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Abstract

Entanglement, chaos, and causality in holography

by

Diandian Wang

Holography remains one of the most powerful approaches to understanding quantum

gravity. The currently best-understood realization of holography is AdS/CFT – a map

between a quantum gravity theory in anti-de Sitter space (AdS) and a conformal field

theory (CFT) on its boundary. In this thesis, several aspects of this duality are explored,

with a focus on entanglement, chaos and causality. Entanglement plays an especially im-

portant role in holography because it is deeply connected to the emergence of spacetime;

chaos is another key player in recent developments of holography because it is a char-

acteristic feature of black holes that is expected to persist beyond the classical regime;

finally, the idea of causality is a valued concept even in a quantum theory of gravity where

the spacetime itself fluctuates, and the boundary CFT which has a well-defined notion

of causality is a pragmatic starting point for understanding causality in a bulk theory of

quantum gravity. One main theme of the thesis is to explore how these aspects depend

on the theory. In particular, conclusions are drawn for whether certain statements that

hold in General Relativity hold in general higher-derivative gravity and/or with higher-

spin fields. Another theme is the connections between different concepts. In particular,

boundary quantities that are apparently very different may be intricately related from

the bulk perspective.
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Chapter 1

Introduction

Figure 1.1: Einstein the biker.

Albert Einstein – a genius, a celebrity, a politician, a guy who once rode a bike in

Santa Barbara (Fig. 1.1) – whatever you call him, he unarguably revolutionized our

understanding of the universe, of spacetime – a word that doesn’t carry much weight

without his theories of Relativity.

In General Relativity, space and time are interwoven. Through this remarkable in-

sight, it turns the description of the most prevalent force of Nature, the gravitational

force, into a question of geometry. The universal attraction between objects, the bend-

ing of light, etc, all became natural in this language, because everything just goes in
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Introduction Chapter 1

“straight lines”, or more precisely geodesics – the most natural trajectory you can have

on any curved geometry. As is often said, matter tells spacetime how to curve, and

curved spacetime tells matter how to move.

With almost no free choice to make, Einstein wrote down the equation that governs

it all:

Rµν −
1

2
Rgµν + Λgµν = 8πGNTµν , (1.1)

where GN is Newton’s constant, gµν is the metric, Rµν is the Ricci curvature tensor,

Tµν is the stress tensor that incorporates the effects of matter, and Λ is the so-called

cosmological constant. The inclusion of the cosmological constant was needed to keep

the universe static for all past and future, which was in line with the thinking at the time.

When it was later found that the universe was not static, Einstein called his inclusion of

Λ his “greatest blunder”.

As time went by, new evidence found that the universe is actually expanding at an

accelerating rate, consistent with the inclusion of a positive Λ. So his “blunder” was in

fact a surprising prediction. Nowadays, we call the maximally symmetric spacetime with

Λ > 0 de Sitter spacetime, whereas Λ = 0 leads to Minkowski spacetime. Both Λ > 0 and

Λ = 0 are being actively studied, and they contribute to our understanding of Nature at

different scales.

Now, one may wonder, what happens if we choose Λ < 0. In this case, we get

(asymptotically) anti-de Sitter (AdS) spacetimes. They have features not observed in

our universe, so there does not seem to be much motivation for studying them, a priori.

However, surprises are always found when one is not expecting them. These seemingly

unmotivated spacetimes turned out to have very interesting mathematical structures and

have been teaching us about the most important question in theoretical physics: how to

quantize gravity?

2



Introduction Chapter 1

To begin with, asymptotically AdS spacetimes have a timelike boundary. This makes

it possible for the boundary itself to have a notion of causality. Secondly, AdS is like a

box owing to its negative curvature, making gravity contained and avoiding pathology

related to enclosing a gravitating region with a finite boundary. Helped by these features,

along with an enormous amount of evidence, it is conjectured that gravity theories in an

asymptotically AdS spacetime are dual to non-gravitational field theories living on its

boundary. In the language of this duality, namely AdS/CFT, the AdS side is called the

bulk theory, and the field theory side is called the boundary theory.

Such a duality is impressive for many reasons. To begin with, two theories live in

different dimensions, which makes a local mapping between the two theories nonsensical.

In fact, which region in the bulk maps to which region on the boundary is an important

area of study. Moreover, gravity in the classical or semiclassical regime corresponds

to the large N limit of the boundary field theory, where N is the number of degrees

of freedom in the theory. Additionally, the strongly coupled region of the boundary

theory is related to the low energy limit of the bulk, making it possible to obtain highly

nontrivial results in the field theory from simple calculations in classical gravity. Finally,

it is expected that this duality provides a possible way to investigate the existence of a

UV-complete quantum gravity theory as progress is being made in the understanding of

the map between the bulk and the boundary at finite N .

All these reasons motivate us to understand the duality better. In this dissertation,

I will focus on a few aspects of this duality, including but not limited to: entangle-

ment, chaos, and causality. In the rest of this introduction, I will give an overview of

a few projects and explain how they facilitate the understanding of the aforementioned

concepts.

The first project will be detailed in Chapter 2. It is centered around the topic of

butterfly velocity, a concept in the study of quantum chaos which describes how fast

3



Introduction Chapter 1

localized information can spread in a quantum system. As mentioned earlier, strongly

coupled and complicated boundary phenomena can have simple bulk descriptions, owing

to the beautiful nature of the duality. Here, we will describe two simple ways of computing

the boundary butterfly velocity in the bulk, one involving of the use of shockwaves,

and another involving the so-called Ryu-Takayanagi surface, a geometrization of the

boundary entanglement entropy. Computations are carried out for a large family of bulk

theories, and the results all agree. Since shockwaves are connected to chaos, this is a

precise investigation of the connection between chaos and entanglement. More precisely,

we prove the equivalence of two holographic computations of the butterfly velocity in

higher-derivative theories with Lagrangian built from arbitrary contractions of curvature

tensors. The butterfly velocity characterizes the speed at which local perturbations

grow in chaotic many-body systems and can be extracted from the out-of-time-order

correlator. This leads to a holographic computation in which the butterfly velocity is

determined from a localized shockwave on the horizon of a dual black hole. A second

holographic computation uses entanglement wedge reconstruction to define a notion of

operator size and determines the butterfly velocity from certain extremal surfaces. By

direct computation, we show that these two butterfly velocities match precisely in the

aforementioned class of gravitational theories. We also present evidence showing that

this equivalence holds in all gravitational theories. Along the way, we prove a number of

general results on shockwave spacetimes.

The second project will be presented in Chapters 3 and 4. It involves yet another

computation of the butterfly velocity, through the idea of pole skipping. Pole skipping

is a phenomenon exhibited by thermal Green’s functions, which has a standard compu-

tation in the bulk. In this project, we show that for all higher-derivative gravity, the

butterfly velocity computed using pole skipping agrees precisely with that defined us-

ing shockwaves. Moreover, a systematic analysis of the pole skipping phenomenon is

4



Introduction Chapter 1

presented, which works for all bulk theories with diffeomorphism-invariant Lagrangians.

Furthermore, for theories containing higher-spin fields, a formula for the leading pole-

skipping frequency is presented. which solely depends on the highest spin in the theory.

More specifically, in Chapter 3, we study pole skipping in holographic CFTs dual to

diffeomorphism invariant theories containing an arbitrary number of bosonic fields in

the large N limit. Defining a weight to organize the bulk equations of motion, a set of

general pole-skipping conditions are derived. In particular, the frequencies simply follow

from general covariance and weight matching. In the presence of higher spin fields, we

find that the imaginary frequency for the highest-weight pole-skipping point equals the

higher-spin Lyapunov exponent which lies outside of the chaos bound. Without higher

spin fields, we show that the energy density Green’s function has its highest-weight pole

skipping happening at a location related to the OTOC for arbitrary higher-derivative

gravity, with a Lyapunov exponent saturating the chaos bound and a butterfly velocity

matching that extracted from a shockwave calculation. We also suggest an explanation

for this matching at the metric level by obtaining the on-shell shockwave solution from a

regularized limit of the metric perturbation at the skipped pole. In Chapter 4, we revisit

this formalism in theories with gauge symmetry and upgrade the pole-skipping condition

so that it works without having to remove the gauge redundancy. We also extend it by

incorporating fermions with general spins and interactions and show that their presence

generally leads to a separate tower of pole-skipping points at frequencies i(lf − s)2πT , lf

being the highest half-integer spin in the theory and s taking all positive integer values.

In addition to being useful for proving general statements, the covariant formalism is

also convenient for practical computations, which we demonstrate using a selection of

examples with spins 0, 1
2
, 1, 3

2
, 2.

The third project will be explained in Chapter 5, and it touches on the bigger question

of going beyond the semiclassical region in gravity. Since there is no definitive answer to

5
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the question of how to do this, we take the naive approach of including offshell metrics in

the gravitational path integral as a starting point. This, however, immediately leads to

an apparent puzzle due to the presence of metrics that violate boundary causality. Taken

at face value, it would imply that the boundary theory is acausal, not a desired feature

for a field theory. Interestingly, as we will see, the puzzle is resolved if the boundary

conditions of the gravitational path integral are imposed carefully. Through this inves-

tigation, we learn something about potential subtleties in the endeavour of searching for

a UV-complete theory of quantum gravity, along with lessons about the gravitational

path integral. More specifically, the puzzle is as follows. Even for holographic theories

that obey boundary causality, the full bulk Lorentzian path integral includes metrics

that violate this condition. By causality of the boundary theory, the commutator of

two field theory operators at spacelike-separated points on the boundary must vanish.

However, if these points are causally related in a bulk metric, then the bulk calculation

of the commutator will be nonzero. It would appear that the integral over all metrics of

this commutator must vanish exactly for holography to hold. This is puzzling since it

must also be true if the commutator is multiplied by any other operator. Upon careful

treatment of boundary conditions in holography, we show how the bulk path integral

leads to a natural resolution of this puzzle.

Throughout this dissertation, we will avoid fixating on a specific bulk theory because

that may result in us accidentally drawing conclusions that are not generalizable. After

all, even though we think of General Relativity, or Einstein gravity, as an excellent

approximation at low energy, it is always corrected by higher-derivative operators. So

ultimately it may not be helpful to find statements that only hold for Einstein gravity,

especially given that our long-term goal is a quantum gravitational theory. By doing this,

we draw conclusions that are robust against including small corrections to the Lagrangian;

sometimes, this type of analysis can also put constraints on the low energy theory. The

6
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use of higher-derivative gravity, the inclusion of higher-spin fields, and the use of the

gravitational path integral with an unspecified action, all contribute towards such a goal.

Finally, we conclude this introductory section by saying that the dissertation will be

an adventure, one that attempts to demystify the beautiful realm of holography, and one

that is only possible with all the work that has been done in the past, from that of Galilei,

that of Newton, and that of Einstein, to that of Maldacena and that of everyone who

worked in the field. The world of high energy physics is vast, but we will start somewhere;

today, let us take a step in the adventure into entanglement, chaos, and causality.

7



Chapter 2

Matching of butterfly velocities

Chaos is prevalent in the physical world: small changes in initial conditions can lead

to drastic variations in the outcome. This sensitive dependence on the initial state is

known as the butterfly effect. In classical systems, chaotic dynamics is characterized by

an exponential deviation between trajectories in phase space; the Lyapunov exponent

parameterizes the degree of deviation.

In quantum mechanical systems, defining chaos is a more challenging task as the

wavefunction is governed by a linear evolution [1]. Nevertheless, one can characterize

quantum chaos by the strength of the commutator [V (t),W (0)] between two generic

operators with time separation t [2, 3].1 One useful measure of the typical matrix elements

of this commutator is the expectation value of |[V (t),W (0)]|2 (where the square is defined

as |O|2 ≡ O†O for any operator O). In a chaotic system, this quantity grows with t and

becomes significant around the scrambling time t∗ [5, 6], behaving like eλL(t−t∗). Here λL

is the (quantum) Lyapunov exponent.

In this paper, we are interested in the spreading of the quantum butterfly effect in

spatial directions. We therefore specialize W and V into local operators with spatial

1Random matrix theory provides a different way of characterizing quantum chaos from the spectral
statistics [4].

8



Matching of butterfly velocities Chapter 2

separation x in d − 1 spatial dimensions. The corresponding expectation value behaves

like [7, 8, 9]

Cβ(x, t) ≡ ⟨|[V (x, t),W (0, 0)]|2⟩β ∼ eλL(t−t∗−|x|/vB), (2.1)

where ⟨ · ⟩β denotes the expectation value in a thermal state with inverse temperature β.

The quantity Cβ(x, t) characterizes the strength of the butterfly effect at (x, t) detected

by a probe V following an earlier perturbation W (0, 0).

Here vB is known as the butterfly velocity. It is the speed at which the region with

Cβ(x, t) ≳ 1 expands outward. Intuitively, the commutator probes how a small per-

turbation W (0, 0) spreads over the system. For two operators that are far separated,

the commutator is zero at early times and becomes large at sufficiently late times. In

particular, the region in which Cβ(x, t) is order unity gives a measure of the size of the

operator W (0, 0) at time t, and the speed at which the size grows over time is precisely

the butterfly velocity.

In recent years, there has been much interest in the role of chaotic dynamics in

holographic quantum systems, particularly in the context of AdS/CFT [7, 10, 8, 11, 9,

12, 13]. In this context, a thermal state in the boundary CFT can be realized as a black

hole in the bulk AdS spacetime [14]. The rapid thermalization of a local perturbation

on the boundary can be understood from the fast scrambling dynamics of the black

hole [5, 6, 15, 16]. In particular, the Lyapunov exponent is related to the exponential

blueshift of early infalling quanta in the near-horizon region. For CFTs dual to Einstein

gravity (possibly corrected by a finite number of higher-derivative terms), the Lyapunov

exponent is universal and saturates [7, 10, 8, 11] the chaos bound λL ≤ 2π/β [17]. This

can be understood from the universality of the near-horizon Rindler geometry. If one

considers perturbations sent from sufficiently far in the past, the quanta are significantly

blue-shifted by the Rindler geometry. At around a scrambling time, the backreaction on

9



Matching of butterfly velocities Chapter 2

the background geometry can be described by a shockwave on the horizon [7, 10, 11]. The

strength of the shockwave grows exponentially as we insert the perturbation at earlier

and earlier times.

This observation leads to one way of obtaining the butterfly velocity. To see it con-

cretely, consider a localized perturbation in the thermofield-double (TFD) state dual to

a two-sided (d + 1)-dimensional planar black hole. Inserting such a spatially localized

perturbation on one boundary corresponds to injecting a small number of quanta which

then proceed to fall towards the black hole in the bulk. The result of doing so is a local-

ized shockwave [8]. The spatial region in which the shockwave has non-trivial support

defines a size of the corresponding boundary operator. As we send the perturbation at

earlier and earlier times, the size of this region grows, and this “speed of propagation”

determines a butterfly velocity vB.

An alternative way of calculating the operator size and the butterfly velocity in holog-

raphy was proposed in [18]. It is based on entanglement wedge reconstruction, which

states that a bulk operator within the entanglement wedge of any boundary subregion

can be represented by some boundary operator on that subregion [19, 20, 21, 22]. Con-

sider again a local operator inserted on the boundary, which in the bulk can be thought of

as a particle falling into the black hole. By entanglement wedge reconstruction, a bound-

ary region whose entanglement wedge contains the particle possesses full information

about the boundary operator. The smallest spherical region that does so defines a notion

of size for the boundary operator. At early times, the particle is near the boundary; the

boundary region, and hence the operator size, is small. At very late times, say after a

scrambling time, the particle is very close to the horizon and the entanglement wedge

needs to extend deep into the bulk. The corresponding boundary region, and hence the

operator size, is very large and in fact grows linearly with time. The corresponding speed,

which we denote as ṽB, quantifies the growth of the operator size. It provides a second

10



Matching of butterfly velocities Chapter 2

way of computing the butterfly velocity holographically.

These two holographic computations of the butterfly velocity appear to be very dif-

ferent and unrelated to each other. However, it was shown directly in [18] that the results

of the two computations agree for Einstein gravity and for higher-derivative gravity with

up to four derivatives on the metric.

The goal of this paper is to prove that the two computations of the butterfly veloc-

ity continue to agree in general higher-derivative theories of gravity. We will focus on

the family of general f(Riemann) theories, namely those with Lagrangians built from

arbitrary contractions of an arbitrary number of Riemann tensors:2

L =
1

2
(R− 2Λ) + λ1R

2 + λ2RµνR
µν + λ3RµνρσR

µνρσ + λ4R
3 + · · · , (2.2)

where the higher-derivative terms are viewed as perturbative corrections to the leading

Einstein-Hilbert action. The main purposes of studying higher-derivative theories are

twofold: (1) they arise generally as perturbative corrections to Einstein gravity in low

energy effective theories of UV-complete models of quantum gravity such as string theory;

(2) the agreement between two computations of the butterfly velocity for general higher-

derivative theories would suggest an equivalence between the two methods themselves

rather than a coincidence in certain theories. This equivalence then suggests a deeper

connection between gravitational shockwaves and holographic entanglement, as well as

providing further evidence for entanglement wedge reconstruction.

The rest of the paper is organized as follows. In Section 2.1, we begin with a detailed

review of the two holographic calculations of the butterfly velocity. In Section 2.2, we

derive general expressions for the two butterfly velocities in f(Riemann) theories. In

Section 2.3, we prove vB = ṽB for this class of theories, which is our main result. In

2Nevertheless, in Section 2.4 we will discuss one example that is more general than f(Riemann)
theories, where the two butterfly velocities continue to agree.
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Section 2.4, we end with a discussion of this result and comment on potential future

directions.

2.1 Operator size and the butterfly velocity

In chaotic many-body systems, the size of generic local operators — the spatial region

on which the operator has large support — grows ballistically under Heisenberg time

evolution. More specifically, consider a perturbation by such a local operator. Under

chaotic evolution, information about the perturbation is scrambled amongst the local

degrees of freedom and spreads throughout the system. The maximum speed at which

this occurs is the butterfly velocity vB. It can be regarded as a finite temperature

analogue of the Lieb-Robinson bound [23, 9]. The existence of this bound on information

scrambling is a general feature of chaotic systems.

One can define operator size more precisely using the square of the commutator for

two generic local operators W and V :

Cβ(x, tW ) ≡⟨[V (x, 0),W (0,−tW )]†[V (x, 0),W (0,−tW )]⟩β

=2− 2Re ⟨V (x, 0)†W (0,−tW )†V (x, 0)W (0,−tW )⟩β,
(2.3)

where tW > 0 so that W is inserted at an earlier time than V and the expectation value

is taken in a thermal state with inverse temperature β.3 The second term in the second

line is called an out-of-time-order correlator (OTOC) and carries all of the non-trivial

information in (2.3). The exponential decay of the OTOC over time is commonly used

as an indicator of chaos in quantum many-body systems.

Under chaotic time evolution, the commutator with x = 0 exhibits an exponential

3In going to the second line of (2.3), we have assumed the two operators W and V to be unitary.
This is not a crucial assumption, but does simplify our discussion.
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Figure 2.1: Illustration of the butterfly cone. A localized perturbation at some initial
time scrambles everything at that location after a scrambling time t∗. This effect then
spreads out spatially at the butterfly velocity vB, defining the butterfly cone where
Cβ is of order one.

growth near the scrambling time t∗,
4 defined as the time at which the commutator be-

comes of order unity. Now considering non-zero x, information from a localized perturba-

tion is scrambled among the local degrees of freedom and spreads throughout the system

at the butterfly velocity vB. In this scrambling regime, the behavior of the commutator

has the following universal form [9],

Cβ(x, tW ) ∼ eλL(tW−t∗−|x|/vB). (2.4)

The Lyapunov exponent λL gives a time scale for scrambling at a fixed spatial location,

while vB parametrizes the delay in scrambling due to spatial separation (see Figure 2.1).

At time tW after the insertion of the W perturbation, the commutator is order unity in

the spatial region defined by |x| ≤ vB(tW − t∗), and is exponentially suppressed outside

this region. This gives a precise notion of the size of an operator under time evolution.

A nice way to think about the OTOC, and hence the commutator, is as the overlap

4For example, in maximally chaotic many-body systems with O(N) degrees of freedom per site, t∗ is
approximately β

2π logN .
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⟨ψ′|ψ⟩ between the two states

|ψ⟩ = V (x, 0)W (0,−tW )|TFD⟩β and |ψ′⟩ = W (0,−tW )V (x, 0)|TFD⟩β. (2.5)

Here |TFD⟩β is the thermofield-double state:

|TFD⟩β ≡ 1

Z(β)1/2

∑
n

e−βEn/2|n⟩L|n⟩R, (2.6)

where L denotes the original system and R denotes an identical copy, |n⟩ is a complete

set of energy eigenstates with energy En, and Z(β) is the thermal partition function

at inverse temperature β. The states (2.5) are obtained from |TFD⟩β by acting with

operators in the L system. In particular, the state |ψ⟩ corresponds to acting with W in

the past at t = −tW and time evolving to t = 0 before inserting an operator V . The

state |ψ′⟩ corresponds to creating a perturbation V at t = 0, time evolving to the past,

inserting W , and finally evolving back to t = 0. Under chaotic dynamics, the operator

W is scrambled amongst degrees of freedom in its neighborhood. If W is inserted far

enough in the past, it can interfere with the perturbation due to V and prevent it from

reappearing at t = 0 in the state |ψ′⟩. Consequently, the state |ψ′⟩ would have a small

overlap with |ψ⟩ since the latter has V inserted at t = 0 by construction. This small

overlap means that the commutator (2.3) is of order one, which defines the butterfly

cone.

We now review two methods of calculating the butterfly velocity in holographic sys-

tems, which we call the shockwave method and the entanglement wedge method.
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Figure 2.2: An illustration of the shockwave spacetime. By sending in a localized
energy packet from the left boundary around a scrambling time in the past, the
backreaction is described by a localized shockwave on the horizon at u = 0 with
profile h(x).

2.1.1 The shockwave method

One way of capturing the chaotic behavior in a holographic CFT is to introduce a

perturbation at the asymptotic boundary and study the backreaction to the geometry

as it propagates into the bulk. We will consider two copies of the CFT in a thermofield

double state, which is dual to a two-sided eternal black hole in the bulk. Now let us act

on the left boundary CFT with a local operator W at the origin x = 0 and boundary

time −tW :

W (0,−tW )|TFD⟩ = e−iHLtWW (0, 0)eiHLtW |TFD⟩. (2.7)

In the bulk, this perturbation corresponds to inserting an energy packet near the asymp-

totic boundary, which then falls towards the black hole. If we take tW to be large, by the

time it reaches t = 0, it will have gained considerable energy due to the exponentially

large blueshift near the horizon, which then backreacts significantly on the spacetime.

For large enough tW ,5 the backreacted geometry is well-described by a shockwave along

the horizon as shown in Figure 2.2.

To be more specific, let us consider a general (d + 1)-dimensional planar black hole.

5For the perturbation to be large (but not Planckian), the time at which we send in the particle needs
to be around the scrambling time, |tW | ≈ t∗ [5, 6, 15, 16, 7].
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The metric can be written in Kruskal coordinates as

ds2 = 2A(uv)dudv +B(uv)dxidxi, (2.8)

where the functions A(uv) and B(uv) in general depend on the gravitational theory and

the matter content, and i ∈ {1, . . . , d − 1} labels the transverse directions. The two

horizons live at u = 0 and v = 0. We will also rescale the transverse directions so that

B(0) = 1.

A localized shockwave on the horizon at u = 0 is sourced by a change in the stress

tensor due to a perturbation with initial asymptotic energy E

δT v
u = A−1Ee 2π

β
tW δ(u)δ(x). (2.9)

The prefactor Ee 2π
β
tW can be thought of as the effective energy of the blueshifted pertur-

bation. Note that tW is not a spacetime coordinate but rather parameterizes the time at

which the perturbation is inserted. Inserting the perturbation at earlier times increases

this effective energy and results in a larger backreaction.

To solve for the backreaction, it is sufficient to perturb only the uu component of

metric by an amount parameterized by some function h(x),

ds2 = 2A(uv)dudv +B(uv)dxidxi − 2A(uv)h(x)δ(u)du2. (2.10)

The function h(x) — which we will refer to as the shockwave profile — is determined

by the equations of motion. Assuming that the equations of motion for the unperturbed
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background solution (2.8),

Eµν

(
≡ 2√−g

δS

δgµν

)
= Tµν , (2.11)

are satisfied (where S is the gravitational part of the action), it suffices to consider the

perturbed equations of motion

δEν
µ = δT ν

µ (2.12)

sourced by the shockwave stress tensor (2.9). For Einstein gravity, this shockwave equa-

tion of motion was first derived for a vacuum background by Dray and t’Hooft [24], and

later generalized to allow a non-trivial background stress-tensor in [25].

Now we consider general theories of gravity. As we prove in Appendix A, the only

non-trivial component of (2.12) is

δEv
u = δT v

u = A−1Ee 2π
β
tW δ(u)δ(x). (2.13)

Furthermore, in the same appendix we show that (2.13) truncates automatically at linear

order in h(x) (and its xi-derivatives). Indeed, the equations of motion reduce to a single

ODE for the shockwave profile h(x), which we will refer to as the shockwave equation.

As we will show, (2.13) can be solved for large r = |x| with the following ansatz for the

shockwave profile

h(x) ∼ e
2π
β
tW−µr

r#
, (2.14)

where µ > 0 and # is some integer that will not be important.

To see the connection to the OTOC, and hence the butterfly velocity, let us consider

the overlap of the two states defined in (2.5) from the bulk perspective (see Figure 2.3).

The states differ in the trajectory of the particle V , due to the shift h(x) from the
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h(x)

h(x)

Figure 2.3: Bulk representations of |ψ⟩ and |ψ′⟩. For the state |ψ⟩ (left), the shockwave
(red) created byW is inserted first and the probe operator V is then inserted at t = 0,
manifesting itself as a particle (green) propagating into the future and the past. On
its way to the past, it encounters the already existent shockwave and is shifted by
an amount h(x). On the other hand, |ψ′⟩ (right) is created by inserting V first and
then placing the shockwave W . The shockwave alters the original trajectory of the V
particle, such that it is shifted to the future of the shockwave.

shockwaveW occurring either in the past or future evolution. Because the only difference

between the two states is in the particle trajectory, the size of the overlap is controlled by

the shift: it is close to unity when the h is small and close to zero when the h is large. Let

us for concreteness define the boundary of the butterfly cone to be where Cβ = 1, which

translates to Re ⟨ψ′|ψ⟩ = 1
2
. This corresponds to some threshold value of the shift, say

h(x) = h∗. According to (2.14), the size of the butterfly cone then grows as a function

of tW with the velocity

vB =
2π

βµ
(2.15)

at large r. We identify this with the butterfly velocity. Solving the equation of motion

(2.13) yields a value for µ and thus a value for vB in terms of the functions A(uv) and

B(uv) in the background metric (2.8).

