven by specific microbial taxa and that these taxa
are affected by soil properties. Our results provide critical
insights into the complex interconnection among biogeo-
chemical cycles and their microbial drivers in forest soil
ecosystems.

2. Results

2.1. Functional Gene Composition and Diversity. Multiple
regressions on the distance matrix analysis showed that the

variation of soil metagenomes along the latitudinal transect
was mainly determined by latitude, humic acid, soil pH,
mean annual temperature, and dissolved Al and Fe
(Figure 1(a)). The impact of distance on soil metagenomes
was less than that of environmental variables (Figure 1(b)).
Latitude significantly correlated with most functional genes
for biogeochemical processes, potentially via a linkage to soil
pH (Figures 1(c) and 1(d)). As the primary agent generating
the environmental gradient (Figure S2), latitude correlated
negatively with functional gene diversity (richness: r = 0:43,
P = 0:003; H ′ diversity: r = 0:42, P = 0:004) (Figure 1(e));
functional gene composition shifted along the transect
(Figure 1(f)).

2.2. C, N, P, S, and Fe Biogeochemical Cycles. Carbon-cycling
biomarker genes were dominated by aerobic CO oxidation
(coxL), anaerobic fermentation (LDH), and anaerobic C fixa-
tion (KorB) (15.7, 6.7, and 6.3% of all contigs, respectively;
Figure 2(a)). Latitude correlated positively with anaerobic C
fixation (P = 0:01) and negatively with aerobic C fixation
(PRK) (P = 0:01; Figure 2(b)). Four of the seven biomarker
genes had associated contigs assigned to known genera
(Figure 2(c)). Of the biomarker genes with identifiable taxa
(Figure 2(d)), CO oxidation was associated with the broadest
range of taxa (Figure 2(d)).

Nitrogen-cycling biomarker genes were dominated by
N assimilation (glnA) (20% of all contigs; Figure 3(a)).
Latitude correlated positively with anammox (P < 0:05),
N mineralization (P < 0:001), denitrification (norB)
(P < 0:05), and N assimilation (P = 0:01), but negatively
with nitrate reduction (modA) (P < 0:01; Figure 3(b)).
Seven of the nine biomarker genes had associated contigs
assigned to known genera; however, both anammox (ccoN)
and nitrite oxidation (narG) had less than a third of their
contigs assigned (Figure 2(c)). Of the biomarker genes
with identifiable taxa (Figure 3(d)), Actinobacteria were
the most frequently assigned taxa.

Phosphorus-cycling biomarker genes were dominated by
substrate phosphorylation (Ptsl) and oxidative phosphoryla-
tion (ppk) (10.9 and 6.2% of all contigs, respectively; Figure
S3a) but were not correlated with latitude (P > 0:05, Figure
S3b). All biomarker genes had at least 23% of contigs assigned
to known genera (Figure S3c). Actinobacteria (10 genera) and
Proteobacteria (9 genera) played a dominant role in oxidative
phosphorylation, whereas Firmicutes (5 genera) contributed
to substrate phosphorylation (Figure S3d).

Sulfur-cycling biomarker genes were dominated by dis-
similatory sulfate reduction (Fer4) (6.3% of all contigs;
Figure S4a). Latitude correlated positively with S
mineralization (sseA) (P = 0:03) and negatively with
polysulfide reduction (NrfD) (P = 0:03; Figure S4b). Four of
the five biomarker genes had contigs assigned to known
taxa (Figure S4c). The biomarker genes with a high
proportion of assigned taxa were associated with a wide
variety of taxa (Figure S4d), namely, Proteobacteria (26
genera) and Actinobacteria (22 genera).

Iron-cycling biomarker genes were dominated by ferrous
oxidation (Ferritin) (4.7% of all contigs; Figure S5a). Latitude
correlated negatively with both biomarker genes for Fe
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cycling (P < 0:02; Figure S5b); the majority of taxa associated
with these genes were assigned classifications with the bulk of
organisms belonging to Proteobacteria (Figure S5c, d).

