
UCSF
UC San Francisco Previously Published Works

Title
Generalizability of SuperAlarm via Cross-Institutional Performance Evaluation

Permalink
https://escholarship.org/uc/item/0m40d4s4

Authors
Xiao, Ran
Do, Duc
Ding, Cheng
et al.

Publication Date
2020

DOI
10.1109/access.2020.3009667

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0m40d4s4
https://escholarship.org/uc/item/0m40d4s4#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Generalizability of SuperAlarm via Cross-Institutional 
Performance Evaluation

Ran Xiao1,2 [Member, IEEE], Duc Do3, Cheng Ding1, Karl Meisel4, Randall Lee4, Xiao Hu1,2 

[Senior Member, IEEE]
1School of Nursing, University of California San Francisco, San Francisco, CA 94143 USA

2School of Nursing, Duke University, Durham, NC 27708 USA

3UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California Los 
Angeles, Los Angeles, CA 90095 USA

4School of Medicine, University of California San Francisco, San Francisco, CA 94143 USA

Abstract

Bedside patient monitors are ubiquitous tools in modern critical care units to provide timely 

patient status. However, current systems suffer from high volume of false alarms leading to alarm 

fatigue, one of top technical hazards in clinical settings. Many studies are racing to develop 

improved algorithms towards precision patient monitoring, while little has been done to investigate 

the aspect of algorithm generalizability across different health institutions. Our group has been 

developing an evolving framework termed SuperAlarm that extracts multivariate patterns in data 

streams (monitor alarms, electronic health records and physiologic waveforms) of modern health 

enterprise to predict patient deterioration and has demonstrated great potential in mitigating alarm 

fatigue. In this study, we further investigate the generalizability of SuperAlarm by designing a 

comprehensive approach to achieve performance comparison in predicting in-hospital code blue 

(CB) events across two health institutions. SuperAlarm model trained with alarm data in one 

institution is tested on both internal and external test sets. Results show comparable performance 

with sensitivity up to 80% within one-hour window of events and over 90% in reduction of false 

alarms in both institutions. Cross-institutional performance agreement can be further improved by 

predicting a more stringent CB subtype (cardiopulmonary arrest), with internal sensitivity lying 

within 95% confident interval of external one up to 8-hour before event onset. The cross-

institutional performance comparison offers first-hand knowledge on both advantages and 

challenges in generalizing a prediction algorithm across different institutions, which hold key 

information to guide the design of model training and deployment strategy.
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I. INTRODUCTION

Bedside patient monitors are essential clinical devices in acute care settings that provide 

timely information about patients’ physiologic condition. However, current patient monitors 

are known to produce excessive alarms with the majority of them either false or non-

actionable [1]-[6]. A variety of factors individually or collectively contribute to the excessive 

false alarms including inappropriate system settings, suboptimal signal quality and 

deficiencies in proprietary algorithms [7]. Another significant contributor to the excessive 

alarms is nuisance alarms. Nuisance alarms are usually non-actionable and triggered by 

transient perturbation in patients’ status crossing the threshold that trigger on/off alarms, but 

do not necessarily carry much information indicative of major health status change [8]-[10]. 

Bedside caregivers can develop alarm fatigue as they are constantly exposed to visual and 

auditory sensory overload from excessive alarms in a typical 8–12 hour shift [11]-[14]. This 

creates an unsafe clinical environment as alarms of impending adverse events might be 

overlooked among false or nuisance ones, resulting in delayed or even missed opportunity 

for timely intervention [15]-[18]. This may also inflate the stress level of patients as these 

alarms direct act at the bedside leading to a decline in the quality of patient care.

A surge in effort is being made towards a more precise patient monitoring solution by 

improving detection algorithms of specific types of alarms aiming to reduce false alarms. 