Let us now look at some examples.
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Einstein gravity Let us start with the simplest case of Einstein gravity, LEH = 1
2
(R−

2Λ). The calculations follow that in [7, 8], which we now review. Using (2.13), the

shockwave equation is given by

δEv
u =

1

B

(
∂i∂i −

d− 1

2

B′

A

)
h(x)δ(u) = A−1Ee 2π

β
tW δ(x)δ(u). (2.16)

In the large-r limit, we can then substitute the ansatz (2.14), and obtain an algebraic

equation for the parameter µ,

µ2 − d− 1

2

B1

A0

= 0, (2.17)

where A0 ≡ A(0) and B1 ≡ B′(0). Choosing the positive root for µ and using (2.15), we

therefore find the butterfly velocity

vB =
2π

β

√
2A0

(d− 1)B1

. (2.18)

Note that the equation for µ and thus the butterfly velocity depend only on the

behavior of the metric near the u = 0 horizon. This is enforced by the overall factor of

δ(u) in the equation of motion. As we will see, in the entanglement wedge method, this

feature will be reproduced via a different mechanism — by taking a near-horizon limit

of an extremal surface. This is one of the many distinctions between the two methods,

making their agreement quite non-trivial.

Lovelock gravity As was shown in [8], for Gauss-Bonnet gravity whose Lagrangian is

the Einstein-Hilbert term LEH plus

LGB = λGB(R
2 − 4RµνR

µν +RµνρσR
µνρσ), (2.19)
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the coupling constant λGB does not contribute to the shockwave equation (2.16).

We can further show that this is the case for Lovelock gravity, a general 2p-derivative

theory with second order equations of motion. The Lagrangian is LEH plus

L2p =
λ2p
2p
δµ1ν1···µpνp
ρ1σ1···ρpσp

R ρ1σ1
µ1ν1

· · ·R ρpσp
µpνp , (2.20)

where the generalized delta symbol is a totally antisymmetric product of Kronecker deltas,

defined recursively as

δµ1µ2···µn
ν1ν2···νn =

n∑
i=1

(−1)i+1δµ1
νi
δµ2µ3···µn

ν1···ν̂i···νn . (2.21)

Choosing p = 1 gives Einstein-Hilbert, while p = 2 reduces to Gauss-Bonnet. The metric

equation of motion is given by

Eα
β = −λ2p

2p
δ
αµ1ν1···µpνp
βρ1σ1···ρpσp

R ρ1σ1
µ1ν1

· · ·R ρpσp
µpνp . (2.22)

We are interested in δEv
u. It is not difficult to show that the only way to get a non-zero

contraction is to make one of the Riemann tensors R vj
ui and the rest R mn

kl . Using our

metric ansatz (2.10), one can show that δR mn
kl = 0, so any potential contribution can

only come from δR vj
ui ∝ δ(u) multiplied by p − 1 factors of R mn

kl (see Eq. (2.40) for

the detailed expressions). The latter vanishes on the horizon of the planar black hole,

due to the flatness of the transverse directions. Hence, we find that as long as p > 1 the

Lovelock corrections do not contribute to the shockwave equation (2.16).

2.1.2 The entanglement wedge method

In holography, the butterfly effect manifests itself in another way as first observed in

[18]. The intuition comes from entanglement wedge reconstruction [19, 20, 21, 22], which

states that a given boundary region contains all of the information inside its entanglement
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wedge, which is a bulk region bounded by the boundary region and the corresponding

extremal surface. As was argued in [18], this allows us to define a notion of operator size

on the boundary.

Consider a thermal state in the boundary CFT dual to a planar black hole in the bulk.

Let us perturb the boundary state by acting with a local operator. Under the chaotic

time evolution, information from the perturbation is scrambled throughout the system.

At late times, the boundary region over which this information is smeared propagates

outwards at a constant velocity. In the bulk, the perturbation corresponds to a probe

particle (or wavepacket) originating from the asymptotic boundary and falling towards

the black hole, its trajectory determined from our choice of the bulk theory and the

background geometry. According to entanglement wedge reconstruction, any boundary

region whose entanglement wedge contains the particle should contain all the information

of the corresponding boundary operator. In particular, we would like to consider the

extremal surface which barely encloses the particle in its entanglement wedge. The

corresponding boundary region then defines a size for the boundary operator.

To extract the butterfly velocity, we now study how this extremal surface changes as

it follows the trajectory of the particle. Note that even though the location of the particle

is time-dependent, the background spacetime is static6 and at any given time we may use

a Ryu-Takayanagi (RT) surface [26, 27] (instead of its dynamical generalization — the

HRT surface [28]). At early times, the shape of the RT surface will depend sensitively

on details of the background metric. However, at late times, the surface approaches the

near-horizon region and exhibits a characteristic profile which propagates outwards at a

constant velocity (see Figure 2.4). This velocity, which we can identify as the butterfly

velocity ṽB, depends only on the bulk theory and the near-horizon geometry of the black

hole (as long as the theory admits a black hole solution, which we can ensure by taking

6Here we do not need to analyze the backreaction of the particle, unlike in the shockwave method.
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the coefficients of higher-derivative terms to be small so that a solution perturbatively

close to the static planar black hole in Einstein gravity exists).

In general higher-derivative gravity, the location of the RT surface is determined by

extremizing the holographic entanglement entropy functional SEE among all bulk surfaces

homologous to the corresponding boundary region [29, 30, 31, 32]. For the f(Riemann)

theories that we focus on, the entropy functional SEE can be found in [29]. The important

terms for our purpose is

SEE = 2π

∫
dd−1y

√
γ

{
− ∂L
∂Rµρνσ

εµρενσ −
∂2L

∂Rµ1ρ1ν1σ1∂Rµ2ρ2ν2σ2

2Kλ1ρ1σ1Kλ2ρ2σ2×

×
[
(nµ1µ2nν1ν2 + εµ1µ2εν1ν2)n

λ1λ2 − (nµ1µ2εν1ν2 + εµ1µ2nν1ν2) ε
λ1λ2
]
+ · · ·

}
, (2.23)

where y denotes a set of coordinates on an appropriate codimension-2 surface, γ is the

determinant of its induced metric,Kλρσ is its extrinsic curvature tensor, nµν is the induced

metric (and εµν is the Levi-Civita tensor) in the two orthogonal directions while vanishing

in the remaining directions, and · · · denotes terms that are higher-order7 in Kλρσ and its

derivatives than the second-order term shown here. As we will explain in Section 2.2.3,

these higher-order terms do not affect the calculation of the butterfly velocity. Note that

Eq. (2.23) works in Lorentzian signature, which we obtain by analytically continuing the

corresponding Euclidean expression via L → −L, nµν → nµν , εµν → −iεµν .8 Extremizing

7These higher-order terms are difficult to write down explicitly because of ‘splitting’ [29, 33, 34, 35],
although they can in principle be determined by using appropriate equations of motion [29, 31, 32].
Fortunately, here we only need SEE up to second order in K (and its derivatives), which can be obtained
by setting qα = 0 in Eq. (3.30) of [29] and is free from the splitting difficulty — this follows roughly from
the results of [29] but will also be proved carefully in a separate work [36]. Moreover, the same SEE up to
second order in K (and its derivatives) was derived using the second law of black hole thermodynamics
[37].

8The extra factor of −i can be traced back to the definition εµν = εabn
(a)
µ n

(b)
ν where εab =

√
g ε̃ab,

with ε̃ab being the Levi-Civita symbol. Going to the Lorentzian version which comes with
√−g requires

a factor of i. The minus sign is a result of going from the convention in [29] where ε̃τx = −1 to the
standard Lorentzian convention ε̃tx = 1.
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Figure 2.4: An illustration of the entanglement wedge method. A particle is released
from the asymptotic boundary and we show the RT surface which barely encloses
the particle. At early times (left), the profile of the RT surface depends sensitively
on the metric away from the horizon; but at late times (right), the RT surface in
the near-horizon region has a characteristic profile which propagates outwards at the
butterfly velocity ṽB.

SEE leads to a differential equation for the location of the RT surface, which we refer to

as the RT equation.

For a general planar black hole, the metric is given in (2.8), which can be written in

Poincaré-like coordinates as

ds2 =
1

z2

[
−f(z)
h(z)

dt2 +
dz2

f(z)
+ dxidxi

]
, (2.24)

where the horizon is located at z = 1. In the near-horizon region, we can Taylor expand

the functions f(z) = f1(1−z)+f2(1−z)2+· · · and h(z) = h0+h1(1−z)+h2(1−z)2+· · · .

As in [18], we will consider spherical boundary regions, for which the corresponding RT

surfaces are also spherical. We use r = |x| to denote the radial coordinate in the xi

directions. This reduces the RT equation to a simple ODE.

At late times, the probe particle is exponentially close to the horizon and follows a

trajectory 1− z(t) ∼ e−
4π
β
t given by the geodesic equation. As such, we will focus on the

near-horizon region near z = 1. In particular, defining the RT surface by z = Z(x), we
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can parametrize the near-horizon limit by writing

Z(x) = 1− ϵs(x)2, (2.25)

where ϵ is a small positive number and we have defined a new function s(x) which we call

the RT profile. The profile is determined by solving the RT equation, which we Taylor

expand around ϵ = 0. The RT surface will stay close to the horizon for small r and start

to depart the near-horizon region at some large radius r = r∗, where ϵs(x)
2|r=r∗ ∼ O(1),

after which it reaches the asymptotic boundary within an order one distance. Thus, the

corresponding boundary region has approximately radius r∗ and this defines a size of the

boundary operator. To model this behavior, one can use an ansatz9

s(x) ∼ eµ̃r

r#
, (2.26)

where µ̃ > 0 and # is some unimportant integer.

At each point in time, we demand the tip of the RT surface intersects the particle,

which is enforced by setting s(x = 0, t) ∼ e−
2π
β
t. Therefore, the time-dependent RT

profile is given by

s(x, t) ∼ eµ̃r−
2π
β
t

r#
. (2.27)

At any given time t, there is some radius r = r∗(t) such that ϵs(x, t)2|r=r∗(t) ∼ O(1). This

in turn gives the radius of the boundary region (modulo an order one distance), which

propagates outward with characteristic velocity

ṽB ≡ 2π

βµ̃
. (2.28)

9This ansatz is valid when r is large enough (so that we may ignore higher-order corrections in 1/r)
but not too large (so that the RT surface has not exited the near-horizon region). This regime of validity
is parametrically large for a large boundary region.
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Solving the RT equation yields a value for µ̃ and thus a value for ṽB in terms of the

functions f(z) and h(z) in the background metric (2.24). This is the second way of cal-

culating the butterfly velocity.

Let us now revisit the examples in Section 2.1.1 using the entanglement wedge method.

Einstein gravity For Einstein gravity with LEH = 1
2
(R − 2Λ), the entropy functional

is simply given by the area:

SEE = 2π

∫
dd−1y

√
γ. (2.29)

The entire dependence of this functional on the choice of the surface is then in the

determinant of the induced metric γ. Using (2.25) and expanding to linear order in ϵ,

the induced metric of the surface is given by

γijdx
idxj =

[
1 + 2ϵ

(
s(r)2 +

2

f1
s′(r)2

)]
dr2 + r2

(
1 + 2ϵs(r)2

)
dΩ2

d−2 +O(ϵ2), (2.30)

where we have Taylor expanded f(z) ≡ f1(1 − z) + f2(1 − z)2 + · · · near the horizon.

This is a flat metric up to O(ϵ) corrections, which is consistent with the fact that we are

expanding near the horizon of a planar black hole. The determinant is then given by

√
γ = rd−2 + ϵ rd−2

(
(d− 1)s(r)2 +

2

f1
s′(r)2

)
+O(ϵ2). (2.31)

The RT equation is then determined by varying with respect to s(r), which at leading

order in ϵ gives

(d− 1)s− 2

f1

(
s′′ + (d− 2)

s′

r

)
= 0. (2.32)
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Substituting the ansatz (2.26) and dropping higher order terms in 1/r then gives

µ̃2 =
d− 1

2
f1 =

d− 1

2

B1

A0

, (2.33)

where the second equality follows from a coordinate transformation. Using (2.28), we

thus find that the resulting butterfly velocity matches the shockwave result (2.18).

Lovelock gravity We will now show that the Lovelock corrections L2p with p > 1

do not contribute to the RT equation, consistent with the shockwave calculation in Sec-

tion 2.1.1.

It is well-known that the entropy functional for this theory is given by the Jacobson-

Myers formula [38]

SEE,2p = 2πλ2p

∫
dd−1y

√
γ

p

2p−2
δ
i1j1···ip−1jp−1

k1l1···kp−1lp−1
Ri1j1

k1l1 · · ·Rip−1jp−1

kp−1lp−1 , (2.34)

where Rij
kl is the intrinsic curvature of the codimension-2 surface. For an RT surface

perturbatively close to the horizon, the induced metric is again given by (2.30). We can

therefore immediately write Rij
kl ∼ O(ϵ), which implies

SEE,2p ∼ O(ϵp−1). (2.35)

For p > 2, these terms are higher order in ϵ and therefore do not contribute. Thus these

Lovelock corrections do not modify (2.33).

For the case of p = 2, namely Gauss-Bonnet gravity, a more refined argument is

required. In this case, the entropy functional (2.34) depends on the intrinsic curvature
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scalar R = Rij
ij which, up to unimportant numerical factors, is given by

R ∼ ϵ

r

d

dr

(
rs(r)s′(r)

)
+O(ϵ2), (2.36)

where we have neglected terms that only contribute higher orders in 1/r to the RT

equation compared to the Einstein-Hilbert term (2.31). The entropy is then given by

SEE,GB ∼
∫
dd−1y

√
γR ∼ ϵ

∫
dr rd−3 d

dr

(
rs(r)s′(r)

)
+O(ϵ2) (2.37)

∼ ϵ

∫
dr

d

dr

(
rd−2s(r)s′(r)

)
− (d− 3) ϵ

∫
dr rd−3s(r)s′(r) +O(ϵ2).

The first term is a total derivative and therefore does not contribute to the RT equa-

tion. The second term is down by a factor of 1/r compared to the contribution from

the Einstein-Hilbert term (2.31). Since we are only interested in the leading large-r pro-

file, this term will not contribute either. We therefore conclude that the Gauss-Bonnet

correction does not modify (2.33), reproducing the result from [18].

2.2 Butterfly velocities for f(Riemann) gravity

In this section we derive general formulae for the butterfly velocities using the two

holographic methods described in Section 2.1, valid for all f(Riemann) theories. Before

diving into the derivations, we will lay out a few useful definitions and notations and

calculate a few basic quantities related to the background metric.
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2.2.1 Definitions, notations, and the spacetime

As reviewed in Section 2.1.1, the metric for the shockwave geometry is given by

ds2 = 2A(uv)dudv +B(uv)dxidxi − 2A(uv)h(x)δ(u)du2. (2.38)

The background metric with h = 0 is simply the planar black hole (2.8). We will

denote the functions A, B and their derivatives evaluated on the horizon at u = 0 by

An ≡ ∂nA(uv)/∂(uv)n|u=0 and Bn ≡ ∂nB(uv)/∂(uv)n|u=0. Throughout our calculations,

we set B0 = 1 by rescaling the xi coordinates.

The non-zero Christoffel symbols are

Γv
uu =− hδ′(u) + vA−1A′hδ(u), Γu

uu = vA−1A′, Γv
vv = uA−1A′,

Γi
uu =AB−1hjδ

ijδ(u), Γv
ui = −hiδ(u), Γv

ij = −1

2
vA−1B′δij,

Γu
ij =− 1

2
uA−1B′δij, Γi

ju =
1

2
vB−1B′δij, Γi

jv =
1

2
uB−1B′δij,

(2.39)

where hi ≡ ∂ih(x), and we have dropped terms10 containing uδ(u). It will become clear in

our later calculations that the second term vA−1A′hδ(u) in Γv
uu is unimportant because

it always enters the equations of motion together with at least one power of u.

The non-zero components of the Riemann tensor are

Ruvuv = A′ + uvA′′ − uvA−1A′2, (2.40a)

Ruivj = −1

2
δij

(
B′ + uvB′′ − 1

2
uvB−1B′2

)
, (2.40b)

Ruiuj =
δij
2
v2
(
A−1A′B′ +

1

2
B−1B′2 −B′′

)
+

(
Ahij +

δij
2
B′h

)
δ(u), (2.40c)

10We can drop these terms at this stage because, as we will see, they will not be multiplied by any
negative powers of u in the equations of motion. This allows us to use the identities uδ(u) = 0 and
uδ′(u) = −δ(u), viewed as equality of distributions.
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Rvivj =
δij
2
u2
(
A−1A′B′ +

1

2
B−1B′2 −B′′

)
, (2.40d)

Rijkl =
1

2
uvA−1B′2(δilδjk − δikδjl), (2.40e)

where we have again discarded terms which vanish as a distribution. We see that the

only correction due to h is in Ruiuj, and the correction is linear in h. The same statement

applies for R vj
ui . The fact that, given the specific ansatz (2.38), these are the only

possible non-zero components of the Riemann tensor is crucial in establishing our proof.

For notational convenience, we define the following tensors and use them to denote

the corresponding values evaluated in the background solution and on the u = 0 horizon:

Cρσ ≡ ∂L
∂gρσ

, Dµνρσ ≡ ∂L
∂Rµνρσ

, F µνρσ
λτ ≡ ∂2L

∂Rµνρσ∂gλτ
,

Gµνρσ ≡ ∂2L
∂gµν∂gρσ

, Hµνρσµ′ν′ρ′σ′ ≡ ∂2L
∂Rµνρσ∂Rµ′ν′ρ′σ′

.

(2.41)

For example, Cρσ denotes the value of ∂L/∂gρσ in the background h = 0 solution and on

the u = 0 horizon. Here, we have viewed the Lagrangian L as a function of Rµνρσ and

gµν , i.e., we lower all indices on the Riemann tensor and raise all indices on the metric

and treat these two types of tensors as independent variables when taking derivatives.

Throughout this paper, we define derivatives with respect to tensors such as Rµνρσ and

gµν in the standard way; for example, ∂L/∂Rµνρσ has the Riemann symmetry and satisfies

the identity δL = ∂L
∂Rµνρσ

δRµνρσ.

Since the i, j indices can only appear in the combination δij for any background quan-

tity, we can define the following notation where the transverse components are stripped

away:

Daibj ≡ Dabδij, F aibj
cd ≡ F ab

cdδ
ij, F abcd

ij ≡ F (2)abcdδij,
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Haibjckdl ≡ H(1)abcdδijδkl +
H(2)abcd

2
(δikδjl + δilδjk), Habcd ≡ H(1)abcd +

H(2)abcd

d− 1
,

Habcdeifj ≡ H(3)abcdefδij, Habcdijkl ≡ H(4)abcd(δikδjl − δilδjk),

where a, b, c, · · · ∈ {u, v} and i, j, k, . . . are the transverse directions.

2.2.2 The shockwave method

For general f(Riemann) theories, we start by writing down the equations of motion:

Eµν ≡ 2√−g
δS

δgµν
= E(1)

µν + E(2)
µν + E(3)

µν + E(4)
µν , (2.42)

with

E(1)
µν = −gµνL, E(2)

µν = 2
∂L
∂gµν

,

E(3)µν = −2
∂L

∂Rµλρσ

Rν
λρσ

∣∣∣∣
sym(µν)

, E(4)µν = 4

(
∂L

∂Rµρνσ

)
;σ;ρ

∣∣∣∣
sym(µν)

, (2.43)

where the Lagrangian L is viewed as a function of Rµνρσ and gµν . Here the parenthesized

numbers (1), . . . , (4) merely label the various terms and do not have any physical meaning.

We view the shockwave spacetime (2.38) as a perturbation from the background

geometry (2.8) with

δguu = −2Ahδ(u). (2.44)

The only non-zero component of the perturbation of the inverse metric is

δgvv = 2A−1hδ(u). (2.45)

As we show in Appendix A, the only component of the equations of motion Eν
µ that
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receives a non-vanishing perturbation from the shockwave is Ev
u, with

δEv
u = guvδE

vv + Euvδguu. (2.46)

We now calculate these two terms separately.

For δEvv, we have

δEvv = δE(1)vv + δE(2)vv + δE(3)vv + δE(4)vv, (2.47a)

where

δE(1)vv =− δgvvL = −2L
A
hδ(u), (2.47b)

δE(2)vv =4δgvvguvCuv + 2(guv)2Guuvvδg
vv + 8(guv)2F uu

uuδ
ijδRuiuj

=

[
8

A2
Cuv +

4

A3
Guuvv +

8F uu
uu

A2

(
A∂i∂i +

d− 1

2
B′
)]

hδ(u),
(2.47c)

δE(3)vv =−
(
4DvuvuRvuvu + 4DviujRviuj

)
δgvv − 4DviujguvδRuiuj

− 4F viaj
vvg

uvRuiajδg
vv − 16HuiujvkvlguvRukvlδRuiuj

=

[
− 8A′

A
Duvuv + 4(d− 1)

B′

A
(Duv + F vv

vv)

− (4Duv − 8(d− 1)HuuvvB′)

(
∂i∂i +

d− 1

2

B′

A

)]
hδ(u),

(2.47d)
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δE(4)vv =4δ

(
∇ρ∇σ

∂L
∂Rvρvσ

)
=4F vivj

vvδg
vv

,j,i + 16HukulvivjδRukul,j,i

+ 4δΓv
uj,iD

uivj + 4δΓi
uu,iD

vuvu + 4δΓv
uuD

vuuσ
;σ

=

[
8

A
F vv

vv∂i∂i + 8H(1)uuvv (2A∂i∂i∂j∂j + (d− 1)B′∂i∂i)

+ 8H(2)uuvv (2A∂i∂i∂j∂j +B′∂i∂i)− 4Duv∂i∂i + 4DuvuvA

B
∂i∂i

− 2(d− 1)
B′

A
Duv −

(
8
A′

A
+ 2(d− 1)

B′

B

)
Duvuv + 8

A′

A2
F uvuv

uv

+ 4(d− 1)
B′

B2
F (2)uvuv − 16

(
2A′′ − A′2

A

)
Huvuvuvuv

− 32(d− 1)

(
B′2

4B
−B′′

)
H(3)uvuvuv + 4(d− 1)(d− 2)

B′2

A
H(4)uvuv

]
hδ(u).

(2.47e)

In arriving at this, it is important that we use the distributional identity uδ′(u) = −δ(u)

(see Footnote 10). The δ-function sets u = 0 so the quantities are all evaluated on

the horizon. In deriving (2.47), it is useful to note the following simplifying properties.

First, in the background solution, every extra v-index downstairs (beyond those paired

with a u-index downstairs or a v-index upstairs) costs a factor of u. Similarly, a single

i-type index cannot contribute in the background solution since it must come paired with

another such index to form a Kronecker delta.

To work out the second term on the right-hand side of (2.46), we find an expression

for Euv in the background solution on the horizon:

Euv = E(1)uv + E(2)uv + E(3)uv + E(4)uv, (2.48a)
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where

E(1)uv =− L
A
, (2.48b)

E(2)uv =
2Cuv

A2
, (2.48c)

E(3)uv =2(d− 1)
B′

A
Duv − 4A′

A
Duvuv, (2.48d)

E(4)uv =
8A′

A2
F uvuv

uv + 4(d− 1)B′F (2)uvuv − 16

(
2A′′ − A′2

A

)
Huvuvuvuv

+ 16(d− 1)

(
2B′′ − B′2

2

)
H(3)uvuvuv + 4(d− 1)(d− 2)

B′2

A
H(4)uvuv

+ 2

(
4A′

A
+ (d− 1)B′

)
Duvuv − 2(d− 1)

B′

A
Duv.

(2.48e)

Finally, collecting all the terms into (2.46) and plugging in the ansatz for h(x) yields

lim
r→∞

1

4h(x)
δEv

u

∣∣∣∣
h(x)∼ e−µr

r#

≡ δ(u)fSW(µ) = 0, (2.49)

where we have taken the large-r limit and neglected higher-order terms in 1/r, and

fSW(µ) =
Cuv

A2
0

+

(
2A1

A0

+
d− 1

2
B1

)
Duvuv − (d− 1)B1F

(2)uvuv

− 2A1

A2
0

F uvuv
uv + (d− 1)

B1

A2
0

(F uu
uu + F vv

vv) +
Guuvv

A3
0

+ (d− 1)2
B2

1

A0

Huuvv + 2(d− 1)

(
B2

1 − 4B2

)
H(3)uvuvuv

− (d− 1)(d− 2)
B2

1

A0

H(4)uvuv + 4

(
2A2 −

A2
1

A0

)
Huvuvuvuv

+

(
−2Duv + A0D

uvuv +
2

A0

(F uu
uu + F vv

vv) + 4(d− 1)B1H
uuvv

)
µ2

+ 4A0

(
H(1)uuvv +H(2)uuvv

)
µ4 (2.50)
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is a function of quantities on the horizon through imposing δ(u). This is a quartic11

equation for µ and a quadratic equation for µ2. The correct root is the one that is

positive and continuously connected to the unperturbed Einstein gravity result given in

Eq. (2.17). We then extract the butterfly velocity vB from (2.15).

2.2.3 The entanglement wedge method

Let us now move on to the entanglement wedge method. As reviewed in Section 2.1.2,

our objective is to find the size of the smallest spherical boundary region whose entan-

glement wedge encloses a probe particle falling into the black hole.

We will work in the same coordinate system as used for the shockwave method. This

will make it easier to see the matching with the shockwave result, but at the expense

of making the time translation symmetry slightly less explicit. The metric is the planar

black hole given by

ds2 = 2A(uv)dudv +B(uv)dxidxi. (2.51)

We would now like to derive the RT equation for a spherical boundary region in this

background using (2.23). Before we proceed, let us make the following simplifying obser-

vations:

1. Entanglement surfaces anchored to a single boundary can never penetrate the hori-

zon, so we can choose to work in one of the exterior patches and exploit the time

translation symmetry. Because of this symmetry, we only need to look for the RT

surface rather than the HRT surface. This means we can restrict to the u = −v

hypersurface in order to get the spatial profile of the entanglement surface. This is

the t = 0 surface in the original (t, z, xi) coordinates.

11It is quartic because we are considering f(Riemann) theories, which have only up to four derivatives
acting on a single factor of the metric in the equations of motion (2.43).
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2. Since we are interested in the near-horizon limit, the butterfly velocity can be

calculated by extremizing the entropy functional SEE with respect to a candidate

RT surface defined by uv = −ϵs(x)2 to linear order in ϵ. Since u = −v, we can

consider each factor of u or v as contributing a factor of
√
ϵ.

3. The entropy functional SEE given in Eq. (2.23) is only accurate at second order in

the extrinsic curvature K and its derivatives, but this is sufficient to determine the

butterfly velocity. In particular, higher-order terms in K and its derivatives are

suppressed by additional powers of ϵ, and can thus be neglected in the near-horizon

limit.

4. The ελ1λ2 term in Eq. (2.23) vanishes when restricting to RT surfaces. To see this,

go to a coordinate system where the time translation symmetry is manifest (so ∂t

is the timelike Killing vector field), and note that Kλρσ vanishes if λ = t but ελ1λ2

vanishes unless one of λ1 and λ2 is t.

5. We can write Kλ1ρ1σ1Kλ2ρ2σ2n
λ1λ2 = K2ρ1σ1K2ρ2σ2 , where ‘2’ denotes the direction

of the second normal vector (which is orthogonal to the t direction), i.e., K2ρσ =

hµρh
ν
σ∇µn

(2)
ν , where hµν is the projector onto the codimension-2 surface. This is a

simplification due to the first observation above: the extrinsic curvature K1ρσ ≡

Ktρσ = 0 because of the time reflection symmetry at t = 0.