2.3. Linking Biogeochemical Processes to Microbial Taxa
Using a Function-Taxa Bipartite Network. The function-taxa
bipartite network between genes linked to biogeochemical
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Figure 1: Environmental drivers of soil metagenomes. (a) The impact of environmental factors. HA: humic acid; FA: fulvic acid; Ald:
dithionite extractable Al; MAT: mean annual temperature; Fed: dithionite extractable Fe; Feo: amorphous sesquioxide Fe; MAP: mean
annual precipitation; TOC: total organic carbon; DOC: dissolved organic carbon; AK: available K; TDN: total dissolved N; Alo:
amorphous sesquioxide Al. (b) Distance-decay of Bray-Curtis similarity of metagenomes. (c) Structure equation models (SEM) between
soil metagenomes (MG) and major environmental/soil drivers, including LAT, MAT, HA, soil pH, Ald, and Fed. (d) Spearman’s
correlation between biomarker genes of biogeochemical process and environmental/soil factors. (e) Correlation of H ′ diversity and
richness of functional genes in forest soil metagenomes. (f) Principal coordinate analysis (PCoA) of functional genes in forest soil
metagenomes; point color represents latitude of sampling sites.
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processes and their associated taxa formed eight clusters
(Figure 4). Biogeochemical processes are potentially driven
by the taxa present within the same cluster. Therefore, taxa
within a cluster are potentially regulating both biogeochemical
processes and the coupling processes. Most clusters contained
processes from at least two biogeochemical cycles; the maxi-
mum number in a cluster was four (C, N, P, and S). There
was distinct clustering for processes requiring similar redox
states.

Carbon and P cycling presented together in three clusters
(Figure 4). The first cluster, between genes linked to aerobic
methane oxidation and acid phosphatase cycles, was driven
by Proteobacteria (Anaeromyxobacter and Bradyrhizobium)

and Actinobacteria (Mycobacterium and Nocardia). The
second cluster, between genes linked to aerobic C fixation
and phytase, was driven by Firmicutes (Streptococcus, Lac-
tococcus, and Enterococcus). The third cluster, between
genes linked to CO oxidation and substrate phosphoryla-
tion, was driven by Actinobacteria (Amycolatopsis and
Conexibacter) and Proteobacteria (Azospirillum and
Rhodopseudomonas).

Nitrogen and S cycling occurred together in two clus-
ters (Figure 4). The first association, between genes linked
to anammox and dissimilatory sulfate reduction, was
driven by Actinobacteria (Thermobispora, Pseudonocardia,
Brachybacterium, and Frankia), whereas the second
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association, between genes linked to N assimilation and
assimilatory sulfate reduction, was driven by Firmicutes
(Bacillus). Finally, genes linked to nitrification, denitrifica-
tion, and ferric reduction presented together in one clus-
ter; this relationship was driven by Proteobacteria
(Ralstonia, Burkholderia, and Brevundimonas).

3. Discussion

Our results provide novel empirical evidence that there is
coupling between the biogeochemical cycles that play signif-

icant roles in regulating soil microbial functions in forest eco-
systems. The results support the hypothesis that certain
biogeochemical cycle couplings are associated with specific
microbial taxa. Identified soil microbial functions are consis-
tent with typical latitudinal biodiversity gradients and indi-
cate that these gradients are regulated by environmental
variables such as precipitation and soil pH [14]. Of the mea-
sured environmental variables, soil pH, a well-known predic-
tor of species richness in soil bacterial and fungal
communities [15, 16], was a significant regulator of genes
associated with key biogeochemical cycles.
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Soil pH is an edaphic variable sensitive to latitude due to
the influence of rainfall and temperature on weathering
(Figure S2) as soils in high-rainfall regions tend to have
greater levels of acidity, leaching of base cations and
humification of organic matter [17]. This relationship is
clearly evident in eastern China where pH increases by
~5 units with latitude [18]. In addition to mediating soil
community composition [19], soil pH is known to influence
specific microbial-mediated biogeochemical processes, such
as microbial denitrification and S mineralization. Consistent
with our results, denitrification rates were shown to decrease
with decreasing pH [18], whereas higher soil pH increases S
mineralization rates [20]. In addition, our results indicate
that polysulfide reduction was negatively correlated with
latitude; polysulfide reduction is mainly driven by
Clostridium [21], which is an acidophilic genus adapted to
the low-pH region of our study. The role of pH in soil