Many studies direct analyze physiologic signals (electrocardiography (ECG), 

photoplethysmography (PPG), arterial blood pressure waveform, etc.) to improve detection 

accuracy of cardiac arrhythmia alarms in intensive care [19]-[22]. There are also a collection 

of studies using data mining and machine learning techniques to analyze information in 

electronic health record (EHR) systems to derive early warning scores that can provide early 

warning to clinicians about patient deterioration [23]-[26]. Our group has been developing 

an evolving framework, the SuperAlarm, that extracts hidden multivariate patterns in multi-

modality data streams (monitor alarms, electronic health records and physiologic 

waveforms) of modern health enterprise as features to predict a target clinical endpoint [27]-

[30].

In contrast to other methods, SuperAlarm provides a unique strategy that directly acts upon 

monitor alarms while remaining flexible to incorporate other data modalities. A series of 

studies have been conducted that delineate a roadmap for the development of SuperAlarm 

framework through predicting in-hospital code blue events (i.e., cardiopulmonary arrest 

(CPA), acute respiratory compromise (ARC) and other medical emergencies (Others)). First, 

we extracted frequent co-occurring patterns (termed SuperAlarm patterns) based on the 

Apriori algorithm[31] using monitor alarms preceding code blue events[29]. Next we 

focused on expanding the SuperAlarm framework by incorporating other data modalities 

that are readily available in a connected healthcare enterprise to further improve 

performance [30]. The next two studies further extended SuperAlarm framework by 

integrating cumulative effect and temporality in the sequences of SuperAlarm patterns into 

model training[27], [28].

The present study aims to further investigate the SuperAlarm framework with regard to its 

generalizability. On the one hand, well generalized performance of SuperAlarm model 
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indicates potential knowledge transfer (such as pretrained model parameters) from one 

institution to another without the need for model training from scratch. On the other hand, 

for rare clinical end points, well generalized performance of SuperAlarm model opens up 

the potential of enlarging training samples by combining data from multiple institutions 

towards training more complex and precise models. The present study adopted consistent 

framework as our previous studies to derive SuperAlarm patterns with integration of their 

temporal relationships as features to train the final prediction model [28], [30], while 

offering novel insights into its generalizability by laying out a comprehensive approach to 

assess the internal and external performance in predicting in-hospital code blue events. To 

this end, a data preprocessing pipeline was designed to harmonize monitor alarm data from 

two health institutions, and the predictive model was trained solely with data from one 

institution so that its cross-institutional performance could be assessed. The obtained results 

shed light on the generalizability of SuperAlarm, as well as the advantages and challenges in 

generalizing SuperAlarm across different institutions.

II. METHODS

A. DATA DESCRIPTION

Alarm data from bedside patient monitors located in various intensive care units (ICUs, 

including neurosurgical, cardiothoracic, coronary care, medical units, etc.) and other critical 

care units (cardiac observation, hematology and stem cell transplant, medical-surgical, 

neuroscience and stroke units, etc.) were obtained from two healthcare institutions, 

University of California San Francisco (UCSF) Helen Diller Medical Center and University 

of California Los Angeles (UCLA) Ronald Regan Medical Center. Bedside patient monitors 

from which alarm data was extracted were from the same vendor (GE Healthcare, 

Milwaukee, WI) in both institutions. Hospital encounters with documented code blue events 

were selected as cases. For patients with multiple code blue events, only encounters with the 

first code blue event were selected for analysis. Controls consisted of hospital encounters of 

matching time period as those in case condition but without documented code blue events 

and unplanned ICU transfer. The control encounters were then subject to the following 

screening criteria: (1) match the same all patient refined diagnosis-related group (APR-

DRG) or Medicare DRG; (2) the same gender; (3) within ±5 years of age; (4) in the same 

medical units as case encounters. There were 412 code blue encounters (2,099,026 alarms) 

and 4020 control encounters (12,696,925 alarms) between 2013 and 2018 selected from 

UCSF with mean age 60.8 ± 16.1 and 58.9% male. There were 254 code blue encounters 

(662,576 alarms) and 2213 matched control (5,363,019 alarms) encounters between 2010 

and 2012 selected from UCLA with mean age 61.3 ± 17.9 and 54.2% male. The Institutional 

Review Board (IRB) from both institutions approved the analysis of patient data with a 

waiver of patient consent.

