
UC Irvine
ICS Technical Reports

Title
Value-based allocation of computing system resources

Permalink
https://escholarship.org/uc/item/0m2126c5

Author
Loomis, Donald C.

Publication Date
1974

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0m2126c5
https://escholarship.org
http://www.cdlib.org/

Value-Based Allocation

of Computing System Resources

Donald C. Loomis

Technical Report #73

December 1974

I'

Department of Information and Computer Science

University of California, Irvine

(
I

UNIVERSITY OF CALIFORNIA

Irvine

Value•Based Allocation of Computing System Resources

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Information and Computer. Science

by

Donald Clinton Loomis

Committee in charge:

Professor Julian Feldman, Chairman

Professor David J. Farber

Professor Peter Freeman

Professor Fred M. Tonge

1974

COPYRIGHT 1975

DONALD CLINTON LOOMIS

ALL RIGHTS RESERVED

The dissertation of Donald Clinton Loomis is approved,

and it is acceptable in quality and form for

publication on microfilm:

University of California, Irvine

1974

f 1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
••

CONTENTS

Acknowledgments
Vita •.••
Abstract. •
Introduction. •
Chapter 1: An Approach to Resource Allocation

and Scheduling. • • • •••

Formulation of the Problem.

Application of Utility Theory and Decision
Analysis ••.•..•.••••

Experimental Demonstration .•

Chapter 2: Multiprogrammed Computer Systems ••

Multiprogramming .•••
Traditional Approaches to Process Scheduling.

Policy-Driven Schedulers.
Other Related Research ••

Chapter 3: Formulation of the Resource Allocation
Problem . • • • • •

Process Structure
System Resources •••
System Performance •.
Resource Allocation Notation ••.

Chapter 4: Value-Based Scheduling.

Value of Response Times
The Resource Allocation and Scheduling Strategy • .

v

vi

vii

1

4

5

7

14

16

16

20

23

26

28

28

32

35

37

43

46

50

I
I

I
I
I
I.
I
I
I
I
I
I
I
I
I
I
I

CONTENTS

Decisions under Assumed Certainty •
·Decisions under Risk ••.•••••••••••••

The Flexibility of Value Functions. • .. • •

Chapter 5: Experimental Investigations . . • • • •

Viability of Scheduling Using Value Functions ..•

Global Resource Allocation
Efficiency of Value-Based Resource Allocation •••

Chapter 6: Conclusions ••••.•••••••••••

Suggestions for Fu~ther Research. • • • ••

Bi bl iogra phy. • • • • • • • • •

·Appendix I: Simulation Scripts .•••

Appendix II: Script Interpreter .••••

Appendix III: Value-Based Scheduler ••

Appendix IV: Multilevel Queue Scheduler~

iv

. . .
. . . ~ .

52

59

65

69

85

94

98

124

130

135

139

147

152

154

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

ACKNOWLEDGMENTS

I would like to thank Professor Julian Feldman, my

advisor, for his guidance and encouragement in undertaking

this project. I appreciate his advice and counsel during

this work as well as other parts of my education.

In addition, I would like to thank Professor Fred Tonge

for his continuing interest in my studies. Professor Peter

Freeman's advice in the early stages of this work was

important in getting it underway.

Professor David Farber's interest.

I also appreciate

Special thanks go to my wife, ·Helen, for her sacrifice

and understanding during this research and for typing this

manuscript.

I
I
I
I
I
I
I
I
I
I
I
I
I
I

VITA

November 9, 1947 - Born - Lynwood, California

1966-1968 - Programmer, University of California, Irvine

1968-1969 - Programmer, International Business Machines, Los
Angeles Scientific Center

1969 - Programmer, Varian Data Machines, Irvine, California

1969 - B.S. in Engineering, University of California,
Irvine

1969 - Teaching Assistant, Graduate School of
Administration, University of California, Irvine

1970 - Acting Associate Director, Interactive
Facility, University of California, Irvine

Computer

1970 - M.S. in Administration, University of. California,
Irvine

1970-1971 - School of Business, Stanford University

1971-1974 - Research
and Computer
Irvine

Assistant,
Science,

vi

Department
University

of
of

Information
California,

I
I
I
I
I
I
I
I
I
I
I
,I
~

:1

ABSTRACT OF THE DISSERTATION

Value-Based Allocation of Computing System Resources

by

Donald Clinton Loomis

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1974

Professor Julian Feldman, Chairman

Allocation of all resources to maximize the total value

of the completion times for all jobs in a multi programmed

computing system is investigated in this study. In

·t.raditional multiprogrammed operating systems, scheduling

use of the central processor and main memory has been

treated separately from allocation of other system

resources. This study investigates the benefits of

allocating all resources in a single framework using

explicitly specified payoff functions.

A model of resource allocation and scheduling forms the

basis of the investigation. To aid understanding and

designing resource allocation strategies, the model provides

for uniform treatment of all resources. Each process is

modeled as a series of resource requests and releases. The

process requests resources. The operating system must

either grant the requests or suspend the process. The

vii

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

performance of the scheduler is represented by the set of

response times produced when scheduling a job mix.

A new resource allocation strategy which overcomes

deficiencies of existing schedulers is presented. Explicit

specification of the value of jobs as a function of the time

taken to complete them allows the use of utility theory

evaluations in making resource allocation decisions and

provides the system manager better control over the

operation of the system.

Dynamic determination of the opportunity costs of

resource assignments are used advantageously in making

resource allocation decisions. Simulation experiments

showed that value-based allocation is feasible. Because

v.alue-based scheduling gives the system manager more

flexibility in specifying system goals, it is more adaptable

to specific requirements than traditional schedulers. When

its parameters were set to approximate the value.function·of

a modern multilevel queue scheduler, the value-based

scheduler performed as well as the multi level queue

scheduler.

viii

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

INTRODUCTION

Value-based allocation of a computing system~s

resources among competing tasks can provide the system

manager more control over job completion times, facilitate

scheduler design and allow coordinated use of all system

resources. Any object which may be explicitly or implicitly

assigned to a process, thereby making it unavailable to

another process, is a resource. Examples of resources are

central processors, main memory, I/O channels, I/O devices,

non-reentrant code sections, and data records which may not

be accessed while being updated.

Most operating systems and operating system models seek

to attain high performance of single resources or pairs of

resources individually without giving much consideration to

the effect of these policies on the overall system. For

example, studies of policies for scheduling disk access

requests have considered minimizing average waiting time in·

the queue and minimizing disk arm movement but generally

ignore possible benefits to the whole system of giving

priority to particular processes which need to be completed

quickly. Where priorities are considered in the scheduling

of resources, they do not adequately take into account

1

external requirements to complete particular tasks at

required times as well as requirements to provide effective

and balanced use of the system~s resources.

The resource allocation strategy developed in this

research is a step in overcoming these difficulties. In the

model, all resources are treated in a uniform framework.

Because the traditionally separate functions of scheduling

processes to use the CPU and allocation of other resources

are considered together, the terms scheduling and resource

allocation are used synonymously in this dissertation.

Organization of the Dissertation

Chapter 1 summarizes the formulation of the problem,

proposed solution, and experimental investigations. Chapter

2 introduces the advantages of multiprogramming. It then

surveys related resource allocation and scheduling research

and development. The difficulties and shortcomings of

tradi~ional approaches to resource allocation and scheduling

are itemized at the end of Chapter 2. The next chapter

formulates the resource allocation problem. The first part

of Chapter 3 relates the model to traditional process

structure, defines the resource concept, and develops the

performance measure. In the final part of Chapter 3 a

notation for the model is introduced. This notation allows

both a precise specification of the problem and concise

statements of algorithms to solve the problem.

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I
I
I
I
I

I
I
I
I

The value-based scheduling philosophy is developed in

Chapter 4 as a solution to the ·shortcomings of traditional

schedulers.

scheduling

schedulers.

The result of this development is not a single

algorithm but a framework for constructing

To demonstrate the feasibility of value-based

schedulers, an algorithm was developed and implemented in a

simulation model. The results of experiments with this

resource allocator and performance comparisons with a

multilevel queue scheduler are described in Chapter 5.

Chapter 6 presents the conclusions drawn from these studies

and suggestions for further research in the area.

3

I

I
I
I
I
I
I
I
I
I
I
I

Chapter 1

AN APPROACH TO RESOURCE ALLOCATION AND SCHEDULING

Three contributions of primary significance have

resulted from this investigation:

1. a formulation of the resource allocation and

scheduling problem,

2. application of utility theory and decision analysis

tools for solving this problem, and

3. a demonstration of the usefulness and flexibility

of applying these tools.

The importance of each of the contributions is enhanced by

the others. However, the problem formulation is significant

separately since other techniques might be applied to its·

solution (e.g., dynamic programming or other optimization

techniques). Casting the resource allocation and scheduling

problem into a form amenable to the application of utility

theory and decision analysis is the most important

contribution of this study. The algorithm which

demonstrates the applicability of these tools is of interest

itself. It is a scheduler which has efficiency comparable

to conventional schedulers but gives the system manager much

more flexibility in adjusting the scheduler parameters to

indicate the relative values of jobs.

The following sections informally discuss each

contribution as a preview to the more detailed descriptions

in the body of the dissertation.

FORMULATION OF THE PROBLEM

This formulation of the resource allocation and

scheduling problems brings together a number of existing

concepts. It also utilizes:

1. the notion of response set as the important

criterion for evaluating resource allocation and

scheduling algorithms and

2. a uniform framework for considering all resources.

A scheduler has requests as inputs and request completion

times as outputs. The requests arise from a job mix. The

set of completion times is a response set. The-response set

for a given job mix depends on the structure of the

scheduler, the values of the scheduler parameters, and the

quantities of resources available.

Job
Mix

Scheduler
Parameters

Resources

Scheduler

5

Response
Set

I

I
I
I
I
I
I
I
I
I
I
I
I··
I
I
I
I

Process Structure and Resource Requirements

Each process requires use of varying combinations of

the system~s resources as it progresses toward completion of

the request. Any object which must be explicitly or

implicitly assigned to a process, thereby · making it

unavailable to another process, is a resource. Resources

include central processors, main memory, I/O channels, I/0

.devices, non-reentrant code sections, and data records which

cannot be accessed while being updated.

As a consequence of this uniform treatment of all

resources, the problems of scheduling use of the CPU and

allocating other resources are combined. The scheduler must

schedule (allocate) the use of all resources among the jobs.

Scheduler Effectiveness

Evaluation of the response sets for the range of job

mixes to be encountered and resources available is the

appropriate measure of the quality of a scheduler. Although

other measures can be examined (and may be helpful in

restructuring or parameterizing a· scheduler) they are

unimportant as goals themselves.

The evaluation of a response set is subjective. For

interactive systems, better response times are generally

expected on requests associated with terminal users than on

other requests. Often it is satisfactory for response times

to be proportional to the size (quantity of resources and

6

time needed) of a job. Frequently, however, it is desirable

to provide much faster response times to small jobs. Except

when the response times of one response set completely

dominate the response times of another, either might be

considered better in some circumstances.

Most conventional schedulers

priority, and multilevel queue with

designed to provide a satisfactory

(round robin, strict

feedback) have been

response set under

specific operating conditions. However, they are not easily

adapted to produce different response sets.