Implementing these simplifications and writing SEE = 2π
∫
dd−1y

√
γLEE, we have

LEE =− ∂L
∂Rµρνσ

εµρενσ

− ∂2L
∂Rµ1ρ1ν1σ1∂Rµ2ρ2ν2σ2

2K2ρ1σ1K2ρ2σ2 (nµ1µ2nν1ν2 + εµ1µ2εν1ν2) .

(2.52)

We call the second term the extrinsic curvature term.
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The non-zero components of the Riemann tensor in the background solution are again

given by (2.40) but with h set to zero, i.e., without the shockwave. With our candidate

entanglement surface defined on uv = −ϵs(x)2, the components of the two normals are

then given by

n(1)
u =

√
vA(uv)

2u
, n(2)

u =
−v√

2uv/A(uv) + 4ϵ2s2sjsj/B(uv)
,

n(1)
v =

√
uA(uv)

2v
, n(2)

v =
−u√

2uv/A(uv) + 4ϵ2s2sjsj/B(uv)
,

n
(1)
i = 0, n

(2)
i =

−2ϵssi√
2uv/A(uv) + 4ϵ2s2sjsj/B(uv)

,

(2.53)

where si stands for ∂is(x). In deriving this, we used the fact that t is a function of u/v,

n(1) ∼ dt, and n(2) ∼ df where f = uv + ϵs2.

Next, we need the following tensors, defined by

nµν = −n(1)
µ n(1)

ν + n(2)
µ n(2)

ν , (2.54)

εµν = n(1)
µ n(2)

ν − n(2)
µ n(1)

ν . (2.55)

To linear order in ϵ, the non-zero components of εµν are given by

εuv = A0 − ϵ
(
s2A1 − A2

0sjsj
)
,

εui =

√
−ϵ v
u

A0si +O(ϵ3/2),

εvi =

√
−ϵ u
v

A0si +O(ϵ3/2).

(2.56)

It turns out that we will only need theO(1) term in nµν , and the only non-zero component

at this order is

nuv = A0 +O(ϵ). (2.57)
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We will also need the extrinsic curvatures. To leading order, the only non-zero component

is

K2ij =

√
−ϵ
2A0

(−B1δijs+ A0sij) . (2.58)

We can now derive the contributions to SEE at linear order in ϵ. For any quantity

X, we denote the linear order coefficient in a Taylor expansion in ϵ by ∆X. Then

∆SEE = 2π
∫
dd−1y∆(

√
γLEE) is given by

∆(
√
γLEE) ≡ (∆

√
γ)L̄EE +

√
γ̄
(
∆L(1)

EE +∆L(2)
EE +∆L(3)

EE

)
, (2.59)

L̄EE = −Dµρνσε̄µρε̄νσ, (2.60)

∆L(1)
EE = −ε̄µρε̄νσ∆

(
∂L

∂Rµρνσ

)
, (2.61)

∆L(2)
EE = −∆(εµρενσ)D

µρνσ, (2.62)

∆L(3)
EE = −∆(2K2ρ1σ1K2ρ2σ2) (n̄µ1µ2n̄ν1ν2 + ε̄µ1µ2 ε̄ν1ν2)H

µ1ρ1ν1σ1µ2ρ2ν2σ2 , (2.63)

where the barred quantities are evaluated on the horizon at ϵ = 0. Note that quantities

such as Dµρνσ and Hµ1ρ1ν1σ1µ2ρ2ν2σ2 do not need to have bars because they are already

defined to be evaluated on the horizon. The last piece is the only contribution from the

extrinsic curvature term of SEE since K2ij = O(
√
ϵ).

The determinant of the induced metric is given by

√
γ = 1− ϵ

(
A0sjsj +

d− 1

2
B1s

2

)
+O(ϵ2), (2.64)

which can be derived by substituting uv = −ϵs(x)2 into the metric and expanding the

identity det expM = expTrM to linear order. Then

1

4A2
0

(∆
√
γ)L̄EE =

(
A0sjsj +

d− 1

2
B1s

2

)
Duvuv, (2.65)
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where we have used the fact that only εuv ̸= 0 at zeroth order.

For the next term, we need

∆

(
∂L

∂Rµρνσ

)
= Hµρνσµ′ρ′ν′σ′

∆Rµ′ρ′ν′σ′ + 2F µρνσ
uv∆g

uv + F µρνσ
ij∆g

ij, (2.66)

guv =
1

A(−ϵs2) =
1

A0

+ ϵ
A1

A2
0

s2 +O(ϵ2), (2.67)

gij =
δij

B(−ϵs2) = δij
(
1 + ϵB1s

2 +O(ϵ2)
)
. (2.68)

We also notice that H vanishes if the numbers of lower u and v indices do not match

(each upper u is considered one lower v and vice versa). Then we have

1

4A2
0

√
γ̄∆L(1)

EE =

[
4

(
2A2 −

A2
1

A0

)
Huvuvuvuv − 4

(
2B2 −

1

2
B2

1

)
δijH

uvuvuivj

+
B2

1

2A0

(δilδjk − δikδjl)H
uvuvijkl − 2A1

A2
0

F uvuv
uv −B1δ

ijF uvuv
ij

]
s2. (2.69)

Using the expressions for εµν above, the third term is simply given by

1

4A2
0

√
γ̄∆L(2)

EE = 2Duvuv

(
A1

A0

s2 − A0sjsj

)
− 2Duivjsisj. (2.70)

In the last term ∆L(3)
EE, we notice that only K2ij has low enough order in ϵ to contribute,

so we have

1

4A2
0

√
γ̄∆L(3)

EE = Huiujvkvl

[
B2

1

A0

δijδkls
2 − 2B1s(sijδkl + sklδij) + 4A0sijskl

]
. (2.71)

Finally, putting everything together, the total contribution to the entropy functional at
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linear order in ϵ is given by

1

4A2
0

∆(
√
γLEE)

=

[(
2A1

A0

+
d− 1

2
B1

)
Duvuv −B1δ

ijF uvuv
ij −

2A1

A2
0

F uvuv
uv

+
B2

1

A0

δijδklH
uiujvkvl + 2

(
B2

1 − 4B2

)
δijH

uvuvuivj

+
B2

1

2A0

(δilδjk − δikδjl)H
uvuvijkl + 4

(
2A2 −

A2
1

A0

)
Huvuvuvuv

]
s2

−
(
A0D

uvuvδij + 2Duivj
)
sisj − 2Huiujvkvl

[
B1s (sijδkl + sklδij)− 2A0sijskl

]
.

(2.72)

To obtain the butterfly velocity, we vary ∆SEE = 2π
∫
dd−1y∆(

√
γLEE) with respect

to s(x) and then substitute our ansatz s(x) ∼ eµ̃r

r#
from (2.26), keeping only leading terms

in 1/r. It is not hard to see that the number of xi-derivatives on s will be the number of

factors of µ̃. From this, we obtain a polynomial equation for µ̃:

lim
r→∞

1

16πA2
0s(x)

δ (∆SEE)

δs(x)

∣∣∣∣
s(x)∼ eµ̃r

r#

≡ fEE(µ̃) = 0, (2.73)

where

fEE(µ̃) =

(
2A1

A0

+
d− 1

2
B1

)
Duvuv − (d− 1)B1F

(2)uvuv − 2A1

A2
0

F uvuv
uv

+ (d− 1)2
B2

1

A0

Huuvv + 2(d− 1)

(
B2

1 − 4B2

)
H(3)uvuvuv

− (d− 1)(d− 2)
B2

1

A0

H(4)uvuv + 4

(
2A2 −

A2
1

A0

)
Huvuvuvuv

+

(
2Duv + A0D

uvuv − 4B1(d− 1)Huuvv

)
µ̃2 + 4A0

(
H(1)uuvv +H(2)uuvv

)
µ̃4. (2.74)

Notice that all coefficients only involve quantities evaluated on the horizon; this is true

as well in the shockwave calculation, where it is enforced by the presence of δ(u). Similar
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to the shockwave result (2.50), this is a quartic equation for µ̃ and a quadratic equa-

tion for µ̃2, from which we choose the positive root continuously connected to the result

for Einstein gravity (2.17). The butterfly velocity ṽB is then obtained from µ̃ using (2.28).

Before proceeding to show that the two butterfly velocities we have derived agree, let

us pause for a moment and use the results from this and the previous subsection in two

explicit examples.

First, consider the following four-derivative correction to Einstein gravity:

L ⊃ RµνρσR
µνρσ = RµνρσRµ′ν′ρ′σ′gµµ

′
gνν

′
gρρ

′
gσσ

′
. (2.75)

The non-vanishing tensor components are given by

Cuv = 2(Ruvuv)
2(guv)3 + 4RuivjRvkulg

uvδikδjl
∣∣
u=0

=
8A2

1

A3
0

+ 2(d− 1)
B2

1

A0

,

Guuvv = 8RuivjRukvlδ
ikδjl + 8RuvuvRuvvu(g

uv)2
∣∣
u=0

= 2(d− 1)B2
1 −

8A2
1

A2
0

,

Duvuv = 2Ruvuv|u=0 =
2A1

A4
0

, Duivj = 2Ruivj|u=0 = −B1

A2
0

δij,

F uvuv
uv =

4

A3
0

Ruvuv

∣∣∣∣
u=0

=
4A1

A3
0

, F uivj
uv = 2Ruivjguv

∣∣
u=0

= −B1

A0

δij,

F uiuj
uu = F vivj

vv = 4Ruivjguv|u=0 = −2B1

A0

δij,

Huvuvuvuv =
1

2
(guv)4|u=0 =

1

2A4
0

, Huiujvkvl =
1

4A2
0

(δikδjl + δilδjk). (2.76)

Substituting these expressions into either (2.50) or (2.74) reproduces the result in [18].

The second example is a top-down theory in AdS5 obtained by dimensionally reducing

10-dimensional type IIB supergravity on S5. Its bulk Lagrangian contains the leading-
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order α′ correction

L ⊃ γ

2

(
CαβγδCµβγνC

ρσµ
α Cν

ρσδ +
1

2
CαδβγCµνβγC

ρσµ
α Cν

ρσδ

)
, (2.77)

where γ ∼ α′3 is the higher-derivative coupling constant and C is the Weyl tensor.

Applying either (2.50) or (2.74) reproduces the butterfly velocity calculated in [39] for

this theory.12

2.3 Equivalence of the two butterfly velocities

In Section 2.2, we derived general expressions for the butterfly velocities from two

distinct holographic calculations — the shockwave method and the entanglement wedge

method. More specifically, we have obtained polynomial equations for the parameters µ

and µ̃ given by fSW(µ) = 0 and fEE(µ̃) = 0, respectively.

In both cases, to solve for the value of µ (or µ̃) we treat the higher-derivative couplings

perturbatively and choose the positive root that is continuously connected to the value

in Einstein gravity. Recalling that the butterfly velocities are related to these parameters

via (2.15) and (2.28), it then suffices to prove that fSW and fEE are the same function.

With fSW given in (2.50) and fEE given in (2.74), the two functions are the same if

the following two equations hold in the background solution and on the u = 0 horizon:

Cuv + guvGuuvv − 2δijRuivj (F
uu

uu + F vv
vv) = 0, (2.78a)

(F uu
uu + F vv

vv)− 2guvD
uv − 8guvδ

ijRuivjH
uuvv = 0. (2.78b)

In the rest of this section, we use ‘on the background’ to mean ‘in the background solution

and on the u = 0 horizon’. In writing the above two equations, we have used the fact

12We thank Sašo Grozdanov for bringing this result to our attention.
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that guv = A−1
0 and δijRuivj = −1

2
(d− 1)B1 on the background. We will refer to (2.78a)

and (2.78b) as the first and second relations, respectively.

We will now prove the above relations for any given choice of Lagrangian involving

contractions of Riemann tensors. To that end, it is useful to think of the terms in (2.78a)

and (2.78b) as differential operators acting on the Lagrangian L. For example, Cuv can

be thought of as the operator

Ĉuv =
∂

∂guv
(2.79)

acting on the Lagrangian L with the result evaluated on the background. A useful

quantity to define is

R̃ab =
1

d− 1
δijRaibj, (2.80)

which we use to rewrite

δkl
∂

∂Rakbl

=
1

4

∂

∂R̃ab

, (2.81)

where the factor 1/4 is a symmetry factor from the Riemann tensor. For example, when

we act ∂/∂R̃uu on a function of Rµρνσ such as L, we take the derivative with respect

to R̃uu while holding the traceless part of Ruiuj fixed. Now we can rewrite (2.78a) and

(2.78b) by defining two operators

Ô1 =
∂

∂guv
+ guv

∂2

∂guu∂gvv
− 1

2
R̃uv

(
∂2

∂R̃uu∂guu
+ (u→ v)

)
, (2.82a)

Ô2 = R̃uv
∂

∂R̃uv

+ R̃2
uv

∂2

∂R̃uu∂R̃vv

− 1

2
guvR̃uv

(
∂2

∂R̃uu∂guu
+ (u→ v)

)
. (2.82b)

Our goal is then to prove that

ÔiL = 0, i = 1, 2 (2.83)

on the background. This will be the goal of the remainder of this section.

42



Matching of butterfly velocities Chapter 2

For any Lagrangian composed of a covariant combination of an arbitrary number of

the Riemann tensor and inverse metric, we expand it by decomposing the sum over any

dummy index into two sums, one over {u, v} and the other over the xi directions. This

can be written in the following schematic form

L =
∑

L, (2.84)

where L is an object of the form

L = gAA · · · gAARAAAA · · ·RAAAARAIAI · · ·RAIAIX I···I
A···A. (2.85)

Here, A denotes any a-type index labelling either u or v, I denotes any i-type index,

and the tensor X is a product of any number of inverse metric and Riemann tensor

components not explicitly shown in (2.85), i.e., gII , gAI , RIIII , RAIII , RAAII , and RAAAI .

Different A (or I) indices may specialize to different a-type (or i-type) indices. As a

concrete example, (2.84) for L = gµνgρσRµρνσ can be written as L = gabgcdRacbd +

gabgijRaibj + · · · where the first term gabgcdRacbd is of the form gAAgAARAAAA and the

second term gabgijRaibj is of the form gAARAIAIg
II , with a, b, c, · · · ∈ {u, v} and i, j, k, . . .

labelling transverse coordinates. Notice that all a-type and i-type indices are contracted.

As we are only interested in ÔiL on the background, we may simplify (2.85) signifi-

cantly by dropping those terms that vanish eventually. In particular, gAI , RIIII , RAIII ,

RAAII , and RAAAI all vanish on the background.13 As the derivatives in Ôi do not involve

these components, if L in (2.85) contains any of these components, it would vanish after

acting with Ôi and evaluating on the background. Therefore, we can restrict L to those

that do not contain any of these components. Similarly, the traceless part Raibj − R̃abδij

13This can be verified by setting h = 0 and u = 0 in (2.40).
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of Raibj vanishes on the background, and as the derivatives in Ôi do not involve this

traceless part, we can restrict L to those that do not contain the traceless part, and thus

we may replace all instances of RAIAI in (2.85) with R̃AA. Therefore, we replace (2.85)

with

L = gAA · · · gAARAAAA · · ·RAAAAR̃AA · · · R̃AA, (2.86)

up to a multiplicative constant that we do not need to keep track of.

Now define index loops by connecting the two indices of gab, the two indices of R̃ab,

the first two indices of Rabcd, and its last two indices. For example, the term gabR̃ab has a

single (index) loop. In general, L contains one or more loops, and the two antisymmetric

pairs of indices in any Rabcd = R[ab][cd] need not be part of the same loop. In order for

a loop not to vanish on the background, it must consist of alternating u and v: either

(uvuv · · ·uv) or (vuvu · · · vu). For example, gabgcdgefRafbcR̃de consists of a single loop

(abcdef), with non-vanishing contributions on the background

guvguvguvRuvvuR̃vu + (u↔ v), (2.87)

while gabgcdgefRadbcR̃ef has the two loops (abcd) and (ef), with non-vanishing contribu-

tions on the background

guvguvguvRuvvuR̃uv + guvguvgvuRuvvuR̃vu + (u↔ v). (2.88)

It turns out that it is sufficient to prove ÔiL = 0 for L made of a single loop, because

even for L made of multiple loops, Ôi must act entirely on a single loop to have a chance

to be non-trivial: in particular, if we act the two derivatives in any second-derivative

term of (2.82) — such as ∂2/∂R̃uu∂g
uu — on two different loops, one of the two loops

would have to contain an extra factor of guu, R̃vv, Rvvab, or Rabvv, thus vanishing on the
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background.14

Therefore, from now on we consider a general L made of a single loop. It may be

written as

L = ga1b1ga2b2 · · · ganbnTa1b1a2b2···anbn (2.89)

where n is the number of gab factors and the tensor T is a product of a suitable number

of Rabcd and R̃ab.
15 Our goal is thus to prove

ÔiL = 0, i = 1, 2, (2.90)

on the background for any L of the form (2.89). The general statement (2.83) then

follows.

Before proceeding, let us introduce some useful terminology. For simplicity, we re-

name the gab factors appearing in (2.89) so that the loop is precisely (a1b1a2b2 · · · anbn).

For any neighboring pair of inverse metrics gakbk , gak+1bk+1 (where k = 1, 2, · · · , n and

an+1 ≡ a1, bn+1 ≡ b1), the bk, ak+1 indices are either (1) contracted with some Rbkak+1cd

or Rcdbkak+1
, or (2) contracted with R̃bkak+1

. In the first case, we say that there is an

R-contraction between gakbk and gak+1bk+1 , while in the second case, we say that there

is an R̃-contraction between gakbk and gak+1bk+1 . More generally, for any k ≤ l we say

that there is an R-contraction between gakbk and galbl if there is an R-contraction be-

tween any neighboring pair among gakbk , gak+1bk+1 , · · · , galbl , and we say that there is an

R-contraction not between gakbk and galbl if there is an R-contraction between any of

the other neighboring pairs (i.e., among ga1b1 , · · · , gakbk or gal+1bl+1 , · · · , ganbn). Similar

statements apply for R̃-contractions. Note that the number of R-contractions and R̃-

14For R̃vv this is because it is proportional to u2, and thus vanishes on the horizon.
15Although the two antisymmetric pairs of indices in Rabcd need not be part of the same loop, this

does not affect our analysis because Ôi does not involve Rabcd at all; there is no harm in including the
other antisymmetric pair of indices in L even if they are not in the same loop.
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contractions add up to n. As an example, in the loop ga1b1ga2b2ga3b3Ra1b3b1a2R̃b2a3 , there

is an R-contraction between ga3b3 and ga1b1 , as well as between ga1b1 and ga2b2 ; and there

is an R̃-contraction between ga2b2 and ga3b3 .

First relation We now prove the first relation

Ô1L = 0 (2.91)

on the background for any L of the form (2.89).

First, consider Ô
(1)
1 L where

Ô
(1)
1 ≡ ∂

∂guv
. (2.92)

On the background, we have

Ô
(1)
1 L = Ô

(1)
1 L

(1)
1 (2.93)

where L
(1)
1 is the sum of the two terms in (2.89) where the loop (a1b1a2b2 · · · anbn) consists

of alternating u and v: either (uvuv · · ·uv) or (vuvu · · · vu). These two terms differ by

a factor of (−1)m where m is the total number of R-contractions,16 because R̃uv = R̃vu

but exchanging u and v in each R-contraction (i.e., each antisymmetric pair of indices in

Rabcd) costs a minus sign. In other words,

L
(1)
1 = guv · · · guvTuv···uv + gvu · · · gvuTvu···vu

= [1 + (−1)m] (guv)nTuv···uv

(2.94)

and

Ô
(1)
1 L =

1

2
nguvL

(1)
1 , (2.95)

16Note thatm need not be an even integer because the two antisymmetric pairs of indices in a Riemann
tensor can be in different loops.
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where the factor of 1/2 comes from the symmetry of gab.

Second, consider Ô
(2)
1 L where

Ô
(2)
1 ≡ guv

∂2

∂guu∂gvv
. (2.96)

On the background, we have

Ô
(2)
1 L = Ô

(2)
1 L

(2)
1 (2.97)

where L
(2)
1 is the sum of all terms in (2.89) where the loop (a1b1a2b2 · · · anbn) is alternating

except for two ‘defects’ at gakbk = guu and galbl = gvv, for any k ̸= l. The two derivatives

in Ô
(2)
1 act precisely on these two defects. If k < l, compared to the alternating loop

(uvuv · · ·uv) we are exchanging u and v in all R- and R̃-contractions between gakbk and

galbl . Since each R-contraction costs a minus sign and each R̃-contraction gives a plus

sign, such a loop contributes

(−1)sklguugvv(guv)n−2Tuv···uv (2.98)

to L
(2)
1 , where skl (sometimes also written as sk,l) is defined to be the number of R-

contractions between gakbk and galbl . By definition we have skl = slk and skk = 0, with

no summation implied.

If k > l, compared to the alternating loop (uvuv · · ·uv) we are exchanging u and

v in all R- and R̃-contractions not between gakbk and galbl . Since there is a total of

m R-contractions and thus the number of R-contractions not between gakbk and galbl is

m− skl, such a loop contributes

(−1)m−sklguugvv(guv)n−2Tuv···uv (2.99)
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to L
(2)
1 .

Combining the above two cases, we find

L
(2)
1 =

∑
k<l

(−1)sklguugvv(guv)n−2Tuv···uv +
∑
k>l

(−1)m−sklguugvv(guv)n−2Tuv···uv

= [1 + (−1)m]
∑
k<l

(−1)sklguugvv(guv)n−2Tuv···uv

(2.100)

and

Ô
(2)
1 L = [1 + (−1)m]

∑
k<l

(−1)skl(guv)n−1Tuv···uv =
∑
k<l

(−1)sklguvL
(1)
1 . (2.101)

Third, consider Ô
(3)
1 L where

Ô
(3)
1 ≡ −1

2
R̃uv

∂2

∂R̃uu∂guu
. (2.102)

On the background, we have

Ô
(3)
1 L = Ô

(3)
1 L

(3)
1 (2.103)

where L
(3)
1 is the sum of all terms in (2.89) where the loop (a1b1a2b2 · · · anbn) is alternating

except for two ‘defects’ at gakbk = guu and R̃blal+1
= R̃uu, for any k, l, whether or not they

are equal. If k ≤ l, compared to the alternating loop (uvuv · · ·uv) we are exchanging u

and v in all R- and R̃-contractions between gakbk and galbl . Such a loop contributes

(−1)skl + (−1)sk,l+1

2
guu(guv)n−1 R̃uu

R̃uv

Tuv···uv (2.104)

to L
(3)
1 . This expression is nice because it applies to any l satisfying k ≤ l, whether or

not there is actually an R̃-contraction between galbl and gal+1bl+1 . If there is, we have

sk,l+1 = skl and (2.104) gives the correct contribution. If not, there must be an R-
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contraction instead between galbl and gal+1bl+1 , so we find sk,l+1 = skl + 1 and (2.104)

vanishes.

If k > l, compared to the alternating loop (uvuv · · ·uv) we are exchanging u and v

in all R- and R̃-contractions not between gakbk and gal+1bl+1 . Such a loop contributes

(−1)m−skl + (−1)m−sk,l+1

2
guu(guv)n−1 R̃uu

R̃uv

Tuv···uv (2.105)

to L
(3)
1 . Again, this expression vanishes if there is actually an R-contraction between galbl

and gal+1bl+1 .

Combining the above two cases, we find

L
(3)
1 =

[∑
k≤l

(−1)skl + (−1)sk,l+1

2
+
∑
k>l

(−1)m−skl + (−1)m−sk,l+1

2

]
guu(guv)n−1 R̃uu

R̃uv

Tuv···uv

= [1 + (−1)m]

[
n

2
+
∑
k<l

(−1)skl

]
guu(guv)n−1 R̃uu

R̃uv

Tuv···uv (2.106)

and

Ô
(3)
1 L =− 1

2
[1 + (−1)m]

[
n

2
+
∑
k<l

(−1)skl

]
(guv)n−1Tuv···uv

=− 1

2

[
n

2
+
∑
k<l

(−1)skl

]
guvL

(1)
1 .

(2.107)

Finally, consider Ô
(4)
1 L where

Ô
(4)
1 = −1

2
R̃uv

∂2

∂R̃vv∂gvv
. (2.108)

This can be obtained from Ô
(3)
1 L by exchanging u with v. This leads to

Ô
(4)
1 L = (−1)mÔ

(3)
1 L = Ô

(3)
1 L. (2.109)
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Combining all four pieces of Ô1, we find

Ô1L =
(
Ô

(1)
1 + Ô

(2)
1 + Ô

(3)
1 + Ô

(4)
1

)
L

=

(
n

2
+
∑
k<l

(−1)skl − 2
1

2

[
n

2
+
∑
k<l

(−1)skl

])
guvL

(1)
1 = 0,

(2.110)

thus establishing the first relation.

Second relation We now prove the second relation

Ô2L = 0 (2.111)

on the background. The calculation is similar to that of the first relation.

First, consider Ô
(1)
2 L where

Ô
(1)
2 = R̃uv

∂

∂R̃uv

. (2.112)

On the background, we have

Ô
(1)
2 L = Ô

(1)
2 L

(1)
2 (2.113)

where L
(1)
2 is equal to L

(1)
1 in (2.94). This gives

Ô
(1)
2 L =

1

2
(n−m)L

(1)
2 , (2.114)

where n − m is the number of R̃-contractions in the loop and the factor of 1/2 comes

from the symmetry of R̃ab.

Second, consider Ô
(2)
2 L where

Ô
(2)
2 = R̃2

uv

∂2

∂R̃uu∂R̃vv

. (2.115)
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On the background, we have

Ô
(2)
2 L = Ô

(2)
2 L

(2)
2 (2.116)

where L
(2)
2 is the sum of all terms in (2.89) where the loop (a1b1a2b2 · · · anbn) is alternating

except for two defects at R̃bkak+1
= R̃uu and R̃blal+1

= R̃vv, for any k ̸= l. If k < l,

compared to the alternating loop (uvuv · · ·uv) we are exchanging u and v in all R- and

R̃-contractions between gak+1bk+1 and galbl . Such a loop contributes

(−1)sk+1,l + (−1)skl

2

(−1)sk+1,l + (−1)sk+1,l+1

2
(−1)sk+1,l(guv)n

R̃uu

R̃uv

R̃vv

R̃uv

Tuv···uv (2.117)

to L
(2)
2 . As with (2.104), this expression applies to any l satisfying k < l, regardless of

whether the bk, ak+1 and bl, al+1 indices are contracted to some R̃bkak+1
and R̃blal+1

.

If k > l, compared to the alternating loop (uvuv · · ·uv) we are exchanging u and v

in all R- and R̃-contractions not between gakbk and gal+1bl+1 . Such a loop contributes

(−1)m−sl+1,k + (−1)m−slk

2

(−1)m−sl+1,k + (−1)m−sl+1,k+1

2
(−1)m−sl+1,k(guv)n

R̃uu

R̃uv

R̃vv

R̃uv

Tuv···uv

(2.118)

to L
(3)
2 .