B. ALARM DATA PREPROCESSING

Alarm data could vary across institutions in numerous ways, such as wording of alarm 

messages, institutional guideline for setting alarm thresholds, types and frequencies of 

alarms. A comprehensive alarm preprocessing procedure was designed to harmonize alarm 

data before model training. First step was to make alarm message port agnostic. Same types 
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of alarms could be collected from any port on the device, which was inscribed in alarm 

messages and needed to be removed. For instance, the alarm message “ART1 S HI” (high 

systolic arterial blood pressure alarm from port 1) was updated to “ART S HI” to remove the 

port information. Next, alarms that measure same physiological status via noninvasive 

approach and its invasive counterparts were merged and treated equally, e.g. blood pressure 

alarms generated from noninvasive calf and invasive arterial measurement. Finally, alarms 

from both institutions were mapped into a common set of alarm codes to fix any differences 

in the wording of alarm messages, e.g. “BP DIA HI” at UCSF vs. “BP D HI” from UCLA 

were all mapped to an alarm code “21”, which denotes the “high diastolic blood pressure” 

alarm. The alarm mapping table with a full list of alarm codes can be found in the 

Supplement.

With mapped alarm codes, additional preprocessing steps were performed. First, alarm 

codes related to technical alarms (e.g., “ECG LEADS FAIL”) that didn’t add predictive 

value to the model training were removed. Second, system-defined crisis alarms (i.e., 

“ASYSTOLE”, “VFIB/VTAC” and “APNEA”) which are clear indicators of emergency 

situation and usually take place close to code blue event onset were removed to avoid 

artificially boosting the predictive power of SuperAlarm. Third, parametric alarms with 

continuous numeric measurement, such as alarms associated with blood pressure, heart rate 

and SPO2, were discretized by a class-attribute contingency coefficient (CACC) based 

discretization algorithm[32], which offers a discretization scheme with considerations of 

interdependence between class and discretized attribute to facilitate subsequent model 

learning. Finally, case encounters that contained unusually low number of alarms likely due 

to technical issues were removed. In brief, this was achieved by modeling the arrival of 

alarms with a Non-Homogenous Poisson Process (NHPP) for all case encounters to derive 

the 95% confidence interval (CI) of the mean alarm count [33]. The lower bound of CI then 

served as a threshold for minimal alarm count to be considered as training encounters.

C. SUPERALARM PREDICTIVE MODELING

With preprocessed alarms, the SuperAlarm model was developed following the procedure 

illustrated in Fig. 1. The current study followed the same framework as our previous studies 

[27], [28] hence is briefly described here. As illustrated in the left panel of Fig. 1, selected 

time windows (Tw) of alarms from cases and controls were used to mine SuperAlarm 

patterns with the frequent itemset mining algorithm, Maximal Frequent Itemset Algorithm 

(MAFIA) [34], [35]. Conceptually, the patterns fulfill the following criteria, they frequently 

occur in cases surpassing a minimal support (SUPmin) while seldomly occur in controls with 

a frequency below a predefined false positive rate (FPRmax). Different time windows ([0.5, 

1, 1.5, 2 hours]) and minimal support values ([0.1, 0.15, 0.2]) were explored during the 

model training process. Optimal values of Tw and SUPmin were determined through 

hyperparameter tuning process under various preset FPRmax ([0.1, 0.15, 0.2, 0.25]), resulting 

in four final sets of SuperAlarm patterns. Each alarm in time were then transformed into a 

binary vector designating whether each SuperAlarm pattern was triggered in the preceding 

Tw window of the alarm.
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The sequences of SuperAlarm pattern triggers, or SuperAlarm trigger sequences, then served 

as samples to train the prediction model as shown in the right panel of Fig.1. SuperAlarm 

trigger sequences were sampled differently in case and control conditions. 5 trigger 

sequences were selected from each control encounter by randomly picking an anchor time 

point as the ending point of a sequence (i.e., sequence anchor) based on a uniform 

distribution across the whole encounter timeline. Each sequence was then constructed by 

collecting all triggers between first trigger in the encounter and the anchor trigger. For case 

encounters, the number of trigger sequences to be selected was 5 multiplied by the ratio of 

encounter count between control and case conditions to achieve a balanced training set. The 

selection of case trigger sequences was based on an exponential distribution with higher 

probability of sequence anchors being sampled near the code blue onset under the heuristics 

that more information about code blue events can be captured in this way. The profile of 

exponential distribution was determined by

p t = μ ⋅ e− t
μ (1)

where t is time before code blue onset; P (t) is the probability of trigger at time t being 

selected as the sequence anchor; μ is the mean of exponential distribution, which was set as 