biogeochemical reactions is multifaceted. Bacteria, for
example, are often constrained to relatively tight optimal pH
ranges [19], and the expression of certain genes is similarly
constrained to specific pH ranges [22]. Soil pH affects the
strategies that microbes can use to acquire nutrients and
extremes of pH require microbes to spend additional energy
and resources maintaining their cell’s physicochemical
integrity [23].

Notably, a prevalence of anoxic microenvironments was
inferred by the high proportion of CO oxidation, fermenta-
tion, and anaerobic fixation genes across all sampling sites
even though all soils were considered well drained and oxy-
genated. It is possible that oxic degradation of soil organic
matter under conditions of low gas permeability (e.g., sites
within soil structural units or surrounding recently dead
roots) caused a prevalence of transient anoxic microniches
(hotspots/hot moments) [24]. Although CO is toxic to many
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organisms, numerous cultured and molecular ecological
approaches have revealed an unexpectedly diverse group of
soil bacteria that have the ability to use CO as an energy
source, including members of phyla Proteobacteria and Acti-
nobacteria [25]. The prevalent role of facultative anaerobes is
supported by the similar proportions of oxidative and sub-
strate phosphorylation genes, indicating both anaerobic and
aerobic generation of energy [26]. An abundance of dissimi-
latory S reduction genes also suggests a preponderance of
anoxic soil conditions as dissimilatory sulfate reactions are
typically facilitated by sulfate-reducing microbes in anaero-
bic environments [27].

Nitrogen cycling is well known to be affected by edaphic
properties; N mineralization, anammox, nitrification, and
denitrification marker genes were all significantly correlated
with latitude in our study. Although N mineralization has
previously been negatively associated with latitude [28], we
found that GDH2 increased with latitude. The N assimilation
marker gene similarly increased with latitude. Increased
relative abundance of GDH2 may be associated with
lower-quality organic matter at high latitudes as glutamate
dehydrogenase activity has been shown to decrease as the
C :N ratio increases [29, 30]; increased activation energy
requirements in colder climates may also lead to an
increase in gene expression [31]. Marker genes associated
with anammox similarly increased with latitude; however
this may have been in response to increasing pH and asso-
ciated Fe limitation [32]. The denitrification marker gene
also increased with latitude; however, this is in contrast
with established literature in which denitrification
increases with temperature and therefore tends to decrease
with latitude [33, 34].

This study provides novel evidence that biogeochemical
processes are coupled via associations among individual taxa
possessing multiple functional genes, as observed from the
function-taxa bipartite network. The most frequent potential
association between biogeochemical cycles was between P and
C. Methane oxidation was previously shown to correlate posi-
tively with P concentration in soil/sediment [7] and acid-
phosphatase genes have been shown to be present in all metha-
notrophic bacteria [7]. One of the predicted driver taxa, Bradyr-
hizobium, was reported to enhance acid phosphatase activity in
arbuscular mycorrhizal fungi [35] and has a known association
with methanotrophic bacteria in rice paddy soils [36]. Similarly,
a positive response was previously observed between P concen-
tration and C fixation in seawater [31]. Another predicted
driver, Streptococcus, is associated with phytase production
and mineralization of phosphate [37]. Among the predicted
regulating genera, only Rhodopseudomonas appears to be asso-
ciated with CO and CO2 metabolism [38].