Using the sum relations that we show in Appendix B, the prefactors in (2.117) and

(2.118) after summing over k, l simplify to

∑
k<l

(−1)sk+1,l + (−1)skl

2

(−1)sk+1,l + (−1)sk+1,l+1

2
(−1)sk+1,l =

m

2
+
∑
k<l

(−1)skl (2.119a)

and

∑
k>l

(−1)m−sl+1,k + (−1)m−slk

2

(−1)m−sl+1,k + (−1)m−sl+1,k+1

2
(−1)m−sl+1,k
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= (−1)m

[
m

2
+
∑
k<l

(−1)skl

]
. (2.119b)

Combining the two cases, we find

Ô
(2)
2 L = [1 + (−1)m]

[
m

2
+
∑
k<l

(−1)skl

]
(guv)nTuv···uv =

[
m

2
+
∑
k<l

(−1)skl

]
L
(1)
2 . (2.120)

Finally, consider O
(3)
2 L and O

(4)
2 L where

Ô
(3)
2 ≡ −1

2
guvR̃uv

∂2

∂R̃uu∂guu
, Ô

(4)
2 ≡ −1

2
guvR̃uv

∂2

∂R̃vv∂gvv
. (2.121)

They were worked out in (2.107) and (2.109), respectively. We therefore simply quote

the results here:

Ô
(3)
2 L = Ô

(4)
2 L = −1

2

[
n

2
+
∑
k<l

(−1)skl

]
L
(1)
2 . (2.122)

Combining all four pieces of Ô2, we find

Ô2L =
(
Ô

(1)
2 + Ô

(2)
2 + Ô

(3)
2 + Ô

(4)
2

)
L

=

(
1

2
(n−m) +

[∑
k<l

(−1)skl +
m

2

]
−
[
n

2
+
∑
k<l

(−1)skl

])
L
(1)
2 = 0.

(2.123)

We have therefore proven that the two functions fSW and fEE are the same for any

f(Riemann) theory, as claimed. This immediately implies our main result vB = ṽB via

(2.15) and (2.28).
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2.4 Discussion

In this paper, we have shown that the butterfly velocity can be calculated using

two distinct methods in holography: the shockwave method or the entanglement wedge

method. We proved that the two methods give the same result for any f(Riemann)

theory by direct computation. To find the butterfly velocity, we have solved the metric

perturbation in the shockwave calculation and the near-horizon shape of extremal surfaces

in the entanglement wedge calculation. In both methods, we have also taken a large-

radius expansion in the transverse directions. After finding general expressions using both

methods, their matching was not immediate. Nevertheless, exploiting the symmetry

of the background solution on the horizon, we have shown that the difference indeed

vanishes.

While our calculations show explicitly that the two methods are equivalent for a large

class of theories, a deeper and more intuitive understanding of the equivalence remains an

interesting open question. In particular, the holographic entanglement entropy formula

was derived by evaluating the gravitational action on a Euclidean conical geometry and

varying it with respect to the conical angle [40, 29, 30, 31, 32], whereas the shockwave

equation is derived in a Lorentzian spacetime with no conical defects. Furthermore, the

shockwave profile (2.14) is exponentially decreasing in r, but the RT profile (2.26) is

exponentially increasing in r. All these distinctions make the two methods appear very

different, and finding a more direct way to connect them will likely shed light on the

relationship between holographic entanglement and gravitational dynamics in general.

We now describe some potential future directions:
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More general gravitational theories: It would be interesting to see if the equiva-

lence holds beyond f(Riemann) theories. To that end, we have worked out an example

whose Lagrangian depends explicitly on the covariant derivative and found that the two

methods continue to agree. More precisely, the Lagrangian contains

L ⊃ ∇µR∇µR, (2.124)

and we find that its contributions to fSW(µ) and fEE(µ) are equal (in d = 3) and given

by

72B2A1

A4
0

+
8B1A2

A4
0

− 16B1A
2
1

A5
0

− 26B3
1

A3
0

− 24A3

A4
0

− 108A3
1

A6
0

+
64B2B1

A3
0

− 12B2
1A1

A4
0

+
120A2A1

A5
0

− 48B3

A3
0

−
(
8B2

1

A2
0

+
4A2

1

A4
0

+
12B1A1

A3
0

)
µ2 +

(
4B1

A0

+
2A1

A2
0

)
µ4. (2.125)

The holographic entanglement entropy functional for this theory can be found in [33].

This example suggests that the two methods continue to agree in higher-derivative theo-

ries beyond f(Riemann). It would be interesting to prove this generally, including cases

where the gravitational theory is coupled to matter fields with general interactions. It

would also be interesting to understand this better in the context of string theory, perhaps

building on the results of [11, 41].

Beyond the butterfly velocity: It would also be interesting to see if other properties

of the OTOC related to shockwave quantities besides the butterfly velocity can be con-

nected to properties of the entanglement wedge, further strengthening the link between

gravity and entanglement.
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Connections to the Wald entropy: An interesting connection between gravitational

shockwaves and the Wald entropy was found in [42]. It was shown that the shockwave and

microscopic deformations of the Wald entropy were related by a thermodynamic relation

on the horizon. Since our main result establishes a connection between shockwaves and

the generalized entropy (2.23), it would be worth investigating to what extent their result

can be related to ours.

Constraints on higher-derivative couplings: As a potential application of our re-

sults, one could try to understand the constraints on higher-derivative couplings from the

perspective of quantum chaos. To avoid issues related to unitarity and causality at finite

couplings, we have treated the higher-derivative interactions perturbatively. The signs

of these couplings appear constrained by the butterfly velocity. For example, in d = 2

the butterfly velocity equals the speed of light in Einstein gravity. Therefore, requiring it

be subluminal with higher-derivative corrections imposes constraints on the signs of the

couplings. Given our expressions for a large class of higher-derivative theories, it would

be interesting to see if requiring the butterfly velocity be subluminal can provide further

constraints.

Relation to pole-skipping: Throughout the paper we have focused on two methods

of calculating the butterfly velocity — the shockwave method and the entanglement

wedge method. However, it has been suggested that the butterfly velocity (and more

generally the OTOC) is also related to the phenomenon of pole-skipping [43, 44, 45]. In

the gravitational context, this is related to the appearance of special points in Fourier

space of the Einstein equations near the horizon, from which the Lyapunov exponent

and butterfly velocity can be extracted. Although both the pole-skipping calculation

and the shockwave method involve finding solutions to certain metric perturbations, the
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exact details are different. Nevertheless, explicit calculations show that this third way of

calculating the butterfly velocity indeed matches with the first two both in Gauss-Bonnet

gravity and in the presence of the leading α′ correction (2.77) [39]. It would be interesting

to explore their connections further.

Asymptotically flat spacetimes: Finally, both methods we discussed rely only on

the near-horizon geometry and are therefore potentially generalizable beyond AdS space-

times, such as asymptotically flat spacetimes, perhaps along the lines of [46].
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Chapter 3

Covariant pole skipping: bosonic

fields

The out-of-time-order correlator (OTOC), an important quantity containing characteris-

tics of chaos, can be calculated holographically in a shockwave spacetime [7, 8, 9, 10, 11].

For a localized perturbation to a chaotic system at temperature T , the OTOC between

a perturbation W at x = t = 0 and a probe operator V at a later time t behaves as

⟨V (x, t)WV (x, t)W ⟩ ∼ 1− eλL(t−t∗−|x|/vB), (3.1)

where t∗ is called the scrambling time. This defines the Lyapunov exponent, λL, and the

butterfly velocity, vB. For classical bulk gravitational theories, λL saturates the chaos

bound λL ≤ 2πT [17], so they are said to be maximally chaotic. The butterfly velocity,

however, depends on the theory [8, 18, 47, 48, 49, 50].

More recently, it was discovered that the quantities λL and vB may already show up

in features of the energy density retarded Green’s function through a phenomenon called

pole skipping [43, 44, 45]. It was first found numerically for pure Einstein gravity [43] and
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later studied analytically for Einstein gravity with matter [45]. See also [39, 51, 52, 53,

54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66] for holographic and [67, 68, 69, 70, 71, 72]

for boundary studies.

The retarded Green’s function is the relation between a source and its response.

Holographically, the Green’s function of an operator dual to a bulk dynamic field X

(suppressing indices) is given by [73, 74]

GR (ω, k) =

(
lim
r→∞

Π(r;ω, k)|XR

XR (r;ω, k)

)∣∣∣∣
X0=0

, (3.2)

where XR is the bulk solution satisfying Dirichlet boundary condition XR → X0 at

infinity and ingoing wave boundary condition at the horizon, and Π is its conjugate

variable in a radial foliation. In terms of an asymptotic expansion, it is proportional to the

ratio between the coefficient of the normalizable falloff and that of the non-normalizable

falloff. A quasinormal mode, by definition, does not have a non-normalizable divergence,

so the poles of the Green’s function are identified with the quasinormal spectrum.

Generically, XR is uniquely determined from X0, and GR is therefore well-defined.

However, a would-be pole can sometimes get multiplied by a zero, resulting in an ill-

defined limit. This happens at a special frequency and momentum,

ω = iλL, k =
iλL
vB

, (3.3)

where λL and vB are the Lyapunov exponent and the butterfly velocity extracted from

a holographic OTOC calculation (3.1) in Einstein gravity minimally coupled to a large

class of matter fields [43, 45].

To explain this universality, [45] discovered a feature of Einstein’s equation at the

horizon. Expanding metric perturbations around a stationary planar black hole in terms
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of Fourier modes, a particular component of Einstein’s equation evaluated at the horizon

was found to be trivial at (3.3) so that there exists one fewer constraint. This implies an

extra degree of freedom of the ingoing modes and consequently an ambiguity in the bulk

solution XR and in turn the Green’s function GR.

Later it was discovered that pole skipping happens more generally at other locations

and for other types of Green’s functions [52, 53, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 65].

See also [85, 86] for higher-derivative corrections and [87] for a zero-temperature example.

However, unlike the one at (3.3), the other skipped poles are unrelated to chaos.

We put these in the same framework by considering general diffeomorphism invariant

bulk theories with matter fields that are not necessarily minimally coupled. For simplicity,

we only consider bosonic fields and leave a discussion of fermionic fields to the last section.

By defining a weight, we can separate the equations of motion into different groups and

evaluate them in a given order. This allows us to find the frequencies of the skipped poles

and the corresponding momenta in general. This is done in Section 3.1. Furthermore,

we observe a relation between higher-weight pole-skipping frequencies and higher-spin

Lyapunov exponents and use it to justify the removal of a bounded tower of higher spin

fields from consideration in the remaining sections.

In Section 3.2, it is shown that, for general higher-derivative gravitational theories,

the butterfly velocity can be obtained from the highest-weight equation of motion, and it

agrees with the butterfly velocity obtained via a shockwave calculation. This generalizes

the matching for Gauss-Bonnet gravity and Einstein gravity with a string theory correc-

tion at O(α′3) [39]. We also try to explain this matching between pole skipping and chaos

in the same section. By regularizing the metric perturbation at the chaotic skipped pole

with a Gaussian distribution in the frequency Fourier space, we obtain a metric that is

regular at the horizon. Extending it to a Kruskal–Szekeres coordinate patch and taking

the regulator away, we show that this metric perturbation localizes to the past horizon
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in a distributional sense, like the shockwave metric. We end with a summary and a

discussion of potential future directions in Section 3.3.

3.1 General pole-skipping conditions

The metric for a general stationary planar black hole can be written in ingoing

Eddington-Finkelstein coordinates as

ds2 = −f(r)dv2 + 2dvdr + h(r)dxidxi, (3.4)

where f(r0) = 0 at the horizon r = r0 and i = 1, ..., d. The non-vanishing Christoffel

components are given by

Γv
vv =

1

2
f ′, Γv

ij = −1

2
h′δij, Γr

vr = −1

2
f ′,

Γi
rj =

h′

2h
δij, Γr

vv =
1

2
ff ′, Γr

ij = −1

2
fh′δij.

(3.5)

For simplicity, we assume that background matter fields are stationary, isotropic and

homogeneous in xi, and regular at both past and future horizons, like the metric.

Now, if we define a pseudo-weight for any tensor component as the number of lower

v-indices minus that of lower r-indices, where an upper v is considered a lower r and

vice versa, then any background tensor component (ones constructed from the stationary

background metric and matter fields) with positive weight needs to vanish at the horizon.

We prove this next.

In Kruskal–Szekeres coordinates, defined via

U = −e−f ′(r0)(v−2r∗)/2, V = ef
′(r0)v/2, (3.6)
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where dr∗/dr = 1/f(r), one can similarly define a boost weight as the number of lower

V -indices minus that of lower U -indices [37]. Then, the boost symmetry (V 7→ aV ,

U 7→ U/a) requires that a background quantity with boost weight n > 0 must scale like

Un times a function of the product UV , and regularity at the bifurcate horizon requires

this function to be non-singular as UV → 0. Therefore, at the future horizon (U = 0),

this vanishes. Relating this to quantities in ingoing Eddington-Finkelstein coordinates,

using

dv =
2

f ′(r0)

dV

V
, dr =

f(r)

f ′(r0)

(
dV

V
+
dU

U

)
(3.7)

for each lower index V or U of a tensor T , we have (suppressing other indices)

TV =
∂v

∂V
Tv +

∂r

∂V
Tr =

2

f ′(r0)V

(
Tv +

1

2
f(r)Tr

)
(3.8)

and

TU =
∂r

∂U
Tr =

1

U

f(r)

f ′(r0)
Tr. (3.9)

We see that each V -index maps to a v-index and each U -index maps to an r-index (all

lower indices here but upper ones work similarly) up to terms that are of higher order

in f . Given that background quantities with positive boost weight and f vanish at the

horizon, we arrive at the conclusion that the same is true if we replace boost weight with

pseudo-weight. From now on, we no longer need to mention boost weight and will refer

to pseudo-weight simply as weight.1

1The name pseudo-weight emphasizes the fact that it does not correspond to any symmetry trans-
formation, unlike boost weight which characterizes how a tensor component transforms under the boost
symmetry. In fact, the boost transformation is just a translation in v in ingoing Eddington-Finkelstein
coordinates, and tensor components in this coordinate system do not transform non-trivially under it.
The property we need for positive-pseudo-weight quantities is inherited from a more fundamental feature
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To describe ingoing quasinormal modes at the horizon, for any dynamic field X, we

expand its perturbation around the stationary background in the Fourier space as

δX(r, v, x) = δX(r) e−iωv+ikx. (3.10)

For Einstein gravity, writing Einstein’s equation as Eµν = Tµν , a particular component

under perturbation, δEr
v , is proportional to

(
k2 − i

d

2
ωh′
)
δgvv + (ω − i2πT ) [ωδgii + 2kiδgvi] . (3.11)

On the horizon, for matter perturbations that are regular enough, the stress tensor

component δT r
v = 0 [45], and prefactors in δEr

v can be tuned to zero by choosing (3.3).

As a consequence, Einstein’s equation provides one fewer constraint, which serves as

an explanation for the universal behaviour of the energy density Green’s function with

low-spin matter fields coupled to Einstein gravity [45].

Now consider an arbitrary diffeomorphism invariant theory defined with a local action

S = Sg + SM where the gravitational part Sg is given by

Sg =

∫
dd+2x

√−gL (g,R,∇,Φ) , (3.12)

and SM is part of the action with only minimally coupled matter fields, artificially sep-

arated from the rest for later convenience. Here L can be an arbitrary function of the

metric, g, and an arbitrary number of bosonic matter fields collectively denoted as Φ.

More specifically, L can be written as a sum of contractions between an arbitrary num-

ber of the metric, curvature tensors, matter fields, and an arbitrary number of covariant

about boost weight via a coordinate transformation and is only true because we can drop terms that
vanish at the horizon.
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derivatives of them.

The metric equation of motion is defined as

Eµν =
2√−g

δSg

δgµν
= − 2√−g

δSM

δgµν
= Tµν . (3.13)

The remaining equations of motion are given by δS/δΦ = 0, indices suppressed. Now, to

obtain (3.2), the idea is to perturb the dynamical fields and apply the equations of motion

everywhere. However, it turns out sufficient to consider the near-horizon expansion of all

perturbations in order to study pole skipping. For readability, we introduce the following

compact notation: we use δE = 0 to denote collectively all the perturbed equations of

motions and their radial derivatives (∇r) evaluated on the horizon. These are essentially

the coefficients of a near-horizon Taylor expansion. We further define δEp as the subset

of δE with weight p, organized into a vector, and denote its number of components as

|δEp|.

Similarly, we collect perturbations of all dynamics fields (including both the metric

and matter) and their radial derivatives with weight q into δXq (all evaluated on the

horizon). For example,

δX2 = (δgvv,∇rδBvvv, ...) (3.14)

and

δX0 = (δgij,∇rδgvi,∇r∇rδgvv, δAi,∇rδAv, ...). (3.15)

With these definitions, we can now write

δEp =
∑
q

Mp,q(ω, k) δXq, (3.16)

where each Mp,q(ω, k) is a matrix of size |δEp| × |δXq|. To arrive at this form, first
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commute all ∇r’s through ∇i’s and ∇v’s to the rightmost location before substituting the

Fourier expansion and evaluating the ∇v’s and ∇i’s. By definition, the radial derivatives

are then absorbed into δXq. For later convenience, we also commute all ∇i to the right

of ∇v.

We now prove a useful property that, for p > q,

Mp,q(ω, k) ∝ [ω − (p− 1)ω0] ... [ω − qω0] , (3.17)

where ω0 = i2πT = if ′(r0)/2.

Begin by noticing that, for a given p and q′,

δEp ∼ F (g,R,∇,Φ)(∇v)
k(∇i)

l(∇r)
mδXq′+m (3.18)

before substituting the Fourier expansion, where F is some c-number tensor component

constructed out of g,R,∇ and Φ such as RvirjA
µ∇µϕ evaluated on the horizon of the

background configuration, and δXq′+m is the perturbation to some component of a dy-

namic field X with weight q′ + m – not evaluated on the horizon until acted upon by

all the derivative operators in front. Next, notice that the only way to raise weight is

with ∇v because any background tensor with positive weight vanishes on the horizon.

Therefore, to raise the weight of (∇r)
mδXq′+m to that of δEp, one needs k ≥ p− q′. From

(3.5), it is straightforward to show that, on the horizon,

∇vT ∝
(
∂v −

n

2
f ′(r0)

)
T (3.19)

for a general tensor component T with weight n; therefore, evaluating (∇v)
k and substi-

tuting (3.10) gives at least a factor of [ω − (p− 1)ω0]...[ω − q′ω0]. Finally, the remaining

part (∇i)
l(∇r)

mδXq′+m evaluates to a number of terms, each proportional to δXq for
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some q ≥ q′. This follows from (3.5), where any Christoffel symbol appearing in ∇iT

vanishes if multiplying an object with lower weight than T . This concludes our proof of

(3.17).

We now discuss the general conditions for pole skipping. We take as an assumption

that pole skipping happens whenever an equation of motion becomes trivial.2 Suppose

the highest weight of δX is q0, then the highest weight of δE is also q0 (since the action,

being a scalar, has weight zero). Consequently, for any positive integer s, once we set

ω = (q0 − s)ω0, (3.20)

all Mp,q(ω, k) with p > q0 − s ≥ q are then set to zero (assuming they are not all

automatically zero). Now consider the square matrix

Ms(k) ≡


Mq0,q0 ... Mq0,q0−s+1

... ... ...

Mq0−s+1,q0 ... Mq0−s+1,q0−s+1

 (3.21)

where (3.20) has been substituted. The full set of equations of motion δEp,∀p, does not

determine δXq,∀q, when

det Ms(k) = 0. (3.22)

The equations (3.20) and (3.22) are therefore the generalized pole-skipping conditions

(for any given s ≥ 1), assuming the second one has solutions. If the theory has a highest

spin field with bounded spin l, then q0 = l and the pole-skipping frequencies are (l−s)ω0,

consistent with observations made in [53, 67, 84] and in particular reproducing the posi-

2It was pointed out in [53] that there are so-called anomalous points at which triviality of equations
of motion at the horizon does not imply dependence on δω/δk for small deviations from the point, but
these points were identified as a different class of skipped poles where the limit does depend on higher
order quantities such as (δk)2 [78]. This justifies our assumption here.
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tions of pole skipping at Matsubara frequencies first found in [53]. The second condition

is a polynomial equation for k, and the roots are then the pole-skipping momenta, which

could be more than one. The order of the polynomial increases with the size of the ma-

trix, and therefore there will be generically more pole-skipping points at larger s (lower

ω).

The first pole skipping happens at s = 1 at frequency ω = (q0− 1)ω0 = i(q0− 1)2πT .

Suppose there exists an equation of motion with e.g. three lower v-indices. In that case,

there will be a skipped pole at 2ω0 = i4πT , and the field perturbation (3.10) will grow

like exp(4πTt). On this ground, we expect (finitely many) higher spin fields to violate

the chaos bound. This is supported by an independent calculation of the spin-l Lyapunov

exponent, λlL = (l − 1)2πT [12] and is consistent with the findings of [67, 88]. Bounded

higher spin fields also suffer from causality violation [89], which is another reason to

exclude them from consideration in the next section. Notice, however, that equations

of motion for fields with no dynamics automatically have Mp,q(ω, k) = 0 for p > q due

to the nonappearance of ∇v, so they do not become trivial from non-trivial; therefore,

they do not violate the chaos bound, in agreement with [12] where pure AdS3 higher spin

gravity was exempt from their argument for bound violation.

If q0 = 2, which is the case for an arbitrary metric theory coupled to matter fields

of spin no larger than two, then the bound is satisfied and in fact saturated. We will

discuss this further in the next section.

For q0 < 2, such as a scalar or vector field without gravitational backreaction, there

is no growing mode and therefore no relation to chaos, but an infinite number of skipped

poles still exist and constrain the structure of Green’s functions [52, 53].
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3.2 Matching of butterfly velocities

For arbitrary higher-derivative gravity coupled to scalar, vector or form fields, q0 = 2

(from the metric) and the highest-weight skipped pole has ω = i2πT . We now show that

the corresponding butterfly velocity matches that obtained from the OTOC.

In this case, the only dynamic field with weight 2 is δX2 = δgvv, and the corresponding

equation of motion is δE2 = δEvv − δTvv = 0. The perturbation to the stress tensor

component δTvv does not necessarily vanish, but δT r
v (= δTvv − Trvδgvv) does vanish

for matter fields regular on the horizon [45]. We will make this restriction in order to

compare results with OTOC: the metric shockwave also has vanishing δT r
v . Therefore,

the pole-skipping conditions with s = 1 are given by

ω = ω0, det M1 =
δEr

v

δgvv
= 0. (3.23)

This gives a polynomial equation for k with only even powers (by symmetry). In cases

where the polynomial is of quartic order or higher, one can take the view that all correc-

tions to Einstein gravity should be treated perturbatively so only the roots continuously

connected to Einstein gravity are physical. But as we will see, the matching is evident

without a perturbative treatment.

For the class of theories we consider,

δEr
v =

∑
k,l

Hk,l(f, h, ∂r,Φ)(∂v)
k(∂i)

lδgvv (3.24)

for some non-covariant c-number coefficients Hk,l. The non-trivial statement that no ∂r

acts on δgvv and none of the other components such as δgvi can appear follow directly

from the weight argument. As an example, consider the Einstein gravity equation of

motion (3.11) studied in [45]. Since δgij has weight zero, it has to pick up a factor of
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ω to get to weight one and then a factor of (ω − ω0) to get to weight two, similarly

for δgvi which only needs to raise its weight by one. Another simplification in Einstein

gravity is due to the fact of it being two-derivative. It is not possible for (3.11) to contain

a term like for example ∂rδgvi: this quantity has weight zero and therefore needs two

v-derivatives to go to two, but it already has one derivative itself.

To compare this with the shockwave calculation, we move to Kruskal–Szekeres coor-

dinates defined in (3.6). Then UV = −ef ′(r0)r∗ , and the metric is given by

ds2 = 2A(UV )dUdV +B(UV )dxidxi, (3.25)

A(UV ) =
2

f ′(r0)2
f(r)

UV
, B(UV ) = h(r). (3.26)

In general higher-derivative gravity and for a shockwave along V = 0, the only non-

trivial component of δEµ
ν perturbed by a local source is δEU

V [50]. For a general pertur-

bation, δgvv, translating to ingoing Eddington-Finkelstein coordinates, this component

is given by

δEU
V =

U

V

(
2

f(r)
δEr

v + δEr
r − δEv

v −
f(r)

2
δEv

r

)
. (3.27)

Compared to the first term, others are suppressed with extra factors of f(r), so they

vanish when evaluated on the horizon. Similarly, δTU
V ∝ δT r

v , but recall that this vanishes

for regular matter configurations. Therefore,

0 = δEU
V =

2UV

f(r)

1

V 2

∑
k,l

Hk,l(∂v)
k(∂i)

lδgvv

=
2UV

f(r)

1

V 2

∑
k,l

Hk,l(∂i)
l

(
2

f ′(r0)
V ∂V

)k

δgvv

=
2UV

f(r)

∑
k,l

Hk,l(∂i)
l

(
2

f ′(r0)
(V ∂V + 2)

)k
δgvv
V 2
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=
2UV

f(r)

∑
k,l

H̃k,l(∂i)
l (V ∂V )

k δgvv
V 2

=
1

A

∑
k,l

H̃k,l(∂i)
l (V ∂V )

k δgV V , (3.28)

where we used the transformation ∂v =
2

f ′(r0)
V ∂V in going to the second line, and a trick

1

V 2
V ∂V = (V ∂V + 2)

1

V 2
(3.29)

in going to the third line. The fourth line follows from a reorganization of the sum with

new coefficients H̃k,l and the last line follows from

δgV V (V, x) =
4δgvv(v, x)

f ′(r0)2V 2
. (3.30)

The special thing about ω = ω0 is that,

δgvv ∼ e−iω0v = e
− i2ω0

f ′(r0)
log V

= V, (3.31)

and therefore

δgV V (V, x) ∼
1

V
e−ikx. (3.32)

Compare this with a linearized shockwave perturbation

δgV V ∼ δ(V ) e−µx, (3.33)

where µ = 2πT/vB upon using δEU
V = 0 (outside of a localized source in x). Noticing that

δ(V ) has the same distributional behavior as 1/V under V ∂V [43], e.g., V δ′(V ) = −δ(V )

and V d(1/V )/dV = −1/V , it follows that k = i2πT/vB upon using (3.28) for the

perturbation (3.32), thereby extending (3.3) to general higher-derivative gravity and
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hence some of the results of [45, 39].

Given the similarity between 1/V and δ(V ) and the role this similarity plays in

establishing the equivalence of these two calculations of the butterfly velocity, it is natural

to wonder whether there is a more direct connection between them. An immediate

obstacle is the divergence of the function 1/V at the past horizon V = 0. We mitigate

this problem with an unnormalized3 regularization of the Fourier space delta function

along the real frequency line:

∫
dξ δ(ξ) →

∫ ∞

−∞
dξ e−ξ2/a, (3.34)

giving rise to a mode

δgvv =
√
πa e−

a
4
(λLv)

2

eλLv. (3.35)

To compare with the shockwave metric (3.33), we convert this to Kruskal-Szekeres coor-

dinates. Using (3.30),

δgV V =


0, V < 0

√
πa
λ2
L

1
V
e−a(log V )2/4, V ≥ 0

(3.36)

where we have used the fact that the perturbation vanishes exactly behind the past

horizon. This function is finite and integrates to a constant for finite a, and it vanishes

everywhere off the horizon as a→ 0. It therefore behaves as a regularized δ(V ). Taking

the regulator away, this becomes a shockwave localized at V = 0.4

3We should note that the need for the unnormalized regulator arises from the need to remove the
divergence. Alternatively, one can use a normalized delta function regulator and remove the divergence
at the end using a subtraction not unlike the minimal subtraction in dimensional regularization.