[10, 30, 60 minutes] as a hyperparameter to tune. To account for the cumulative effect and 

temporality of trigger sequences, the weighted average occurrence representation (WAOR) 

method[27] was adopted to assign higher weights for triggers close to the sequence anchor 

and take the weighted sum of all triggers in the sequence, by

WAOR m = ∑t = 1: tan 1/ tan − t
γ

a
+ β ⋅ T t, m (2)

where 1/
tan − t

γ
α

+ β  is the WAOR weighting function that assigns weight to trigger T (t, 

m) at time t and SuperAlarm pattern m based on its temporal distance to the anchor trigger, 

i.e. |tan − t|. The temporal profile of the weighting function was controlled by three 

parameters, α ([0.5, 1, 2, 3]), β ([0.1, 0.5, 1]) and γ ([0.5, 1, 10, 100]). These parameter 

candidates were chosen based on an extension of parameters from our previous study that 

demonstrated the feasibility of WAOR in capturing temporal dynamics of trigger sequences 

[27]. The expanded choices covering a much larger range aim to derive optimal WAOR 

weighting function through a more systematic way. The derived WAOR weights from each 

trigger sequence were rescaled by min-max normalization across all training samples and 

then served as input features to train the final prediction model based on a logistic regression 

classifier with lasso regularization. The regularization parameter λ was a hyperparameter to 

tune and was selected from a logarithmically spaced vector of 50 numbers between 10−3 and 

10−1.

All hyperparameters, including one sampling parameter during trigger sequence selection, 

three parameters during WAOR weighting process and one regularization parameter during 

classifier training, were tuned simultaneously through 5-fold cross validation using the 

training set. The optimal combination of these hyperparameters was determined by the one 
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with the highest average area under the receiver operating characteristics (AUC), based on 

which a final prediction model was derived using the whole training set.

D. CROSS-INSTITUTIONAL PERFORMANCE EVALUATION

To test the generalizability of SuperAlarm, training and test sets from two institutions were 

selected as following. Alarm data from UCSF were divided into training and test sets at 80%

−20% split at the encounter level. The UCSF training set was used to develop the 

SuperAlarm model, which was first evaluated for its internal performance on the UCSF test 

set. Internal performance was evaluated in both offline and simulated online fashions. 

During offline test, SuperAlarm trigger sequences were sampled in the test set the same way 

as the training set. Conventional metrics, including AUC, accuracy, sensitivity, specificity, 

positive predictive value (PPV), negative predictive value (NPV) and F1 score, were 

calculated to evaluate the offline performance.

During simulated online test, the model was evaluated continuously for each alarm in time in 

testing encounters to simulate the real-life scenario during model implementation at bedside 

patient monitors. During this setup, each alarm and its preceding Tw window of alarms were 

accessed to generate a binary vector of SuperAlarm pattern triggers representing whether 

each SuperAlarm pattern was matched. Then WAOR-based aggregation of each trigger 

vector joint with all of its historic triggers formed a feature vector, with which the trained 

logistic regression model made prediction for the risk of code blue events. To tackle the 

continuous nature of simulated online tests, three time-aware metrics were adopted to 

evaluate the model performance. Sensitivity along lead time (Sen@TL) was the proportion 

of case encounters with at least one prediction of y = 1 (predicted as code blue) within 12-

hour time window preceding TL (lead time before code blue onset) in the test set. Alarm 

frequency reduction rate (AFRR) measured the average hourly reduction in alarm frequency 

contributed by SuperAlarm algorithm comparing to regular monitor alarms. Work-up to 

