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Abstract
Branching process inspired models are widely used to estimate the effective reproduction number—a useful 
summary statistic describing an infectious disease outbreak—using counts of new cases. Case data is a real- 
time indicator of changes in the reproduction number, but is challenging to work with because cases fluctuate 
due to factors unrelated to the number of new infections. We develop a new model that incorporates the 
number of diagnostic tests as a surveillance model covariate. Using simulated data and data from the 
SARS-CoV-2 pandemic in California, we demonstrate that incorporating tests leads to improved 
performance over the state of the art.
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1 Introduction
In an infectious disease epidemic, the effective reproduction number is the average number of 
people a newly infected person will subsequently infect. When the effective reproduction 
number is above 1, an epidemic is out of control and will continue to grow, vice versa if it 
is below 1. This makes the effective reproduction number a useful summary of the state of 
an epidemic which can provide guidance to policy makers. As such, estimates of the effective 
reproduction number based on observed data can be an important part of any public health 
response during an epidemic. Recent examples from the SARS-CoV-2 pandemic include work 
by Mishra et al. (2022) in Scotland, as well as efforts by Swiss National Covid-19 Science 
Task Force (2020).

An early effort of using a likelihood-based approach to estimate the effective reproduction num
ber is that of Wallinga and Teunis (2004), which is based on modelling transmission trees. A re
cently popular class of estimators for the effective reproduction number (used in both Mishra 
et al., 2022; Swiss National Covid-19 Science Task Force, 2020) is inspired by stochastic branch
ing process models, where infectious individuals infect a random number of new individuals at 
random points in time. The most widely used model in this class is available in the EpiEstim 
R package (Cori et al., 2013; Thompson et al., 2019), which is based on ideas put forth by 
Fraser (2007). EpiEstim assumes all new infections (incidence) are observed, and uses a time ser
ies of observed cases as data. During the SARS-CoV-2 pandemic, a number of methods in this class 
of estimators have been developed. The methods of Parag (2021) and Capistrán et al. (2022) con
tinue to assume incidence (or incidence up to a constant) are observed, and focus on improving 
how changes in Rt are modelled over time, while avoiding Markov chain Monte Carlo 
(MCMC)-based methodologies. The methods of Abbott et al. (2020), Huisman et al. (2022), 
Scott et al. (2021), and Bhatt et al. (2023) use more computationally intensive approaches which 
model observed data as functions of latent incidence, either through explicit Bayesian models 
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(Abbott et al., 2020; Bhatt et al., 2023; Scott et al., 2021) or through a pipeline that first bootstraps 
latent incidence which is then used as input into EpiEstim. The methods of Teh et al. (2022), 
Scott et al. (2021), and Bhatt et al. (2023) also begin to tackle the problem of how to estimate 
Rt across spatial locations. Many of these methods have not been scrutinised via extensive simu
lation studies under model mis-specification, or in some cases, not probed at all, making it difficult 
to understand the strengths and weaknesses of this class of methods.

This gap in knowledge is particularly relevant when it comes to applying such methods to ob
served case counts of an infectious disease. As the SARS-CoV-2 pandemic has demonstrated, ob
served cases of an infectious disease are often circuitously related to the true number of new 
infections, due to constraints in testing supply, asymptomatic infections, testing eligibility, and re
porting delays. These factors can make estimating the effective reproduction number from cases 
quite difficult in real world situations. This is a widely recognised challenge; a recent survey of papers 
using EpiEstim found the most common challenge for users was dealing with the quality of ob
served case data (Nash et al., 2022). One sensible approach to resolving this issue is to use other 
sources of data. For instance, Flaxman et al. (2020) used a model similar to those available in 
epidemia to assess the effects of non-pharmaceutical interventions by fitting a model to death 
counts rather than case counts, while Mishra et al. (2022) incorporated data sources such as deaths 
and sero-prevalence data in addition to case data. Turning to other data sources is an appealing strat
egy for retrospective analyses, but during an ongoing epidemic it is often desirable to provide real- 
time estimates of the effective reproduction number, a task called now-casting. When now-casting, 
case data is one of the earliest available data sources to indicate a change in the effective reproduction 
number. It behooves us, then, to develop reasonable methods for using case data when estimating 
the effective reproduction number, despite the difficulties involved.

Our study has two main contributions. First, we develop our own model for estimating the ef
fective reproduction number making different modelling choices than other available methods. 
The most significant of these is that we incorporate the number of diagnostic tests administered 
(both positive and negative) as a covariate in our model. Second, to increase understanding of 
the broader class of branching process inspired methods, we conduct simulation studies compar
ing our new model to EpiEstim and a model constructed using the epidemia package devel
oped by Scott et al. (2021). The latter approach builds on the EpiEstim framework by 
allowing for more flexible and complex models that treat new infections as unobserved variables, 
with various time series such as cases or deaths modelled as noisy realisations of unobserved in
fections used as data (Bhatt et al., 2023; Scott et al., 2021). In particular, we explore scenarios 
with differing diagnostic test availability. We also fit our model to real data from the 
SARS-CoV-2 pandemic in 15 California counties. Our results show that our new model outper
forms existing methodologies under a variety of different testing scenarios and provides novel in
sights when applied to real data, highlighting the utility of incorporating tests when using case data 
as well as distributional choices made in the modelling process.

2 Methods
2.1 Available data
Consider an outbreak observed for a total of T time intervals. We restrict ourselves to two kinds 
of infectious disease outbreak data. The first is the time series of observed cases, 
O = (O1, O2, O3, . . . , OT), where Ou is the number of newly observed cases of an infectious 
disease during time interval u. The second is the time series of diagnostic tests, 
M = (M1, M2, . . . , MT), where Mu is the total number of diagnostic tests administered during 
time interval u. For this study, we assume tests are perfectly accurate. We also do not model the 
total number of tests performed, but rather model the number of positive tests conditioned on 
the total number of tests. We assume that Ou is a noisy realisation of recent latent unobserved 
new infections (incidence); denoted by Iu during time interval u.

2.2 Modelling incidence
We first differentiate between incidence during the observation period, when case data is available, 
and incidence prior to the observation period. It is rare in practice to begin analysis of an infectious 
disease epidemic at the exact start of the epidemic. We follow Scott et al. in modelling a number of 
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unobserved incidence values (often called seeded incidence) drawn from a hierarchical exponential 
model (Bhatt et al., 2023; Scott et al., 2021). That is, for t = −n, − n − 1, . . . , 0,

λ ∼ Exponential(η),

It ∼ Exponential(λ).

We model latent incidence during the observation period as a latent gamma random variable:

It ∣ I−n:t, Rt ∼ gamma Rt

􏽘t−1

u=−n

gt−uIuν, ν

􏼠 􏼡

, t = 1, . . . , T, 

where I−n:t is the set of all previous incidences between times −n and t, gt is the discretised prob
ability density function of the generation time (the time from an individual becoming infected to 
infecting someone else) distribution for the interval t, and Rt is the effective reproduction number 
at time interval t. Parameter ν, describing the proportional mean–variance relationship of the 
above gamma distribution, receives its own prior:

log (ν) ∼ N(μν, σ2
ν ).