Policy-driven schedulers provide more flexibility by

allowing response time targets to be specified. However,

the policies can over commit the system resources when the

system load is heavier than anticipated. The desirability

of giving better than target service is not considered by

policy-driven schedulers. Also, op port uni ties to complete

jobs in slightly more than the time target which could

result in substantial increased system efficiency are not

evaluated. Policy-driven schedulers are not applicable to

all system resources and do not coordinate allocation of

resources.

APPLICATION OF UTILITY THEORY AND DECISION ANALYSIS

Development of the following principles has allowed the

application of utility theory and decision analysis to the

resource allocation and scheduling problem.

7

1. Utility functions can represent subjective

evaluations of response sets.

2. Scheduling algorithms can use these functions as

goals for the production of maximum value response

sets.

3. The utility functions can be parameters of the

schedulers to allow convenient adaptation of a

scheduler to individual utility functions.

4. Decision analysis can be used to produce efficient

schedulers which use these functions as goals.

The use of utility theory and decision analysis to

design resource allocators has significant advantages over

traditional mechanisms:

1. The schedulers give system managers more control

over the response sets through parameterization of

the utility functions.

2. Expected value analysis of scheduler decisions

facilitates the design of rational schedulers.

3. The approach is applicable to all system resources

and permits coordinated allocation of the

resources.

The

resource

scheduling

feature which

allocation and

algorithms is

distinguishes

scheduling

·the explicit

'this

from

use

approach to

traditional

of a value

function as a scheduling goal. Providing this function as a

parameter to the scheduler allows it to be changed easily.

8

This provides the system manager a convenient means to

specify a personal utility function and thereby obtain a

scheduler designed to maximize the utility of the system.

The Utility of Response Sets

The response times for each job determine the overall

value or utility of a response set. Generally, the value of

the jobs are independent and the total utility of the system

is the sum of the utilities of the individual jobs. The

dependence of the utility of requests on the time taken to

complete them can be provided as a parameter to the

scheduler as a function of the form:

where

Value of job at completion = V(class,size,time)

class is the class of service,

size is a function of the resources requir~d and

time required, and

time is the elapsed time to complete the request.

The class parameter allows requests t? be valued differently

on the basis of characteristics recognizable prior to

execution (e.g., user name and estimated execution time).

The size of the job can be an arbitrary non-decreasing

function of the resources required and time they are

·required. Generally,

size of the request,

the function is increasing with the

since it is usually worth more to

9

complete a larger job rather than a smaller job of the same

class in the same time. However, the function is usually

decreasing with time since it is almost al ways better to

finish jobs of the same class and size in shorter rather

than longer elapsed time.

A value can be assigned to each partially completed job

by evaluating the portion of the job already processed as a

completed request. Since the final size of a request is not

known until after the job has been completed, the scheduler

assumes the next increment of service will complete the job.

Thus, to maximize the value of jobs at completion, the

scheduler should allocate resources to maximize the value of

the partially completed jobs.

Scheduler Decisions

The scheduler must decide how to allocate system

resources among requesting jobs. Resource· requests may be

satisfied by allocating unassigned resources or by

preempting resources which have been assigned to jobs.

These decisions require an evaluation of the best assignment

of the resources.

Jobs which have been assigned all of the resources they

require can proceed; jobs which do not have all the

resources they require cannot proceed and must be suspended.

The value of an executing job will increase as it receives

service . On the other hand , the v a 1 u e o f a suspended job

10

will decrease as the elapsed time increases. The rate of

these changes can be calculated by examining the partial

derivatives of the value function with respect to job size

and time. In addition, executing jobs will free the

resources they hold sooner. The value of freeing these

resources can be calculated by determining the value of

alternative use (i.e., the value of executing the processes

which need them and have been suspended).

Both the changes in the value of the partially

completed jobs and the value of freeing resources must be

considered to evaluate the best resource allocation. A

simple allocation rule results from assuming that a process

which is assigned the resources it requires will increase in

value at the calculated rate for a significant period of

time and assuming that, when a process releases resources it

holds, there will still be the same alternative uses for the

resources. Under these circumstances, the processes to be

assigned resources should be selected on the basis of the

current rate of value increase which will result from their

execution and the current rate of value increase which would

result from the best al terna ti ve use of the resources they'.

already hold.

A more complete evaluation could be made by considering

the probability that the jobs may soon request the use of

other resources and possibly be suspended. Determining the

value of freeing resources based on current alternative uses

1 1

will be inaccurate if the demand has changed by the time the

resources are released. Using models of program behavior

and models for projected aggregate system requirements,

probabilities can be used to compute expected values. Thus

decisions can be made to maximize the mathematical

expectation of the system value.

Summary of Value-Based Resource Allocation

are

The central features of value-based resource allocation

1. the parameterization of the scheduler with a

specification of the values of jobs as a function

of class of service, job size, and elapsed time to

complete and

2. a scheduling strategy which attempts to maximize

the total value of the jobs processed by the

system.

This approach to resource allocation and scheduling

permits a very flexible specification of the response set by

the system manager. Scheduler design is facilitated by a

rational framework for making resource allocation decisions.

The technique is applicable to all resources and effects

coordinated allocation of the resources. The features which

differentiate value-based resource allocation from

traditional scheduling techniques are listed in Table 1.

12

Table 1

Comparison of Scheduling Techniaues

Queue
Order of executions determined by position in queue.
Processes are entered into queue on basis of service

class, quantum expiration, and/or other events.
Response characteristics are built-in.
Only slight tuning is possible by varying quantum time.

Policy-Driven
Response targets are specified by system manager.
Scheduler evaluates difference between service received

and target to determine process most in need of
service.

Policies can over commit system.
No provision is provided for better or worse than

target service.
Interactions between resources are not considered.

Value-Based
System manager specifies values of jobs as a function

of job size and completion time.
Scheduler schedules jobs to maximize value of system.
Allows more flexible response set goals.
Scheduler design is facilitated by a rational decision

framework.
Coordinates allocation of all system resources.

13

EXPERIMENTAL DEMONSTRATION

To

resource

investigate

allocation

the

and

feasibility of this approach to

scheduling, experiments were

conducted using simulation. Allocation of a CPU, pages of

main memory, a disk, permission to open and close files, and

a swapping channel was considered. Allocations were

evaluated according to the basic rule discussed previously

every time a resource was requested, a resource was freed,

or after 1. 2 milliseconds passed without a reevaluation.

The possible changes in the values of the jobs and the

values of freeing resources were considered in the following

steps:

1. Determine current value of running each job from

the value functions supplied by the system manager.

2. Adjust the value of running each process by

considering the alternative use of the

non-preemptable resources held.

3. Allocate free and preemptable resources beginning

with highest value process.

4. If swapping channel is free, assign it to make

copies of programs in main memory starting with

lowest value process so that main memory pages will

be preemptable.

The performance of the scheduler was observed under a

variety of operating conditions by varying the scripts of

the jobs to be scheduled. The job mixes were chosen to

14

explore both extreme and average mixes. These ranged from

completely CPU bound to primarily I/O bound. They also

differed in their requests for memory and permission to open

and close files. Consequently, the conclusions are valid

over a range of operating conditions.

Three sets of value function parameters were chosen to

demonstrate the ability of the scheduler to simulate

implicit value functions typical of conventional schedulers.

A value function designed to give all jobs the same average

rate of CPU use and thus response time proportional to the

CPU requirements did result in all jobs of a mix receiving

equal CPU usage. By specifying a slightly different value

function for part of the jobs in a mix, the jobs in one

class could be caused to receive service at twice the rate

of the jobs in the other class. The third parameterization

gave a very high value to the completion of requests

requiring less than 1. 2 seconds CPU time in a short time.

As expected, this gave a significant bias to small

interactive terminal requests. This value function is a

good approximation to the value function implicit in the

design of a conventional multilevel queue scheduler which··

was also simulated to allow comparison. The experimental

value-based scheduler is much more flexible, but was able to

produce response sets nearly identical to the multilevel

queue scheduler.

15

Chapter 2

MULTIPROGRAMMED COMPUTER SYSTEMS

The first electronic computers executed a single

program at a time. In performing their primary function of

calculating ballistic tables, they performed each of the

steps of the calculation sequentially until the entire

calculation ~ras complete. The entire computer was available

to and controlled by this single program.

MULTIPROGRAMMING

For. a number of reasons multiprogramming was

introduced. In a multi programming system, each job is not

necessarily completed before others are started: at any time

many jobs are partially completed. The facilities of the

computer must be shared or multiplexed (switched) among

these jobs. The benefits of multiprogramming can be grouped

into four categories:

1. completion of a given set of jobs in less time (or

more jobs in the same amount of time with a less

than proportional increase in hardware),

2. multiple interactive and real-time process control

activities,

16

3. control over the order in which jobs complete

(independent of the order in which they began), and

4. efficient use of hardware facilities selected to

accommodate a single large job by several small

jobs.

I/O Overlap

The possibilities of using multiprogramming to complete

several tasks in less time than would be used to do them

sequentially can be illustrated by considering the use of a

system's central processor and single input-output

facilities. Spooling was introduced to take advantage of

hardware designs which allow input-output operations to

proceed without use of the central processor except briefly

after each operation completes to initiate the next.

By having a portion of another program perform these

functions,

data from

it is possible to have a computing system move

one input-output device to another while

performing a

the central

input-output

complete in

completely independent computation. Because

processor requirements for initiating the

are minimal, the other program will still

approximately the same amount of time as it

would have if no input-output operations had been going on

at the same time. Similarly if the input-output program had

been run without other computation, the central processing

unit would have been idle most of the time but it would have

17

taken the same amount of time. By multi programming these

two jobs, they both can be completed in the amount of time

required for one. To have jobs with such completely

complementary resource requirements is ideal but not

unusual. There are jobs in the real world whose progress is

almost entirely limited by the computing system's

input-output facilities. Other jobs which do essentially no

input-output are completely CPU bound.

Other tasks alternate their needs for input-output and

central processor facilities. While one is performing I /0

the other can use the central ·processor. If the jobs get to

a point where they both need to use the I/O facility or both

must use the central processor, one must wait. Unless they

have requirements which are complimentary and periodic in

time, they won't both be able to complete in the time

required for one. Furthermore, some overhead is encountered

every time a possible reassignment of the processor must be

evaluated. However, usually they will be able to complete

in le~s time than would be ~equired to run sequentially.
I

Timesharing

Terminal oriented timesharing systems utilize

multiprogramming to allow users to interact with their jobs

as they progress toward solutions to their problems. Each

user input, computation, and computer response constitutes a

partial completion of that user's job. However, the user

18

context must be retained by the system between interactions.

With multi programming, a number of users can retain their

working context in a large system. Each user may have

access to all or part of the facilities of the system on any

request. Those system facilities not in use by the user

(because he is thinking and has no request pending or

because the facilities are in excess of his need while his

request is being serviced) are available to other users.

When there are sporadic and complementary requirements

for the use of system facilities, more work can be performed

per unit time with multi programming than would be possible

if each job (user's session) were completed before beginning

another.