detection ratio (WDR) resembles number needed to treat (NNT), and was calculated as 

following

W DR prev = TPR * prev + FPR * 1 − prev
TPR * prev (3)

where T P R(true positive rate) was the ratio of correctly predicted case encounters over total 

case encounters in the test set within 12-hour window preceding code blue onset; F P R(false 

positive rate) was the average ratio of falsely predicted control encounters (y = 1) over total 

control encounters in the test set across 1000 randomly selected 12-hour window in each 

control encounter. Importantly, the calculation of WDR took account of prevalence (prev) of 

code blue events, a critical component in designing unbiased performance metrics within the 

clinical context [36].

Following the same simulated online fashion, the model was tested externally on UCLA 

dataset in the following two ways. The whole UCLA dataset first served as one test set to 

evaluate the overall external performance, which was qualitatively compared to the internal 

performance. Alternatively, 100 testing sets (each with the same number of samples as in 

UCSF test set) were extracted from the UCLA dataset via bootstrapping so that a 
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distribution of external performance could be estimated[37]. Cross-institutional performance 

was quantitatively compared by evaluating the internal Sen@TL curve against 95% 

confidence interval (CI) of external Sen@TL. In addition, internal and external testing AFRR 

and WDR were compared by one-sample Student’s t-test with Bonferroni correction for 

multiple comparisons (α = 0.025) [38].

III. RESULTS

A. SUPERALARM MODELS

The number of SuperAlarm patterns ranged from 377 at FPRmax of 0.1 to 798 at FPRmax 

of 0.25, as shown in Table I. It also lists a full list of hyperparameters deriving SuperAlarm 

patterns. Table II lists the most frequent patterns at each cardinality (number of alarms in a 

SuperAlarm pattern) 12 hours preceding code blue events based on FPRmax of 0.25. It 

shows that SuperAlarm patterns mainly consisted of alarms reflecting cardiorespiratory 

status (e.g., blood pressure) and ECG arrythmia alarms. For instance, SuperAlarm pattern 

[“BP RATE LO: [,33.5]”, “BP SYS LO: [70.5, 82.5]”, “PVC”] include three alarms that co-

occur in a window of 1.5 hours, a low pulse rate alarm (derived from arterial blood pressure) 

lower than 33.5 beats/minute, a low systolic blood pressure alarm between 70.5 and 82.5 

mmHg and a premature ventricular contraction (PVC) arrythmia alarm.

Fig. 2(a) illustrates various WAOR profiles being explored as controlled by (2) to vectorize 

SuperAlarm trigger. By design, they all presented a monotonic trend with larger weights 

towards code blue events, with the green curve as the optimal profile selected during the 

training process. Fig. 2(b) shows WAOR weights for all case sequences and matched number 

of control sequences in the training set. It shows more prominent weights across most 

SuperAlarm patterns in case sequences on the left than those from control on the right.

B. INTERNAL AND EXTERNAL PERFORMANCE OF SuperAlarm

Internal performance of SuperAlarm through offline evaluation is presented in Table III It 

shows highest AUC at 85.96% was achieved by model trained with FPRmax at 0.25. The 

model achieved 81.13% of sensitivity while maintaining a specificity of 78.89%. The model 

achieved the best NPV at 93.33% while delivered the second best PPV at 53.46%. Fig. 3 

(a)–(c) present the internal performance of SuperAlarm through simulated online evaluation. 

Predictive power of SuperAlarm increased as prediction window closer to code blue events 

with sensitivity at 50%~80% depending on the selection of FPRmax (see Fig. 3(a)). It shows 

best performance was achieved with the model based on FPRmax of 0.25, with sensitivity in 

the range of 70%~80% within one-hour window of event onset. Fig. 3(b) shows WDR fell in 

the range of 5–8 at current prevalence of 0.055, which also presents its changing trend with 

respect to the prevalence of code blue events. Nonetheless all models achieved hourly 

reduction in false alarm rate (AFRR) at over 90% (see Fig. 3(c)).