We assume gt to be known. Svensson (2007), Champredon and Dushoff (2015), and Champredon 
et al. (2018) have highlighted that in a closed population, the generation time distribution depends 
on population dynamics, i.e. it changes over time depending on the number of susceptibles avail
able, somewhat similarly to the effective reproduction number. This is not taken into account in 
our model (nor, to our knowledge, in any model in this class of estimators). Instead, we use the 
intrinsic generation time distribution which assumes a fully susceptible population.

Note that under this model,

E(It ∣ I−n:t, Rt) = Rt

􏽘t−1

u=−n

Iugt−u, (1) 

Var(It ∣ I−n:t, Rt) = Rt

􏽘t−1

u=−n

Iugt−u/ν. (2) 

The assumed mean relationship lies at the heart of branching process inspired methods for estimat
ing the effective reproduction number (Fraser, 2007). Pakkanen et al. (2023) show that equation 
(1) is justified under a formulation of disease transmission modelled as a variation on the Crump– 
Mode–Jagers branching process. Regardless of the underlying model, we think it is beneficial to 
allow for incidence to change stochastically. To this end, we model incidence as an auto-regressive 
gamma process while preserving the branching process inspired mean model (1). By modelling in
cidence as a continuous random variable, we are able to use Hamiltonian Monte Carlo (HMC) to 
approximate the posterior distribution of our model parameters. The mean–variance relationship 
of the gamma distribution is also somewhat convenient, as it allows for over-dispersion in the vari
ance of incidence through parameter ν.

To allow for the effective reproduction number to change over time, we model it as a random 
walk on the log scale:

log R1 ∼ Normal(μr1, σ2
r1),

log Rt| log Rt−1, I−n:t−1 ∼ Normal log Rt−1,
σ2

T − 1

􏼒 􏼓

, t = 2, . . . , T.

The prior distribution of σ, log (σ) ∼ N(μσ, σ2
σ), is chosen to reflect beliefs about the total amount of 

possible variation in the effective reproduction number over the course of the observed period.
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2.3 Modelling observed cases
Depending on the context of an infectious disease, the relationship between observed cases and 
incidence can be complex. One challenge relates to testing supply. The number of cases observed 
is always a function of the number of diagnostic tests administered. In the context of a novel in
fectious disease, testing supplies may change rapidly as new technologies are developed, approved, 
and deployed. Thus, we model observed cases ( Ot) conditioned on previous and current incidence 
( It, I−n:t−1, ) as a negative binomial random variable, where the mean of the negative-binomial 
random variable is a function of incidence (as in Abbott et al., 2020; Bhatt et al., 2023; Scott 
et al., 2021), the number of tests administered, and a detection parameter ρ, with over-dispersion 
parameter κ:

κ ∼ Truncated-Normal(μκ, σ2
κ ),

log ρ ∼ Normal(μρ, σρ),

Dt =
􏽘t

j=−n

Ijdt−j,

Ot ∣ It, I−n:t, ρ, κ, Mt ∼ Neg-Binom(ρ × Mt × Dt, κ), t = 1, . . . T,

(3) 

where ρ × Mt × Dt is the mean of the negative-binomial distribution. As defined above, Mt is the 
total number of diagnostic tests administered during time interval t. As a result, the detection 
rate for time t is ρ × Mt, which allows the detection rate to change over time as a function of 
the number of tests available. With a detection rate which depends on tests, the model can dis
cern between situations where cases increase because of increases in latent incidence, as op
posed to increases in the number of tests administered. The weights dt−j are discretised 
weights of the delay period distribution, that is, the time from infection to detection. Delays oc
cur for a variety of reasons, based on when the difference between when individuals are infected 
and when they test, as well as delays in reporting the results of the test. In our study, we will use 
simulations and data where the only delay is caused by our assumption that cases represent in
dividuals transitioning from the latent stage of infection to the infectious stage. Thus, for this 
study, dt−j are discretised weights of the latent period distribution. Note that we allow for cases 
observed at time t to come from incidence observed at time t as well; this can be adjusted de
pending on how quickly a particular disease spreads and at what granularity observations 
are recorded.

It is difficult to choose generic priors for κ and ρ, as they both depend in some way on prop
erties of the surveillance system used to collect data. We address this challenge in the sections 
below.

2.4 Prior for case over-dispersion
In our experience, some choices of the prior distribution for κ result in poor MCMC conver
gence. To overcome this issue, we developed an approach for choosing the prior distribution 
for κ inspired by Empirical Bayes methods. We fit a Bayesian thin plate regression spline to 
the time series of cases, assuming a negative-binomial distribution with the mean number of 
cases being a non-parametricaly estimated function of time, then use the posterior estimate 
for the over-dispersion parameter to construct the prior for our model (Wood, 2017). We use 
brms (version 2.15.0) to fit the regression spline to observed cases (Bürkner, 2017). This method 
has drawbacks from a theoretical perspective, because the spline-based model is fit to the same 
data that is then analysed with our semi-mechanistic model. For simulations, this is easily over
come by fitting the spline to a simulated data set that is then not analysed by our model, this is the 
approach we took for our simulation study. For real data analysis, one solution is to fit a spline to 
data from an outbreak occurring in a similar location to the one being analysed. For this study, 
we put aside theoretical concerns and fit a spline-based model to each real data set used in this 
study to derive the prior for κ and then applied our model. We choose the parameters of the prior 
by minimising a squared loss function, searching for prior parameters which minimised the 
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squared difference between the quantiles of the spline posterior, and the empirical quantiles of 
the candidate prior distribution.

2.5 Prior for the case detection rate
Choosing the prior for the case detection parameter ρ likewise requires some care, because the 
meaning of ρ depends on the number of diagnostic tests in the data. We propose the following pro
cedure: first construct a plausible range for what proportion of incidence has been observed. Then, 
using the the 50% quantile of tests in the observed test time series, construct a prior for ρ which 
matches the prior for the overall mean case detection rate. In practice, we can construct the prior 
for ρ using other quantiles as part of sensitivity analyses. For simulations, we use a ρ prior derived 
using the 50% quantile, and for real data anlysis, we use the 25% quantile which we found im
proved MCMC convergence.

2.6 Bayesian inference
Let R = (R1, R2, . . . , RT) denote the vector of effective reproduction numbers and I = 
(I−n, . . . , IT) the vector of latent incidence counts. We are interested in the posterior distribution 
of our model parameters:

P(I, R, ρ, κ, ν, λ, σ ∣ O) ∝ P(O ∣ I, ρ, κ)P(I ∣ R, ν, λ)P(R ∣ σ)π(ρ, κ, ν, λ, σ).

Here, P(O ∣ I, ρ, κ) defines the emissions model, P(I ∣ R, ν, λ) defines the latent case model, P(R ∣ σ) 
the random walk prior for the effective reproduction number, and π(ρ, κ, ν, λ, σ) the prior on all 
other model parameters.

We use Hamiltonian Monte Carlo, implemented in the R package rstan (version 2.21.2), to 
approximate the above posterior distribution (Stan Development Team, 2020). For the remainder 
of this study, we will refer to our effective reproduction number estimation method as 
Rt-estim-gamma.