4Physically, this suggests that the shockwave solution encodes part of the physical content of the
quasinormal mode at the highest-weight pole-skipping frequency. The renormalization procedure throws
away some information irrelevant for computing the butterfly velocity.
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3.3 Discussion

We have defined a quantity called weight to organize bulk equations of motion and

exploited its convenience to show that pole skipping happens in holographic CFTs dual

to quite general diffeomorphism invariant bulk theories. As a result, the pole-skipping

frequencies show up at (q0−s)ω0 for all s ∈ Z+, where ω0 = i2πT , and q0 is defined as the

weight of the highest-weight object. In particular, a theory that has a bounded highest

spin larger than two in general gives rise to q0 > 2, which leads to very fast scrambling

that violates the chaos bound. It is therefore reasonable to disallow a finite tower of

higher spin fields, in addition to causality reasons [89]. This brings down q0 to two, and,

with this restriction, the metric is the field that can have the highest weight. This is the

main reason behind the universality of the special pole-skipping point at ω = iλL and

k = iλL/vB, where λL = 2πT , and vB is defined via a OTOC calculation.

In other words, for maximally chaotic holographic theories, instead of needing to

compute a four-point function, the retarded Green’s function already knows about the

butterfly velocity, and its dependence on the bulk theory is exactly the same as an

OTOC would predict. It would be interesting to test this statement for non-holographic

maximally chaotic theories.5 Furthermore, there are now three ways of computing the

butterfly velocity: (i) using entanglement wedge, (ii) using shockwave and (iii) using

pole skipping. We proved the equivalence between the second and third prescriptions

themselves.6

The restriction of the discussion to bosons is for simplicity, and the generalization

to include fermions should be completely analogous. For minimally coupled spinors on

5For non-maximally chaotic theories, the predictions from pole skipping could differ from OTOC
results [90, 72, 91].

6Evidence for the general equivalence between the first two was presented in [18, 50]; evidence for
the general equivalence between the last two was presented in [45, 39]. Here our emphasis is on the
equivalence of the methods and not the equality of the results.
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a fixed background, pole skipping has been shown to happen at ω = (q0 − s)ω0 for

a half integer q0 = 1/2 and positive integers s [76]; with a spin-3/2 Rarita-Schwinger

field, q0 becomes 3/2 [82]. Both of the examples fit the pattern that the leading pole

skipping happens at (q0 − 1)ω0, and if one allows both bosonic and fermionic fields with

arbitrary couplings between them, one might expect that both q0 and s can be half

integers. It might be of use to analyze this with the weight argument, perhaps beginning

by rephrasing the current discussion in a spin connection language.

We should summarize three assumptions that were used: (i) the existence of a finite q0;

(ii) the non-triviality of equation (3.20), i.e., the entries set to zero by this equations are

not already all zero; and (iii) equation (3.22) has solutions. We expect that assumption

i can be lifted with more careful analysis, but assumptions ii and iii are essential. Given

any theory, one needs to check whether these are satisfied. For example, Vasiliev gravity

violates assumption i as it contains an infinite tower of higher spin fields; this is consistent

with it being dual to a sector of a free theory [92], which does not exhibit chaos.

Another condition implicit in our discussion is the restriction to finite temperatures.

Extremal black holes do not have a bifurcate surface, so the property derived from regular-

ity at the bifurcate surface no longer applies. Furthermore, poles in the Green’s function

get replaced by branch cuts [93, 87]. Accordingly, a generalization of our argument to

zero temperature will be non-trivial.

We also showed that the shockwave metric could be obtained from a regularized mode

of the metric perturbation. This serves as an explanation for the similarities between the

two calculations and the equivalence regardless of the theory. One might try different

regulators or use different subtraction schemes to find a more regulator-independent

relation.
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Covariant pole skipping: gauge and

fermionic fields

Pole skipping refers to the multivalued nature of Green’s functions at special points in the

momentum space where lines of zeros intersect lines of poles [43, 44, 45]. In holographic

theories at largeN and finite temperature T , this phenomenon can be understood through

the existence of extra ingoing modes at the black hole horizon, resulting in non-uniqueness

of the bulk solution that determines the holographic retarded Green’s function [45].

The first example of pole skipping was found in Einstein gravity, where it happens at

frequency ω = iλL and momentum k = iλL/vB [43, 45], λL being the Lyapunov exponent

[7, 10, 11, 17] and vB being the butterfly velocity [8, 9] for this theory. One can therefore

say that the analytic structure of the Green’s function contains some information about

the chaotic properties of the quantum system, especially true when the stress tensor

dominates chaos [90, 72, 91].

For bulk theories containing bosonic fields, it was noticed through numerous examples

that pole skipping happens for more general theories and at many more positions in the

momentum space [55, 57, 81, 94, 62, 54, 77, 78, 95, 96, 53, 64, 39, 52, 58, 97, 59, 61, 66, 98,
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60, 63, 84, 56, 65, 51, 75, 86, 79, 80, 83, 99, 100, 85]. Moreover, even though the number

of pole-skipping points at each frequency and the corresponding momenta depend on the

details of the theory, there is a universal pattern: pole skipping happens at frequencies

ω = i(lb − s)2πT for all positive s, where lb is the highest spin in the theory. For lb ≥ 2,

we can write the leading frequency as ω = iλL because λL = (lb− 1)2πT is the Lyapunov

exponent for a theory with a spin lb [12, 67, 88]. To derive this general statement,

[101] used what we will refer to as the covariant expansion formalism. Expanding bulk

fields around the black hole horizon, not using partial derivatives, ∂r, but using covariant

derivatives, ∇r, one finds that certain properties of the equations of motion become

manifest. The covariant expansion formalism also provides an algorithm for locating

skipped poles, making it automatable on a computer program.

Interestingly, this pattern of frequencies for bosonic fields was found to hold anal-

ogously in some examples with fermionic fields as well. For the theory of a minimally

coupled Dirac fermion, the leading frequency was found to be −iπT [76], and, for the

theory of a minimally coupled Rarita-Schwinger field, it was found to be iπT [82]. We

will show that this pattern holds for fermionic theories in general. More explicitly, for a

theory of fermions (with no gravitational backreaction) with the highest spin being lf ,

pole skipping happens universally at frequencies i(lf − s)2πT for all s ∈ Z+.

More generally, a theory will contain both bosonic and fermionic fields that are dy-

namic. For example, supergravity theories have both. We will argue that there would

be two towers of pole-skipping frequencies starting at i(ls − 1)2πT and i(lf − 1)2πT

respectively. This is regardless of how the bosons and fermions are coupled.

The covariant expansion method relies on a classification of linearized perturbations

of bulk fields and an analysis of equations of motion on this basis. In a theory with gauge

symmetry, not all equations of motion are independent. This redundancy is commonly

dealt with by restricting to only gauge-invariant quantities [102], which is a theory-
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dependent procedure. Since part of the motivation of [101] was to provide an algorithm,

it is thus helpful if we have a systematic procedure for finding the pole-skipping points

given a Lagrangian while sidestepping the gauge analysis. In this paper, we present a

pole-skipping condition that works without having to remove the gauge redundancy, and

we will refer to it as the gauge-covariant condition.

We will begin by reviewing the covariant expansion formalism in the bosonic case

in Section 4.1, followed by a discussion of gauge redundancy which leads to the gauge-

covariant pole-skipping condition in Section 4.2. We then present the analogous for-

malism for theories with only fermions in Section 4.3. In Section 4.4, we present an

argument for the general pattern of pole-skipping frequencies when both bosonic and

fermionic fields are present. We then discuss some consequences and future directions

in Section 4.5. Some examples with bosonic fields and fermionic fields are presented in

Appendices C and D respectively, where gauge symmetry is present in two of the bosonic

and one of the fermionic examples.

4.1 Bosonic fields

We now review the covariant expansion formalism of [101] which was in the context

of general holographic theories with bosonic fields. Consider a local diffeomorphism-

invariant action of the form

S =

∫
dd+2x

√−gL (g,R,∇,Φ) , (4.1)

where L is constructed from contractions of the metric, g, the Riemann tensor, Rµνρσ,

bosonic matter fields which are collectively denoted as Φ, and their covariant deriva-

tives such as ∇λRµνρσ and ∇µ∇νΦ. An example of a term that can appear in L is
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ϕRµνρσF
µνF ρσ for some scalar field ϕ and some field strength Fµν .

At large N and finite temperature T , a boundary state in thermal equilibrium is

described by a stationary black hole in the bulk [14]. Let us write its metric in ingoing

Eddington-Finkelstein coordinates as

ds2 = −f(r)dv2 + 2dvdr + h(r)dxidxi, (4.2)

where f(r0) = 0 at the horizon r = r0 and i ∈ {1, . . . , d} labels the transverse directions.

We will refer to it as the background metric. We can also have stationary background

matter fields, which, as a simplifying assumption, are isotropic and homogeneous in xi.

Furthermore, all background fields should be regular at both past and future horizons.

For future reference, the non-vanishing Christoffel symbols for our background metric

are

Γv
vv =

1

2
f ′, Γv

ij = −1

2
h′δij, Γr

vr = −1

2
f ′,

Γi
rj =

h′

2h
δij, Γr

vv =
1

2
ff ′, Γr

ij = −1

2
fh′δij,

(4.3)

and the non-vanishing components of the Riemann tensor are

Rvrvr =
1

2
f ′′, Rvirj = −1

4
f ′h′δij, Rrirj =

h′2 − 2hh′′

4h
δij,

Rvivj =
1

4
ff ′h′δij, Rijkl = −1

4
fh′2 (δikδjl − δilδjk) .

(4.4)

Quasinormal modes are perturbations of the dynamical fields on the black hole back-

ground that satisfy the linearized equations of motion [103, 104]. They are identified

with poles of the retarded Green’s function [105, 73, 74]. Pole skipping happens when the

equations of motion (along with boundary conditions at the horizon and the asymptotic

infinity) do not uniquely determine the modes, leading to an ambiguity in the Green’s

function where the value depends on how the limit is taken in the frequency-momentum
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space (ω, k) [45, 53]. Pole skipping can therefore be studied by examining the equations

of motion. It turns out sufficient to expand the equations of motion perturbatively in

the radial direction away from the future horizon r = r0. This is a manifestation of the

expectation that the near-horizon geometry is responsible for many universal aspects of

the dual thermal system.

A single Fourier mode of linear perturbation of a dynamical field X takes the form

δX(r, v, x) = δX(r) e−iωv+ikx, (4.5)

where kx is a shorthand for kix
i. The Fourier coefficient δX(r) still depends on the radial

coordinate r because the radial direction is not a coordinate of the boundary theory; since

we are computing the boundary Green’s function, albeit in the bulk, the radial direction

should not be Fourier transformed. Often, the next step is to expand this function as a

Taylor series around the horizon r = r0:

δX(r) =
∞∑
n=0

((∂r)
nδX)|r=r0

n!
(r − r0)

n. (4.6)

However, it was noticed in [101] that

((∇r)
nδX)|r=r0

, n ≥ 0, (4.7)

form a more convenient basis for the near-horizon degrees of freedom. As we will see,

working with covariant expressions like these turns out to be a key idea that helps reveal

various hidden symmetries of the equations of motion. We shall denote this set by δX ;

for example, δX = [δgvv, δgvi,∇rδgvv, . . . ]|r=r0 . Similarly, let us use δE = 0 to denote

perturbed equations of motions and their covariant radial derivatives evaluated on the

horizon.
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In order to organize the equations of motion, it is useful to define the weight [37, 101]

for a general tensor component as

#(lower v)−#(lower r)−#(upper v) + #(upper r), (4.8)

i.e., each v-index carries a weight of +1 if downstairs and −1 if upstairs, and the opposite

is true for r-indices; transverse indices i, j, . . . do not carry weights. With this, define

δXp as the subset of δX that has weight p and similarly for δEp. We will think of and

refer to them as vectors to compactify some of our equations, but it is nothing more than

a notational convenience. For example, in Einstein gravity,

δX2 = [δgvv]|r=r0 ,

δX1 = [∇rδgvv, δgvi]|r=r0 ,

δX0 = [∇r∇rδgvv,∇rδgvi, δgij, δgvr]|r=r0 .

(4.9)

More generally, with matter fields, say Bµνρ and Aµ, it could contain additional terms

like

δX0 = [· · · ,∇3
rδBvvv,∇2

rδBvvi, δBijk, δAi,∇rδAv, · · · ]|r=r0 . (4.10)

The near-horizon expansions of the perturbed equations of motion can now be compactly

written as

δEp =
∑
q

Mp,q(ω, k) δXq, (4.11)

where a Fourier mode of the form (4.5) has been substituted. It is worth mentioning that

Mp,q(ω, k) for each p and q is a |δEp|-by-|δXq| matrix, the modulus sign denoting the

length of the vectors. The definition of the weight has allowed us to divide the infinite

matrix into these finite ones, each labeled by p and q. This division leads to an important
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property that, for p > q,

Mp,q(ω, k) ∝ [ω − (p− 1)ω0] ... [ω − qω0] , (4.12)

where

ω0 ≡ i2πT = if ′(r0)/2. (4.13)

The proof of this statement uses the covariance of the equation of motion and the sym-

metry of the background fields including in particular the metric (4.2). To see the origin

of these factors, notice that a component of a linearized equation of motion is a sum of

terms with the following form:

δEp =
∑

F (g,R,∇,Φ)(∇v)
k(∇i)

l(∇r)
mδXq′+m, (4.14)

where F is a tensor component constructed from the background fields. To get into this

form, one needs to use the Riemann tensor to commute the covariant derivatives, and it

is important that ∇v derivatives are pushed through to the very left for our purpose.

A consequence of the background fields being stationary is that any tensor component

constructed from background fields with a positive weight must vanish, so F must have

a non-positive weight. When p > q′, we must then have k ≥ p− q′ to balance the weights

on both sides. The action of (∇v)
k along with (4.5) then immediately leads to the factors

[ω − (p− 1)ω0] . . . [ω − q′ω0] (4.15)

because they have a very simple action on a general tensor component T with weight w
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when evaluated on the horizon:

∇vT =
(
∂v −

w

2
f ′(r0)

)
T. (4.16)

It is a straightforward exercise to show this using the definition of the covariant derivative

and the associated Christoffel symbols explicitly given in (4.3).

To go from (4.14) to (4.11), besides substituting the Fourier mode and unpacking

(∇v)
k, we still need to unpack (∇i)

l(∇r)
mδXq′+m, which can lead to additional terms,

each proportional to δXq for some q. From (4.3), one should notice that the only non-

vanishing Christoffel symbols that can appear in ∇i are Γv
ij and Γj

ri, i.e.,

∇iT...µ... = ∂iT + · · · − Γρ
µiT...ρ... + · · ·

= ∂iT + · · · − δjµΓ
v
jiT...v... − δrµΓ

j
riT...j... + · · · ,

(4.17)

so it can at most turn a lower i-index into a lower v-index or a lower r into a lower j,

thereby increasing the weight by one in either case. The same is true for upper indices. In

other words, we must have q ≥ q′. This concludes the derivation of (4.12) because (4.15)

contains at least as many factors as needed, with the extra factors playing no obvious

role.

Pole skipping happens whenever an equation of motion becomes trivial. This is our

starting point and can be thought of as our definition. A more detailed explanation

for why this implies the existence of an extra ingoing mode can be found in [53]. This

extra ingoing solution would lead to an ambiguity in the holographic retarded Green’s

function, which is computed via finding the solution to the linearized equations of motion

with certain asymptotic boundary conditions and ingoing boundary conditions at the

future horizon. This ambiguity was known to be related to the ambiguity of the retarded

Green’s function at special values ω = ω∗ and k = k∗, where it takes the form G ∼ 0/0.
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To see why the Green’s function is ambiguous or multi-valued at pole-skipping points,

expand the numerator and the denominator in terms of small δω and δk around such a

point:

G(ω∗ + δω, k∗ + δk) ∼ 0 + a(δω) + b(δk)

0 + c(δω) + d(δk)
∼ a(δω/δk) + b

c(δω/δk) + d
. (4.18)

This illustrates the dependence of the value of G(ω∗, k∗) on the direction in which it is

approached in the (ω, k) plane. In the special case a = c = 0, called anomalous in [53],

the Green’s function does not depend on δω/δk to leading order, but the limit would

now depend on higher order quantities such as (δk)2 [78]. In either case, we have 0/0, so

the pole is skipped.

We now turn to the condition under which an equation of motion trivializes. From

property (4.12), it follows that, for any integer s > 0, matrices Mp,q(ω, k) with p >

q0 − s ≥ q vanish identically when

ω = (q0 − s)ω0. (4.19)

Then the infinite dimension matrix

M∞(ω, k) ≡


Mq0,q0 Mq0,q0−1 ...

Mq0−1,q0 Mq0−1,q0−1 ...

... ... ...

 (4.20)
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takes the form

M∞((q0 − s)ω0, k) =



Ms(k) 0

· · · · · ·


. (4.21)

As soon as we make the finite submatrix

Ms(k) ≡


Mq0,q0 ... Mq0,q0−s+1

... ... ...

Mq0−s+1,q0 ... Mq0−s+1,q0−s+1


∣∣∣∣∣∣∣∣∣∣
ω=(q0−s)ω0

(4.22)

degenerate, a certain linear combination of the equations of motion δEp with p > q0 − s

would become trivial, leaving a certain linear combination of the degrees of freedom δXq

with q > q0 − s free. This generally happens at discrete values of |k| ≡
√
kiki.

To summarize, the general pole-skipping condition is given by

ω = (q0 − s)ω0 and det Ms(k) = 0 (4.23)

for any s ∈ Z+.

4.2 Gauge fields

We have just reviewed the covariant expansion formalism for general holographic

theories. It works well for bosonic fields without gauge symmetry. For gauge theories,
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the formalism works only after removing the gauge redundancy. To understand why

there might be subtleties if we do not do so, realize that a pure gauge perturbation

should automatically satisfy all equations of motion by their very nature.

To see how this is reflected in the covariant expansion formalism, write a general

gauge parameter as

δξ(v, r, x) = δξ(r)e−iωv+ikx, (4.24)

where ξ could carry Lorentz indices. For example, δξ(v, r, x) = Λ(v, r, x) in Maxwell

theory where the gauge transformation is given by Aµ → Aµ+∇µΛ. As another example,

in General Relativity, δξ = ζµ, where the gauge transformation is given by gµν → gµν +

∇µζν +∇νζµ. With this, just like how we defined δXq around (4.7), we define δΞu to be

the subset of ∇n
r δξ|r=r0 with weight u.

With this, we can write a general pure-gauge perturbation as

δXq =
∑
u

Tq,u(ω, k) δΞu. (4.25)

Continuing with the Maxwell example, δAµ = ∇µδξ = ∇µΛ. Writing out the components
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of (4.25), the first few orders are given by1



δAv

δAi

∇rδAv

δAr

∇rδAi

∇2
rδAv

...



=



−iω

iki

0

0

−ikih
′/2h

0

...



Λ +



0

0

−iω + f ′/2

1

iki

f ′′/2

...



∇rΛ + · · · . (4.26)

The gravitational case is very similar and will be presented in Appendix C.3.

Once again, Tq,u satisfies the property of being proportional to [ω − (q − 1)ω0] . . .

[ω − uω0] for q > u for exactly the same reason, namely that we need sufficiently many

∇v to raise the weight from u to q, as reviewed in Section 4.1.

A pure-gauge perturbation has the property that it automatically satisfies the equa-

tions of motion

δEp =
∑
q,u

Mp,q Tq,u δΞu = 0 ∀p. (4.27)

This can help us understand some features of the matrices Mp,q. At ω = (q0 − s)ω0

where s > 0, as explained earlier, the entries of Mp,q with p > q0 − s ≥ q will be zero.

At the same time, for the same reason, the entries of Tq,u with q > q0 − s ≥ u will be

zero. Therefore, the infinite-dimensional statement (4.27) reduces to a finite one:

q0∑
q=q0−s+1

u0∑
u=q0−s+1

Mp,q Tq,u δΞu = 0

1Here, everything is evaluated on the horizon, but from now on we will frequently avoid writing
(·)|r=r0 when it is clear that the quantity should be evaluated on the horizon.
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⇒
q0∑

q=q0−s+1

Mp,q (Tq,u0δΞu0 + ...+ Tq,q0−s+1δΞq0−s+1) = 0, q0 − s+ 1 ≤ p ≤ q0. (4.28)

Since δΞu is the gauge parameter, we can choose its value for different u independently.

Furthermore, for a given u, we can even choose its |δΞu| entries independently. From

(4.28), it is now clear that, for δΞu with a given u > q0 − s, each Tq,uδΞu (with the range

of q restricted to q0 − s+ 1 ≤ q ≤ q0) belongs to the kernel of Ms(k).

Before moving on, let us comment on the visibility of gauge redundancy at different

orders. Notice that u0 < q0 usually. For example, in Maxwell theory, the highest weight

for δX is q0 = 1 owing to Av, whereas the highest weight for δξ = Λ is u0 = 0 as it

is a scalar; similarly, in Einstein or higher-derivative gravity, q0 = 2 owing to δgvv, but

u0 = 1 because δξ = ζµ is a vector. This means that, in both cases, the matrix Ms(k)

has no kernel at leading order (s = 1). This is due to the fact that the range of u-index

in (4.28) is empty if u0 < q0 − s+ 1. As soon as s is large enough, however, a kernel will

exist for all larger values of s.

In summary, the determinant of Ms(k) will always vanish automatically, i.e., without

having to fine-tune k, for all s ≥ q0−u0+1. This invalidates our earlier proposal for the

pole-skipping condition (4.23) as we expect to turn detMs(k) to zero only at special k.

Here is the moral of the story. This automatic degeneracy, as we have just seen,

is a manifestation of gauge redundancy, i.e., gauge symmetry makes some equations

of motion redundant. Pole skipping, however, is a statement about the physical bulk

solution having an extra degree of freedom. Therefore, if we want to stick to (4.23) as

our pole-skipping condition, we would have to remove the redundancy at the onset. This

can be done by e.g. restricting to the physical (gauge-invariant) degrees of freedom and

their equations of motion as in [102].

In practice, we find it convenient to skip the step of figuring out the gauge symmetry
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of the theory and finding the physical degrees of freedom. This is particularly advanta-

geous if whether a theory has gauge symmetry depends on the values of certain coupling

constants of the theory. For example, for a theory of Rarita-Schwinger field on curved

space with mass m, there is gauge symmetry if m = d/2 and the curved background

satisfies vacuum Einstein’s equation with a negative cosmological constant, and no gauge

symmetry otherwise. We study this example in Appendix D.2.

With the understanding above, we now present what we call the gauge-covariant

version of (4.23):

ω = (q0 − s)ω0 and dim(kerMs(k)) ↗ (4.29)

for each s ≥ 1. To state it in words, for a given pole-skipping frequency, pole skipping

happens for values of k that increase the dimension of the kernel (from its dimension at

generic values of k).2

As examples, we use this new prescription to study Maxwell theory in Appendix C.2,

Einstein gravity in Appendix C.3, and Rarita-Schwinger theory in Appendix D.2. For

other examples where there is no gauge symmetry, the condition (4.29) reduces to (4.23).

2Incidentally, increasing the dimension of the kernel is different from setting non-zero diagonal entries
of the Jordan normal form to zero. As an example, the matrix[

0 1
0 x

]
(4.30)

has eigenvalues 0 and x, but setting x = 0 will not expand its kernel from one dimension to two.
Terminology-wise, increasing the algebraic multiplicity does not necessarily increase the geometric mul-
tiplicity. The geometric multiplicity of an eigenvalue is the dimension of its eigenspace. The algebraic
multiplicity of an eigenvalue is its multiplicity as a root of the characteristic polynomial det(λ1−M)
for the matrix M . A given eigenvalue’s algebraic multiplicity is equal to or greater than its geometric
multiplicity. The kernel’s dimension is the geometric multiplicity of the eigenvalue zero.
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4.3 Fermionic fields

Let us now turn to bulk theories with only fermionic degrees of freedom. In this case,

bosonic fields (including the metric) exist only as fixed backgrounds. This assumption

is justified for example in theories with minimally coupled fermionic matter where the

matter action carries an extra factor of GN relative to the gravitational action since the

gravitational backreaction can be neglected at leading order in GN . Alternatively, if the

fermionic background is trivial, the stress tensor remains zero at linear order, so we can

neglect the backreaction in this case, too.

Another motivation for this section is to demonstrate how the techniques used in the

bosonic case generalize, as many tools from this section will be useful when we consider

general theories with both types of dynamical fields in the next section.

To begin with, the metric is again given by (4.2), repeated here for readability:

ds2 = −f(r)dv2 + 2dvdr + h(r)dxidxi. (4.31)

The transverse direction x1 is now x for notational simplicity. To couple to fermions on

a curved background, we need to introduce the tetrad, or frame fields. Just like how

a useful choice of coordinates made various properties of the metric manifest, a specific

choice for the tetrad will be similarly useful. Taking (v̄, r̄, x̄i) as coordinates for the

(d+ 2)-dimensional Minkowski spacetime with

ηv̄v̄ = −1, ηr̄r̄ = 1, ηı̄ȷ̄ = δı̄ȷ̄, (4.32)

we choose the frame fields to have components

ev̄v =
1

2
(1 + f) , ev̄r = −1, er̄v =

1

2
(1− f) , er̄r = 1, eȷ̄i =

√
h δȷ̄i , (4.33)
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which satisfy gµν = ηabe
a
µe

b
ν . Bars over the flat space indices are used to distinguish them

from the curved spacetime indices, and we use the Latin alphabet a, b, . . . to denote them

abstractly.