Fig. 3(e)–(f) show the external performance of SuperAlarm on the UCLA dataset. Similar to 

internal performance, it showed external sensitivity fell in the range of 50%~80% preceding 

code blue events and degenerated with increasing lead time (see Fig. 3(a)&(e)). However, 

they presented larger range of WAORs between 5–9, which went up to 6–10 if matching the 
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prevalence to internal test set (see Fig. 3(b)&(f)). Nonetheless, external performance offered 

slightly better AFRR at 95%~98% compared to the internal one at 90%~97% (see Fig. 

3(c)&(g)).

C. STATISTICAL COMPARISON OF CROSS-INSTITUTIONAL PERFORMANCE

Fig. 4(a) compares sensitivity across lead time between internal and external test sets. It 

shows internal sensitivity exceeded external one across majority of lead time. When 

comparing other two metrics, external performance achieves higher AFRR at 94.9% than 

internal AFRR at 93.1% (p <0.025) at a cost of a higher WDR at 10.3 against internal one at 

7.1 (p <0.025).

As code blue events consist of a collection of medical emergencies with heterogeneous 

etiologies, incidence ratio of different subtypes was evaluated to probe the discrepancy of 

cross-institutional performance. Although CPA demonstrated to be the major subtype for 

both institutions (63.8% at internal dataset and 73.1% in external dataset), other two 

subtypes presented distinct proportions between two institutions, as shown in Fig. 5.

A subsequent comparison of performance was performed by keeping the same dominant 

subtype (i.e., CPA) in both test sets. Fig. 4(b) reveals conforming sensitivity between 

internal and external performance with matched code blue events, with internal sensitivity 

falling within 95% CI of external sensitivity across majority of time before event onset.

IV. DISCUSSION

The present study further examines the SuperAlarm framework with regard to cross-

institutional generalizability aspect of SuperAlarm, which has not been investigated yet 

carries great implications to model design and deployment of SuperAlarm. To this end, the 

present study follows the consistent SuperAlarm framework as our previous studies [27], 

[28] but with much larger cross-institutional datasets and selection of model parameters, 

while focuses on developing a comprehensive scheme to test the generalizability of 

SuperAlarm across different institutions. A systematic approach has been designed from 

alarm curation, to training-test data arrangement, and all the way to performance evaluation 

to test the internal and external performance of SuperAlarm. The results show similar yet 

subtle differences in performance patterns between internal and external testing. The cross-

institutional performance comparison offers first-hand knowledge that sheds light on both 

advantages and challenges in generalizing SuperAlarm across different institutions.

A. GENERALIZABILITY OF SUPERALARM

SuperAlarm demonstrates similar changing trends in all performance metrics when tested on 

internal and external test sets, as shown in Fig. 3. Both internal and external performance 

demonstrates comparable sensitivity close to code blue onset in the range of 50%~80%, 

which degenerates along with increase of lead time. Meanwhile, both internal and external 

performance shows significant reduction in alarm frequency with AFRR over 90% given any 

selected FPRmax thresholds. The consistency in performance is in part contributed by 

inherited features of the SuperAlarm framework that are in favor of generalizing the 

algorithm across institutions. First, the preprocessing steps harmonize alarm data to be 
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agnostic to device ports. Device port numbers are captured in alarm messages but are 

obviously not relevant to the objective of predicting patient status. Second, the SuperAlarm 

framework taking a tokenizing approach for any input information not only normalizes 

various data modalities but also offers a common code mapping scheme for data naming 

discrepancies across institutions - this approach allows us to apply domain knowledge to 

developing a common set of terms to describe alarms from different sources. Third, the 

discretization step for processing parametric alarms takes account of numeric measurements 

of these alarms[32], which helps mitigate policy discrepancies across institutions on 

threshold settings that trigger monitor alarms. These features are particularly effective for 

alarms but their effectives at processing other data modalities such as those from electronic 

health record systems within the SuperAlarm framework remain to be studied.