Prominent coupling also appears to occur between N and
S cycling and between N and Fe cycling. Of the relationships
between these biogeochemical cycles, sulfate reduction is
known to couple with anammox when removing N from
wastewater. The predicted microbial drivers Thermobispora,
Pseudonocardia, Brachybacterium, and Frankia have been
implicated in anammox reactions [39], but none of these
bacteria appear to be involved in S cycling. Curiously, Ral-
stonia has been shown to use thiosulfate during anaerobic

ammonia oxidation but was directly associated with ferric
reduction and denitrification in our cooccurrence network
[10]. However, it is possible for one cycle to affect another
cycle simply via its limited availability in soil, as with the
association between assimilatory sulfate reduction and P
nutrition, whereby S deficiency increases the activity of
polyphosphatase in some microorganisms [40]. Of the
drivers predicted to affect coupling between genes involved
in N- and S-cycling processes, Bacillus was associated with
the highest number of pathways. Bacillus affects the
growth of other microbes in culture through assimilatory
sulfate reduction processes [41]. Other genera in the clus-
ter containing Bacillus and Enterobacter are implicated in
dissimilatory S reduction and have the ability to efficiently
reduce nitrate to ammonium [42]. Coupling between ferric
reduction and ammonium oxidation is reported in both
paddy [43] and upland [44] soils, but our predicted micro-
bial drivers have not been reported to drive ferric reduc-
tion process.

This study demonstrates that the potential coupling of
biogeochemical processes with microbial taxa capable of gen-
erating functional genes facilitates multielement transforma-
tions within a wide range of forest soils. However, the
coupling of biogeochemical processes among different taxa,
which is often spatially or temporally separated, cannot be
discovered with this approach. Moreover, unraveling coupled
interactions between biogeochemical processes and the miti-
gating microbial taxa sheds light on elucidating the impor-
tance and role of the unculturable microbial ‘dark matter.’
Furthermore, a significant limitation of this work is that the
metagenomic predicted potential couplings of biogeochemi-
cal processes are not experimentally validated due to a large
proportion of microbial ‘dark matter.’ In addition, while
using marker genes to assess the rate-limiting step of each
process gives us an estimation of community capacity to pro-
cess biogeochemical reactions, it is possible that an analysis
of alternative marker genes would show an alternative
response to edaphic gradients.

While the use of undisturbed sites from a single land use
type provides a more constrained approach for deciphering
the effects of edaphic gradients on soil microbial processes
(as opposed to human-induced effects), we cannot know if
these relationships hold true for other land uses. In addition
to increasing the variety of landscapes sampled, future focus
could employ element probes, such as stable isotope probes,
for validating coupling of biogeochemical processes through
labeling active microbial taxa for different pathways. Addi-
tional work could also involve investigation of soil metagen-
omes from other ecosystems for the comparison of driving
taxa between ecosystems. Overall, this study highlights a
potential avenue to enhance simulation modeling of soil bio-
geochemical processes to inform controls of various soil
functions and potential management of key taxa to achieve
specific soil functions.

4. Materials and Methods

4.1. Experimental Design. To explore potential biogeochemi-
cal couplings from surveying soil metagenomes, we collected
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soil samples from 45 sampling sites in eastern China covering
a latitude of 18° 48′ N to 48° 36′ N (Figure S1, Table S1). To
minimize the anthropological influence on soil microbial
functions, all sites were located within natural forest
reserves. Topsoil samples (0-15 cm; the dominant rooting
zone) were collected from 100m × 100m plots. From each
plot, we collected three analytical sample replicates, each a
composite of five soil cores. The methods for measuring
edaphic variables have been described previously [45]. In
brief, soil pH, soil texture, organic carbon, and available
potassium were determined according to the protocols
outlined by the Agricultural Chemistry Committee of China.
Total nitrogen was determined using a Flash 2000 NC
Analyzer (Thermo Scientific, MA, USA). Sesquioxides (Ald
and Fed) were extracted in the dark with dithionite-citrate
solution buffered with NH4-oxalate (pH3.0; amorphous
sesquioxides) or NaHCO3 (amorphous sesquioxides–
Alo and Feo) and measured using atomic absorption
spectrometry (ContrAA 700, Jena, Germany). The data for
mean annual precipitation and temperature were sourced
from WorldClim (http://worldclim.org).