Urgent Requests

In non-timesharing systems, multiprogramming allows

high priority jobs to be introduced into the· system and

completed quickly even though others were already in

progress. Those which were there first can be susp-ended

completely or continue but with a lower priority in the use

of the system's facilities than the high prioritr job. When

the high priority job completes, those remaining will again

be able to proceed at their previous rate. In contrast, in

a system without multi programming, either 1the high priority

job could not begin until the current (possibly very long)

job completed or the computer operator would have to

19

terminate the current job and restart it later. The

multiprogramming alternative allows preference to be given

to jobs without the need to end other jobs. Conversely,

even when the arrival of high priority jobs is expected, the

computer need not be left idle but low priority jobs may be

initiated without fear that the effort will be wasted.

Efficient Alternative Use

The minimum equipment configuration for a computer

system must be large enough to accommodate the requirements

of the jobs to be run which have the greatest requirements.

However, frequently smaller jobs only require a fraction of

the resources needed by the largest jobs. Multiprogramming

permits partitioning and multiplexing of the resources to

allow efficient execution of several small jobs instead of a

single large job.

TRADITIONAL APPROACHES TO PROCESS SCHEDULING

The problems of allocating the resources and

particularly scheduling use of the central processor in

multiprogrammed systems have been studied and reported

extensively in the literature. Since most of the

developments are summarized in review articles, the

following is limited to a survey of the techniques used, an

indication of the appropriate review articles, and more

20

detailed descriptions of work with direct relevance to the

model and techniques developed in this dissertation.

Central Processor Schedulers

The development of increasingly sophisticated

schedulers are reflected in publications by implementors and

proposers of multiprogrammed operating systems. These

schedulers utilize the basic techniques of

first-come-first-served, shortest job first, round robins,

and multilevel queuing with numerous variations in the

handling of preemptions, external priorities, and special

circumstances. Kleinrock (1968) has summarized the

important principles of these schedulers together with the

major drawbacks and limitations.

Analytic Models

Analytic models based on probability theory, queuing

theory, and Markov chains have

scheduling problems. McKinney

been used to investigate

(1969) and Chang (1970)

review the use of these techniques.

Memory Allocation

The use of secondary storage to hold programs while

they were not executing with the CPU led to the need for

swapping and main memory allocation strategies. As a

21

result, an efficient system depended on coordinated

allocation of the central processor and swapping channel.

The requirements are discussed in Denning (1968a, 1968b,

1969, and 1970).

Other Resources

Allocation of almost all other resources except I/0

devices has been with first-come-first-served algorithms.

In some cases I/O channels have been allocated on a priority

basis. Scheduling accesses to disks and drums has received

considerable attention. Teorey (1972) discusses disk

scheduling; Fuller (1973) discusses drum scheduling.

Deadlocks

Avoidance and detection of deadlocks are surveyed by

Coffman, El phick, and Shoshani (1971) and later by Holt

(1972). Deadlocks result when two or more processes hold

non-preemptable resources needed by the other(s) and neither

can proceed to release the resources needed by the other.

All resource allocation algorithms must satisfy the·

constraints resulting from the possibility of deadlocking.

Two aspects of deadlock studies are significant to this

work. First, deadlock research is the only situation where

resources have been treated in a uniform framework: since,

the central· processor and main memory are normally

22

preemptable they are not considered in deadlock evaluations.

Second, the notation which is frequently used to express

deadlock problems and solutions lent itself to adaptation

and extension for formalizing value-based resource

allocation.

POLICY-DRIVEN SCHEDULERS

An

provided

analytic approach to policy-driven scheduling is

by Kleinrock (1970). Two operating system

implementations schedule on the basis of policy functions.

The Research and Development Center Operating System (R &

DC) for the GE 600 described by Bernstein and Sharp (1971)

motivated development of value-based scheduling. The IBM

370 OS/VS2 Release 2 system described by Scherr (1973a and

1973b) and IBM (1973a and 1973b) was developed independently

and concurrently with value-based resource allocation.

B & ~C Operating System

The policy-driven scheduler des~ribed by Bernstein and

Sharp concentrates on allocation of the central processor

and main memory. There are two aspects to the

implementation: service policies and scheduling rules.

The policies are based on a resource count function

which defines the service received by a process as a

weighted sum of its accumulated resource usage. Resource

23

usage is measured as the time of use (e.g., milliseconds CPU

usage) or number of times used (e.g., number disk accesses),

depending on the resource. The weighting vector is chosen

arbitrarily to control the emphasis on use of each resource.

Since the resource count increases as the process receives

service, it is a non-decreasing function of the elapsed time

from receipt of the request for service.

For each class of service to be provided (e.g.,

interactive terminal, batch, or spooling) a policy function

is parameterized which specifies the minimum acceptable

resource count as a function of the elapsed time from

receipt of the request for service. Typically, an

interactive policy specifies an initial rapidly increasing

part of the function to ensure small requests get prompt

service and lesser service for greater elapsed time. Batch

job policies would be linear indicating no preference to

short jobs.

The scheduling rules attempt to keep the resource count

for each process greater than the policy specification for

the class of job. When a job has received less service than

specified so that the resource count becomes less than the.

policy, the process has a critical need for service.

The processor is always allocated to the process in

main memory which has been . critical longest, or, if there

are no critical processes, the process which will become

critic al soonest. The processor is reassigned if a time

24

quantum expires or the process voluntarily relinquishes it.

The swapping rules are designed to minimize the

ove1•head of unnecessary swapping. A process which becomes

critical while not in main memory is swapped into memory if

either free memory can be found or it can replace a

noncritical process. Once in main memory a critical process

is never swapped out until it receives enough service to

become noncritical. A noncritical process is swapped in

only if there is free memory or it can replace a process

waiting for terminal input. As a consequence of these

rules, critical processes are never swapped out; noncritical

processes are only swapped out to make room for a critical

process.

IBM .31.Q OSIVS2 Release £

The progress of jobs under OS/VS2 Release 2 is also

measured as a weighted sum of the resources used. CPU use,

number of I/O operations, and .. the product of CPU use with

memory size are considered. Classes of service are allowed.

However, in place of parameterizable equations for

specifying policies, the IBM system utilizes tables which

specify a discrete service rate for each interval in the

life of the request. The intervals may be either periods of

elapsed time or virtual process time. The inability of

policy-driven schedulers to adapt to changes in system load

has been reduced by allowing separate tables to be specified

25

for different workload levels. The system dynamically

selects a new table if the workload increases or decreases.

The centralization of many resource allocation

algorithms into a single routine is significant.

Centralizing the algorithms and data for these decisions

potentially allows global resource allocation strategies to

be implemented. However, no global framework was adopted:

the few situations where allocations interact utilize

specialized techniques. The swapping : algorithm is

influenced by I/O usages to maintain a balance of I/0 and

CPU bound jobs. The swapping of a job is delayed when it

holds certain resources required by another process.

OTHER RELATED RESEARCH

Mahl (1970) has investigated algorithms for maximizing

a cost-weighted total of the rates of progress for the jobs

in a system. Mahl' s algorithms are based on the premise

that pricing should be based on marginal costs and the

scheduler should maximize the revenue of the system.

Value-based scheduling allows a greater range of scheduling

goals including priorities based on pricing.

Al though not directly related to this research, the

work of Grochow (1972) may have importance in the future.

Grochow argues that system managers should assess the

requirements of the system users by determining the utility

of alternative kinds and levels of computing service which

26

could be provided to them. By measuring the individual

utility functions of users, Grochow believes the manager

will be aided in both the problem finding and choice aspects

of decision making.

Value-based scheduling operates on the premise that the

operating system should be based on the system manager" s

utility functions, not individual user

is the one who has responsibility

functions,

for the

since he

system.

Furthermore, there are no techniques for combining several

individual utility functions into a single utility function:

the utility of' a group of people is not defined. However,

at least one of the system manager" s goals is to increase

the utility of individual users. If the individual user

utility functions can be related to the system managers

utility .function, these two areas of research will become

relevant to each other.

27

Chapter 3

A FORMULATION OF THE RESOURCE ALLOCATION PROBLEM

The definitions and notation presented in this chapter

provide a more precise framework for considering the

resource allocation problem.

PROCESS STRUCTURE

The terms process, job, and task are used in different

systems and different parts of the literature to describe

the concept of independent activity. The definitions for

these terms vary only slightly and will be used

interchangeably here. In many systems, processes are

entirely independent except for conflict over the use of

system facilities. In other systems, they may be more

closely related throu·gh initiation, termination,

synchronization, and communication primitives implemented in

the supervisor program or system hardware. In virtually·

every system, each process may be ident'ified by a set of

state information maintained by the supervisor program

controlling that process.

The following additions and restrictions on the

standard notion of a process are useful in understanding the

28

ideas which follow. There are two ways to measure execution

time. The difference between the current time and the time

of the request for service is the amount of elapsed time the

process has been in execution.

ET is time since. activity requested

The accumulated amount of time a process has been assigned

the system resources it requires is the virtual time of-

execution.

VT is time the process has been assigned
all needed resources

This definition differs from some other definitions of

virtual process time based on the accumulated time the

process used the central processor. For the global and

t;miform treatment of resources this new definition is more

convenient. If a single process is executing in a system,

there can be no conflict over use of system resources and

its virtual and elapsed times will be eq~al. In a

multiprogramming system where there is conflict over

resources, the virtual time will be the length of time the

process would have run if it had been the only process in

the system.

If a process is unable to continue because of some

condition other than lack of a necessary resource, the

process is inactive. The time that a process is inactive is

the inactive time.

IT is time process is inactive

29

An inactive process may be waiting for a response from a

terminal users, the passage of some amount of real time,

etc. An active process is either running or suspended. A

process is running if it has all the resources it currently

requires and is therefore continuing execution. If it is

unable to continue because it does not have the required

resources, it is suspended. The suspended time is the

accumulated time the process has been suspended.

ST is time process suspended

Since a process is either inactive, suspended, or running,

ET = IT + ST + VT

These definitions

definitions of

(Denning 1971,

blocked,

p. 202) to

differ from the traditional

ready, and running processes

allow uniform treatment of all

resources. In traditional systems which have been centered

around central processor scheduling, the traditional terms

are useful. However, in this model of resource allocation,

a process is in execution when it is doing input-output and·

does not require use of the· central processor. The I/O unit

may be thought of as a special purpose processor which is

needed for some parts of the calculation while the central.

processor is needed for other parts. · Furthermore, the

development of new multiprocessor computer architectures is

resulting in a potential for programs which need or are able

to use more than one processor at a time.

30

Resource Requirements

In general, the resource requirements of a process vary

over the life of the process. When the process progresses

to a point where it needs more resources, it requests the

desired resources, from the system supervisor. When the

process no longer needs some resources, it releases them to

the supervisor. When the process terminates, all the

resources it still has are released. When a process

requests resources it must have them to continue and must be

suspended if they cannot be provided. There are important

exceptions to this assumption such as when a program

requests all of the available tape drives to do a tape sort;

also, when a program asks for but does not expect to be

assigned all of a large amount of main memory for use as

input-output buffers or in a "free storage" pool.

Furthermore, it is assumed that the process resource

requirements are inherent in the program and input data and

thus completely determined at the time of the request.

Hence, they do not depend on the process's environment,

resources available at the time of a. request, or job's rate

of progress. They could be listed as a function of the

process's virtual time. They do not need to' be known in

advance by the system supervisor but must be predetermined.