Despite promising similarity in performance, there are also challenges facing the 

generalization of SuperAlarm across institutions. The disparity in subtype distributions of 

code blue events (see Fig. 5) in two institutions plays a substantial role in performance 

discrepancy (see Fig. 4(a)). It can be seen that the discrepancy in performance can be largely 

reduced when predicting the same dominate subtype (see Fig. 4(b)). Such an improvement 

in agreement of sensitivity indicates generalization of SuperAlarm benefits from a clear and 

specific target clinical endpoint. Otherwise, generalizability of SuperAlarm might be 

discounted by different composition of clinical events in a different institution. Although at 

similar level, there also exist cross-institutional differences in AFRR and WDR (p <0.025). 

One plausible cause is the discrepancy in alarm counts driven by different institutional 

policies on the setup of bedside patient monitors that impact the type and number of alarms 

generated. The two institutions indeed present clear differences in alarm counts, with 

average number of alarms at 4985 per case encounter and 3111 per control encounter at 

UCSF whereas those numbers are 2157 and 1922 at UCLA. Therefore, the evaluation of 

performance metrics needs to take these contexts into account.

B. STRENGTHS AND LIMITATIONS

A growing body of studies have been carried out to pursue precision patient monitoring and 

to battle alarm fatigue in critical care settings. Several studies aim to improve physiologic 

signal processing and detection algorithms for individual alarms [19]-[22], [39]-[42], 

whereas others utilize EHR information to derive new early warning metrics [23]-[26], [43]-

[47]. SuperAlarm provides a unique strategy of directly analyzing alarm data. In addition, 

the SuperAlarm framework by design is flexible enough to take advantage of multiple data 

modalities available in the data stream in most model hospital settings to improve both 

sensitivity and specificity instead of relying on single data source [30].

Compared to single monitor alarms, SuperAlarm offers many advantages evidenced by both 

current and previous studies [27]-[30], [48], [49]. SuperAlarm takes a multivariate approach 

to extract co-occurring alarms within a time window and integrate their high-order 

interactions. This feature helps reduce false alarms since certain cooccurring alarms in 

SuperAlarm patterns provide mutual support that improves alarm fidelity. For example, a 

SuperAlarm pattern [“BRADY”, “BP DIA LO”] with arrythmia alarm “bradycardia” co-

occurring with “low diastolic blood pressure” alarm that reflects the underlying 
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hemodynamic state is more likely to be true than an isolated “bradycardia” alarm. The later 

can falsely arise from poor ECG signal quality or deficiencies in proprietary arrythmia 

detection algorithms. The multivariate nature also enables the capture of physiological 

changing trend whereas single alarms can only offer one static status in time. The 

SuperAlarm framework also improves predictivity of impending clinical adverse events by 

capturing temporal dynamics over a period of time. In addition, SuperAlarm model is 

interpretable, which provides understandable patterns (see Table II) by clinicians in support 

of further diagnostic work-ups.

In addition to the level of agreement in performance between internal and external 

institutions, SuperAlarm performance achieved in the present study is consistent with our 

previous study that predicts in-hospital code blue events with monitor alarm data[29]. Both 

offer sensitivity in the range of 50~80% within 1-hour of event onset while maintaining over 

90% AFRR. While unbiased performance comparison of SuperAlarm to other studies is 

challenging due to discrepancies in selection of target clinical events, data modalities, 

performance evaluation protocols, etc., best AUC (85.96%) achieved by SuperAlarm is on 

par with other machine learning based models for predicting cardiac arrest using vital signs 

(best AUC at 78.1%, 85% and 88.6% respectively), all of which outperform modified early 

warning score (MEWS, with AUC generally below 70%) [50]-[52].

At the moment, our data sources are limited to monitor alarm data, which are the common 

data modality available to us from both institutions. Nonetheless, being the backbone in the 

SuperAlarm framework, evaluating the generalization of SuperAlarm with monitor alarms 

still carries great significance as the starting point. Future effort will be directed towards 

collecting additional data modalities across institutions which can provide further insight 

regarding the generalizability of SuperAlarm. It will also enable objective comparison of 

SuperAlarm with other methods that rely on a data modality other than monitor alarms. It is 

also worth noting that the present study uses a simple mapping scheme to consolidate two 

institutional alarm data into a common set of alarm codes. It works well given that alarms 

from both institutions are from bedside patient monitors of the same vendor and differences 

in alarm messages are not prominent across different models from this particular vendor. 