2.7 State-of-the-art methods
EpiEstim models observed cases as incidence, and assumes that

It ∣ I1, . . . , It−1, Rt ∼ Poisson Rt

􏽘t−1

u=1

Iugt−u

􏼠 􏼡

.

To facilitate smooth estimates, the effective reproduction number is assumed to be fixed for a 
given period of time, and then repeatedly estimated for all such periods in the data set. We 
choose a period size of 1 week, and allow for an uncertain generation time, re-fitting the model 
using different values for gt−u (see Cori et al., 2013 for details). The prior on the effective repro
duction number for each window is a gamma distribution with shape parameter 1 and scale par
ameter 5.

Using R package epidemia (version 1.0.0), we created the Rt-estim-normal model. In this 
model, latent incidence is an auto-regressive normal random variable with variance equal to 
the mean multiplied by an over-dispersion parameter so the mean–variance relationship is 
the same as in our autoregressive gamma model. We model cases as a negative-binomial ran
dom variable, using the latent period distribution as the delay distribution (though in 
epidemia it is assumed cases cannot be generated from the current latent incidence). The 
case detection prior is chosen to reflect a range of plausible values for case detection depending 
on the simulation scenario and real data. For observed cases, we attempted to use a prior for 
the over-dispersion parameter that had similar values to the prior used in our model for the 
over-dispersion parameter of the negative-binomial distribution, but found this led to issues 
with MCMC convergence. As such, we use the default prior for the inverse of the over- 
dispersion parameter implemented in epidemia. All other priors used are default priors 
from the epidemia package. For a full description of Rt-estim-normal, see online 
supplementary Section 1.3.
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2.8 EpiEstim as an autoregressive generalised liner model
Under the basic EpiEstim modelling framework, the only value in equation (1) which is random 
is Rt. Consequently, EpiEstim can be mimicked via Poisson regression with an identity link and 
no intercept. This raises the possibility of assessing the presence of over-dispersion in case data us
ing standard statistical methods. To be more explicit, we can rewrite equation (1) in the style of a 
generalised linear model (GLM):

E[It ∣ I−n:t, Rt] = η = β1x1.

In this construction, β1 = Rt and x1 =
􏽐t−1

u=1 Iugt−u is the weighted sum of previous incidence. 
After choosing an arbitrary number of previous incidences to include in x1, we can construct 
x1 manually for every observed incidence at time t with the requisite number of observed previ
ous incidences. To estimate the effective reproduction number over time, we use Poisson regres
sion repeatedly on subsets of data, where each subset has observations equal to the length of the 
smoothing period used in EpiEstim. For example, we can implement Poisson regression on 
data sets with four observations, estimating a β1 which is fixed for those 4 observations. This 
is equivalent to using a period of 4 in EpiEstim. We assign the estimated effective reproduction 
number to the last date among the 4 observations, and change the settings of EpiEstim to 
match its estimates to the last observation as well. In addition to mimicking EpiEstim with 
a Poisson GLM, we mimic EpiEstim using a quasi-Poisson GLM. Using the quasi-Poisson’s 
estimated over-dispersion parameter, we can assess how well the assumed mean variance rela
tionship of the Poisson GLM matches the empirical variance seen in the observed data. We im
plement both GLM versions of EpiEstim and compare to the simplest version of EpiEstim 
using a fixed generation time in order to motivate the use of more complex models. All code 
and data needed to reproduce the results are available on GitHub at https://github.com/ 
igoldsteinh/improving˙rt.

3 Results
3.1 GLM EpiEstim applied to the SARS-CoV-2 outbreak in Orange County, CA
To motivate the use of more complex models for estimating the effective reproduction number, we 
applied EpiEstim and our two GLM mimics of EpiEstim to case data from the SARS-CoV-2 
outbreak in Orange County, CA, from 17 May 2020 to 15 January 2021. We used a window size 
of 4 for EpiEstim and corresponding data sets with 4 observations for the GLM mimics. Data 
and effective reproduction number estimates are displayed in Figure 1. The Poisson GLM closely 
tracks the effective reproduction number trajectory estimated by EpiEstim. However, the 
quasi-Poisson estimate of the effective reproduction number has much wider confidence intervals 
than the Poisson GLM. This is because the estimated over-dispersion parameter in the 
quasi-Poisson model ranges from 1.01 to 26851.84. This shows that the Poisson model for inci
dences may be inadequate, resulting in overconfidence of Rt inference.

3.2 Simulation protocol
Simulated data for this study was generated from a stochastic Susceptilbe, Exposed, Infected 
Removed (SEIR) model in R (version 4.0.4) using the stemr package (version 0.2.0) (Fintzi 
et al., 2022; R Core Team, 2020). SEIR models generate an infectious disease outbreak at a popu
lation level, with the population divided into four compartments: susceptible, exposed (infected 
but not yet infectious), infectious, and removed (neither infectious nor susceptible). The changes 
in these compartments are governed by rate parameters which depend on the populations in the 
compartments. In our simulations, the mean latent period was 4 days, the mean infectious period 
was 7.5 days. Daily case data was generated from transitions from the E to the I compartment on 
day t, using a fixed number of tests and a negative-binomial distribution. For all simulations, ρ was 
set to be 9 × 10−5 and κ was set to be 5.

The basic reproduction number R0 was given a fixed trajectory, leading to similar Rt trajectories 
for each realisation of the simulation. More details on the stochastic SEIR model used for simula
tion are available in online supplementary Subsection S-1.1. Note that the SEIR models used for 
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the simulations do not match any of the models used for inference of the Rt trajectories. In other 
words, all our simulation results are produced in the presence of model mis-specification—a desir
able feature for a realistic simulation protocol.

We simulated three separate scenarios lasting 28 weeks, where all parameters were the same ex
cept for the number of tests at each time step. In Scenario 1, weekly tests were drawn from a nor
mal distribution with parameters that remained constant over time. In Scenario 2, tests were held 
constant for the first 6 weeks of the simulation, then increased at varying rates over the next 11 
weeks of the simulation. Scenario 3 was similar to Scenario 2, except that testing was held constant 
for the first 8 weeks, and increased more quickly than in Scenario 2. All simulations were done on a 
daily time scale, then aggregated into weeks for analysis. The true effective reproduction number 
for a single week was taken to be the true effective reproduction number of the third day of that 
week. In all simulations, the first 11 weeks were not analysed, leaving 17 weeks of data for ana
lysis. For each scenario, we generated 100 simulations. Realisations of all three simulations are 
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displayed in Figure 2. The priors used for the Rt-estim-gamma method in the simulation study are 
displayed in Table 1.

3.3 Simulation results
For each model fit using rstan, we sampled 2,000 posterior draws, discarding the first half as 
burn-in. Figure 3 visualises the estimates for the effective reproduction number from 
EpiEstim, Rt-estim-normal and Rt-estim-gamma for the three data sets visualised in Figure 2. 
We checked convergence diagnostics for Rt-estim-normal and Rt-estim-gamma for all simulations 
and ensured adequate convergence of all models. More details are in the online supplementary 
Subsection S-1.4. Since EpiEstim does not provide estimates for the first time point in the series, 
we report only time points for which all three methods have estimates.