Request Size

The size of the request is an arbitrary function based

31

on the resources required and the virtual time they have

been used. This function may be as simple or as complex as

required. A simple function could specify request size as

the amount of central processor time required to complete

the request. Another function could be calctilated by first

taking the quantity of each resource used multiplied by the

virtual time that quantity of resource was required and then

taking a weighted sum of the products. The size function

could even be non-linear with the quantiti.es of resources

used or with time. The only restriction is that the size of

each partially complete request must be less than the size

of the complete request.

SYSTEM RESOURCES

A system resource is anything which can cause a ·

conflict preventing the simultaneous execution of two or

more processes. The exact items which are considered

resources vary from system to system but typically include

hardware facilities, non-reentrant code, data records which

may not be accessed while being updated, etc. Process

synchronization primitives may be repres~nted with

resources. This will be discussed later.

Any system facility, segment of code, etc. for which

there can be no conflict, is not a resource. For example,

since reentrant code is sharable, it is not a resource. If

an entire data file is assigned to a process before it

32

updates any records, the individual data records cannot be

resources themselves. Resolving the conflicts completely at

the file level precludes any conflict over accessing

must be

requesting

particular records. To be a resource there

possibility of a conflict between two or more

processes.

The resources are the only absolute constraint on the

scheduling of processes. Any schedule of resource

allocation is feasible if it meets the constraints:

1. A process is always suspended when the resources it

requires cannot be assigned to it.

2. The schedule does not result in a deadlock or

deadly embrace. A deadlock occurs when two (or

more) processes are waiting for non-preemptable

The

(Coffman

· resources held by the other. When this happens

neither can proceed and release the resources

needed by the other.

deadlock problem

1971, Holt 1972).

has been studied extensively

All the following assumes

appropriate provisions are also taken to handle deadlocks.

In a system with a single central processor, the

central processor is a unique r·esource. There is only one

unit of central processor which must be multiplexed among

all processes. In a classical multiprocessor system there

are several processors each of which can be assigned to a

process . The number of ind iv id ua 11 y assign ab 1 e units o :f a

33

system resource is the capacity of the resource. In the

case of a multiprocessing system the capacity of processors

is the number of processors. In a system with a single

processor the capacity of processors is one. In a paged

memory system the page map allows the physical pages of

memory to be treated as identical, separately assignable

uni ts of the memory resource. The capacity of main memory

is then the number of pages which can be assigned to the

processes.

Resource Classes

If one resource may in some cases be acceptable as a

substitute for another, they belong to a common resource

class. A process may request a resource by class to obtain

use of whichever is available. A resource may be a member

of more than one class. Classes may be overlapping or one

can be a proper subset of another. For example, consider a

system which has two line printers with different character

sets. Processes which need the unique capabilities of

either printer require assignment of a specific resource.

Processes which use only the capabilities they have in

common can make a request for an assignment from the line

printer class of resources. Similar situations exist with

processors having different instruction sets, data storage

devices, etc. When a process requests use of a resource by

class, the system is free to assign any member of that

34

class.

Conflict over use of a resource is the only obstacle

which can prevent processes from running simultaneously. As

long as there are no resource conflicts, any number of

processes may be running simultaneously. When there is a

conflict, one or more of the processes must be suspended

while the others continue.

If a resource has been assigned to a process it may be

possible to suspend the process and reassign~the resource to

another process temporarily and then return it to the

original process without affecting that process except to

delay its progress. If this preemption is possible the

resource is

preemptable.

preemptable.

Others are

Some resources

never preemptable.

are

Some

always

may be

pr~emptable only under certain circumstances. For example,

a central processor can almost always be taken away and

returned later. Exclusive permission to.update a file could

not be preempt~d without possibility of destroying the

integrity of the file.

SYSTEM PERFORMANCE

Response Time

The amount of real time which elapses between the user

request and the response by. the computer is the response

35

RT is ET at request completion

For an interactive user this is the (hopefully) short time

from the entry of a command on his terminal until the

computer types a reply and prompts for a new command. For

batch jobs the size of requests is typically much larger and

takes much longer to complete. Nevertheless, the response

time is the amount of real time elapsed from the time the

job is submitted until the results are output. A user

sitting at a terminal or submitting a batch job need not be

concerned with the internal scheduling policies of the

syst_em. Only the response time is important. Whether the

system gives a large amount of service to the process at the

beginning of the response interval and a little at the end,

none at the beginning and all at the end, or even increments

throughout the period is irrelevant to the user. Generally

the user is unaware of how the service he receives is

distributed over time. He only knows that he requested the

performance of a task of some approximate size and it was

completed in a certain amount of time. He doesn .. t really

care how it is done but wants a response in a reasonable

amount of time.

Response Set

The response times of all

constitute the response set, RS.

36

jobs taken together

RS: {RT 1,RT2 ,RT
3

, ... ,RT
0

}

Scheduling the execution of a set of jobs will result in a

response set for that scheduling algorithm. The response

set can be compared with requirements or preferences for

completion of the jobs to evaluate the efficiency and

applicability of the scheduling algorithm. To complete a

request, a process will require use of the system resources

for some virtual time. The mix of resources needed may vary

during this time as the process requests and releases

resources.

RESOURCE ALLOCATION NOTATION

To explore resource allocation and scheduling in more

depth it is useful to have a more formal notation. The

following notation is an extension of the notation used by a

number of authors in dealing with the problem of deadlocks

which can arise in resource allocation. The first part of

this section defines the notation and gives its relation to

the activities of resource allocation and scheduling in

computing systems. The resource allocation problem is then

stated using the notation.

Processes

Let {P1,P2,P3, ... ,Pn} designate the processes in a

computing system. The subscript p is used to denote the

37

typical element of a set, vector, or array which is indexed
-

by process number. There is an upper bound (possibly quite

large) of n processes existing in the system at any point in

time. After jobs or requests are completed, their positions

are available for new jobs or requests. Hence, an infinite

number of jobs or requests are allowed over time but at any

point in time at most n may be present in the computing

system.

Resources

The set {R1,R2,R3, ..• ,Rm} is the set of resource

classes available for allocation to the processes. The

typical element of a set, vector, or array which is indexed

by resource class number is denoted by the subscript r. A

resource class includes one or more identical system

resources. In a computing system with two undifferentiated

processing units, both are members of the resource class of

processing units. If, however, the processors are not

identical, they are different resources and belong to

separate resource classes such as master processing unit and

slave processing unit. Resources belong to the same class

if and only if they are identical in capability. Resources

of different capabilities may have common capabilities where

the capabilities of one class are a superset of the other or

where there are different capabilities in each which are not

in common. Included in the set of resource classes are all

38

resources which could potentially be a source of conflict in

the progress of any of the processes in the system. Any

facility--hardware or logical--over which conflict can occur

and suspension of a process result is a resource. The

number of resource classes is m.

The vector C :: (c 1 'c 2' ••• , c r' ..• 'cm-1 'cm) is the

capacity of the system. Each element of the vector

specifies the number of units of the corresponding resource

which are available for allocation to proce.sses before any

allocation has occurred. The reserve vector

R: (r 1 ,r2 , ••• ,r , .•• ,r 1 ,r) gives the number of units of r m- m

the corresponding resource currently available for

allocation to processes. As resources are allocated, the

number of uni ts allocated are deducted from R. When they

are released, the number of uni ts released are added to R.

Thus the difference between C and R is the number of

resource units currently allocated .. The units of

measurement for resources depend on the exact nature of the

resource and will be different for different resource

classes. Typically, the processor resource unit would be

the number of processor units; main memory would use number

of pages. For other resources the count of the number of

processes simultaneously using the resource is the

appropriate unit. For non-reentrant code sections the

capacity is one process.

39

Computation Steps

Each process goes through a series of computation steps

Each step of the sequence

corresponds to a level of resource requirement. The

transition from one step to another is associated with

either a request for allocation of more resources, the

releasing of resources, or both the releasing of some

resources and a request for allocation of others.

Resource Requirements

The number of units of a resource required by a process

is the demand for the resource by the process. The demand

for resource r by process p at step b is dprb· The sequence

of demands by process p for all resources and steps is

The sequences of resources required by all processes is

At any time t the quantity of resource r assigned to

process p is aprt' The state of quantities of all resources

assigned to all process is

What resources are not assigned to process are in the

reserve. This can be expressed:

40

The difference between the quantities of resources

requested by a process and the quantities allocated by the

system is the want:

If w t > 0 for any r then process p is suspended until pr

the requested resources are allocated.

Requirement Intervals

The time interval required by process p to complete

step b is ipb· The sequence of time for all steps is

Then

is the time sequences for all processes.

Together D and I specify the resource requirements of.

the processes. C is the capacity of· the system. The

allocation sequence for the system is the sequence of

assignments

Where lt is the length of time for which the assignment is

41

At' the sequence

is the sequence of allocation lengths.

THE RESOURCE ALLOCATION PROBLEM

The resource allocation and scheduling algorithms of a

computing system must determine an A and L such that

for all t.

The sequence of ordered pairs (d i) over s is a prs' ps

subsequence of the reduced sequence (aprt'lt) overt for all

p. Any A and L which meet the above condition represent a

feasible schedule. The resource allocation problem is then

to find a feasible schedule which maximizes the value of the

response set.

42

Chapter 4

VALUE-BASED SCHEDULING

System Goals

Every computer has been procured by an individual or

organization to fulfill some function. Depending on the

situation, the statement of the application may be

relatively specific (e.g., maintain the inventory records

for a particular product) or be more general (e.g., perform

research computing). Furthermore, over a period of time the

computer's function may change.

Recognizing the existence of a purpose and consequent

value in fulfilling this purpose is important to place the

problems of resource allocation in perspective. Associated

with the purpose for the computer's existence are one or

more goals. The value of the computer depends on how well

the computer fvlfills the goals. While in some cases the

computer may either fulfill the goals satisfactorily or fail

to meet the requirements, in most circumstances various

degrees of goal fulfillment are possible.

Activities outside the computer as well as inside

affect the amount of goal fulfillment. An individual,

committee, or complex organizational structure has the

responsibility to form and implement plans which will result

43

in the most value from the use of the computer. For

convenience, this individual, committee or organizational

structure will be referred to as the system manager. This

is appropriate since the system manager is responsible for

managing the use of the system. The system manager must

make decisions between alternative jobs to which the

computer resources may be applied. These decisions may be

categorized into three separate but closely related areas.

1. Job submission--selection of which: potential jobs

to submit

2. Manual selection--selection of which submitted jobs

to enter into the computer

3. Automatic resource allocation and scheduling-­

selection of which entered jobs to give service

Job Submission

Where the origin of the work to be performed is not

under the control of the system manager, the interface

between the system manager and users or originators of the

work is one policy area. For example, a commercial service

bureau does not have direct control over requests for

computing services from its customers. At·the other extreme

the system manager may be the user and originate all of the

work himself. A situation between these extremes results

when an organization designates to one department of the

organization re~ponsibility for operating a computer and

44

providing service to one or more other departments. While

the organization manages the computer for its own use there

need to be policies governing the relation between the

computer management department and user departments.

There are two important aspects of the manager-user

relation for resource allocation and scheduling.

1. The user must communicate information to the

computer manager which specifies the value of work

relative to all other work.

2. The computer manager must provide to the user

information which allows the user to decide under

what circumstances potential computer applications

are cost-effective and should be submitted.