The associated non-vanishing spin connections are then given by

(ωv̄r̄)v = −1

2
f ′, (ωv̄ı̄)j =

1

4

h′√
h
(1− f) δı̄j, (ωr̄ı̄)j = −1

4

h′√
h
(1 + f) δı̄j. (4.34)

Note that the barred indices are anti-symmetric. We also use ∇µ to denote the full

covariant derivative, whose action depends on the object it acts on. For example, for a

spinor ψ,

∇µψ = ∂µψ +
1

4
(ωab)µΓ

abψ, (4.35)

and for a vector-spinor ψµ,

∇µψν = ∂µψν +
1

4
(ωab)µΓ

abψν − Γρ
µνψρ. (4.36)

To avoid unnecessary complications caused by the dimension-dependent nature of

gamma matrices, we will from now on work in 2 + 1 bulk dimensions; the generalization

to higher dimensions is straightforward and will be discussed briefly at the end of the

section. With d = 1, we have the following three gamma matrices:

Γv̄ =

 0 1

−1 0

 , Γr̄ =

0 1

1 0

 , Γx̄ =

−1 0

0 1

 . (4.37)

In curved spacetime coordinates,

Γv =

0 2

0 0

 , Γr =

0 f

1 0

 , Γx =
1√
h

−1 0

0 1

 . (4.38)
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Define projectors

P± =
1∓

√
hΓx

2
=

1∓ Γx̄

2
, (4.39)

which, for a general fermionic quantity X (potentially carrying Lorentz indices), has the

following effect:

X =

X+

X−

 , P+X =

X+

0

 , P−X =

 0

X−

 . (4.40)

Just like how we decomposed Lorentzian tensors into its components when considering

bosons, we do the analogous thing here of decomposing all fermionic quantities into ±

components. For example, they could be δψ+,∇rδψ−,∇r∇rδΨv,+, etc. An operator

acting on a spinor carries two spinor indices. For such objects, we decompose in the

same way and write

O =

O+
+ O+

−

O−
+ O−

−

 . (4.41)

This allows us to easily generalize the definition of the weight. We define a lower ±

to carry ±1/2 weight and an upper ± to carry ∓1/2 in addition to the contributions

from Lorentz indices, i.e., the total weight is equal to

#(lower v) −#(lower r) −#(upper v) + #(upper r)

+
1

2
#(lower +) − 1

2
#(lower −) − 1

2
#(upper +) +

1

2
#(upper −). (4.42)
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The analogue of (4.11) can be written as

δEp =
∑
q

Mp,q(ω, k) δXq, (4.43)

which looks exactly the same, but p and q are now half-integers. Each entry in δEp or

δXq is not just a tensor component, but a tensor-spinor projected onto one of the two

eigenspaces of Γx. As before, we absorb ∇r derivatives into the definition of δX , i.e., ∇r

should not be unpacked. In the bosonic case, we have explained that (∇r)
nδX|r=r0 form

a better basis than partial derivatives. Here, we are going one step further by saying that

(∇r)
n

δX+

δX−


∣∣∣∣∣∣∣
r=r0

=

((∇r)
nδX)+|r=r0

((∇r)
nδX)−|r=r0

 (4.44)

is a good basis for packaging things.

Recall that the most important property of the matrix Mp,q(ω, k) is (4.12). We now

proceed to show that it holds for fermions as well. A general component of the equation

of motion for a fermion can be written as

(∇r)
nδ

E+

E−

 =
∑

F (g,R,∇,Φ,Ψ) (∇v)
k (∇i)

l (∇r)
mδ

X+

X−

 , (4.45)

where F is a component of a spacetime tensor and at the same time a spinor operator, and

the sum is over different terms of this form. Because the three gamma matrices together

with the identity matrix form a complete basis for all 2-by-2 matrices and because F is

itself a component of a covariant tensor, we can decompose it into

F (g,R,∇,Φ,Ψ) = Vµ(g,R,∇,Φ,Ψ)Γµ + F0(g,R,∇,Φ,Ψ)1, (4.46)
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where Vµ is a vector and F0 is a scalar, neither of which carries spinor indices.

The fermionic analogue of (4.14) can be written as

δEp =
∑

F(g,R,∇,Φ,Ψ) (∇v)
k (∇i)

l (∇r)
m δXq′+m. (4.47)

What is different from (4.14) is that δE and δX both carry a ± index, and F , being

a projected component of an operator in the spinor space, carries two of them. We

emphasize again that ∇µ here contains spin connections, so they are also operators on

the spinors.

Like in the bosonic case, we first need to show that F vanishes on the horizon if it has

a positive weight. In addition to bosonic constituents, fermionic fields are also potential

ingredients. The trick here is to realize that F is a component of the matrix VµΓ
µ+F01.

Since Vµ and F0 do not carry spinor indices, the boost symmetry argument in the bosonic

case applies still. Following our definition of the weight in (4.42), it is straightforward to

check that Γµ and 1 all have this property. For example, the only entry in the identity

matrix that carries a positive weight is the (1)+
− component, which is zero indeed; the

components of

Γr =

(Γr)+
+ (Γr)+

−

(Γr)−
+ (Γr)−

−

 =

0 f

1 0

 (4.48)

have weights 1, 2, 0 and 1, so the only one that does not have to vanish on the horizon is

(Γr)−
+; for

Γv =

0 2

0 0

 , (4.49)

the components all have non-positive weights, so there is no requirement for any compo-

nent to be zero even though some of them are. Since F is built from Vµ, F0, Γ and 1,

the fact that F = 0 in (4.47) if it has a positive weight is now guaranteed.
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To show (4.12), we just need to look at ∇v, which is the only way to increase the

weight, knowing that F cannot. Consider a spinor ψ first:

∇v

ψ+

ψ−

 =

(∂v − f ′/4)ψ+

(∂v + f ′/4)ψ−

 . (4.50)

This clearly satisfies

∇vT ∝
(
∂v −

w

2
f ′ (r0)

)
T (4.51)

since ψ± have weights ±1/2. For a more general tensor-spinor, we just need to take into

account Christoffel symbols in ∇v, but those were exactly the same as for bosons! This

concludes the proof that F is proportional to (4.15).

To show that Mp,q is proportional to (4.12), which is what we really need, we must

show q ≥ q′, where q′ is the weight of (∇r)
mδXq′+m appearing in (4.47) and q is what

appears in (4.43). They differ because ∇’s will need to operate on the quantities to their

right before evaluating everything on the horizon. In addition to Christoffel symbols,

spin connections also appear in this process. Notice that ∇i acts on a spinor as

(∇iδψ)+ = ∂xδψ+ − h′f

4
√
h
δψ−, (4.52)

(∇iδψ)− = ∂xδψ− +
h′

4
√
h
δψ+. (4.53)

Combined with (4.17), we see that ∇i will only turn a tensor-spinor component into

another tensor-spinor component with a higher weight (when evaluated at the horizon).

This ensures that q ≥ q′. Finally, substitution of the Fourier expansion gives the desired

factors (4.12).

In fact, this concludes the discussion of bulk theories with only dynamical fermions

(in three dimensions), because the rest follows in exactly the same way as in the bosonic
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case. The only difference is that p, q are half-integers. Even the conclusion reads the

same as before: pole skipping happens at frequencies (q0 − s)ω0 for s = 1, 2, . . . , where

q0 is the highest weight present in the theory, now a half-integer.

So far, we have not said anything about gauge symmetry. Fortunately, this goes

through just like in the bosonic case. Without gauge symmetry, the pole-skipping condi-

tion is given in (4.23); with gauge symmetry, we could either restrict to gauge-invariant

quantities and use the same condition, or we can use the gauge-covariant condition (4.29).

We note, however, that the gauge parameter δΞu appearing in (4.25) would have to be-

come a fermionic one, i.e., u should take half-integer values. Having a bosonic gauge

parameter in a theory of only dynamical fermions is neither common nor within the

scope of the current section, but it does belong to the more general class we study in

Section 4.4.

Higher dimensions

To define a spinor on curved spacetime, we need to define the gamma matrices in

Minkowski space first. The gamma matrices in Minkowski space R1,D−1 satisfy the

Clifford algebra Cℓ(1, D − 1): {γa, γb} = 2ηab. We can define these gamma matrices

recursively, starting from two dimensions, where we can choose

γ02 =

 0 1

−1 0

 , γ12 =

0 1

1 0

 . (4.54)

The (2n + 1)-dimensional gamma matrices are then defined using the (2n)-dimensional

gamma matrices by

γa2n+1 = γa2n, a = 0, . . . , 2n− 1,
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γ2n2n+1 = in+1γ02n...γ
2n−1
2n . (4.55)

Similarly, the (2n)-dimensional gamma matrices are defined from (2n − 1)-dimensional

gamma matrices by

γa2n = γa2n−1 ⊗

1 0

0 −1

 , a = 0, . . . , 2n− 2,

γ2n−1
2n = 1⊗

0 1

1 0

 . (4.56)

It is then straightforward to check that these matrices satisfy the Clifford algebra. In

this construction, gamma matrices are 2⌊
D
2
⌋ × 2⌊

D
2
⌋ matrices.

Now we can define the Γ-matrices in the (v̄, r̄, x̄i) coordinates by

Γv̄
D = γ0D, Γr̄

D = γ1D,

Γı̄
D = γiDδı̄,i−1, ı̄ = 1, . . . , d. (4.57)

For D = 3 (d = 1), this reproduces (4.37).

The projectors to the subspaces are defined by

P+ =
1 + Γv̄Γr̄

2
=

1
0

⊗ 12⌊D/2−1⌋ , P− =
1− Γv̄Γr̄

2
=

0
1

⊗ 12⌊D/2−1⌋ . (4.58)

Here, even though each subspace would have more degrees of freedom than in D = 3

(e.g., ψ± each has 2⌊D/2−1⌋ components), in the basis we have defined, there is no need

to distinguish them further as in [76, 82]. We attribute this difference to the choice of

projectors.
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Using these Γ-matrices, most of the argument forD = 3 goes through in the same way,

but some aspects must be generalized. For example, instead of having Γµ and 1 in (4.46)

as a complete basis for the general operator F , a complete basis in higher dimensions is

formed using 1 and anticommutators of all the gamma matrices [106]. Explicitly, in even

dimensions (D = 2k), a complete basis for 2k × 2k matrices is given by

1 ∪
{
Γ[µ1Γµ2 ...Γµm] | m = 1, ..., 2k

}
, (4.59)

and in odd dimensions (D = 2k + 1), a complete basis for 2k × 2k matrices is given by

1 ∪
{
Γ[µ1Γµ2 ...Γµm] | m = 1, ..., k

}
. (4.60)

4.4 Bosonic and fermionic fields

We discussed general theories with either dynamical bosonic fields or fermionic fields

in earlier sections. It is then natural to ask whether the argument generalizes to the

case when both are present. A naive expectation might be that, if we have already

worked out the pole-skipping points for a theory with e.g. only bosonic fields, adding

fermions will not change them even though it may lead to more. This is not always correct

because fermions can appear even in the bosonic equations of motion, adding extra terms

proportional to fermionic perturbations, so the special frequencies that could turn the

original bosonic equations of motion trivial would no longer necessarily do so. In other

words, the linearized bosonic equations of motion δEB takes the form

δEB = MBBδXB +MBF δXF , (4.61)
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where δXB and δXF are bosonic and fermionic perturbations respectively, so even if

special frequencies and momenta set MBB to zero, MBF can still be non-zero, preventing

a linear combination of δEB from necessarily becoming trivial.

In this section, we will consider this general case. To begin with, write covariant

expansion coefficients of the equations of motion evaluated on the horizon as

δEp =
∑
q

Mp,q(ω, k) δXq. (4.62)

This looks exactly like (4.11) and (4.43), but p, q can now both be integers or half-integers.

When p is an integer, this is a bosonic equation of motion, receiving contributions from

both bosonic field perturbations which have integer q’s and fermionic field perturbations

which have half-integer q’s; when p is a half-integer, this is a fermionic equation of motion,

again receiving contributions from both integer and half-integer q’s.

Section 4.2 presented a gauge-covariant formalism. It would be natural if we now

proceed with the current section gauge-covariantly. However, as we will see, when both

bosons and fermions are present, it is not obvious whether there exists any systematic

and practical way of locating the pole-skipping momenta k. Nevertheless, we can still

derive a general pattern of pole-skipping frequencies ω. Since the main motivation for the

gauge-covariant formalism was to compute the pole-skipping momenta with less effort,

its advantage is lost if we are uncommitted to that goal. As a result, we find it easier to

derive our statements after removing gauge redundancy. We will comment more on this

issue at the end of the section.

In this approach, we still write (4.62), now with the understanding that only physical

(gauge-invariant) degrees of freedom and their corresponding equations of motion are

included. Let us also organize the basis so that the matrix M∞ defined in (4.20) divides
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into four blocks of infinite size:

M∞ =



Mlb,lb Mlb,lb−1 · · ·

Mlb−1,lb Mlb−1,lb−1 · · ·

· · · · · · · · ·

Mlb,lf Mlb,lf−1 · · ·

Mlb−1,lf Mlb−1,lf−1 · · ·

· · · · · · · · ·

Mlf ,lb Mlf ,lb−1 · · ·

Mlf−1,lb Mlf−1,lb−1 · · ·

· · · · · · · · ·

Mlf ,lf Mlf ,lf−1 · · ·

Mlf−1,lf Mlf−1,lf−1 · · ·

· · · · · · · · ·


, (4.63)

where lb is the highest integer weight and lf is the highest half-integer weight. With this

separation, we can give each of the blocks a name so that δE = M∞δX can be written

as 

δEB

δEF


=



MBB MBF

MFB MFF





δXB

δXF


. (4.64)

Recall that pole skipping happens when M∞ is degenerate. When we only have bosonic

fields, we only have MBB; when we only have fermionic fields, we only have MFF . The

problem with MBF and MBB is that they interpolate between a half-integer weight and

an integer weight, so we do not have a relation like (4.12). (The argument does not

generalize to this case.)

As is by now clear, a main theme of the covariant expansion formalism is to reorganize

things to manifest hidden features, so it is what we will now do once again. Acting on
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both sides of (4.62) with the invertible matrix

U ≡


1 −MBFM−1

FF

0 1

 (4.65)

defines a new basis for δE while keeping the same basis for δX . This physically means

that we are taking linear combinations of the original equations of motion. In this basis,

(4.62) becomes

UδE = UM∞δX δEB −MBFM−1
FF δEF

δEF

 =

 MBB −MBFM−1
FFMFB 0

MFB MFF


 δXB

δXF

 . (4.66)

With the top-right block set to zero, we have now reduced the problem of finding the

conditions under which an equation of motion in the upper-left block becomes trivial.

But this is the same problem as in the bosonic case! We conclude that pole skipping

happens at frequencies i(lb − s)2πT for s ∈ Z+. Similarly, we can use another invertible

matrix to turn the lower-left block to zero, which immediately leads to the conclusion

that pole skipping also happens at frequencies i(lf − s)2πT for s ∈ Z+. This concludes

the proof.

We should note that this proof uses the inverse of an infinite-dimensional matrix

MFF to eliminate the whole upper-right block of the equation of motion matrix. The

inverse should exist after removing gauge redundancy because all equations of motion

are linearly independent. It would be good to prove this rigorously. The existence of

the inverse is certainly sufficient for the next steps, but it may not be necessary. In
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particular, when we look for pole skipping by studying (4.66), we only need finitely many

rows of the upper-right block of UM∞ to vanish at each order in s. This suggests that

it might be possible to remove the need to invert an infinite matrix from the argument.

To go from the current approach to a gauge-covariant approach is in principle easy.

The inverse of MFF might not exist with gauge symmetry.3 The physical reason why we

need to invert MFF is because we want to use the fermionic equations of motion to turn

fermionic perturbations into bosonic ones. This procedure can be of course performed

in the gauge-covariant approach, but instead of inverting the whole matrix, we should

only invert the “physical part” of the matrix. More precisely, we should project out the

kernel before performing the inverse. We have avoided doing that to keep the equations

simple.

4.5 Discussion

In this paper, we studied pole skipping in the presence of gauge and fermionic fields.

In the presence of gauge fields, we presented a pole-skipping condition that automat-

ically deals with gauge symmetry. This upgrade is in fact quite practical as it allows

one to compute pole-skipping points for any theory with a given Lagrangian without

having to worry about removing the redundancy which usually involves determining the

gauge-invariant combinations of field components. This condition reduces to the one in

[101] in the absence of gauge symmetry.

For theories with only fermionic fields, we provided a formalism that is parallel to

the bosonic case. This formalism is again practically useful and allows one to locate the

pole-skipping points systematically. With this extension, we found that pole skipping

3It certainly would not exist if the gauge parameter is fermionic and only acts on the fermions.
Similarly the inverse of MBB would not exist if the gauge parameter is bosonic and only acts on the
bosons. This follows from the discussion in Section 4.2.
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generally happens at frequencies i(lf − s)2πT for positive integer s, where lf is the

highest spin in the fermionic theory.

We then applied the formalism to theories with both dynamic bosonic and fermionic

fields. In this case, we provided an argument for the pole-skipping frequencies, namely

that there is one tower of pole skipping at frequencies i(lb − s)2πT and another tower

with i(lf − s)2πT . This statement is nontrivial as the presence of fermionic fields highly

influences the pole-skipping momenta of the bosonic tower and vice versa. Unlike the

purely bosonic or fermionic cases, the argument here is rather abstract – it might be

difficult to actually do the computations for a specific theory due to the need to invert

an infinite matrix. It would be interesting to see if this requirement can be lifted. There

is one situation, however, where we do not need this inverse even when both dynamical

bosons and fermions are present: when the background fermions are all zero, the bosonic

and fermionic perturbations then decouple (MBF = MFB = 0 in (4.64)), so the problem

becomes equivalent to a purely bosonic theory plus a purely fermionic theory. This is

quite common e.g. for supersymmetric black holes.

Let us now comment on the connection to chaos. Since the leading pole-skipping

frequency is given by i(l−1)2πT , where l is the highest spin in the theory (either integer

or half-integer), for l ≥ 3/2, it seems that this frequency is positive in the imaginary

direction, meaning that the Fourier mode (which is proportional to e−iωv) will grow

exponentially in the retarded time. This already suggests a connection to chaos. More

quantitatively, this connection was explained in [45] by comparing the form of the OTOC

and the leading pole-skipping mode in Einstein gravity with matter. This connection was

further explained in [101] at the level of the metric: the shockwave solution for general

higher-derivative gravity [50] is found to be a limit of the quasinormal mode responsible

for the leading pole-skipping point.

In Einstein gravity or higher-derivative gravity, l = 2 and the leading frequency is
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iλL,max, where λL,max = 2πT is the Lyapunov exponent for maximal chaos [17]. For

higher spins, the leading pole-skipping point still happens at iλL but now λL > λL,max,

consistent with the well-known result that (finitely many) higher-spin fields violate the

chaos bound [89, 17, 107, 108]. It would be interesting to extend the connection between

the leading pole-skipping point and the OTOC to l > 2. To achieve this, one might first

generalize the shockwave solution to general higher-spin theories, perhaps in the same

way that shockwave solutions were constructed for a general higher-derivative theory

(Appendix A of [50]). The analysis in [101] then suggests that the higher-spin shockwave

can be obtained as a limit of the leading pole-skipping mode. Since shockwaves tell us

about the OTOC, this would be enough to connect the dots.

Moreover, it would be interesting, though arguably more challenging, to do the same

for half-integer l. In other words, can we find shockwave solutions in gravitational theories

where the highest-spin field is fermionic and use that to build the connection between the

leading pole-skipping frequency and the OTOC? A rigid way to compute the Lyapunov

exponent in the presence of fermionic fields might require a scattering perspective [11],

and it is a priori not clear whether there is a classical limit where the OTOC is described

by a “fermionic” shockwave. The quasinormal mode at the leading pole-skipping point,

however, suggests that there might be.

So far, this formalism has restricted to planar black holes with planar symmetry.

Evidence has found that the connection between pole skipping and the OTOC holds

even for rotating black holes [56, 87, 64, 109, 98]. It would be interesting to generalize

the covariant expansion formalism in this direction and use it to prove this connection

for general higher-derivative gravity.

In maximally chaotic systems, the form of pole skipping and the OTOC are con-

strained by symmetry [44, 67, 110, 69, 70]. In the bulk, we have seen how they are

constrained by the boost symmetry of the black hole. Beyond maximal chaos, the con-
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nection between pole skipping and the OTOC is more subtle [90, 72, 71]. It would be

interesting to understand the more general relation between them better, perhaps in

effective models of non-maximal chaos [111, 112, 113].

Recent work has found pole skipping on non-black hole backgrounds [114, 115]. It is

not clear whether there exists a similar covariant expansion formalism beyond black holes

as the formalism relies heavily on the boost symmetry. However, since the example in

[115] was obtained via a double Wick rotation from a black hole spacetime, it is plausible

that pole skipping happens only for those spacetimes that are related to black holes via

analytical continuation, in which case the analytically continued symmetry generator

might again play an important role.

Finally, we should mention that this formalism works well in practice for any number

of fields with very general interactions even though we did not present such examples.

For this reason, this formalism might be helpful for interesting computations that were

previously considered too complicated.
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Chapter 5

Causality in the gravitational path

integral

A bulk description of nonperturbative quantum gravity is not yet available. A popular

approach is to consider a path integral over metrics. We investigate some aspects of this

approach. The metric could turn out to be only a low-energy approximation of other

fundamental degrees of freedom. Our results would plausibly still apply, since the issues

we address arise already in metrics with curvature well below the Planck (and string)

scale. We begin with a Lorentzian formulation of holography, in which one integrates over

asymptotically anti-de Sitter (AdS) spacetimes and matter fields (with certain boundary

conditions) to compute correlation functions in a dual quantum field theory. One often

works in a large N or semiclassical limit and only includes classical supergravity solutions

and small perturbations of them. Classically, spacetimes satisfy the null energy condition

so the Gao-Wald theorem [116] ensures that the bulk preserves boundary causality. In

other words, the fastest way to send a signal between two observers on the boundary is

via a path that stays on the boundary. No trajectory that enters the bulk can arrive

sooner. Semiclassically, the achronal averaged null energy condition ensures boundary
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causality [117]. (A necessary and sufficient geometric condition is given in [118].)

However, in full quantum gravity (finite N), the bulk path integral includes met-

rics that violate boundary causality. That is, two boundary points that are spacelike-

separated on the boundary can nevertheless be timelike-separated with respect to some

bulk metrics. We will see that these boundary causality violating metrics are not “rare”

– they include open sets in the space of metrics. These metrics describe causally well-

behaved bulk geometries – there are no closed timelike curves or any causal pathology.

So there is no reason to exclude them from the bulk path integral. Hence one might

worry that they could contribute to causality violations in the dual field theory, which

would be a problem.

Consider, for example, the commutator of an operator O at two spacelike-separated

boundary points: [O(x),O(y)]. This must vanish identically, but holography says that it

should be given by a bulk path integral over metrics and a matter field ϕ dual to O. If

one computes the commutator [ϕ(p), ϕ(q)] in each metric g, and then follows the standard

limiting procedure of taking p→ x and q → y, one generically expects a nonzero answer

whenever x and y are causally related with respect to g. This is not yet a contradiction:

the integral of this over metrics g weighted by eiSg could still vanish exactly.

However, it is not just one quantity that must integrate to zero. In principle, O can

be any operator in the dual field theory, and the commutator could be multiplied by

any other operator. Their corresponding bulk expressions would all be nonzero in some

metrics g, but their integrals over g must still vanish identically. Since the gravitational

weighting eiSg and measure are independent of the operator insertions, this seems unlikely.

By studying the boundary conditions for the bulk path integral computation of com-

mutators, we identify some freedom whenever the boundary theory is causal and unitary.

We show that there is a way to use this freedom to make boundary causality manifest.
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5.1 Specific examples

For b ∈ R, consider the family

g(b) = −fb(r) dt2 + fb(r)
−1 dr2 + r2 dΩ2

2. (5.1)

One requires fb(r) ≈ r2/ℓ2 asymptotically, fb(0) = 1 and f ′
b(0) = 0 for differentiability

at r = 0. We connect this family at b = 0 to AdS4 by setting f0(r) = r2/ℓ2 + 1. In pure

AdS, two boundary points are null-separated on the boundary if and only if they are

null-separated in the bulk. Hence we explore boundary causality in (5.1) by comparing

to AdS. Restricting to radial null geodesics, the boundary-to-boundary crossing time is

t∞ = 2

∫ ∞

0

dr

fb(r)
. (5.2)

Hence (5.1) violates boundary causality if t∞ < tAdS
∞ = πℓ; e.g., fb(r) > f0(r) everywhere

would suffice. For instance, setting ℓ = 1, (5.1) with fb(r) = r2 + 1 + b r2(1 + r4)−1

violates boundary causality for b > 0.

These static configurations only contribute to a path integral where the initial and

final surfaces have induced metric dr2/fb(r)+r
2dΩ2

2. One might ask if there exist classical

solutions interpolating between such surfaces. The answer is yes: global AdS gives the

desired induced metric with fb(r) ≥ f0(r) on spacelike surfaces with t = b h(r) where h

must just fall off like 1/r2 or faster.

Alternatively, to match a static AdS slice, one can just make b time-dependent near

the surface, going to zero on it. More generally, one can match any given induced metric

by making g(b) appropriately time-dependent without affecting the causality violating

region.

Although we have focused on four-dimensional examples, it is clear that similar ex-
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amples exist in all dimensions greater than two. In particular, if x is timelike-related

to y in one metric, it remains timelike-related in any nearby metric. Hence boundary

causality is violated in open sets in the space of metrics.

5.2 Operator dictionaries

Holographic duality is generally formulated as an equivalence between bulk and

boundary partition functions [119, 120]:

Zbulk[ϕ0] = Zbdy[ϕ0]. (5.3)

Here, Zbdy is defined on some fixed Lorentzian manifold (B, γ), whereas Zbulk path-

integrates over spacetimes (M, g) having (B, γ) as their conformal boundary. The symbol

ϕ0 is a placeholder for all boundary conditions for dynamical fields on the bulk side, and

for sources of operator deformations of the action on the boundary side. To make progress,

most work in the literature studies (5.3) perturbatively in 1/N , where Zbulk is amenable

to a saddlepoint approximation (plus corrections). Here we test one aspect of (5.3) as a

statement of holography in full quantum gravity, i.e., nonperturbatively in 1/N .

To study real-time correlation functions, we assume (5.3) applies in Lorentzian signa-

ture. From the standpoint of the boundary theory, Zbdy[ϕ0] is a standard field-theoretic

generating functional. Explicitly [120],

Zbdy[ϕ0] =

〈
exp

{
i

∫
B

∑
α

ϕα
0 Oα

}〉
bdy

, (5.4)

where ⟨ · ⟩bdy denotes the boundary path integral over quantum fields, and each Oα is a

gauge-invariant operator sourced by ϕα
0 . In light of (5.3), the bulk object Zbulk[ϕ0] may
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also be regarded as a generating functional of boundary correlators of the form

G ≡ ⟨On(xn) · · · O1(x1)⟩bdy . (5.5)

If G is time-ordered with respect to boundary time, then

G =
1

in
δ

δϕn
0 (xn)

· · · δ

δϕ1
0(x1)

Zbulk[ϕ0]

Zbulk[0]

∣∣∣∣
ϕ0=0

. (5.6)

The rationale so far is that of [119, 120], later coined the “differentiate dictionary” in

[121].

In practice though, one usually takes a leap and follows the logic of [122, 123] to

argue that a boundary correlator should be nothing but an appropriate limit of bulk

ones. More specifically, if ϕα is the bulk field dual to Oα and the latter has conformal

dimension ∆α, one may propose 1

G
?∝
∫

Dg eiSg lim
z→0

z∆Σ ⟨ϕn(xn, z) · · ·ϕ1(x1, z)⟩g , (5.7)

where ∆Σ =
∑

α ∆α, ⟨ · ⟩g denotes the bulk path integral over quantum fields in a fixed

metric g, and (x, z) are Fefferman-Graham coordinates [124]. (These provide an unam-

biguous asymptotic location for the bulk operators.) Alternatively, one could consider

(5.7) with z → 0 taken outside the integral. While physically both seem like reasonable

proxies for boundary correlators, it is unclear whether they are equal or mathematically

consistent with (5.6).

When gravity is treated semiclassically, these two options do agree. In this case, they

were referred to as the “extrapolate dictionary” in [121], where their consistency with

1Time-ordering has been intentionally omitted below since the notion of time order in the bulk is
subtle – see the next section.
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(5.6) was carefully studied. We deviate from [121] by studying Lorentzian physics and

at a nonperturbative level.

For any causal field theory, local operators at spacelike boundary separation commute.