Credible intervals for EpiEstim frequently miss the true Rt values (covering between 6 and 9 of 
the 16 true values), while credible intervals for Rt-estim-normal and Rt-estim-gamma cover most 
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Figure 2. Simulated epidemic data generated from an SEIR model. Cases are generated using an emissions model 
which includes total diagnostic tests administered as a covariate. Three different testing scenarios are considered, 
all with the same underlying R0 trajectory. Included are underlying incidence and effective reproduction number 
trajectories. While these may vary slightly across simulations, they will be very similar due to identical infectious 
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true values across simulations. However, Rt-estim-gamma covers more true values than 
Rt-estim-normal, with narrower credible intervals (ranging between 11 and 16 values for 
Rt-estim-normal, and 16 values for every scenario for Rt-estim-gamma).

Figure 4 visualises estimates of latent incidence from Rt-estim-normal and Rt-estim-gamma for 
the three data sets visualised in Figure 2. Rt-estim-normal credible intervals rarely cover the true 
incidence (covering from 0 to 5 to true values), while Rt-estim-gamma credible intervals generally 
do (covering 11 to 16 true values).

Posterior predictive distributions for cases for both Rt-estim-normal and Rt-estim-gamma are 
displayed in online supplementary Figure S2 (the posterior predictive distribution for 
EpiEstim is not readily available). For all three scenarios, for both models, 95% credible inter
vals from the posterior predictive distributions cover all observed data points. Rt-estim-gamma 
had generally narrower credible intervals than Rt-estim-normal.

Because we are using a stochastic SEIR model to generate simulations, each simulation has a 
different, though similar in shape, true effective reproduction number curve (despite having the 
same true basic reproduction number curve). The range of true effective reproduction number 
curves is visualised in online supplementary Figure S1. We report frequentist metrics in order to 
summarise performance across a variety of different epidemic curves. Model performance on si
mulated data sets for each of the three models is summarised in Figure 5. For each metric, we sum
marise results in boxplots where solid lines represent medians, hinges are upper and lower 
quartiles and whiskers are at most 1.5 times the inter-quartile range from the median. Envelope 
is a measure of coverage. For each simulation the envelope is the proportion of time points for 
which a 95% credible interval from the posterior distribution captured the true value of interest. 
Mean credible interval width (MCIW) is the mean of credible interval widths across time points 
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Figure 3. Rt estimation using three different methods for three simulated data sets under different testing 
scenarios. True Rt trajectories are coloured in red, black lines represent median estimates from the posterior 
distribution, shaded areas are 95% credible intervals.
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within a simulation. Absolute deviation is a measure of bias, and is the mean of the absolute dif
ference between the posterior median and the true value at each time point. Finally, mean absolute 
sequential variation (MASV) measures how well each method captured the variation in the effect
ive reproduction number across time by computing the mean of the absolute difference between 
the posterior median at time point t and the posterior median at time point t − 1. We compare 
this to the true MASV in each simulation. EpiEstim had the lowest envelope in all simulation 
scenarios. Rt-estim-normal had high envelope in Scenario 1 but dropped to lower values in scen
arios with time-varying testing supply. Rt-estim-normal had the largest MCIW in all three scen
arios, while Rt-estim-gamma had the smallest MCIW in all three scenarios. EpiEstim and 
Rt-estim-normal had relatively similar values for absolute devaition, Rt-estim-gamma had the 
smallest absolute deviation in all scenarios. Finally, EpiEstim had the largest MASV in all scen
arios, while Rt-estim-normal and Rt-estim-gamma had relatively comparable MASV. For two of 
three scenarios, Rt-estim-gamma was closer to the true MASV than Rt-estim-normal. We ran three 
additional experiments using the data sets from Scenario 3 to better understand our model. All re
sults are displayed in online supplementary Figure S4, with the results from Figure 5 included as a 
baseline comparison. In the first experiment, we halved each parameter in the hypo-exponential 
distribution and refit the model to the data sets from Scenario 3. This led to narrower credible in
tervals and lower envelope (see online supplementary Figure S4 for results). In the second experi
ment, we used a spline fit to the same data being analysed in order to choose a prior for κ. We found 
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Figure 4. Incidence estimation using two different Rt estimation methods for three simulated data sets under 
different testing scenarios. True incidence trajectories are coloured in red, black lines represent median estimates 
from the posterior distribution, shaded areas are 95% credible intervals.

J R Stat Soc Series A: Statistics in Society, 2024, Vol. 187, No. 2                                                          445

http://academic.oup.com/JRSSSA/article-lookup/doi/10.1093/jrsssa/qnad128#supplementary-data
http://academic.oup.com/JRSSSA/article-lookup/doi/10.1093/jrsssa/qnad128#supplementary-data


no meaningful difference in performance. In the third experiment, we used a prior for ρ derived 
from the 25% quantile of tests, rather than the 50% quantile, this again led to no meaningful dif
ference in performance with regard to estimating the effective reproduction number, though we 
expect it to change estimates of incidence. Overall, we find that our Rt-estim-gamma model out
performs the EpiEstim and Rt-estim-normal in all metrics, surprisingly even in Scenario 1, where 
the number of diagnostics tests did not vary appreciably over time (Rt-estim-gamma and 
Rt-estim-normal have similarly high envelope values in this case).

3.4 Estimating the effective reproduction number of SARS-CoV-2 in 15  
California counties
We analysed SARS-CoV-2 reported case data from 15 California counties representing Northern 
California (Alameda, Sacramento, San Francisco, Santa Clara, Contra Costa), Central California 
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(Fresno, Merced, Monterey, Stanislaus, Tulare), and Southern California (Los Angeles, Orange, 
Riverside, San Bernardino, San Diego). These counties represent more than 75% of the population 
of California, and differ widely along demographic, economic, and political characteristics. We 
analysed data from 2 August 2020 through 15 January 2022. Data are publicly available from 
the California Open Data Portal (California Open Data Portal, 2023). Positive cases are associated 
with the date of their test, rather than the date they were reported.

To estimate the effective reproduction number of SARS-CoV-2, we must choose a generation 
time distribution to use in our models. Estimating intrinsic generation times from observed data 
is non-trivial (Park et al., 2021). Early efforts from Ferretti et al. (2020) and Ganyani et al. 
(2020) estimate the mean generation time to be between 5.5 and 5.2 days, respectively. A more 
recent estimate of the mean intrinsic generation interval for the original version of SARS-CoV-2 
estimated it to be 9.7 days (Sender et al., 2021), but the issue of optimal generation time inference 
seems far from settled. An additional complication is that a number of important variants of 
SARS-CoV-2 have spread over the course of the pandemic, and the generation times for the var
iants may differ from that of the original viral strain. Hart et al. (2022) found it is likely that the 
intrinsic mean generation time of the delta variant is shorter than that of the alpha variant, likewise 
a preliminary study by Abbott et al. (2022) suggests the intrinsic mean generation time of the omi
cron variant is shorter than that of the delta variant. We find the methodology of Sender et al. 
somewhat persuasive, and use their point estimate of the generation time (a log-normal distribu
tion with mean 9.7 days) as the default generation time for the original SARS-CoV-2 strain and 
alpha variant versions of SARS-CoV-2. We compare these default findings to results using the 
Ferretti et al. point estimate distribution (a Weibull distribution with mean 5.5 days) in online 
supplementary Section S7.