Manual Selection

The second area of resource allocation and scheduling

is the manual selection by the system management of the work

to be done. The degree of control exercised here can vary

greatly. It may involve the evaluation of each job's value

and computer resource requirements individually or be

implicit in a first-come-first-served policy.

Automatic Resource Allocation and Scheduling

The third area is the automatic resource allocation and

scheduling performed by the computer operating system.

45

After a job has been entered into the computer, barring any

manual intervention, all decisions with respect to resource

allocation and scheduling will be made automatically by.the

computer system. The purpose of leading up to the internal

computer resource allocation and scheduling algorithm in

this way is to illustrate that these algorithms are really a

part of the implementation of policies for the system

managers. Hence, they ought to implement policies for the

system manager which will maximize the value of the computer

system.

VALUE OF RESPONSE TIMES

Each possible response set has a value to the system

manager. The total value of the response set will depend on

the values of the individual job response times. In most

cases the values of the individual jobs will be independent

and the total value will be the sum of the individual

values.

Thus:

where:

and

where:

U = the total value of the response se~

Vi = the value of the response time for job i

V. = V.(RT.)
1 1 1

!! 6

RT.=the response time of job i.
1

The value function described below will allow the

system manager to specify a policy by which the system can

determine the response time value function for any job.

Using these response time value functions and the procedures

described later, the system will attempt to allocate

resources and schedule jobs so the response set will have a

maximum value. The value function V is defined as follows:

V = V(class,size,time)

where:

class = the class of service

size = the size of the job

time = the elapsed runtime to complete the job

This function gives the value of completing a job in the

specified class which has the specified resource

requirements in the specified time. A more detailed

discussion of each parameter follows.

Class of Service

To avoid evaluating each job separately, it is

convenient to enable the system manager ~o specify policies

which the operating system can use to categorize jobs into

classes of service. Based on information available prior to

the start of execution, a job can be assigned to a class of

service. The purpose of the class of service designation is

to specify groups of jobs to be treated in the same way.

47

The criterion used may be decided by the system manager. It

may include items such as

1. the function of the job,

2. who submitted the job,

3. runtime estimated by user,

4. runtime estimated by system from previous

executions of job,

5. maximum running time allowed by user,

6. resource requirements, number tape. drives, amount

core,

7. the price to be charged, and

8. a deadline after which the job is of no value.

In some circumstances the system manager; s policy will not

differentiate among jobs based on a priori knowledge and

they would all be placed in the same class. In rare

instances every job would be assigned to a separate class.

In many circumstances it makes sense to categorize jobs

into discrete classes of service. Jobs which will require

use of a tape drive are distinct from those that will not.

In other situations, while there are differences, discrete

classi fica ti on may be too harsh. For example, while the

estimated running time may be a desirable class determinant,

ten and eleven minute jobs are not so different. The use of

many class categories or, in the extreme, a continuous

variable notion of class solves this problem.

The actual resources which the job will require are

almost never known before the job executes. Hence, ithe

actual resource requirements cannot be a factor in

assignment to a class of service. Only estimates and

maximum limits are available before the job is run. The

estimates may be supplied by the user or be derived by the

system from previous execution of the job. The estimates

may be very good or quite poor but are still only estimates.

The resources required by a job are an important

characteristic the system manager may want to use for

differentiation among jobs. Since the resource requirements

are not known until the job is run these cannot be used to

classify jobs into separate classes. However, the resource

usage can be determined as the job runs.

Response Time

As defined previously, response time is the elapsed

time from submission of the request until it is completed.

Comparison with Simple Policy Functions
.

Response policy functions are a special case of value

functions. This can be seen by considering for the moment

only one class of service, a scalar measure of ·resource

requirements and a single level of system load. If the

49

function has only two values so that, for each job size,

jobs completed within a specified time have a high value and

jobs completed in longer time have a low value, then the

value function gives the same specification as a policy

obvious when the resource function. This becomes

requirements are plotted against the elapsed time and choice

of value is indicated.

resource

requirements

High value

low value

elapsed time for completion

The loci of transition between the high value and low

value are the policy curve. A system attempting to fulfill

such a policy function would attempt to complete jobs in the

high value region if possible; oth~rwise, in the low value

region.

THE RESOURCE ALLOCATION AND SCHEDULING STRATEGY

The next topic is how resource allocation and

scheduling can be performed to maximize the value functions.

For the purposes of resource allocation and scheduling, each

process appears to the system as a series of resource

50

requests and releases separated by periods of execution with

the currently assigned resources. When a process requests a

resource, the system must either assign the resource or

suspend the process and assign the resource at a later time.

When a resource is released, the system must return it to

the pool of available resources. In addition, for those

resources which are preemptable, the system should preempt

the use of a resource and return it later if warranted by

the system circumstances. Each opportunity to allocate or

preempt a resource is a decision point.

Decisions· are classified in the management science

literature (Luce and Raiffa 1965, Morris 1964) as either

decisions under certainty, risk, or uncertainty according to

the following criteria.

1. Certainty--The outcome of each choice is known with

certainty.

2. Risk--Some information about the likelihood of each

possible outcome for each choice is known.

3. Uncertainty--No in·formation about the likelihood of

each possible outcome is available.

Resource allocation decisions can be made as decisions.

under assumed certainty by ignoring the possibility that

future resource requirements may be different than the

current requirements. With this short horizon viewpoint,

the system can make decisions to maximize the current

increase in value of the system. Following a discussion of

51

decisions under assumed certainty, resource allocations will

be evaluated as decisions under risk to consider the effects

of changes in requirements over a longer horizon.

DECISIONS UNDER ASSUMED CERTAINTY

To make resource allocation decisions under certainty

it is necessary to consider:

1. the available alternative choices,

2. the outcome or state of the world resulting from

each choice, and

3. the payoff or value of each outcome.

Thes~ data for a decision are sometimes tabulated:

Choice

alternative-1

alternative-2

alternative-3

Outcome

state-1

state-2

state-3

Payoff

value-1

value-2

value-3

alternative-4 state-4 ·value-4.

Then the choice with the highest payoff is selected. The

next step is to look in more detail at the alternative

choic~s, outcomes,_ and payoffs.

Alternative Choices

Decisions must be made on the allocation of resources.

Whenever either a process requests a resource and the

resource is available or when a resource is released and

52

there are one or more processes suspended waiting for that

resource, a decision must be made on the allocation of that

resource. Assignment of the resource to each of the

requesting processes is a separate choice alternative.

Another alternative is to assign it into holding and thus

keep it available for more important use later. This may be

necessary, for example, if it is necessary to wait for

additional units of the resource to be released in order to

accumulate the quantity of the resource requested by a

process.

The other type of decision is the deci~1ion to preempt

assignment of a resource. This is a choice to withdraw a

previous assignment to a process or to holding and then

reassign it. Preemption is really a special case of the

assignment decision. In preemption the current holder of

the resource is contending with requesters. Because there

are usually costs associated with the the preemption, the

cost of preemption must be considered in evaluating whether

to coritinue the present ·assignment or to reassign the

resource to another process.

While allocation decisions must be made only when a·

resource is requested or freed, there are'no specific events

which indicate a preemption or reallocation decision is in

order.

53

Outcomes

The job which is assigned the resource it requested

will make progress toward completion and possibly complete.

Jobs which are not assigned the resource will remain

suspended and not progress toward completion.

When a job completes, it will release the resources it

is using. Even if it does not complete, its progress will

bring it closer to completion and release of the resources

it holds. Al though the entire job may not be completed,

completion of a step may result in the release of resources.

Resources which are released will become available for use

by other jobs (if needed). Jobs which are not assigned

requested resources will be suspended and continue to hold

resources assigned previously (unless preempted) and keep

them unavailable for use by other processes.

Payoffs

Knowledge of the function

V(service class,requ~st size,response time),

which gives the value of a completed job, allows calculation

of the value or a partially completed job. Let

where

v(service class,s,t)

s = the size of the service received by the

partially completed request and

t = the ET of the partially completed request

54

be the function which gives the value of a partially

completed job. When the size of a request is not known in

advance of processing the request, the next increment of

service may complete the required processing. Since it is

trivial to provide this increment of service, the value for

a request which is just short of completion is approximately

the same as the value of the completed request. Since this

is true for requests of all sizes, the value function for a

completed request, V, can be used to give the value, v, of a

partially complete request.

An increase in the value of the system will result from

the progress of the jobs assigned the resource. The rate of

·this increase will be

not suspended p

There will be a decrease in the value of the system as a

result of suspending other processors. The rate will be

Suspended p

'OV
'Ot.

'OV Since the term 'Ot appears in the payoff functions for both

suspended and not suspended processes, these will be

constant for all outcomes. Thus, for decision purposes only

the

55

~ dV dS
L.J dS dt

not suspended p

needs to be considered.

When there is more demand for a resource than the

capacity of the resource, some of the requesting processes

must be suspended. If additional increments of the resource

were available, the productivity of the system could be

improved by assigning the additional uni ts of the resource

to processes which would remain suspended otherwise. Thus

the current opportunity value of a resource is the value of

the best assignment of additional uni ts of the resource.

The opportunity value can also be considered a marginal

value. By considering the value of placing suspended

processes into execution, the opportunity value, OV , of
r

each resource can be calculated:

max

p, w. t>O . pr

The execution of a process which has been assigned a

resource brings the process nearer to release of the

resource. If a process is suspended wit~out preempting use

of the resource, the resource is not in productive use.

Thus, in addition to the payoff associated with the increase

in the value of the process, there is a payoff associated

with earlier freeing of the resource. The value of this

earlier freeing is the marginal or opportunity value of the

56

resource.

It is necessary to be cautious in summing up the rate

of change in the value of the progress of a process and the

marginal values of the resources it holds to determine the

total value of put ting the process into execution. This

opportunity cost concept suffers from the limited range of

applicability of all measurements made at the margin. The

opportunity values only approximate the value of freeing the

resource. Except when there is only one unit of a resource

(e.g., a disk or permission to access a file) the following

circumstances can arise. If the requesting process needs

more of the resource than will be released, it will still

remain suspended. If a large quantity of the resource is

released, several processes with differing rates of progress

may be able to run.

This definition of the opportunity value allots the

full value of the progress for each process to every needed

resource. If a suspended process needs more than one of the

resources held by a procesi, attaching the potential rate of

increase in value of the suspended process to each resource

and then adding the opportunity values together will double­

count the value of getting the process :lnto execution. It

might be appropriate to treat the resource valuation as a

shared cost problem and allocate the costs among the

required resources. The other possibility is to allocate

the full value to each resource since lack of that resource

57

would prevent any progress. To

resource requirements, a process

avoid double counting

can be valued at the

maximum of the opportunity

cases, understate the value

values. This will, in many

of placing into execution a

process which has already been assigned needed resources.

Resource Specific Factors

The

factors

previous discussions considered the system

which affect resource assignment decisions.

level

In

addition, there are considerations unique- to specific

resources. For example, in scheduling use of a moving head

disk it can be advantageous to schedule the disk based on

the disk locations to be accessed in order to minimize the

time wa~ted in arm movement. The possible increased

utilization of the disk must be weighted against the system

level factors. Techniques specific to individual resources

can be important when evaluated in the context of the system

values.