In the bulk, there appears to be a problem with the extrapolate dictionary stemming

from the presence of off-shell contributions to the gravitational path integral that violate

boundary causality. Similar problems arise regardless of when one takes the z → 0 limit,

so consider (5.7) for definiteness. For a commutator of operators at spacelike separation,

⟨[O(x),O(y)]⟩bdy = 0, so (5.7) becomes

∫
Dg eiSg lim

z→0
z2∆ ⟨[ϕ(x, z), ϕ(y, z)]⟩g

?
= 0. (5.8)

As explained above, there are open sets of bulk metrics for which x and y are causally

related and the commutator is generically nonzero. So why should the integral vanish

exactly?

5.3 Resolution

We now explain an important subtlety omitted from the above discussion. Consider

the commutator

⟨[ϕ(p), ϕ(q)]⟩g ≡ ⟨ϕ(p)ϕ(q)⟩g − ⟨ϕ(q)ϕ(p)⟩g , (5.9)

with each term computed via a path integral. Although we have used the bulk notation

⟨ · ⟩g, this also applies to the boundary by replacing (M, g) with (B, γ). Now, the path

integral on the original manifold always computes time-ordered correlators. To compute

an out-of-time-order correlator, one needs to manufacture from the original manifold a
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U

U

U

•
φ(p)

•
φ(q)

t1

t2

6=

U

U†

U

•
φ(p)

•
φ(q)

t1

t2

Figure 5.1: Inequivalent timefolds for computing a two-point function for a field ϕ
inserted with different time orderings. Point q is to the future of p, each respec-
tively lying at times t1 and t2 > t1. Left: time-ordered correlator ⟨ϕ(q)ϕ(p)⟩, where
time-evolution is implemented by U everywhere. Right: nontrivial timefold for the
out-of-time-order correlator ⟨ϕ(p)ϕ(q)⟩, with backwards time-evolution via U†.

timefold as follows. Consider an n-point function for a field ϕ,

⟨ϕ+|ϕ(pn) · · ·ϕ(p2)ϕ(p1)|ϕ−⟩g , (5.10)

where ϕ± are initial and final states on Cauchy surfaces Σ±. Starting at Σ−, one should

use the evolution operator U up to a Cauchy surface containing p1 and insert ϕ(p1). One

should then evolve to p2 for the next insertion. If p2 is to the future of p1, one could just

use U again. However, if p2 is to the past of p1, one should evolve backwards with U †

for the insertion of ϕ(p2). This procedure must be repeated for all n insertions before

finally evolving to Σ+. The whole process produces a timefold, a new zigzagged space-

time implementing the correct ordering of operators (see Fig. 5.1). In the path integral,

backward components receive weighting e−iSg , instead of the usual eiSg on forward ones.

If two points are timelike-related, the commutator is a difference between two cor-

relators computed on distinct timefolds, so will be generically nonzero. In the case of

spacelike-separated points, however, the two points can be inserted on the same Cauchy

surface. Hence the same timefold qualifies for a computation of either ordering, yielding

a vanishing commutator. Again, the discussion here applies to both boundary commu-
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tators ⟨[O(x),O(y)]⟩bdy and bulk commutators ⟨[ϕ(x, z), ϕ(y, z)]⟩g on a specific metric,

and therefore one has both boundary and bulk timefolds.

In general, the field theoryZbdy is naturally defined on some manifold B, and Zbdy[B, ϕ0]

is the generating functional of time-ordered correlators on B. To compute an out-of-

time-order correlator, one needs to extend Zbdy to an appropriate timefold spacetime F

constructed out of B as described above. Then Zbdy[F , ϕ0] allows one to compute the

desired correlator. The statement of holography in terms of partition functions must

account for this. Hence one has to more explicitly rewrite (5.3) as

Zbulk[F , ϕ0] = Zbdy[F , ϕ0], (5.11)

where Zbulk[F , ϕ0] path-integrates over all metrics with the timefold F as conformal

boundary, and boundary conditions ϕ0 appropriately distributed on F .

We will call the regions of spacetime separated by the creases the “sheets” of the

timefold. For a causal and unitary boundary theory, if x and y are spacelike-separated,

⟨O(y)O(x)⟩ can be computed on either a trivial timefold (i.e. the original spacetime with

no foldings), or a nontrivial timefold with O(x) on some sheet and O(y) on some other

sheet with the same result. For example, evolution forward and back – without operator

insertions – is the identity. It is not obvious that the corresponding bulk partition func-

tions will agree since we do not know (independent of holography) that the gravitational

path integral describes unitary evolution. This leads to a potential ambiguity in the def-

inition of Zbulk. Since we are trying to understand how a basic property of the boundary

theory follows from the bulk path integral, we have to resolve this ambiguity. If the

boundary theory is causal and unitary, we adopt a minimal-timefold approach, introduc-

ing a fold only when needed to represent operators at causally-related points where the

later operator appears first in the correlator. When folding minimally, backward evolu-
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tion just needs to sweep causal diamonds between insertions at non-time-ordered points

(including small neighborhoods for spacelike creases). Minimal timefolds are introduced

to disambiguate inequivalent computations which should nonetheless give equivalent re-

sults – if the boundary theory is acausal or non-unitary, however, results will generically

disagree and the minimal-timefold prescription does not apply.

We now show that with the minimal timefold, both the differentiate and extrapolate

dictionaries predict no violation of boundary causality. Consider first the differentiate

dictionary. Equation (5.6) tells us how the time-ordered correlators on the boundary are

computed from the bulk, but we have so far not included out-of-time-order correlators

in this equality. Extending the dictionary to general n-point functions, one has

G =
1

in
δ

δϕn
0 (xn)

· · · δ

δϕ1
0(x1)

Zbulk[F , ϕ0]

Zbulk[F , 0]

∣∣∣∣
ϕ0=0

, (5.12)

where F is a minimal boundary timefold constructed so as to order the operator insertions

as given in G (cf. (5.6) when the left-hand side is time-ordered, in which case F is just

B). If x and y are spacelike-separated boundary points, the minimal timefold for a two-

point correlator is trivial. Since this is the same for both terms in the commutator, the

only difference between them is the order in which one takes the derivatives with respect

to ϕ0. Since these derivatives commute, the commutator obviously vanishes. Note that

this is completely independent of whether x and y are causally related with respect to

some bulk metrics. All we use is that the integral over all metrics and matter fields

is some functional of the boundary conditions ϕ0 on a trivial timefold. If x and y are

causally related on the boundary, the situation is different. In that case, each term in

the commutator requires a different minimal timefold: a trivial one for the time-ordered

correlator, and a nontrivial one for the out-of-time-order correlator. In the latter, the

source for the earlier operator is moved to the second sheet, so the commutator can be
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nonzero.

We now turn to the extrapolate dictionary as in (5.7). For a bulk metric relating

x and y causally, one would expect ⟨ϕ(x, z)ϕ(y, z)⟩g ̸= ⟨ϕ(y, z)ϕ(x, z)⟩g since they are

computed on different bulk timefolds. This nonzero commutator on g is the origin of the

causality puzzle. However, there is a subtlety: The boundary condition on g must be

the same as for the differentiate dictionary. Namely, one must have a trivial boundary

timefold when x and y are spacelike-related on the boundary. If one computes the

commutator by a path integral over fields on the bulk metric g, the causality puzzle is

resolved as follows. Recall that a field path integral on a trivial timefold always gives

the time-ordered correlator. So when the two operators are in the asymptotic region,

inside the bulk path integral each of the two terms in the commutator (5.9) should come

with a time-ordering with respect to g, ⟨T ϕ(x, z)ϕ(y, z)⟩g = ⟨T ϕ(y, z)ϕ(x, z)⟩g, yielding

a vanishing commutator. Indeed, if the two points are timelike-related in the bulk, in the

limit z → 0 a non-time-ordered correlator would require a bulk metric with a nontrivial

timefold asymptotically, violating our boundary condition. In this case, the naive bulk

commutator ⟨[ϕ(x, z), ϕ(y, z)]⟩g plays no role in computing the boundary commutator

⟨[O(x),O(y)]⟩bdy.

Even with no timefold on the boundary, the bulk path integral includes timefolds that

trivialize asymptotically 2. Intuitively, the amount of time that one evolves backward goes

to zero as z → 0. This has no effect on the differentiate dictionary, since derivatives only

act on the boundary conditions. However, for the extrapolate dictionary, it introduces

an ambiguity in the location of the bulk operators ϕ. If there are different sheets of the

bulk timefold, one has to specify which sheet the operator is on, in addition to giving its

location on the sheet. If we use (5.7) one expects this ambiguity to have no effect since

2This is related to the fact that the bulk path integral should impose gravitational constraints,
necessitating integration over both positive and negative lapse [125].
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we take the limit z → 0 for each metric where the timefold becomes trivial.

In contrast, there is a potential problem with taking z → 0 after integration. For any

nonzero z, there are bulk metrics where for timelike-separated points (x, z) and (y, z)

there is a timefold that is trivial asymptotically, but both the time-ordered and out-of-

time-order correlators can be obtained by placing the operators on different sheets 3.

In other words, the bulk contains a timefold that allows a nonzero commutator, but

in the region outside the location of the operators, the timefold decays and completely

disappears at the boundary. Under these conditions, it would appear that the integrand

can be nonzero, and one again is left with the puzzle of why the integral over metrics

vanishes exactly.

However, the above occurs only if we allow bulk operators to change sheets depending

on their ordering in a correlator. Since the choice of sheet is not fixed by the bound-

ary correlator that we are trying to reproduce, one can adopt the rule that one fixes

the ambiguity in the extrapolate dictionary by picking one sheet of a timefold for each

operator independent of the location of the operator in the correlator. With this under-

standing, the integrand remains zero for each g (even before taking z → 0), consistent

with boundary causality.

Finally, we extend the ordering prescription for the bulk path integrand to general

n-point functions, allowing for timefolds inside the bulk. This upgrades (5.7) to

G ∝
∫

Dg eiSg lim
z→0

z∆Σ ⟨Pϕn(xn, z) · · ·ϕ1(x1, z)⟩g (5.13)

and analogously if z → 0 is taken after integration. Here g is restricted to metrics that

asymptote to the minimal boundary timefold required to order the field theory correlator

3Since the bulk timefolds do not have to be minimal, a nonzero commutator can be obtained from a
single timefold, by moving the earlier operator from one sheet to another. For example, on the right of
Fig. 5.1, one can compute the commutator by moving ϕ(p) to the first sheet.
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correctly and P is the ordering operator enforced by the field path integral on g, which

reduces to the time-ordering operator T when g is a trivial timefold (cf. the order followed

by the arrows in Fig. 5.1).

5.4 Discussion

In this paper, we have explained how the bulk theory manages to respect causality of

a unitary boundary theory despite the bulk path integral involving boundary causality

violating metrics. To do so, we formulated the bulk computation of correlators using

minimal timefolds, where it becomes manifest that boundary microcausality prevails,

i.e., local operators still commute at spacelike separation. With non-minimal timefolds

we would still expect microcausality to hold so long as the boundary theory is causal and

unitary. This way, however, one would have to rely on unexpected cancellations in the

integral over metrics – in this sense, minimal timefolds are nothing but a simpler repre-

sentation of the problem (cf. charge conservation via symmetry arguments vs checking

all orders in perturbation theory).

Our results apply to both the differentiate dictionary as given in (5.12) and the

extrapolate dictionary in the form (5.7). It also applies to the latter if one integrates

first, with a suitable rule for how to place operators on bulk timefolds that are trivial at

the boundary. The basic reason for this is that a nonzero commutator for two asymptotic

bulk operators requires a bulk timefold that is nontrivial at infinity, but the minimal

timefold for two spacelike-separated points on the boundary is trivial. So the bulk dual

of the commutator of two field theory operators at spacelike-separated points vanishes.

The bulk dual of the commutator of two stress energy tensors on the boundary does

not involve bulk matter fields. Nevertheless our argument using the differentiate dictio-

nary still applies. Since the boundary metric is the source for the stress tensor, one should
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compute the path integral over bulk geometries with a general boundary metric. One

then functionally varies the boundary metric at the location of the stress tensors. If they

are spacelike-related, there is no timefold on the boundary and hence the commutator

vanishes. (There is an issue with even defining the extrapolate dictionary nonperturba-

tively in this case arising from the apparent need to split the metric degrees of freedom

into background and fluctuations.) Our argument also applies to fermionic operators

which anticommute at spacelike separations. For the differentiate dictionary, the sign

difference comes from the fermionic sources for these operators anticommuting.

Although off-shell boundary causality violating metrics do not pose a problem to

microcausality of the field theory, such metrics do contribute to general correlators. It

would be interesting to understand what, if any, are the implications of this quantum

gravity effect. We do not believe there are examples of holography in which a bulk

classical solution violates boundary causality, but if there are, the boundary theory would

have to be acausal or non-unitary. In this case, computations are timefold-dependent and

our resolution does not apply.

Besides microcausality, there are other properties the field theory is expected to have,

which in general impose further constraints on the bulk state classically and semiclassi-

cally. For example, the invariance of von Neumann entropy under unitary transforma-

tions requires that the causal wedge be inside the entanglement wedge [20, 21]. (This is

stronger than and implies boundary causality [117].) Another requirement states that,

for two causally-related bulk points, boundary regions encoding each of them cannot be

totally spacelike [126]. (This extends our discussion from local operators to operators

supported in subregions.) In a nonperturbative gravitational path integral there will be

configurations violating this. It would be interesting to understand how the bulk path

integral preserves these properties.
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Appendix A

Exact linearity of the shockwave
equation of motion

In this appendix, we show that there are no non-linear contributions, i.e., O(h2), to the
equation of motion from the shockwave perturbation in any higher-derivative theory of
gravity including, but not limited to, f(Riemann). As an aside, we will also show that
the only component of the equations of motion perturbed by the shockwave is Ev

u.
To achieve this, it will be useful to define a notion of chirality. Consider a (not

necessarily covariant) tensor of the form Xa1···aℓ
b1···bn built out of gµν , g

µν and ∂µ, where
indices a1, · · · , aℓ, b1, · · · , bn can be either u or v, and we have suppressed i-type indices
on X. We define the chirality of any of its components as

χ = #(v superscripts)−#(v subscripts)−#(u superscripts) + #(u subscripts). (A.1)

We refer to any tensor component with χ = 0 as being non-chiral, and otherwise as being
chiral. For example, the components guu and Ev

u are chiral since both have χ = 2, while
Ruivj is non-chiral since it has χ = 0.

For all higher-derivative gravity theories, the equations of motion involve the metric,
the Riemann tensor, and covariant derivatives. We can rewrite them using only the
metric, the inverse metric, and partial derivatives. The only metric component that
contains hδ(u) is guu = −2Ahδ(u); similarly, the only inverse metric component having
hδ(u) is gvv = 2A−1hδ(u). A general term in Ev

u therefore takes the form

Ev
u ⊃ (∂v)

NX, X = X0(∂
n1
u guu)(∂

n2
u guu) · · · (∂nk

u guu)(g
vv)m, (A.2)

where we have collected all v-derivatives into the beginning of the expression (so that
they are understood to act on particular parts of X but not necessarily on X as a whole),
and collected everything that does not involve guu, its u-derivatives, or g

vv into X0. As
guu = gvv = 0, X0 is a product of guv, ∂

#
u guv, and g

uv. Let χ0 be the chirality of X0; it
is equal to the total number of u-derivatives, and thus always non-negative. As guv is a

116



Exact linearity of the shockwave equation of motion Chapter A

function of uv only, each ∂u acting on guv produces a factor of v, and we find

X0 = vχ0f0(uv) (A.3)

where f0(uv) is some function of uv. Since Ev
u has chirality 2, we need

N = 2m+ 2k − 2 +
k∑

i=1

ni + χ0 (A.4)

for the chirality of the term in (A.2) to agree.
Since v appears only in the combination uv in all metric functions, each ∂v in (A.2)

produces a factor of u unless it acts on an explicit factor of v produced by ∂u. In general,
the ∂u acting on guu = −2A(uv)hδ(u) in (A.2) can act either on A(uv) or the δ-function.

Let us first consider the simplest case where all ∂u shown in (A.2) act on the δ-
function. In this case, using (A.3) we find

X = vχ0f1(uv)δ
(n1)(u) · · · δ(nk)(u) (δ(u))m , (A.5)

where f1(uv) is some function of uv. Therefore, the term (A.2) in Ev
u behave at most as

X̃ ≡ (∂v)
NX ∼ uN−χ0δ(n1)(u) · · · δ(nk)(u) (δ(u))m , (A.6)

keeping only the leading dependence on u. Here we have acted as many ∂v as possible
on vχ0 ; if not, we would get subleading contributions that are suppressed by additional
powers of u. We will show momentarily that the leading contribution (A.6), understood
as a distribution, vanishes under the condition (A.4) unless it is actually δ(u) or unδ(n)(u)
for some n. Thus any subleading contribution suppressed by additional powers of u would
always vanish as a distribution.

Now consider the more general case where not all ∂u shown in (A.2) act on the δ-
function. Every ∂u that does not act on the δ-function must act on A(uv) and produce

an additional factor of v (for one more ∂v to act on) — thus the net effect on the term X̃
in (A.6) is to decrease one of the ni by 1 and effectively increase χ0 by 1. This preserves
the condition (A.4), so it does not change our argument below.

We now show that the distribution (A.6) vanishes under the condition (A.4) unless
it is actually δ(u) or unδ(n)(u) for some n. To see this, we regularize the δ-functions in
(A.6) as narrow Gaussian functions:

δ(u) → #

ϵ
e−u2/ϵ2 , (A.7)

and integrate it against a test function f(u):

I ≡
∫ ∞

−∞
du X̃(u)f(u). (A.8)
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We find

I ∼
∫ ∞

−∞
du f(u)uN−χ0

( u
ϵ2

)∑k
i=1 ni 1

ϵk+m
e−

(k+m)u2

ϵ2

∼ ϵf(0)ϵ2m+2k−2+
∑k

i=1 niϵ−
∑k

i=1 ni
1

ϵk+m

= f(0)ϵk+m−1,

(A.9)

where we have used (A.4) in going to the second line. In the first line, we have written

down a contribution to the regularized X̃(u) where all u-derivatives act on the exponent
of e−u2/ϵ2 ; every u-derivative that does not act on the exponent would remove a factor of
u2/ϵ2 from the first line, but would not change the final result.

We now take the ϵ → 0 limit. By construction, k + m ≥ 1 since we are interested
in corrections to the equations of motion due to the shockwave which have at least one
factor of δ(u) or its derivative. If k + m > 1, then the integral I vanishes as we send

ϵ to zero. We are left with only two cases: either k = 0,m = 1 where X̃ ∼ δ(u), or

k = 1,m = 0 where X̃ ∼ unδ(n)(u) for some n. In either case, the term is a well-defined
distribution and linear in h, concluding our proof for Ev

u.
Finally, consider other components of the equations of motion, e.g., Ev

i , E
v
v , etc. They

have χ ≤ 1, so we must have more powers of ∂v compared to (A.4), and the corresponding
distribution must have more powers of u compared to (A.6). Thus the integral I would go
like at least O(ϵk+m), which vanishes in the ϵ→ 0 limit as long as k+m ≥ 1. Therefore,
other components of the equations of motion are not perturbed by the shockwave.
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Proof of sum relations

In this appendix, we prove the sum relations (2.119a) and (2.119b) used in the main
proof. We will need the following identities

n∑
k=1

(−1)skk =
n∑

k=1

1 = n, (B.1a)

n∑
k=1

(−1)sk,k+1 =
n∑

k=1

1 +
n∑

k=1

[(−1)sk,k+1 − 1] = n− 2
n∑

k=1

δsk,k+1,1 = n− 2m. (B.1b)

In the sums below, the summation variables k, l are always within the range [1, n].
Beginning with (2.119a), we prove it by writing∑

k<l

[(−1)sk+1,l + (−1)skl ] [(−1)sk+1,l + (−1)sk+1,l+1 ] (−1)sk+1,l

=
∑
k<l

[1 + (−1)sk,k+1 ] [1 + (−1)sl,l+1 ] (−1)sk+1,l

=
∑
k<l

(−1)sk+1,l +
∑
k<l

(−1)skl +
∑
k<l

(−1)sk+1,l+1 +
∑
k<l

(−1)sk,l+1

=

(∑
k≤l

(−1)skl −
n∑

l=1

(−1)s1,l

)

+
∑
k<l

(−1)skl +
∑
k<l

(−1)skl +

(∑
k≤l

(−1)sk,l+1 −
n∑

k=1

(−1)sk,k+1

)

=

(∑
k<l

(−1)skl +
n∑

k=1

(−1)skk −
n∑

l=1

(−1)s1,l

)
+
∑
k<l

(−1)skl +
∑
k<l

(−1)skl

+

(∑
k<l

(−1)skl +
n∑

k=1

(−1)sk,n+1 −
n∑

k=1

(−1)sk,k+1

)
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= 4
∑
k<l

(−1)skl +
n∑

k=1

[
(−1)skk − (−1)sk,k+1

]
= 4

∑
k<l

(−1)skl + 2m, (B.2)

where we have used s1,k = sk,1 = sk,n+1 in going to the second-to-last line, and used
(B.1a) and (B.1b) in going to the last line.

Similarly, we prove (2.119b) by writing∑
k>l

[
(−1)m−sl+1,k + (−1)m−slk

] [
(−1)m−sl+1,k + (−1)m−sl+1,k+1

]
(−1)m−sl+1,k

= (−1)m
∑
k>l

[(−1)sl+1,k + (−1)slk ] [(−1)sl+1,k + (−1)sl+1,k+1 ] (−1)sl+1,k

= (−1)m

[
4
∑
k<l

(−1)skl + 2m

]
(B.3)

where in going to the last line we have used the fact that the sum is the same as (B.2)
with k ↔ l.
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Appendix C

Bosonic examples

C.1 Minimally coupled scalar

Consider the following theory for a massive scalar field on the black hole background:

L = −1

2
(∇ϕ)2 − 1

2
m2ϕ2. (C.1)

This has been considered in [75] at leading weight and in [53] at lower weights. In this
section, we perform the calculation in the covariant expansion formalism.

Its equation of motion is given by

E ≡
(
∇2 −m2

)
ϕ = 0. (C.2)

Taking covariant derivatives in the radial direction,

(∇r)
nδE = (∇r)

nδ
[(
∇2 −m2

)
ϕ
]

= (∇r)
n
(
∇2 −m2

)
δϕ, (C.3)

where everything is evaluated at r = r0 after derivatives are taken. Notice that we have
passed the variation operator, δ, through the background differential operator (∇2 −m2)
because the background is fixed. In the notation reviewed in Section 4.1,

δE = [δE,∇rδE,∇r∇rδE, ...]|r=r0 . (C.4)

The components have weights 0,−1,−2, .... In other words,

δE0 = [δE|r=r0 ], δE−1 = [(∇rδE)|r=r0 ], etc. (C.5)

Since there is only one component for each weight in this example, |δEp| = 1 for all
p ∈ Z≤0. We will omit the brackets for one-by-one matrices from now on.

Since this theory has only one dynamical field which has spin zero, the highest-weight
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equation of motion has p = q0 = 0:

δE0 = gµν∇µ∇νδϕ−m2δϕ

= 2gvr∇v∇rδϕ+ grr∇r∇rδϕ+ gij∇i∇jδϕ−m2δϕ

=
(
gij∇i∇j −m2

)
δϕ︸︷︷︸
[0]

+2gvr∇v ∇rδϕ︸ ︷︷ ︸
[−1]

+grr ∇r∇rδϕ︸ ︷︷ ︸
[−2]

=
[
(gij∇i∇j −m2) 2gvr∇v grr

]  δϕ
∇rδϕ
∇2

rδϕ


=
[(
gij(∂i∇j − Γµ

ij∇µ)−m2
)

2gvr∇v grr
]  δϕ

∇rδϕ
∇2

rδϕ

 . (C.6)

From (4.3), Γµ
ij is only non-zero for µ = v (on the horizon), so

δE0

=
[(
h−1δij(∂i∂j +

1
2
h′δij∂v)−m2

)
2∇v f

]  δϕ
∇rδϕ
∇2

rδϕ


=
[(
−h−1kiki +

1
2
h−1h′(−iω)d−m2

)
2(−iω + 1

2
f ′) 0

]  δϕ
∇rδϕ
∇2

rδϕ

 . (C.7)

Notice that we have terms with various weights q on the right hand side, even though
we are only considering the equation of motion with weight p = 0. Also, in the process,
we have canonicalized the expression by moving ∇r to the right of ∇v according to the
prescription. It is easy at this order because [∇µ,∇ν ] = 0 when acting on scalars.

Also, recall that we have defined

δX =


δX0

δX−1

δX−2

· · ·

 =


δϕ

∇rδϕ
∇2

rδϕ
· · ·

 , (C.8)

so what we have written down was δEp =
∑

q Mp,qδXq for p = 0.
Now let ω = −ω0, then this equation reduces to

− h−1k2 − d

2
h−1h′2πT −m2 = 0, (C.9)

=⇒ k2 = −dπTh′ −m2h, (C.10)

which is exactly (2.16) of [53]. In our language, this comes from the pole-skipping con-
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dition (4.23) with s = 1, i.e., detM1(k) = 0, which in this case involves only M0,0.
Let us now include the next value of p, which is −1. For simplicity, take d = 1. Then

δE−1 =∇r(g
µν∇µ∇ν −m2)δϕ

=

(
2hh′′ − h′2

4h2
(−2iω + f ′/2) +

k2h′

h2

)
δϕ

+

(
f ′h′

4h
− k2

h
+
h′

2h
(−iω + f ′/2) + 2f ′′ −m2

)
∇rδϕ

+2 (−iω + f ′)∇2
rδϕ. (C.11)

According to (4.23), the second set of poke-skipping points appears at the frequency
ω = −2ω0 and when the determinant of M2(k) vanishes, where

M2(k) =

[
−h−1k2 − 1

2
f ′h−1h′ −m2 −f ′

−3
8
h−2(2hh′′ − h′2)f ′ + k2h′h−2 −k2h−1 + 2f ′′ −m2

]
. (C.12)

On the BTZ background, where

f(r) = r2
(
1− r20

r2

)
, h(r) = r2, (C.13)

and for m = 0, the pole-skipping points at this order are given by

k2 =
r20

2(r0 − 2)

[
4± r0

(
∓4 + r0

(
∓3 + r−2

0

√
(4 + 3r20)(4− 8r0 + 7r20)

))]
. (C.14)

It is straightforward to continue to higher orders. We will go to higher orders in some
more complicated examples.

C.2 Maxwell theory

Consider Maxwell theory whose Lagrangian is given by

L =
1

4
FµνF

µν , (C.15)

where
Fµν = ∇µAν −∇νAµ. (C.16)

This is our first example with a gauge symmetry: Aµ → Aµ +∇µΛ. This example will
demonstrate how gauge redundancy is reflected in the formalism and how the gauge-
covariant pole-skipping condition works.
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The equation of motion is given by

Eν = ∇µFµν = ∇µ∇µAν −∇µ∇νAµ. (C.17)

We simplify the calculation by setting d = 1 in this example, so

δEv = ∇µ∇µδAv −∇µ∇vδAµ

= ∇v∇rδAv +
1

h
∇2

xδAv −∇2
vδAr −

1

h
∇x∇vδAx. (C.18)

Unpacking the ∇’s and evaluating it on the horizon, we have:

δE1 = (δEv)|r=r0 = (−iω)∇rδAv −
1

h
k2δAv + iω

(
−iω +

f ′

2

)
δAr −

kω

h
δAx. (C.19)

It is easy to see that the first pole-skipping point appears at

(ω, k) = (0, 0) (C.20)

because M1(k) is just the coefficient in front of δAv. We note that gauge symmetry is
not yet visible at this order because s = 1 is smaller than q0 − u0 + 1 = 2, as explained
in Section 4.2.