More complex mapping schemes, such as various word embedding techniques[53]-[55], are 

worth further exploring to push the envelope of SuperAlarm towards generalization even 

across alarm data of different vendors.
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Fig. 1. 
The flowchart for SuperAlarm model training. The left panel shows procedures for mining 

SuperAlarm patterns. The right panel shows procedures for training the predictive model 

using trigger sequences of SuperAlarm patterns.
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Fig. 2. 
Profiles and feature visualization of WAOR sequence representation algorithm. (a) shows 

visualization of WAOR profiles evaluated for predictive model training. The green curve 

designates the final WAOR profile determined during the training process; (b) shows WAOR 

weights of case and control sequences separated by the black vertical line. Rows denote 

different SuperAlarm patterns and columns representing different trigger sequences.
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Fig. 3. 
SuperAlarm performance on internal and external test sets. (a)-(c) show sensitivity, WDR 

and AFRR, respectively, from models with various FPRmax tested on an internal test set; 

(e)-(f) show sensitivity, WDR and AFRR, respectively, from models with various FPRmax 

tested on an external test set.
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Fig. 4. 
Statistical comparison of sensitivity along lead time between internal and bootstrapping-

based external tests. (a) shows comparison of cross-institutional sensitivity in predicting all 

in-hospital code blue events; (b) shows a comparison of cross-institutional sensitivity in 

predicting cardiopulmonary arrest, the dominant subtype of code blue.
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Fig. 5. 
Distribution of code blue subtypes in two institutions. CPA, cardiopulmonary arrest; ARC, 

acute respiratory compromise; Others, other medical emergencies.
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TABLE I.

Hyperparameters selected during SuperAlarm pattern mining

FPRmax Tw SUPmin # SAPattem

0.1 1 hour 0.1 377

0.15 2 hours 0.1 619

0.2 2 hours 0.1 691

0.25 1.5 hours 0.1 798
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TABLE II.

Most frequent SuperAlarm patterns at each cardinality.

Cardinality SA Patterns based on FPRmax of 0.25 12h TPR

2 “BP SYS HI: [179.5, 256.5]”, “BP DIA LO: [35.5,45.5]” 0.231

3 “BP RATE LO: [,33.5]”, “BP SYS LO: [70.5, 82.5]”, “PVC” 0.280

4 “BP DIA LO: [35.5,45.5]”, “COUPLET”, “RESP HI: [ ,113.5]”, “PVC” 0.253

5 “BP DIA LO: [35.5,45.5]”, “BP DIA LO: [45.5, 69.5]”, “BP SYS LO: [82.5, 199.5]”,” BP MEAN LO: [55.5, 
116.5]”, “RESPHI: [,113.5]” 0.253

6 “BP SYS LO: [70.5, 82.5]”, “BP SYS LO: [82.5, 199.5]”, “BP MEAN LO: [55.5,116.5]”, “BP DIA LO: [35.5, 
45.5]”, “RESP HI: [ ,113.5]”, “PVC” 0.220

7 “BP MEAN LO: [19.5, 51.5]”, “BP MEAN LO: [51.5, 55.5]”, “BP MEAN LO: [55.5, 116.5]”, “BP DIA LO: [35.5, 
45.5]”, “BP SYS LO: [26.5, 70.5]”, “BP SYS LO: [70.5, 82.5]”, “PVC” 0.209
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TABLE III.

Offline performance of SuperAlarm on internal test set.

FPRmax AUC (%) Accu. (%) Sen. (%) Spec. (%) PPV (%) NPV (%) F1 (%)

0.1 79.16 75.59 67.40 78.41 51.91 87.44 58.65

0.15 82.01 77.46 65.73 82.15 59.55 85.71 62.49

0.2 83.56 70.39 86.38 64.44 47.49 92.71 61.28

0.25 85.96 79.40 81.13 78.89 53.46 93.33 64.45
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