Summary· of.Decisions under Certainty

To make a scheduler decision under assumed certainty it

is necessary to consider the possible resource allocations

and the short-term outcomes implied by each choice. In

evaluating the payoff of each outcome it is necessary to

consider the rate of increase in value of the processes

58

which do not need to be suspended and the value of their

freeing earlier the resources they hold. The rate of

increase of the value of a process can be determined from

the rate of change with service in the value function

supplied by the system manager for the service class,

service received, and elapsed time. The value of freeing

resources held can be determined from the rates of increase

in value for the processes waiting for the resources held.

A decision should be made from among the choices which

maximizes the rate of increase in the value of the jobs.

DECISIONS UNDER RISK

-Resource allocation decisions can be evaluated more

precisely by treating them as decisions under risk. In this

framework the possibilities of various future events

affecting the outcomes can be considered. The outcome of

the allocation choice is not known with certainty, but some

informa tion--based on past history--is available about the

likelihood of various outcomes. The·se decisions are

frequently represented in a table with each alternative

choice in a row. Each possible outcome is placed in a

column with the probability of the outcome. Each entry in

the table is the payoff value for the choice (row) and

outcome (column).

59

outcome-1 outcome-2 outcome-3
probability-1 probability-2 probability-3

choice-1 payoff(1, l) payoff(1,2) payoff(1,3)

choice-2 payoff (2, 1) payoff(2,2) payoff(2,3)

choice-3 payoff(3,1) payoff(3, 2) payoff (3 , 3)

choice-4 payoff(4,1) payoff(4,2) payoff(4,3)

The usual approach to making decisions under risk is

based on maximizing the expected utility for the outcomes of

a choice. Utility is a measure of the value of a payoff.

The expected utility for a choice is the sum of the

utilities of the possible outcomes weighted by their

probabilities. When these decisions are made by selecting

the choice with the highest expected value, in the long run

the average utility of the outcomes of the decisions will be

maximized. Thus if the value function specified by the

system manager is used as the utility measurement in

evaluating decision choices, over a long interval the

resource allocation will maximize the value of the system to

the m(;!.nager.

Since similar decisions are made frequently, the goal

is long-term system performance, and without information

about the future on which better decis.ions can be made,

viewing the choice in this framework is appropriate. This

implies choosing at each decision point the alternative with

the highest total of value potential outcomes weighted by

the estimated probabilities of the outcomes. The complexity

of the system is the basis for assuming randomness among the

60

outcomes consequent of any decision. The frequency of the

decisions is the basis of expecting the high system

performance goal to be satisfied in the long run. The next

step is to look in more detail at the probabilities of each

outcome with each choice.

Probabilities Qf Outcomes

To make decisions which maximize expected utility, a

priori estimates of the probabilities of each outcome are

needed. Processes which are suspended will, with certainty,

make no progress. Thus a probability of 1.00 can be

attached to this aspect of the outcome.

Estimating what will happen to a process which is

assigned the resources it requires is harder. In particular

it is necessary to know the chances in the next interval

that it will release resources, request more resources, or

just continue execution. Al though these events are

deterministically

probabilities can

specified in

be attached

the

to

programs,

them. In

Bayesian

this way

decisions under uncertainty are treated as decisions under

risk. There are several approaches which can. be used to

estimate the probabilities.

Estimates and limits provided by the user can be a

rough indication of how soon a job or step of a job will

end. Given the amount of processing complete and the

estimated amount, the likelihood of completion in the next

61

interval can be estimated. Means for users to indicate

their expectations in more detail could be provided.

For example, data on the expected duration of the

requirement could be provided with every resource request.

In some cases compilers or loaders may be able to extract

information about the programs they process which will be of

use when the programs are run.

User supplied estimates and limits can have a number of

biases which will affe~t their usefulness for resource

allocation and scheduling. Being estimates, their accuracy

depends not only on the type of job but the skill of the

estimator. In addition, the way in which the estimates are

used by the system may influence users to purposely bias

their estimates. For example, if an estimate is used to

determine the class of service for a job this may influence

him to make an estimate which causes the job to be assigned

to a preferred service class. It is important that such

biases be taken into account or eliminated by effective

penalties or sanctions.

Another approach to developing

about a job;s future behavior is

probability estimates

to infer them from

characteristics of the job. The rules for characterizing

the jobs and then developing estimates can be based on the

management's knowledge about the jobs or measurements made

on typical jobs or both. To facilitate this, the

probability estimating code for resource allocation and

62

scheduling can be based on tables specifiable by the system

manager.

Statistics on job behavior can be automatically

collected by the system and the probability estimating

mechanisms altered dynamically. This eliminates the need

for intervention by the system. It will also make the

system more adaptable to the operation of the specific types

of jobs processed by the installation.

In some cases it may be possible to make better

probability estimates by looking at the history of the

particular job rather than only aggregates of jobs having

similar characteristics. If, as a job executes, it becomes

apparent that the job is behaving differently than other

jobs with similar characteristics, then the probability

estimates should be revised to take the specific behavior

into account. Data on the behavior of programs could be

kept in a file to aid prediction of the behavior of later

executions with different data. This of course requires a

means of identifying successive executions of the same

program (e.g. , job name, program name, program location,

etc.) •

The opportunity values needed to evaluate payoffs and

make decisions should be estimates of the opportunity values

in the future rather than ·the values of the best current

assignment. These estimates can be derived on the basis of

the recent history of the best assignment of additional

63

units of the resource. While the current best assignment of

additional units of the resource may fluctuate through a

wide range, a statistic based on recent history will be a

much better estimate of the future marginal value. To

provide adaptability to changing system loads and still

maintain stability, the use of a statistic which

exponentially decays the weight of past best assignments is

appropriate. The exponentially decayed statistic will be

relatively unaffected by unusual and one-time requests for

the resource; yet, it will adapt to prolonged changes in

system load. The rate of decay will determine the speed of

adaptation and sensi ti vi ty to unusual requests. It must be

chosen to operate at a satisfactory tradeoff point to give

adaptability and still be insensitive to one-time demands on

the resource.

Summary of Decisions Under Risk

Unlike decisions under assumed certainty where a single

outcome for each choice is considered, a decision under risk

allows for several possible outcomes with each choice

al terna ti ve. Based on past behavior of the ,program and

other programs, probabilities can be attached to each of the

outcomes for a choice. By summing the rates of increase in

system value for each outcome weighted by the probabilities,

the expected value of each choice can be computed. The

choice which will give the highest mathematical expectation

64

can then be selected.

THE FLEXIBILITY OF VALUE FUNCTIONS

System implementors have designed numerous scheduling

algorithms to satisfy diverse requirements. Most of these

algorithms focus on particular situations, use a limited set

of goals, and are difficult to change. Although these

traditional algorithms vary in their details, they are based

on a few scheduling goals.

With appropriate value functions, a value-based

scheduler can approximate these goals. Thus, the same basic

scheduler can be used in quite diverse situations. Only the

value functions must be tailored to the specific

circumstances. If the requirements change, the value

functions can be changed. The following sections discuss

traditional scheduling principles and the implementation of

these goals with value functions.

used individually or jointly in

utility function.

Equal Service

These principles can be

specifying the manager's

Scheduling to give each job an equal rate of service is

frequently used in systems where the resource requirements

and urgencies of the jobs are similar. The service rate is

frequently based only on use of the central processor but

65

sometimes other resources are considered. Round robin·

scheduling is the standard way of providing equal service.

Basing t.he value function on the ratio of the service

received to elapsed time implements this goal. Value

functions which attach a higher value of execution to jobs

with lower ratios will cause all jobs to receive equal

service. This type of value function is demonstrated in

Chapter 5.

Declining Rate of Service

To bias a scheduler toward short jobs when the sizes of

the jobs are not known, a declining rate of service is

implemented. All jobs start with equal priority but after a

job has received service, its priority is gradually or

abruptly reduced below that of new requests. Thus, large

jobs only run for a short time at high priority and then run

in the background at lower priority than new requests. This

is implemented in a traditional scheduler through multiple

queues or adjustments to the dispatching priority. An

abrupt change in the rate of service results from a value

function which is discontinuous with respect to time.

Chapter 5 illustrates a discontinuity after 1200

milliseconds of virtual time have elapsed. Continuous

dependence on time can produce more gradual declines in the

rate of service.

66

Classes of Service

As discussed earlier in this chapter, the value

functions for all jobs do not need to be identical. Jobs

can be classified into discrete classes or on a continuum.

The value function for each class can have a very different

form with ,consequent different response characteristics.

The following properties can be implemented with appropriate

value functions and class assignments.

Priority

Strict pr~ority schedulers always assign requested

resources to the highest priority requesting task. Value

functions which depend only on the class of the job can

implement this type of resource assignment. If required,

priority changes can be affected by reassigning jobs to new

classes.

Inter~ctive/Batch Distinction

Biases between interactive terminal requests and batch

requests can be implemented by assigning these jobs to·

different classes. Appropriate value functions permit

varying the amount of bias toward either type of service.

Even strict priority for terminal requests is possible.

67

Flexible Pricing

In some contexts it is desirable to base the rate of

service a job receives on the price the user is willing to

pay. Assignment to a class of service on the basis of the

price the user is willing to pay makes this possible.

Depending on the particular circumstances., this could be a

flat payment or a surcharge on other charges for service.

Service Guarantees

Specific rates of service and consequent response times

for jobs can be guaranteed to users through classes of

service that have a sufficiently high value of execution to

attain these rates of service.

service, it is necessary to

resources available.

68

As with all guarantees of

avoid over committing the

Chapter 5

EXPERIMENTAL INVESTIGATIONS

A simple scheduler incorporating value-based resource

allocation under assumed certainty principles was simulated

to learn more about its behavior. The development and

experimentation with this example of value-based resource

allocation was conducted for three main purposes. First,

the simulation demonstrates the feasibility of the

value-based resource allocation. Second, specific aspects

of the allocation system have been explored. The third

purpose is to allow comparisons of the strategy with a

conventional scheduler.

Feasibility Demonstration

A primary constraint on any scheduler is that it not

have major defects which result in degenerate, obviously

unacceptable behavior. Possible signs of degeneracy are low

priority processes receiving more service than high priority

processes, some jobs receiving no service or very little

service for no good reason. Thrashing and deadlocking are

also unacceptable. The algorithm should not be too complex.

Since execution of the scheduling program requires use of

69

computing services, if the calculations performed by the

scheduler are too complex, scheduling will consume an

unacceptable portion of the systems resources.

Exploration of Mechanisms

The experimental resource allocation· mechanisms have

been explored by varying the operation of the mechanisms and

the environment.

1. Value functions. Varying the value functions has

allowed observation of the effect of different

value functions.

2. Job mix. Varying the job mix has allowed

exploration of adaptability to different types of

system load.

3. Resource valuation mechanism. The effect of the

resource valuation mechanism has been observed by
i

removing it from the scheduler in some of the · 1

experiments.

Comparison with Other Strategies

Comparison of the value-based resource allocation

philosophy with traditional approaches to scheduling was the

third goal of the experimentation. To do this, a simulation

model of a traditionally organized scheduler was implemented

so both the value-based and traditional schedulers could be

70

compared in their ability to allocate exactly the same

resources to identical job mixes. The simulation of

traditional resource allocation is patterned after the

scheduler in the Universal Time-Sharing System (UTS) for the

Xerox Sigma 6/7/9 computers (Xerox, January 1972). This is

a multilevel queue structured scheduler which has undergone

considerable refinement to make it a high quality example of

modern general purpose timesharing system schedulers.