We then created an alternative version of our model which allowed for changing the generation 
time distribution due to the delta and omicron variants. We changed the generation time distribu
tion starting in July 2021, reflecting our assumption that delta variant dominated new cases by this 
point, and changed it again in December 2021, reflecting the same assumption about the omicron 
variant. Hart estimates the median reduction in the mean generation time for the delta variant is 
15% as compared to alpha (we assumed alpha and wild-type had the same generation time) (Hart 
et al., 2022), while Abbott estimates the median reduction in the mean generation time for omi
cron is 28% as compared to delta (Abbott et al., 2022). We created generation time distributions 
for these variants by minimising a squared loss function to search for parameters such that the new 
distributions had the appropriate new mean generation time, while preserving the standard devi
ation of the original distribution (see online supplementary Subsection S-1.7 for complete details). 
We tested whether this new model was needed by calculating the Bayes factor of the two models 
using data from Alameda County the bridgesampling package in R (Gronau et al., 2020; 
Meng & Wong, 1996), running both models for 26,000 iterations with the first 1,000 iterations 
discarded as burn-in on 3 chains. The point estimates for the marginal likelihood had error of 7% 
for the constant generation time model and 6% for the varying generation time model, with a re
ported Bayes Factor of 1.58 in favour of the model with variant-specific generation times. Even 
accounting for the margin of error, it is hard to conclude the varying generation time model 
was decisively superior to the constant generation time model, so we used the constant generation 
time model in this paper. Because we were testing a characteristic of the infectious disease which 
should generalise across locations, and because of the computational cost involved, we did not cal
culate Bayes factors for all 15 counties.

Finally, we used the point estimate of the latent period distribution from Xin et al. (2022) as the 
delay distribution in our model, with a mean latent period of 5.5 days using a gamma distribution. 
For the alternative analysis using the Ferretti et al. distribution, we scaled this distribution by 0.5 
to halve the mean latent period.

We fit EpiEstim, Rt-estim-normal (using the priors from the simulations), and Rt-estim-gamma 
(see online supplementary Table S1) to this data. The posterior summaries for the effective reproduc
tion number as calculated by EpiEstim are displayed in online supplementary Figure S5 and those 
calculated by Rt-estim-gamma are displayed in Figure 6. Accompanying incidence posterior distribu
tions and case posterior predictive distributions for Rt-estim-gamma are displayed in online 
supplementary Figures S6 and S7, respectively. Visualisations of the priors and posteriors for 
non-time-varying parameters for Rt-estim-gamma fit to Los Angeles County data are displayed in 
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online supplementary Figure S14. After running into convergence issues with Rt-estim-normal, we re
duced the data set to 2 August 2020 through 6 November 2021 and fit Rt-estim-normal to this data 
set. The Rt-estim-normal results were generated using R version 4.2.2.

Priors for Rt-estim-gamma were the same as in the simulations, except that the prior σ had a 
mean of −0.61 (the range of plausible values was similar), and the priors for ρ and κ were chosen 
for each county individually using the protocols described in the Methods section. We assumed the 
overall median proportion of observed incidence was 0.066. An example of posterior predictive 
intervals from the thin plate spline used to choose the prior for κ and from Rt-estim-gamma fit 
to SARS-CoV-2 case data from Alameda County, CA, are visualised in Figure 3.

Comparisons with Rt-estim-normal are displayed in online supplementary Figures S8–S10. The 
Rt-estim-gamma results were generated in R version 4.1.2, but all packages were the same as those 
used to generate simulation results except for Rcpp which was version 1.0.8 rather than version 
1.0.7. Overall, Rt-estim-gamma estimates were smoother and more uncertain than estimates from 
EpiEstim, but less smooth and uncertain than those produced by Rt-estim-normal. This behav
iour is consistent with model performance in the simulation scenarios. Rt-estim-gamma estimates 
tended to estimate less extreme magnitudes than Rt-estim-normal estimates, and while the two 
models produced broadly similar estimates of the trajectory of the effective reproduction number, 
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they differed in some counties in significant ways. For example, in San Diego County, the median 
estimate from Rt-estim-normal is always above 1 before January 2021, while the median estimate 
from Rt-estim-gamma is below 1 for parts of this period. Additionally, in all counties the median 
estimate from Rt-estim-gamma crossed below 1 before the median estimate for Rt-estim-normal in 
fall 2021. Rt-estim-normal and Rt-estim-gamma produced different estimates of the latent inci
dence (online supplementary Figure S9), but both produced 95% posterior predictive intervals 
for the observed cases which had good coverage in all counties (online supplementary Figure S10).

The results using Rt-estim-gamma with a mean generation time of 5.5 days are displayed in 
online supplementary Figures S11–S13. Using a shorter generation time led to generally smaller 
estimates of the peak effective reproduction number with narrower credible intervals. However, 
the trajectories using either generation time were similar, and the estimated trajectories agreed 
on when the median reproduction number was above or below one.

Median estimates for the effective reproduction number were larger during the summer 2021 
wave than during the winter 2020 wave. The estimate of the reproduction number during the win
ter 2021 wave was similar to that of summer 2021 wave except in a few counties where it was lar
ger, such as Los Angeles and Alameda counties. Trajectories were similar across counties, but 
varied in timing and magnitude from county to county. For instance, the peak reproduction num
ber in the Winter 2020 wave was estimated to occur in the week of 1 November in Sacramento 
County, and the week of 22 November in Los Angeles County.

4 Discussion
We presented a model for estimating the effective reproduction number using time series of ob
served cases and diagnostic tests, as well as methods for choosing key priors for the model. We 
tested the model on simulated data sets, showing it can successfully estimate the true effective re
production number when data is generated from a stochastic compartmental model. We also 
tested other models used for estimating the effective reproduction number, demonstrating that 
when testing supply is relatively constant, a case observation model which ignores testing is rea
sonable, but when testing supply changes rapidly, ignoring testing leads to poor model perform
ance. Using data from the SARS-CoV-2 epidemic in California, we have shown how using a model 
fit to case observation data that incorporates testing data leads to different conclusions about the 
trajectory and magnitude of the effective reproduction number in real world epidemics.

We found that EpiEstim had poor performance across all simulation scenarios. In contrast, an 
assessment of EpiEstim by Gostic et al. (2020) found it had reasonable performance on simu
lated data and recommended it over other existing methodologies (models available in 
epidemia were not assessed in this study). However, Gostic et al. only tested EpiEstim on si
mulated data sets where the true incidence was known. In our study, we tested EpiEstim on data 
sets where cases were noisy realisations of unobserved incidence, a much more realistic scenario 
for many diseases, such as SARS-CoV-2. The performance of our GLM versions of EpiEstim 
on data from the SARS-CoV-2 epidemic in Orange County, CA, provides one reason for this 
poor performance. Modelling reported cases as a Poisson random variable assumes a stringent 
mean–variance relationship which is likely to under-estimate uncertainty. We do not recommend 
using EpiEstim to estimate the effective reproduction number when there is reason to believe re
ported cases do not reflect true incidence.