4.2. Metagenomic Dataset. Details of the metagenomic data
acquisition have been previously described [18]. In brief,
shotgun sequencing of metagenomic DNA produced a total
of ~1.5 billion paired-end reads (read length = 150 bp). The
raw shotgun sequencing reads were preprocessed using
ngsShoRT v2.1 [46], and whole-genome de novo assemblies
for each sample were performed using IDBA-UD; open read
frame prediction and annotation were performed using
Prodigal v2.50 [47]. The resulting protein translations were
assigned by comparisons to Pfam 31.0 using HMMER 3
[48] and KEGG release 84.0 using GhostKOALA [49]. The
number of contigs greater than 500 bp in length was
253,807; they had an N50 of 1409 and a maximum length
of 160699; mean coverage was 12.9 and ranged from 4.7 to
27.4 for individual samples.

4.3. Biogeochemical Functional Gene Analysis. Biogeochemi-
cal functional gene analyses focused on C, N, P, S, and Fe
cycling processes. The genetic potential for C, N, and S
cycling in the soil microbial community was analyzed using
biomarker genes as reported [50] with modifications as fol-
lows. If the biomarker genes reported were not found in all
45 metagenomes annotated using the KEGG database, these
biomarker genes were replaced with equivalent genes anno-
tated using the Pfam database. The following maker genes
were replaced in this manner: methanogenesis biomarker
gene K14084 with PF06253, N2 fixation biomarker gene
K02588 with PF00142, ammonification biomarker gene
K05904 with PF01077, S oxidation biomarker gene K17227
with PF08770, dissimilatory sulfate reduction biomarker
gene K00394 with PF13187, and polysulfide reduction bio-
marker gene K08352 with PF14589.

Marker genes were also selected for P and Fe biogeo-
chemical cycles. We used PF03767 as the biomarker gene
for acid phosphatase, K01077 for alkaline phosphatase,
K01083 for phytase, K00937 for oxidative phosphorylation,
K08483 for substrate phosphorylation, and PF00719 for

polyphosphatase. For the Fe biogeochemical cycle, we used
PF00210 and PF01794 as biomarker genes for ferrous oxi-
dation and ferric reduction as catalyzed by microorganisms,
respectively. Biomarker genes used in this study are com-
piled in Table S2. The proportions of contigs with their
corresponding marker genes for each biogeochemical
pathway are shown in pathway maps (Figures 2 and 3,
S2-S4 inclusive).

4.4. Biomarker Gene Taxonomic Profiles. Contig taxa were
assigned using CLARK [51]. Biomarker gene taxonomic pro-
files were generated from the corresponding biomarker gene
contig taxa. Unassigned taxa indicate that the contigs could
not be assigned to a known taxon using CLARK. Phyloge-
netic trees for taxa involving a biogeochemical cycle were
generated with hieratical phylogenetic relationships from
kingdom to order.

4.5. Function-Taxon Bipartite Network. The function-taxon
bipartite network was constructed from the function-taxon
relationships as assigned above. The network modules were
clustered using the modularity calculation in Gephi with
r = 1 [52]. Module subnetworks were induced between
functional nodes and their connecting taxa.

4.6. Statistical Analysis. All statistical analyses were carried
out using R version 3.5.0 [53]. The impact of environmental
factors on functional gene composition was estimated by
multiple regression on distance matrices by ecodist::MRM
in R [54]. Functional gene diversity was assessed using the
Shannon-Weiner ‘H’ diversity index; gene richness was mea-
sured using the number of genes found in corresponding
samples; trend significance was established by fitting a
generalized linear model with stats::glm in R. Functional
composition dissimilarity was analyzed using Bray-Curtis
dissimilarity and visualized using principle coordinate analy-
sis (PCoA) with the ‘vegan’ package in R [55]. The effect of
latitude on relative gene abundance was established using
stats::glm, as above, for each biogeochemical cycle.
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