Simulation as the Vehicle for Experimentation

Simulation was chosen as the vehicle for

experimentation to avoid several problems which would have

arisen in experimenting with an actual operating system.

Most of the advantages to simulation can be classified as

either greater control over operation or ease of

implementation.

1. The technique of scripting used in the simulation

allows a set of jobs to be defined to have desired

resource requirements in advance and then used for

successive e~periments. Experimentation in the

context of a complete operating system would make

control of the environment in which the scheduler

operates as well as control of the job mix much

more difficult.

2. Coding the important aspects of a scheduler for

simulation is considerably simpler than coding the

71

entire scheduler since many housekeeping details

which are irrelevant to performance evaluation can

be omitted from the simulation. For example, while

the saving and loading of the central processor .. s

status and register cont'ents is important when

changing the assignment of the central processor in

a real scheduler, these activities are irrelevant

to evaluating the performance of the scheduler.

They can be neglected in a simulation designed to

evaluate performance.

3. Provisions for measuring and recording the

4·.

activities and aspects of performance most relevant

to the experiments were easily incorporated into

the simulation without interfering with the

operation of the simulated system. Making similar

measurements on a real system would require

considerable care to avoid affecting operation of

the system.

By using simula tio·n, the need for dedicated use of

a computer during the debugging and testing of the

experimental scheduler was avoided.

5. Possibly the most important advantage to the use of

simulation was freedom in choice of a language in

which to code the ~chedulers.

72

\

Structure of the Simulator

The operation of the simulator is based on the

formulation of the resource allocation problem in Chapter 3.

Jobs are modeled as sequences of requests and releases of

system resources. The states of the processes are

maintained and their progress measured on .the basis of the

process structure description. The resource allocation

notation, which encompasses the most important variables of

the simulation program, describes the system state. The

scheduler algorithms, including one which is based on the

value-based discussions in Chapter 4, implement different

resource allocation decision rules.

The simulator consists of program scripts, a script

interpreter, the scheduler to be investigated, and the

simulation housekeeper and statistics recorder. A script is

the input to the simulation system consisting of the script

interpreter and scheduler. The outputs. of the simulation

are the response results.

Interpreter

Script Response Results

Scheduler

To study the effect of the different job mixes new

scripts can be writ ten and the other parts left unchanged.

To compare different scheduling algorithms, just the

73

scheduler portion can be replaced.

Program Scripts

The program scripts specify the system load or job mix

to be synthesized for the simulation. A simple example of a

script will illustrate the basic features of the script

definition.

Alpha:

4 Class-1 processes.

Request 20 pages memory.

Request 1 central processor.

Run 100 milliseconds.

Release 1 central processor.

Think-type 5000 milliseconds.

Go to Alpha.

The first line declares that 4 processes are to execute the

script that follows. They are to be scheduled in the first

class of service. The second and third lines indicate

requests for 20 pages of memory and then use of the CPU.

The third line is labeled to be used as a target for a

program loop. The specification to run for 100 milliseconds

in the fourth line indicates the interval of. time that

resources are required by the process after they have been

assigned. Following this interval the CPU will be released.

Five seconds of thinking and typing by the terminal user

will ensue. In addition to the passage of time this step is

significant in that it signals the beginning of a new

74

request for service.

line 3.

The last step indicates a return to

Typically, a script will consist of not just a single

program but several programs with varying numbers of

processes executing each. Time intervals may be specified

as draws from a random distribution of specified parameters.

Other l"E!sources may also be represented. In addition to the

CPU and main memory, these simulations considered disk I/0

devices, permission to open/close files, and a high speed

swapping channel. The scripts for all experiments are in

Appendix I.

Script Interpreter

The script interpreter utilizes the script definitions

to simulate process behavior. For each simulated process

its progress in completing each step of its script is

maintained. Requests for resources are passed to the

scheduler for decisions on allocations. Resources which are

released are returned to the reserve of resources for

assignment to another process by the scheduler.

Scheduler

The scheduler makes decisions on allocations and

preemptions based on new requests recognized by the script

interpreter, pending requests, previous assignments, and the

75

total capacity of resources

not fulfilled or resources

available. When requests are

are preempted, the processes

needing them must be suspended. The resources consumed in

scheduling (scheduler overhead) have been ignored in the

simulation on the assumption that all of the schedulers

investigated are of similar complexity. Observation of

simulation runtimes substantiate this assumption.

The schedulers which were simulated varied in the

algorithms used. However, the data available and data

structures are the same for each. The data base, kept in

APL arrays, contains all of the data needed by any of the

schedulers; none of them uses all of the data. More

detailed descriptions of the schedulers for the specific

scheduling policies will be given later.

Housekeeping and Performance Measurement

The final part of the simulation is maintenance of

housekeeping details such as the simulation clock, time of

the next event, etc., as well as the recording of statistics

for analyzing the performance of the scheduler. To evaluate

the response times which would result in a system utilizing

the algorithm being simulated, the progress during the

interval simulated of the simulated jobs must be measured.

Response times could not be measured directly since most of

the jobs would not finish during the relatively short

simulation interval (60 seconds).

76

Two types of progress measurements are important. The

relative rate of progress for a process is the virtual

execution time divided by the real time. Thus the relative

rate of progress is the ratio of the progress the process

actually made to the progress it could have made if it were

the only process in the system and did not have to compete

with other jobs for use of the system resources. The total

of the individual rates of progress of the processes in a

system can be considerably greater than unity since there

will be periods while terminal users are thinking pr typing

and the process will not require service. Also, to the

extent that the processes of the resource requirements are

complementary, more than one process may be making progress

at a time.

A second type of important information collected from

the simulation is the percentage of the total available

quantity of each resource over time a·ssigned to each

process. Most schedulers do not assign the CPU to a process

unless· it has all of the other resources it needs to make

progress. Hence, for a fixed interval of simulation the

percentage of time the process is assigned the CPU is a.

measure of its absolute progress. The ·percentage of the

time other resources are assigned do not necessarily reflect

useful assignments since a process may be holding a resource

unproductively while it waits for other resources it needs.

Other types of performance statistics which are

77

frequently examined have not been studied. The interval

from receipt of a request until the process has all the

resources it needs to begin execution on the request is

sometimes measured as an indication of the responsiveness of

an operating system. This is useful for tuning particular

operating systems but is less useful for comparing different

schedulers. As pointed out previously, the performance

users see is the interval between the request and the end of

processing the request.

The measurements of rate of progress and CPU usage over

the entire simulation period reflect the average service

received by the process. The variance of the service rate

for individual requests is also of interest. Direct

~easurements of the variances have not been made. However,

the variances can be estimated. Demonstrations of the

ability of experimental scheduler to allocate accurately on

the basis of value functions imply a small variance in

performance for all but small requests. For small requests,

length of the initial interval until the process has the

resources it needs determines this variance. Since this is

the delay which impedes the progress for the process, it is

reflected in the rate of progress statistic.

Simulated Schedulers

Experiments were actually conducted on four types of

schedulers. The first two experimental schedulers combined

78

a global resource allocation scheme with the simple policy

functions developed by Bernstein and Sharp. Difficulty in

designing reasonable policies for these schedulers provided

the impetus for development of the concept of value-based

resource allocation. Following development of this concept,

the experimental scheduler based on these principles was

written. The other scheduler simulated for comparison is

the traditional multilevel queue scheduler. Because the

limitations of the first two experimental schedulers

resulted in their rejection as less powerful and flexible,

the following discussion will concentrate on the

experimental value-based example

multilevel queue scheduler.

Experimental Value-Based Example

The experimental value-based

and the traditional

scheduler evaluates

resource assignments in the system every . time a process

requests a resource, releases a resource, or after a period

of running when no resources have been requested or

released. The first step in evaluating the assignments is

the determination of the current value of running each

process from the value functions supplied by the system

manager. The value functions used in these experiments are

given in Table 2. More detailed descriptions of the various

value functions used in each of the experiments is included

with the descriptions of the particular experiments. Each

79

Table 2

Experimental Value Functions

I. Identical Value Functions--Equal Service

Value of executing job

real time
= CPU assigned time

II. Two Classes of Service

Value of executing job

2 . real time if class = CPU assigned time

real time if class = CPU assigned time

III. Activity-Biased Function--Multilevel
Queue Approximation

Value of executin$ job

1

2

job

job

real time
= lOOO + CPU assigned time if CPU assigned

time < 1200 ms.

real time = otherwise CPU assigned time

80

Table 3

Experimental Value-Based Scheduler Algorithm

(Appendix III contains a more detailed
description of this algorithm.)

Executed every time a resource is requested, a resource is
freed, or no resource has been requested or freed for one
quantum.

V1. Calculate value of execution of each process.
This is rate of increase in value function with
respect to service (job size) as function of job
class, service received, and elapsed time.

V2. Adjust values by value of resources held. Values
of resources held are determined from the values
of processes waiting for these resources.

V3. Sort processes by value.

V4. Assign free and preemptable resources to
requesting processes in descending order of value.

V5. If the swapping channel is not still free, go to
va.

V6. Select suspended process with lowest .value which
has not been copied out of main memory. If none,
select a running process when there is need for
memory which exceeds the loss from suspending the
running process. If there is nothing to swap out,
go to VB.

V7. Initiate copy of selected process out of memory.

VB. Exit to job processing.

81

of the values is then adjusted to take into account the

additional value attributable to the possibility that the

process will release resources it holds and make them

available to other processes which are suspended waiting for

the resources. In the experimental scheduler the adjusted

value has been calculated as the maximum. of the value of

running the process and the value of running any process

which is waiting for a non-preemptable resource the process

holds.

A set of resource allocations then needs to be found to

maximize the sum of the adjusted values of the processes

assigned all the resources they require. A procedure for

obtaining an allocation which approximates this is to

allocate to one process at a time in order of descending

adjusted value. In most cases this will be almost as good.

If only part of the requests for a process can be satisfied,

these resources are placed in holding un.til the .rest become

available.

If a resource can be preempted from a process with a

lower adjusted value, this is done. The central processor

is always preemptable. Pages in main memory are preemptable

only if there is a current copy of their contents on the

swapping device. After a process has had its pages

preempted, the swapping channel resource is required (in

addition to main memory page and other requirements) to copy

the information· back in. When not in use to copy

82

information into main memory, the swapping channel is used

to create current copies of pages on the swapping device

starting with the process having the lowest adjusted value

for running. Table 3 outlines the steps of the algorithm.

Consider, for example, three jobs with the following

resource assignments and wants.

Assigned Want

Job 1 memory, open CPU

Job 2 memory CPU

Job 3 memory, swap channel
open, CPU

The scheduler will first calculate the value of running each

job from the value function specified by the system manager.

Assume these to be 2, 4, and 6. for jobs 1, 2, and 3

respectively. Since job 1 holds the nonpreemptable

permission to open files and this resource is needed by job

3, job 1 will have an adjusted running value of 6.

Therefore, it will be allocated use of the CPU. If job 2 is

not already copied out, the swap channel will be assigned to

copy it out. In this example, holding permission to open

files causes job 1 to receive extra service until it

releases this critic al resource. Following the release of

the critic al resource, it will receive a less than normal

share of service until its average rate of service declines

and its value of execution rises as high as the values of

execution for other jobs in the system.