When testing was relatively constant, the Rt-estim-normal model, which assumes latent inci
dence but ignores tests, still performed well. Even in this scenario, the Rt-estim-gamma model 
we developed for this study had smaller mean credible interval widths and smaller absolute devia
tions. This suggests that our other modelling choices beyond including tests as a covariate, such as 
the use of the gamma distribution to model latent incidence, and our process for choosing the prior 
for the case over-dispersion parameter, had positive effects on model performance. As the 
SARS-CoV-2 pandemic has unfolded, a number of modelling groups have developed similar tech
niques for estimating the effective reproduction number. We have demonstrated how modifying 
distributional assumptions and developing protocols for choosing priors can have significant im
pact on model performance. We hope these findings motivate the larger community of researchers 
focused on modelling the effective reproduction number to revisit their work and establish best 
practices for this class of models.

J R Stat Soc Series A: Statistics in Society, 2024, Vol. 187, No. 2                                                          449

http://academic.oup.com/JRSSSA/article-lookup/doi/10.1093/jrsssa/qnad128#supplementary-data
http://academic.oup.com/JRSSSA/article-lookup/doi/10.1093/jrsssa/qnad128#supplementary-data
http://academic.oup.com/JRSSSA/article-lookup/doi/10.1093/jrsssa/qnad128#supplementary-data


In simulation scenarios where testing supply increased dramatically, we were still able to suc
cessfully estimate the effective reproduction number using the Rt-estim-gamma model. Our find
ings suggest incorporating testing data is a viable strategy for using case data, which should 
improve the accuracy of efforts at now-casting the effective reproduction number. It is worth not
ing that we avoided using a delay distribution in Rt-estim-gamma which incorporated reporting 
delays, instead using data where cases and tests were tied to the date of the test. This should 
not prevent the use of Rt-estim-gamma for up-to-date now-casting even though counts of the 
most recent cases and tests will inevitably be under-counts, so long as the proportion of positive 
to total tests is independent of reporting delays. We assumed this was the case when applying 
Rt-estim-gamma to the SARS-CoV-2 data from California. If this assumption proves not to be 
true, then approaches which do not use testing data and incorporate more elaborate delay distri
butions, such as those of Abbott et al. (2020) and Bhatt et al. (2023) are probably a better choice. 
Similarly, because our model relies on the proportion of positive to total tests, rather than the raw 
counts of positive tests, it should be robust to changes in types of tests available, so long as reported 
positive cases used the same kinds of tests recorded in total diagnostic tests. This allows us to avoid 
any problems which arise from the availability of rapid tests for SARS-CoV-2 during the omicron 
wave.

In a representative set of simulations, even when Rt-estim-normal posteriors captured the effect
ive reproduction number, its posterior estimates for latent incidence did not capture the true latent 
incidence. To a lesser extent, the same was true of the Rt-estim-gamma model. We have not yet 
seen any discussion as to the accuracy of incidence estimation for this class of models. Our findings 
suggest incidence estimates should not be trusted, as there are many values for incidence which 
lead to the same observed cases and the same reproduction number estimates. Estimates where 
a population size are taken into account, such as in Mishra et al. (2022), may be more trustworthy, 
but we recommend running a simulation study first to verify this.

One important limitation of our method is that we condition on the number of tests and use 
them as a covariate, rather than modelling them jointly with cases. We would expect in practice 
that the number of tests is also a function of past incidence (with cases rising, more tests will be 
administered). In mathematical terms, a joint model of cases and tests could be written as

P(O, M ∣ I, ρ, κ) = P(O ∣ M, I, ρ, κ)P(M ∣ I, ρ, κ).

Our method only uses the first term of this product. This leaves our method open to potential bias 
from model mis-specification. In the simpler context of regression without latent variables, this 
issue is sometimes called ‘feedback’, a thorough treatment of the topic is available in Chapter 
12 of Diggle et al. (2002). While we think that in practice this will not be a concern in situations 
where cases and tests increase and decrease together in response to changes in incidence, the pos
sibility does exist. For instance, suppose the testing policy during the peak of an epidemic was that 
individuals with symptoms could not be tested, as anyone with symptoms should simply assume 
they have been infected. Tests might still increase in response to increased incidence from the wave, 
but cases could decline, because no symptomatic people were testing. In such a scenario, we would 
expect our model to fail. Modelling tests is a non-trivial problem, and implementing a joint model 
of cases and tests is a promising future direction.

In this paper, we used gamma densities to in order to model changes in latent incidence stochas
tically. While our choice of a gamma distribution has some desirable benefits, namely that it allows 
us to use HMC to generate posterior samples, and that it allows for over-dispersion in the vari
ance, there is definitely room for improvement in modelling latent incidence. Recent work by 
Penn et al. (2022) provides an interesting avenue for improvement, with explicit calculations of 
the variance of the transition distributions of a time-varying general branching process.

In the real data analysis, we used Rt-estim-gamma with a prior for the over-dispersion param
eter derived from a spline fit to the same data as Rt-estim-gamma. This is a workaround we devel
oped to avoid computational problems related to using Hamiltonian Monte Carlo when the prior 
for the over-dispersion parameter strongly conflicts with the data. Another MCMC method, such 
as Zig-Zag sampling (Bierkens & Roberts, 2017; Corbella et al., 2022), may not have this issue, 
and so we could avoid this procedure. While not ideal, we tested our model using this procedure 
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for choosing the over-dispersion prior on simulated data, and found no discernible loss in 
performance.

It is clear that more sophisticated representations of the generation time distribution which could 
change according population dynamics could be incorporated into our model. While this might 
lead to improved model performance, it is encouraging that in simulations, our model performed 
well despite using a fixed generation time. It is equally encouraging that our experiments on both simu
lated and real data showed our model was reasonably robust to different generation time distributions.

One obvious area for improvement in this space is allowing the prior on case detection (ρ) to 
change over time to better reflect changes in testing policy. For instance, at the start of the 
SARS-CoV-2 pandemic, only symptomatic individuals could get tested in California, whereas in 
Fall 2021, anyone was eligible to receive a test. Sherratt et al. (2021) also highlighted how changes 
in testing eligibility may result in estimating spurious changes in the effective reproduction num
ber. We have found case data alone is insufficient to make a time-varying detection parameter 
identifiable. Incorporating other sources of data which facilitate real-time estimation, such as 
data from wastewater treatment facilities, may enable models with time-varying case detection pa
rameters. Enabling effective reproduction number estimation methods to incorporate multiple 
data streams seems like a fruitful area of future research.
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Table 1. Priors used by the Rt-estim-gamma method in the simulation study

Parameter Simulation Prior Prior median (95% Interval)

ν All Log-normal(−2, 0.7) 0.15 (0.03, 0.53)

σ All Log-normal(−0.66, 0.6) 0.52 (0.16, 1.68)

λ All Exponential(0.3) 2.31 (0.08, 12.26)

log R1 All Normal(0, 0.75) 0.01 (−1.49, 1.49)

ρ Scenario 1 Log-normal(−11.06, 0.3) 1.57E-5 (8.756E-6, 2.85E-5)

ρ Scenario 2 Log-normal(−11.43, 0.3) 1.09E-5 (5.96E-6, 1.96E-5)

ρ Scenario 3 Log-normal(−11.56, 0.3) 1.57E-5 (8.81E-6, 2.83E-5)

κ Scenario 1 Truncated-Normal(59, 60) 72.00 (5.00, 183.15)

κ Scenario 2 Truncated-Normal(33, 25) 35.65 (3.14, 83.23)

κ Scenario 3 Truncated-Normal(70, 80) 88.84 (6.00, 235.41)

J R Stat Soc Series A: Statistics in Society, 2024, Vol. 187, No. 2                                                          451

https://github.com/igoldsteinh/improving_rt
https://github.com/igoldsteinh/improving_rt


Supplementary material
Supplementary material is available online at Journal of the Royal Statistical Society: Series A.