At the next order s = 2, we have both ∇rδEv and δEx to consider. By following the
prescription, we compute

M2(k) =


−k2

h
ikf ′

2h
−f ′

2

ikh′

2h
f ′h′

4h
−ik

k2h′

h2 − ikf ′h′

2h2
f ′h′−4k2

4h

 , (C.21)

where we have chosen the basis elements in the following order:

δX1 ⊕ δX0 = [δAv, δAi,∇rδAv]|r=r0 , (C.22)

δE1 ⊕ δE0 = [δEv, δEi,∇rδEv]|r=r0 . (C.23)

From now on, we will only state the basis for δX , and it should be understood that the
basis for δE is chosen analogously, as above. The determinant of this matrix is zero for
any value k. More precisely, this matrix has a one-dimensional kernel. This is due to the
fact that the pure-gauge perturbation δAµ = ∇µΛ automatically satisfies the equations
of motion. Using the language of (4.28), the kernel of M2(k) is spanned by δAv

δAx

∇rδAv

 =

if ′/2
k
0

Λ. (C.24)
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Here δξ|r0 = Λ|r0 is the only degree of freedom of the gauge parameter at this order, so
the kernel is one-dimensional. See later for cases with larger kernels. The pole-skipping
points at this order can now be found using (4.29). At

k2 = −1

4
f ′h′, (C.25)

the dimension of the kernel increases from 1 to 2.
At the next order, s = 3 and ω = (q0 − s)ω0 = −2ω0, choosing

δX1 ⊕ δX0 ⊕ δX−1 = [δAv, δAi,∇rδAv, δAr,∇rδAi,∇2
rδAv]|r=r0 (C.26)

as the basis, the relevant matrix is given by

M3(k) = (C.27)

−k2

h
ikf ′

h −f ′ −1
2f

′2 0 0

ikh′

2h 0 −ik 1
2 ikf

′ −f ′ 0

k2h′

h2 −3ikf ′h′

4h2
f ′h′−4k2

4h
f ′2h′+2hf ′f ′′

8h
ikf ′

2h −f ′

2

0 − ikh′

2h2 − h′

2h
2hf ′′−f ′h′−4k2

4h − ik
h −1

ik(2hh′′−3h′2)
4h2

hf ′′h′+hf ′h′′−f ′h′2

2h2
ikh′

h −1
2 ikf

′′ f ′′ + f ′h′

2h −ik

k2(hh′′−2h′2)
h3

k(−hf ′′h′−4hf ′h′′+6f ′h′2)
4ih3 A B hkf ′′+2kf ′h′

2ih2
hf ′′+f ′h′−2k2

2h


where

A =
hf ′′h′ + 2hf ′h′′ − 2f ′h′2 + 8k2h′

4h2
,

B =
−2h2f ′′2 + 2hf ′2h′′ − 2f ′2h′2 − hf ′f ′′h′

8h2
,

which already has a two-dimensional kernel spanned by
δAv

δAx

∇rδAv

δAr

∇rδAx

∇2
rδAv

 =


−f ′

ik
0
0

− ikh′

2h

0

Λ +


0
0

−1
2
f ′

1
ik
1
2
f ′′

∇rΛ, (C.28)

where δξ|r0 = Λ|r0 = δΞ0 and ∇rδξ|r0 = ∇rΛ|r0 = δΞ−1 are the two gauge parameters
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appearing in the sum (4.28). The pole-skipping momenta are given by the solutions to(
k2 +

1

2
f ′h′

)
(k2 + f ′h′ − hf ′′)− hf ′2h′′ = 0. (C.29)

They will increase the dimension of the kernel from 2 to 3. On the BTZ black ground
(C.13), they simplify to

k2 = r20

(
−2± 2

√
2
)
. (C.30)

C.3 Einstein gravity

Consider the Einstein-Hilbert action with a negative cosmological constant:

S =
1

16πGN

∫
dd+2x

√−g(R− 2Λ), Λ = −d(d+ 1)

2ℓ2
, ℓ = 1. (C.31)

Compared to the other examples we study, this one is computationally the hardest. This
will hopefully illustrate the advantage of using the covariant expansion method: it is fully
automatable. This also serves as another illustration of the nature of gauge symmetry,
which in this case is given by: gµν → gµν +∇µζν +∇νζµ.

Einstein’s equation is given by

Eµν = Rµν −
2Λ

d
gµν . (C.32)

The linearized Einstein’s equation is given by

δEµν =
1

2
(−∇α∇αδgµν −∇µ∇νδg

α
α +∇µ∇αδgνα +∇ν∇αδgµα)

+
1

2
gαβRµαδgνβ +

1

2
gαβRναδgµβ − gαρgβσRµανβδgρσ −

2Λ

d
δgµν . (C.33)

We will first keep d general but turn to d = 2 later for concreteness; if one wishes, one
can keep d general throughout the whole calculation. To avoid repetition, we now state
the order in which the basis elements are presented throughout this example:

[δgvv, δgv1, δgv2,∇rδgvv, δgvr, δg11, δg12, δg22,∇rδgv1,∇rδgv2,∇2
rδgvv, δgr1,

δgr2,∇rδgvr,∇rδg11,∇rδg12,∇rδg22,∇2
rδgv1,∇2

rδgv2,∇3
rδgvv, · · · ]|r=r0 , (C.34)

where the subscripts 1 and 2 abbreviate x1 and x2. To begin with, consider the highest-
weight equation of motion

δE2 = δEvv|r0 =
[
− 1

2h
∂i∂i +

dh′

4h
(∂v − f ′)− 1

2
f ′′ − 2Λ

d

]
δgvv
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+
1

h

(
∂v −

1

2
f ′
)
∂iδgvi −

1

2h
∂v

(
∂v −

1

2
f ′
)
δgii. (C.35)

Again, the gauge symmetry is not visible at this order, as s = 1 is smaller than q0−u0+1 =
2− 1 + 1 = 2. We can therefore easily read off the location of the first skipped pole:

ω = ω0, k2 = −d
4
f ′h′, (C.36)

where we have used the fact that the background metric satisfies Einstein’s equation.
At the next order (s = 2, ω = 0), we have (for general d)

δEvi|r0 = (d− 2)
h′

4h
∂iδgvv +

[
− 1

2h
∂j∂j +

h′

4h
(∂v − 2f ′)− 2Λ

d

]
δgvi +

1

2h
∂i∂jδgvj

+
1

2
∂i∇rδgvv +

1

2
∂v∂iδgvr −

1

2
∂v∇rδgvi +

1

2
∂v

(
∂v +

1

2
f ′
)
δgri, (C.37)

∇rδEvv|r0 =
[
− 1

2h
∂i∂i +

dh′

4h
(∂v − f ′)− 1

2
f ′′
]′
δgvv −

[
h′

h2
∂v +

1

2

(
f ′

h

)′]
∂iδgvi

+

[
− 1

2h
∂i∂i +

dh′

4h
(∂v − f ′)− 1

2
f ′′ − 2Λ

d

]
∇rδgvv +

dh′

4h
∂vδgvr

+
1

4

(
f ′

h

)′

∂vδgii +
1

h
∂v∂i∇rδgvi −

1

2h
∂v

(
∂v +

1

2
f ′
)
∇rδgii. (C.38)

We can easily write down the matrixM2(k) using the expressions above. The determinant
of this matrix is automatically zero. Its kernel is spanned by the pure-gauge perturbations
δgµν = ∇µζν +∇νζµ with weights q ≥ 1. In the near-horizon covariant expansion, this is δgvv

δgvi
∇rδgvv

 =

−f ′

iki
−f ′′

 ζv, (C.39)

where ζv|r0 = δΞ1 is the only gauge parameter appearing in (4.28) at this order. For
simplicity, we now specialize to a specific background, the Schwarzschild-AdS4 black
hole, which has

f(r) = r2
(
1− r30

r3

)
, h(r) = r2. (C.40)
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Now our matrix simplifies to

M2(k) =



k21+k22
2r20

−3ik1
2r0

−3ik2
2r0

0

0
k22
2r20

−k1k2
2r20

ik1
2

0 −k1k2
2r20

k21
2r20

ik2
2

−k21+k22
r30

3ik1
r20

3ik2
r20

k21+k22
2r20

 . (C.41)

As we described above for general background, there is a one-dimensional kernel of this
matrix (C.39). On our chosen background, it reduces to

δgvv
δgv1
δgv2

∇rδgvv

 =


−3
ik1
ik2
0

 ζv. (C.42)

The product of nonzero diagonal entries of its Jordan normal form is

k4(k2 + 6r20). (C.43)

Setting k = 0 will increase the dimension of the kernel from 1 to 4, while k2 = −6r20 will
not. According to (4.29) and with the caveat mentioned in Footnote 2, pole skipping
only happens at k = 0.

We can continue to find the skipped poles at the next order (s = 3), where ω = −ω0.
We now need all equations of motion with weights greater or equal to 0. The relevant
matrix is worked out to be

M3(k) = (C.44)

A − 3ik1
r0

− 3ik2
r0

0 0 − 9
4

0 − 9
4

0 0 0

0
k2
2

2r20

− 3
4

− k1k2
2r20

ik1
2

3
4
ik1r0 0 − 3ik2

4r0

3ik1
4r0

3r0
4

0 0

0 − k1k2
2r20

k2
1

2r20

− 3
4

ik2
2

3
4
ik2r0

3ik2
4r0

− 3ik1
4r0

0 0
3r0
4

0

− k2

r30

+ 3
2

9ik1
2r20

9ik2
2r20

A − 9r0
2

9
4r0

0 9
4r0

− 3ik1
2r0

− 3ik2
2r0

0

0
ik1
2r30

ik2
2r30

1
r0

k2

2r20

+ 3 3
4r20

0 3
4r20

ik1
2r20

ik2
2r20

1
2

1
2ik1
r0

ik2
r0

r0 k2
1 + 3r20

k2
2

2r20

+ 9
4

− k1k2
r20

k2
1

2r20

+ 3
4

ik1 0 0

0
ik2
2r0

ik1
2r0

0 k1k2 0 3
2

0
ik2
2

ik1
2

0

1
ik1
r0

2ik2
r0

r0 k2
2 + 3r20

k2
2

2r20

+ 3
4

− k1k2
r20

k2
1

2r20

+ 9
4

0 ik2 0

0 9
4r0

−
k2
2

r30

k1k2
r30

− ik1
2r0

3ik1
4

0
3ik2
4r20

− 3ik1
4r20

k2
2

2r20

− 9
4

− k1k2
2r20

ik1
2

0
k1k2
r30

9
4r0

−
k2
1

r30

− ik2
2r0

3ik2
4

− 3ik2
4r20

3ik1
4r20

0 − k1k2
2r20

k2
1

2r20

− 9
4

ik2
2

3
(
k2−r20

)
r40

− 15ik1
r30

− 15ik2
r30

3
r0

−
2
(
k2

)
r30

9 − 27
4r20

0 − 27
4r20

6ik1
r20

6ik2
r20

A


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where

A =
1

2

(
k2

r20
− 3

)
, k2 = k21 + k22.

Here, the dimension of the kernel is already 4, an indication of the size of the gauge group
(diffeomorphism). The kernel is spanned by

δgvv
δgv1
δgv2

∇rδgvv
δgvr
δg11
δg12
δg22

∇rδgv1
∇rδgv2
∇2

rδgvv


=



−6
ik1
ik2
0
0
2
0
2

−ik1
−ik2
−6


ζv +



0
−3

2

0
0
0

2ik1
ik2
0
−3

2

0
0


ζ1 +



0
0
−3

2

0
0
0
ik1
2ik2
0
−3

2

0


ζ2 +



0
0
0
−3
1
0
0
0
ik1
ik2
0


∇rζv, (C.45)

where δΞ1 = [ζv]|r=r0 and δΞ0 = [ζ1, ζ2,∇rζv]|r=r0 parameterize the four dimensions of
the kernel. The product of nonzero diagonal entries of its Jordan normal form is given
by

(k2 − 3r20)(k
2 + 6r20)(k

2 + 9r20)(k
4 + 9r40)(k

4 + 15k2r20 + 18r40). (C.46)

Among the roots of this expression, it can be checked that k2 = 3k20, k
4 = −9k40 increases

the dimension of the kernel.
We can continue doing this, but the size of the matrix is getting unmanageable. We

will just state the results for the next two orders. At s = 4 (ω = −2ω0), pole-skipping
momenta are given by

k4 = 18r40, k4 = −18r40. (C.47)

At s = 5 (ω = −3ω0), they are given by

k4 = 27r40, k4 = −27r40, k2 = −15r20. (C.48)

All the results that overlap with (5.17) and (E.8) of [53] agree.
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Appendix D

Fermionic examples

D.1 Free Dirac spinor

Consider a theory of a minimally coupled free Dirac field on curved spacetime:

L = iψ̄ (Γµ∇µ −m)ψ. (D.1)

Pole skipping for this theory has been studied in [76]. In this section, we perform the anal-
ysis using the formalism of Section 4.3. For simplicity, we work in three bulk dimensions
(d = 1). To begin with, the linear order perturbation to the equation of motion

E = (Γµ∇µ −m)ψ (D.2)

is given by

δE = Γµ∇µδψ −mδψ

= Γv∇vδψ + Γr∇rδψ + Γx∇xδψ −mδψ

=

[
0 2
0 0

] [
(∂v − f ′/4)δψ+

(∂v + f ′/4)δψ−

]
+

[
0 f
1 0

] [
(∇rδψ)+
(∇rδψ)−

]
+

[
−1/

√
h 0

0 1/
√
h

] [
∂x −h′f/(4

√
h)

h′/(4
√
h) ∂x

] [
δψ+

δψ−

]
−m

[
δψ+

δψ−

]
. (D.3)

When evaluated at the horizon,

δE1/2 = δE+|r0 = −
(

1√
h
∂x +m

)
δψ+ + 2

(
∂v +

f ′

4

)
δψ−. (D.4)

According to (4.23), the first pole skipping point happens at frequency ω = −1
2
ω0, and

the corresponding momentum can be easily found by setting detM1(k), which in this
case is the prefactor in front of δψ+, to zero, after substituting the Fourier expansion
(4.5). Solving for k immediately leads to k = im

√
h.
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To find the next pole-skipping point, we need

δE−1/2 =

[
δE−

(∇rδE)+

]∣∣∣∣
r0

, (D.5)

where

δE−|r0 =
h′

4h
δψ+ +

(
1√
h
∂x −m

)
δψ− + (∇rδψ)+, (D.6)

(∇rδE)+|r0 =
h′

2h3/2
∂xδψ+ +

(
1

2
f ′′ +

f ′h′

4h

)
δψ−

−
(

1√
h
∂x +m

)
(∇rδψ)+ + 2

(
∂v +

3

4
f ′
)
(∇rδψ)−. (D.7)

From the general argument, we know that setting ω = −3
2
ω0 would kill all terms involving

δXq with q ≤ −3/2. One can check explicitly that the prefactor in front of (∇rδψ)−
vanishes. As always, we are left with a square matrix to analyze: δE+

δE−

(∇rδE)+

 =


− 1√

h
ik −m −f ′ 0
h′

4h
1√
h
ik −m 1

h′

2h3/2 ik
f ′′

2
+ f ′h′

4h
− 1√

h
ik −m


 δψ+

δψ−

(∇rδψ)+

 . (D.8)

The determinant of the square matrix is evaluated to be

detM2(k) =
ikf ′′

2
√
h
+

1

2
mf ′′ − ikf ′h′

2h3/2
− ik3

h3/2
− k2m

h
− ikm2

√
h

−m3. (D.9)

On the BTZ background (C.13), the pole-skipping momenta can be found by solving

0 = detM2(k) = − i

r30
(k + imr0)(k − i(m− 1)r0)(k − i(m+ 1)r0), (D.10)

with solutions
k = −imr0, i(m− 1)r0, i(m+ 1)r0. (D.11)

At the next order (s = 3 and ω3 = −5
2
ω0), taking

δX1/2 ⊕ δX−1/2 ⊕ δX−3/2 = [δψ+, δψ−,∇rδψ+,∇rδψ−,∇2
rδψ+]|r0 (D.12)

as our basis (in the order presented),

M3(k) =
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

−m− ik√
h

−2f ′ 0 0 0
h′

4h
−m+ ik√

h
1 0 0

ikh′

2h3/2
1
4

(
2f ′′ + f ′h′

h

)
−m− ik√

h
−f ′ 0

−h′2−hh′′

4h2 − ikh′

2h3/2
h′

4h
−m+ ik√

h
1

ik(2hh′′−3h′2)
4h5/2

h(2f (3)h+f ′′h′)−2f ′(h′2−hh′′)
4h2

ikh′

h3/2 2f ′′ + f ′h′

2h
−m− ik√

h


. (D.13)

On the BTZ background (C.13), the pole-skipping momenta are found by solving

0 = detM3(k) (D.14)

=
−i

r50
(k − imr0)(k + i(m− 1)r0)(k + i(m+ 1)r0)(k − i(m− 2)r0)(k − i(m+ 2)r0).

At the next order (s = 4 and ω4 = −7
2
ω0), taking our basis as

[δψ+, δψ−,∇rδψ+,∇rδψ−,∇2
rδψ+,∇2

rδψ−,∇3
rδψ+]|r0 , (D.15)

the relevant matrix is given by

M4(k) = (D.16)

−m − ik√
h

−3f ′ 0 0 0 0 0

h′
4h

−m + ik√
h

1 0 0 0 0

ikh′

2h3/2
1
4

(
2f ′′ + f′h′

h

)
−m − ik√

h
−2f ′ 0 0 0

−h′2−hh′′
4h2 − ikh′

2h3/2
h′
4h

−m + ik√
h

1 0 0

ik
(
2hh′′−3h′2

)
4h5/2

A ikh′

h3/2
2f ′′ + f′h′

2h
−m − ik√

h
−f ′ 0

2h′3+h2h(3)−3hh′h′′
4h3

ik
(
3h′2−2hh′′

)
4h5/2

−h′2−hh′′
2h2 − ikh′

h3/2
h′
4h

−m + ik√
h

1

ik
(
15h′3+4h2h(3)−18hh′h′′

)
8h7/2

B
3ik

(
2hh′′−3h′2

)
4h5/2

C 3ikh′

2h3/2
3
4

(
6f ′′ + f′h′

h

)
−m − ik√

h


where

A =
h
(
2f (3)h+ f ′′h′

)
− 2f ′ (h′2 − hh′′)

4h2
,

B =
3f ′ (2h′3 + h2h(3) − 3hh′h′′

)
+ h

(
f (3)hh′ − 3f ′′h′2 + h

(
2hf (4)(r) + 3f ′′h′′

))
4h3

,

C =
5f (3)

2
+

3hf ′′h′ − 6f ′ (h′2 − hh′′)

4h2
.

On the BTZ background (C.13), the determinant simplifies to

detM4(k) = − i

r70
(k + imr0)(k − i(m− 1)r0)(k − i(m+ 1)r0)

× (k + i(m− 2)r0)(k + i(m+ 2)r0)(k − i(m− 3)r0)(k − i(m+ 3)r0). (D.17)
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Again, setting this to zero gives the corresponding pole-skipping momenta at this fre-
quency, which one can easily read off from the expression.

This procedure can be continued to higher orders systematically, but we will stop here
to save space. To all the orders we have presented, the locations exactly match those
found in [76].

D.2 Rarita-Schwinger field

Consider the following action for the spin-3
2
Rarita-Schwinger field, ψµ, on a curved

background:

S = − 1

16πGN

∫
dd+2x

√−g
(
ψ̄µΓ

µνρ∇νψρ +mψ̄µΓ
µνψν

)
. (D.18)

This theory has been considered in [82]. This is an interesting example not only because
this is the only example of ours where the dynamic field carries both Lorentz and spinor
indices but also because it has a gauge symmetry only when we tune the mass m to a
special value.

The equation of motion for ψµ is given by

Eµ(ψν) = Γµνρ∇νψρ +mΓµνψν = 0. (D.19)

This action has a gauge symmetry when m = mc ≡ d/2 if the background satisfies
vacuum Einstein’s equation with a negative cosmological constant. To see this, consider
the transformation

δψµ =

(
∇µ −

1

2
Γµ

)
χ, (D.20)

under which the equation of motion changes by

δEµ|mc =Γµνρ∇ν

(
∇ρ −

1

2
Γρ

)
χ+

d

2
Γµν

(
∇ν −

1

2
Γν

)
χ

= gµν
(
Rνρ −

1

2
gνρR

)
Γρχ− 1

2
ΓµνρΓρ∇νχ+

d

2
Γµν∇νχ− d

4
ΓµνΓνχ

=
1

2

(
Rµν − 1

2
gµνR− d(d+ 1)

2
gµν
)
Γνχ = 0, (D.21)

where ΓµνΓν = (d+ 1)Γµ, ΓµνρΓρ = dΓµν , and the AdS length has been set to 1.
We again work in three bulk dimensions (d = 1). The highest-weight equation of
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motion is given by

δE3/2 = δEv+|r0 = −
(

1√
h
∂x +m

)
δψv+ − 1√

h

(
∂v −

1

4
f ′
)
δψx+. (D.22)

The first skipped pole is then located at ω = 1
2
ω0, k = im

√
h. To find the next few

points, we need

δEv−|r0 = − h′

4h
δψv+ −

(
1√
h
∂x −m

)
δψv− − m√

h
δψx+ +

1√
h

(
∂v +

1

4
f ′
)
δψx−,

δEx+|r0 = −2m
√
hδψv− +

√
h(∇rψ)v+ −

√
h

(
∂v +

1

4
f ′
)
δψr+,

∇rδEv+|r0 =
h′

2h3/2
∂xδψv+ +

f ′h′

4h
δψv− +

f ′h′ − hf ′′

4h3/2
δψx+ −

(
1√
h
∂x +m

)
(∇rψ)v+.

(D.23)

At the next order (s = 2, ω = −1
2
ω0), in the basis

δX3/2 ⊕ δX1/2 = [δψv+, δψv−, δψx+,∇rδψv+]|r0 , (D.24)

the square matrix we are interested in is given by

M2(k) =


−m− ik√

h
0 − f ′

2
√
h

0

− h′

4h
m− ik√

h
− m√

h
0

0 −2m
√
h 0

√
h

ikh′

2h3/2
f ′h′

4h
f ′h′−hf ′′

4h3/2 −m− ik√
h

 , (D.25)

which has determinant

detM2(k)

= − k2f ′′

4h
− 1

4
m2f ′′ +

ikmf ′h′

4h3/2
+

3m2f ′h′

4h
− f ′2h′2

32h2
+

2k2m2

h
− 4ikm3

√
h

− 2m4. (D.26)

As mentioned at the beginning of the section, there is a gauge symmetry for the Rarita-
Schwinger field when the background Einstein’s equation is satisfied. In our case, they
constrain the metric as follows:

(h′(r))
2 − 2h(r)h′′(r) = 0, f ′(r)h′(r)− 4h(r) = 0, f ′′(r) = 2. (D.27)

Using the last two equations, the determinant becomes

1

2h
(4m2 − 1)(−2ikm

√
h−m2h+ h+ k2). (D.28)
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For the generic case m ̸= mc, the determinant is non-zero and pole skipping happens
at those k’s that make the determinant zero. For m = mc, the determinant vanishes
automatically, consistent with what we showed in Section 4.2. In this special case, we
need to use the gauge-covariant version of pole-skipping conditions (4.29). This gives

k = − i

2

√
h. (D.29)

This momentum increases the dimension of the kernel from 1 to 2. We should emphasize
that one cannot locate the pole-skipping points in this case by taking m → mc after
finding pole-skipping points for m ̸= mc, i.e., the procedures do not commute.

To understand why the matrix has a kernel of dimension 1, consider the pure-gauge
perturbation

δψµ =

(
∇µ −

1

2
Γµ

)
δξ =

(
∇µ −

1

2
Γµ

)
χ. (D.30)

The relevant part of (4.25) at ω = −1
2
ω0 is

δψv+

δψv−
δψx+

(∇rδψ)v+

 = −1

2


f ′

1

−(
√
h+ 2ik)
1
2
f ′′

χ+. (D.31)

This is indeed an eigenvector of the 4 × 4 matrix (D.23) with eigenvalue 0, assuming
background Einstein’s equation and m = mc.

At s = 3 (ω = −3
2
ω0), using the basis

δX3/2 ⊕ δX1/2 ⊕ δX−1/2

= [δψv+, δψv−, δψx+,∇rδψv+, δψx−, δψr+,∇rδψv−,∇rδψx+,∇2
rδψv+]|r0 , (D.32)

the matrix we are interested in is

M3(k) = (D.33)

−m− ik√
h

0 − f ′
√
h

0 0 0 0 0 0

− h′

4h
m− ik√

h
− m√

h
0 − f ′

2
√
h

0 0 0 0

0 −2
√
hm 0

√
h 0

√
hf ′

2
0 0 0

ikh′

2h3/2
f ′h′

4h
f ′h′−hf ′′

4h3/2 −m− ik√
h

0 0 0 − f ′

2
√
h

0

0 0 0 0 0
√
hm

√
h 0 0

0 0 − h′

2h3/2 0 2m√
h

m+ ik√
h

0 − 1√
h

0

h′2−hh′′

4h2
ikh′

2h3/2 0 − h′

4h
hf ′′+f ′h′

4h3/2 0 m− ik√
h

− m√
h

0

0 0 0 0 0 − 1
4

√
hf ′′ −2

√
hm 0

√
h

ik(2hh′′−3h′2)
4h5/2 A B ikh′

h3/2 0 0 f ′h′

2h
f ′h′

2h3/2 −m− ik√
h


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where

A =
hf ′′h′ − 2f ′ (h′2 − hh′′)

4h2
,

B =
h
(
f ′′h′ − f (3)h

)
− 2f ′ (h′2 − hh′′)

4h5/2
.

Again, the determinant is automatically zero when the background Einstein equation is
satisfied and m = mc. In this case, the kernel of this matrix is spanned by the pure-gauge
perturbations

δψv+

δψv−
δψx+

(∇rδψ)v+
δψx−
δψr+

(∇rδψ)v−
(∇rδψ)x+
(∇2

rδψ)v+


=
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2
1
2
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h+ ik

−1
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4
√
h

0
0
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2h

−1
4f

(3)
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χ+ +
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2
0
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h+ ik
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4
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0
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0
0
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2
0
1
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2
1
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h+ 2ik)
0


(∇rχ)+.

(D.34)

According to our gauge-covariant pole-skipping condition (4.29), we need to look for
values of k that increase the dimension of kerM3(k). Curiously, there turns out to be
none at this order. Incidentally, the values

k =
i

2

√
h, − 3i

2

√
h,

5i

2

√
h (D.35)

would increase the number of zeros in the characteristic polynomial but not the dimension
of the kernel. See Footnote 2 for this distinction.
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