References
Abbott S., Hellewell J., Thompson R. N., Sherratt K., Gibbs H. P., Bosse N. I., Munday J. D., Meakin S., Doughty 

E. L., Chun J. Y., Chan Y.-W. D., Finger F., Campbell P., Endo A., Pearson C. A. B., Gimma A., Russell T., 
CMMID COVID modelling group, Flasche, S., … Funk, S. (2020). Estimating the time-varying reproduction 
number of SARS-CoV-2 using national and subnational case counts. Wellcome Open Research, 5, 112. 
https://doi.org/10.12688/wellcomeopenres

Abbott S., Sherratt K., Gerstung M., & Funk S. (2022). ‘Estimation of the test to test distribution as a proxy for 
generation interval distribution for the Omicron variant in England’, arXiv, arXiv:2022.01.08.22268920, 
preprint: not peer reviewed.

Bhatt S., Ferguson N., Flaxman S., Gandy A., Mishra S., & Scott J. A. (2023). Semi-mechanistic Bayesian mod
eling of COVID-19 with renewal processes. Journal of the Royal Statistical Society Series A: Statistics in 
Society, 186(4), 601–615. https://doi.org/10.1093/jrsssa/qnad030

Bierkens J., & Roberts G. (2017). A piecewise deterministic scaling limit of lifted Metropolis-Hastings in the 
Curie-Weiss model. The Annals of Applied Probability, 27(2), 846–882. https://doi.org/10.1214/16- 
AAP1217

Bürkner P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical 
Software, 80, 1–28. https://doi.org/10.18637/jss.v080.i01

California Open Data Portal. (2023). California open data portal. https://data.ca.gov/dataset/covid-19-time- 
series-metrics-by-county-and-state.

Capistrán M. A., Capella A., & Christen J. A. (2022). Filtering and improved uncertainty quantification in the 
dynamic estimation of effective reproduction numbers. Epidemics, 40, 100624. https://doi.org/10.1016/j. 
epidem.2022.100624

Champredon D., & Dushoff J. (2015). Intrinsic and realized generation intervals in infectious-disease transmis
sion. Proceedings of the Royal Society B: Biological Sciences, 282(1821), 2015–2026. https://doi.org/10. 
1098/rspb.2015.2026

Champredon D., Dushoff J., & Earn D. J. D. (2018). Equivalence of the Erlang-distributed SEIR epidemic model 
and the renewal equation. SIAM Journal on Applied Mathematics, 78(6), 3258–3278. https://doi.org/10. 
1137/18M1186411

Corbella A., Spencer S. E., & Roberts G. O. (2022). Automatic Zig-Zag sampling in practice. Statistics and 
Computing, 32(6), 107. https://doi.org/10.1007/s11222-022-10142-x

Cori A., Ferguson N. M., Fraser C., & Cauchemez S. (2013). A new framework and software to estimate time- 
varying reproduction numbers during epidemics. American Journal of Epidemiology, 178(9), 1505–1512. 
https://doi.org/10.1093/aje/kwt133

Diggle P., Diggle P. J., Heagerty P., Liang K.-Y., & Zeger S. (2002). Analysis of longitudinal data. Oxford 
University Press.

Ferretti L., Ledda A., Wymant C., Zhao L., Ledda V., Abeler-Dörner L., Kendall M., Nurtay A., Cheng H.-Y., & 
Ng T.-C. (2020). The timing of COVID-19 transmission. medRxiv. https://doi.org/10.1101/2020.09.04. 
20188516

Fintzi J., Wakefield J., & Minin V. N. (2022). A linear noise approximation for stochastic epidemic models 
fit to partially observed incidence counts. Biometrics, 78(4), 1530–1541. https://doi.org/10.1111/biom. 
v78.4

Flaxman S., Mishra S., & Gandy A. e. a. (2020). Estimating the effects of non-pharmaceutical interventions on 
COVID-19 in Europe. Nature, 584(7820), 257–261. https://doi.org/10.1038/s41586-020-2405-7

Fraser C. (2007). Estimating individual and household reproduction numbers in an emerging epidemic. PLoS 
One, 2(8), 1–12. https://doi.org/10.1371/journal.pone.0000758

Ganyani T., Kremer C., Chen D., Torneri A., Faes C., Wallinga J., & Hens N. (2020). Estimating the generation 
interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Eurosurveillance, 
25(17), 2000257. https://doi.org/10.2807/1560-7917.ES.2020.25.17.2000257

Gostic K. M., McGough L., Baskerville E. B., & Abbott S. e. a. (2020). Practical considerations for measuring the 
effective reproductive number, Rt. PLoS Computational Biology, 16(12), 1–21. https://doi.org/10.1371/ 
journal.pcbi.1009679

Gronau Q. F., Singmann H., & Wagenmakers E.-J. (2020). bridgesampling: An R package for estimating 
normalizing constants. Journal of Statistical Software, 92(10), 1–29. https://doi.org/10.18637/jss.v092. 
i10

Hart W. S., Miller E., Andrews N. J., Waight P., Maini P. K., Funk S., & Thompson R. N. (2022). Generation time 
of the alpha and delta SARS-CoV-2 variants: An epidemiological analysis. The Lancet Infectious Diseases, 
22(5), 603–610. https://doi.org/10.1016/S1473-3099(22)00001-9

452                                                                                                                                            Goldstein et al.

http://academic.oup.com/JRSSSA/article-lookup/doi/10.1093/jrsssa/qnad128#supplementary-data
https://doi.org/10.12688/wellcomeopenres
https://doi.org/10.1093/jrsssa/qnad030
https://doi.org/10.1214/16-AAP1217
https://doi.org/10.1214/16-AAP1217
https://doi.org/10.18637/jss.v080.i01
https://data.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
https://data.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
https://doi.org/10.1016/j.epidem.2022.100624
https://doi.org/10.1016/j.epidem.2022.100624
https://doi.org/10.1098/rspb.2015.2026
https://doi.org/10.1098/rspb.2015.2026
https://doi.org/10.1137/18M1186411
https://doi.org/10.1137/18M1186411
https://doi.org/10.1007/s11222-022-10142-x
https://doi.org/10.1093/aje/kwt133
https://doi.org/10.1101/2020.09.04.20188516
https://doi.org/10.1101/2020.09.04.20188516
https://doi.org/10.1111/biom.v78.4
https://doi.org/10.1111/biom.v78.4
https://doi.org/10.1038/s41586-020-2405-7
https://doi.org/10.1371/journal.pone.0000758
https://doi.org/10.2807/1560-7917.ES.2020.25.17.2000257
https://doi.org/10.1371/journal.pcbi.1009679
https://doi.org/10.1371/journal.pcbi.1009679
https://doi.org/10.18637/jss.v092.i10
https://doi.org/10.18637/jss.v092.i10
https://doi.org/10.1016/S1473-3099(22)00001-9


Huisman J. S., Scire J., Angst D. C., Li J., Neher R. A., Maathuis M. H., Bonhoeffer S., & Stadler T. (2022). 
Estimation and worldwide monitoring of the effective reproductive number of SARS-CoV-2. Elife, 11, 
e71345. https://doi.org/10.7554/eLife.71345

Meng X.-L., & Wong W. H. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical 
exploration. Statistica Sinica, 6(4), 831–860. https://www.jstor.org/stable/24306045

Mishra S., Scott J. A., Laydon D. J., Zhu H., Ferguson N. M., Bhatt S., Flaxman S., & Gandy A. (2022). A 
COVID-19 model for local authorities of the United Kingdom. Journal of the Royal Statistical Society 
Series A: Statistics in Society, 185, S86–S95. https://doi.org/10.1111/rssa.12988

Nash R. K., Nouvellet P., & Cori A. (2022). Real-time estimation of the epidemic reproduction number: Scoping 
review of the applications and challenges. PLoS Digital Health, 1(6), 1–17. https://doi.org/10.1371/journal. 
pdig.0000052

Pakkanen M. S., Miscouridou X., Penn M. J., Whittaker C., Berah T., Mishra S., Mellan T. A., & Bhatt S. (2023). 
Unifying incidence and prevalence under a time-varying general branching process. Journal of Mathematical 
Biology, 87(2), 35. https://doi.org/10.1007/s00285-023-01958-w

Parag K. V. (2021). Improved estimation of time-varying reproduction numbers at low case incidence and be
tween epidemic waves. PLoS Computational Biology, 17(9), e1009347. https://doi.org/10.1371/journal. 
pcbi.1009347

Park S. W., Sun K., Champredon D., Li M., Bolker B. M., Earn D. J. D., Weitz J. S., Grenfell B. T., & Dushoff J. 
(2021). Forward-looking serial intervals correctly link epidemic growth to reproduction numbers. 
Proceedings of the National Academy of Sciences, 118(2), e2011548118. https://doi.org/10.1073/pnas. 
2011548118

Penn M. J., Laydon D. J., Penn J., Whittaker C., Morgenstern C., Ratmann O., Mishra S., Pakkanen M. S., 
Donnelly C. A., & Bhatt S. (2022). ‘The uncertainty of infectious disease outbreaks is underestimated’, 
arXiv, arXiv:2210.14221, preprint: not peer reviewed.

R Core Team. (2020). R: A language and environment for statistical computing. https://www.R-project.org/.
Scott J. A., Gandy A., Mishra S., Bhatt S., Flaxman S., Unwin H. J. T., & Ish-Horowicz J. (2021). ‘Epidemia: An R 

package for semi-mechanistic bayesian modelling of infectious diseases using point processes’, arXiv.
Sender R., Bar-On Y. M., Park S. W., Noor E., Dushoff J., & Milo R. (2021). ‘The unmitigated profile of 

COVID-19 infectiousness’, medRxiv. https://www.medrxiv.org/content/early/2021/11/25/2021.11.17. 
21266051

Sherratt K., Abbott S., Meakin S. R., Hellewell J., Munday J. D., Bosse N., CMMID COVID-19 Working Group 
Jit, M., & Funk, S. (2021). Exploring surveillance data biases when estimating the reproduction number: With 
insights into subpopulation transmission of COVID-19 in England. Philosophical Transactions of the Royal 
Society B, 376(1829), 20200283. https://doi.org/10.1098/rstb.2020.0283

Stan Development Team. (2020). RStan: The R interface to Stan (R package version 2.21.2). http://mc-stan.org/.
Svensson A. (2007). A note on generation times in epidemic models. Mathematical Biosciences, 208(1), 300–311. 

https://doi.org/10.1016/j.mbs.2006.10.010
Swiss National Covid-19 Science Task Force. (2020). Situation report: Reproductive number. https://ncs-tf.ch/ 

en/situation-report
Teh Y. W., Elesedy B., He B., Hutchinson M., Zaidi S., Bhoopchand A., Paquet U., Tomasev N., Read J., & Diggle 

P. J. (2022). Efficient Bayesian inference of instantaneous reproduction numbers at fine spatial scales, with an 
application to mapping and nowcasting the COVID-19 epidemic in British local authorities. Journal of the 
Royal Statistical Society Series A: Statistics in Society, 185(Suppl. 1), S65–S85. https://doi.org/10.1111/rssa. 
12971

Thompson R. N., Stockwin J. E., van Gaalen R. D., Polonsky J. A., Kamvar Z. N., Demarsh P. A., Dahlqwist E., 
Li S., Miguel E., Jombart T., & Lessler J. (2019). Improved inference of time-varying reproduction numbers 
during infectious disease outbreaks. Epidemics, 29, 100356. https://doi.org/10.1016/j.epidem.2019.100356

Wallinga J., & Teunis P. (2004). Different epidemic curves for severe acute respiratory syndrome reveal similar 
impacts of control measures. American Journal of Epidemiology, 160(6), 509–516. https://doi.org/10.1093/ 
aje/kwh255

Wood S. (2017). Generalized additive models: An introduction with R (2nd ed.). Chapman and Hall/CRC.
Xin H., Li Y., Wu P., Li Z., Lau E. H., Qin Y., Wang L., Cowling B. J., Tsang T. K., & Li Z. (2022). Estimating the 

latent period of coronavirus disease 2019 (COVID-19). Clinical Infectious Diseases, 74(9), 1678–1681. 
https://doi.org/10.1093/cid/ciab746

J R Stat Soc Series A: Statistics in Society, 2024, Vol. 187, No. 2                                                          453

https://doi.org/10.7554/eLife.71345
https://www.jstor.org/stable/24306045
https://doi.org/10.1111/rssa.12988
https://doi.org/10.1371/journal.pdig.0000052
https://doi.org/10.1371/journal.pdig.0000052
https://doi.org/10.1007/s00285-023-01958-w
https://doi.org/10.1371/journal.pcbi.1009347
https://doi.org/10.1371/journal.pcbi.1009347
https://doi.org/10.1073/pnas.2011548118
https://doi.org/10.1073/pnas.2011548118
https://www.R-project.org/
https://www.medrxiv.org/content/early/2021/11/25/2021.11.17.21266051
https://www.medrxiv.org/content/early/2021/11/25/2021.11.17.21266051
https://doi.org/10.1098/rstb.2020.0283
http://mc-stan.org/
https://doi.org/10.1016/j.mbs.2006.10.010
https://ncs-tf.ch/en/situation-report
https://ncs-tf.ch/en/situation-report
https://doi.org/10.1111/rssa.12971
https://doi.org/10.1111/rssa.12971
https://doi.org/10.1016/j.epidem.2019.100356
https://doi.org/10.1093/aje/kwh255
https://doi.org/10.1093/aje/kwh255
https://doi.org/10.1093/cid/ciab746

	Incorporating testing volume into estimation of effective reproduction number dynamics
	Acknowledgments
	Conflict of interest
	References