83

Multilevel Queue Scheduler

The multilevel queue scheduler which was implemented

for comparison with the value-based example is considerably

more complicated and contains the essential details of the

UTS scheduler. However, since it was intended only to be

representative of the class of high quality multilevel

schedulers

validated

and not just

against the

UTS,

UTS

it was not

scheduler.

statistically

An informal

examination showed its performance with various job mixes to

be consistent with UTS performance. Only an overview of its

operation will be given here. Additional details are

contained in Appendix IV and the UTS system documentation.

The basic strategy for a multilevel queue scheduler is

to enter jobs into first-in-first-out queues based on the

occurrence of events relevant to the scheduling activity.

In general, all processes which have just received a request

from a user terminal are placed in a queue with first

priority for use of the CPU. Processes which become

unblocked because their terminal output buffer emptied have

next priority and processes which have just completed other

types of I /0 have the next priority. Lowest priority is·

given to jobs which have .already had a ·quantum of service

(typically 500 to 2000 milliseconds CPU usage) since the

last request was made.

has been swapped out

A process which needs the CPU but

will be swapped in if jobs not

currently needing the CPU or lower priority jobs also

84

waiting for the CPU can be found for it to r•eplace.

Exceptions to the basic rules are made in special

circumstances such as keeping jobs waiting to do I/O in

memory and reducing the likelihood that a job with exclusive

permission to . open or close a file will be swapped out.

Table 4 outlines the steps of this algorithm.

VIABILITY OF SCHEDULING USING VALUE FUNCTIONS

In the initial tests of the experimental scheduler,

identical value functions were used for all jobs so each job

would receive an approximately equal share of central

proce_ssor time.

The value function has been defined:

V 1 f t . . b real time
a ue 0 execu ing JO = CPU assigned time·

Jobs which have been in the system longer than average

for the amount of CPU assigned have higher than average

value of execution and will receive better than average

serviceo Jobs which have received more than average use of

the CPU for the time they have been in the system will have

lower value and receive less service. Thus the value

function should cause all jobs to receive approximately

equal use of the CPU. A special problem occurs in computing

this function immediately following a user request when the

process has had no CPU assigned time and the value of the

85

Table 4

Multilevel Queue Scheduler Algorithm

(Appendix IV contains a more detailed
description of this algorithm.)

Executed on the occurrence of events
requesting or freeing specific resources
one quantum of CPU use.

associated with
and completion of

Q1. Enter processes at appropriate queue level on the
basis of the event which has occurred.

Q2. If the swapping channel is not free, go to Q7.

Q3. Search down queue for first process which needs to
be swapped into main memory. If none, go to Q7.

·Q4. If the needed pages are free initiate the swap in
and go to Q7.

Q5. Search up the bottom of the queue for a process or
processes which can be swapped out of memory to
make enough room. If none, go to Q7.

Q6. Initiate swap out and swap in.

Q7. Select the first process in core from the top of
the queue and allocate the CPU and· other resources
required.

QB. Exit to job processing.

86

function is infinite. Setting a small minimum value to be

used as the CPU assigned time avoids this initial problem

while still causing the execution value to be relatively

high.

Each of the simulation runs reported in the following

is based on 60 seconds of simulated time. The figures

include data gathered during starting transients before the

system reached a steady state. While start up transients

should be eliminated from the results of most simulations,

they are of interest in some of the following cases. Except

as specifically noted, the start up transients last

approximately two to ten seconds and do not significantly

affect the overall measurements.

Single Value Functions

The results from running several identical CPU bound

jobs with the experimental scheduler are spown in Table 5.

Column three, percentage of CPU usage, which is a measure of

the absolute progress of each job, shows each job received

approximately the same share of CPU use and thus achieved

the same progress. The last column shows for each job the

rate of progress as a fraction of the rate of progress which

would have resulted if the job were the only job in the

system. As expected, since the resource requirements are

not complementary, the total rounds off to unity with each

job receiving an equal share. The fourth column (%Page)

87

shows the average percentage of the total available pages

assigned to the jobs.

A slightly more complicated situation results when jobs

doing I/O are also included. Table 6 summarizes the results

of a job mix with four compute bound jobs and also four jobs

doing I/O. The third column shows that, as specified by the

value function, . each job receives equal use of the CPU.

However, because of the complementary requirements for

resources, the total rate of progress for all jobs exceeds

one.

In the last test of this value function, which causes

each job to receive an equal share of the CPU, several

interactive jobs which request and receive input from

terminals are also included. During the time that one of

these processes is requesting terminal input, it is not in

contention for use of the CPU. Receipt of the input

constitutes a new request for service and the job begins

contention on par with all other jobs. Hence, the total

percentage of CPU usage by the interactive jobs is different

for each job and is less than that of non-interactive jobs.

This is shown in Table 7.

Value Functions Giving Class Preference

We now examine the consequences of using value

functions which do not simply cause the CPU usage to be

distributed equally among the processes. First, the effect

88

Table 5
-

Value-Based Scheduler with Identical Value Functions
Value Function I

Script A

Job Type %CPU %Page Progress

1 CPU bound 12.4 7.5 .125
2 CPU bound 12.5 7.8 • 125
3 CPU bound 12. 5 7.8 .125
4 CPU bound 12.5 1.6 .125
5 CPU bound 12.5 1.1 • 125
6 CPU bound 12.5 7.9 • 125
7 CPU bound 12.5 7.8 • 125
8 CPU bound 12.5 6.8 • 125

Total 99.9 61. 0 1. 000

Table 6

Value-Based Scheduler with Identical Value Functions
Value Function I

Script B

Job Type %CPU %Page %Disk Progress

l CPU bound 1 1. 8 6.2 • 118
2 CPU bound 11. 9 6. 1 .119
3 CPU bound 1 1. 9 6.6 • 119
4 CPU bound 11. 8 9.2 • 1 1 8
5 I/0 1 1. 8 9.2 11. 1 .229
6 I/O 11. 9 9.3 11. 5 .234
7 I/O 11. 8 8.7 11~9 .237
8 I/O 11. 8 8.8 12.0 .238

Total 94.7 61. 8 46.6 1. 416

89

Table 7

Value-Based Scheduler with Identical Value Functions
Value Function I

Script C

Job Type %CPU %Page %Disk Progress

1 CPU bound 11. 2 6. 1 • 1 1 2
2 CPU bound 11. 2 6.2 • 112
3 CPU bound 11. 2 6.2 • 112
4 CPU bound 11. 3 6. 1 .113
5 I/O 11. 2 8.6 11. 3 .226
6 I/O 11. 2 8.4 11. 3 .224
7 I/O 1 1. 2 8.3 11. 0 .223
8 I/O 11. 2 8.5 11. 4 .227
9 Interactive 1. 8 1. 5 • 125
10 Interactive 2.2 1. 9 .138

Total 93.7 61. 8 45. 1 1. 612

90

of changes in the value functions to implement different

classes of service will be investigated. Half of the jobs

(the first half) were arbitrarily assigned to a class of

service with a value function designed to cause them to

receive twice as much use of the CPU:

Value of executing of job = 2 • real time
CPU assigned time ·

A summary of the results of these two classes of service

with all CPU bound jobs is shown in Table 8. Similarly, a

mix of CPU bound jobs and jobs with I/O are shown in Table

9. In both cases about twice as much service is received by

those jobs with value functions designed to result in twice

the CPU usage of the other jobs.

Activity-Biased Value Functions

In large timesharing systems it is usually desirable to

give better service to processes associated with interactive

terminals than batch jobs. When fulfilling each request

from a terminal requires only a short period of resource

usage, preference can be given to these requests with

relatively little effect on service to longer batch jobs.

Terminal users are thus given very quick response to their

small requests. However, long terminal requests cannot be

shown the same amount of preference without degrading the

response to small requests. The usual solution to this

dilemma in multilevel queue schedulers is to place processes

91

Table 8
-

Value-Based Scheduler with Two Classes of Service
Value Function II

Script D

Job Type Class %CPU %Page Progress

1 CPU bound 1 16.6 9.7 .166
2 CPU bound 1 16.6 9.0 • 166
3 CPU bound 1 16.6 9. 1 .166
4 CPU bound 1 16.7 8.6 . 167
5 CPU bound 2 8.4 6.5 .084
6 CPU bound 2 8.3 6.2 .084
1 CPU bound 2 8.3 6.4 .083
8 CPU bound 2 8.4 5.5 .084

Total 100.0 61. 0 1. 000

Table 9

Value-Based Scheduler with Two Classes of Service
Value Function II

Script E

Job Type Class %CPU %Page %Disk Progress

1 cp·u bound 1 15.8 8.2 • 158
2 CPU bound 1 15.8 1.8 .158
3 I/O 1 15.8 1 1. 4 15.3 . 311
4 I/0 1 15.8 11. 6 7.5 .320
5 CPU bound 2 7.9 4.7 .079
6 CPU bound 2 8.0 4.8 .080
7 I/O 2 8.0 6.5 . 1 6. 1 .155
8 I/O 2 7.9 6.7 7.6 .155

Total 95.0 61. 8 46.5 1. 415

92

in a high priority queue at the beginning of a request. If·

the request cannot be completed in a fixed time period

(quantum), the process is placed in a lower priority queue.

In the model of the multilevel queue scheduler the

quantum has been set at 1200 milliseconds. The approximate

effect of this is to give all requests which have received

less than 1200 milliseconds first priority and other jobs

second priority. The value function of the value-based

scheduler can also be designed to give higher priority to

jobs which have not yet received one quantum of CPU service

by assigning a higher value to execution of these jobs.

Since 1000 is a large number relative to normal values for

executing jobs, a function with a discontinuity after one

quantum of CPU usage can be formed:

Value of executing job

= 1000 +CPU rea~ ti~et' if CPU assigned time <1200 ms assigne ime

real time = otherwise. CPU assigned time

This specifies a value function which approximates the value

function implicit in the multilevel queue scheduler.

Tables 10 and 11 contrast the effect of value functions.

without initial higher execution value (Table 10) and with

initial high execution value (Table 11) on the same job mix.

The rate of progress in the last column for interactive

processes is greater in Table 11 where the initial service

was given a higher value. Except during the initial startup

93

period, where none of the processes had received a quantum

of CPU usage and all had similar values for execution, the

interactive jobs had much higher values of execution and

were given preference when they needed use of the CPU.

These experiments and others not reported confirm the

ability of a simple scheduler to use value functions in

performing resource allocations. The value functions can be

changed easily, without rewriting the scheduler, to

implement different policies for the system management.

GLOBAL RESOURCE ALLOCATION

Value functions and global or centralized allocation of

resources were explored together because the preliminary

analysis indicated they were improvements in resource

allocation which have the potential to work well together.

It is possible to conceive of a traditional scheduler which

schedules use of the CPU using priori ties based on value

functions while other resources are allocated on another

basis such as first-come-first-served. Also, resource

allocation could be centralized without being based on value

functions. Global resource allocation in the IBM OS/370 VS2

Release 2 system is described by Scherr (1970b). However,

some conclusions can be drawn from the simulation

experiments about global allocation in the context of

value-based scheduling.

Discussion of each i tern will follow a listing of the

94

Table 10

Value-Based Scheduler without Interactive Bias
Value Function I

Script F

Job Type %CPU %Page Progress

1 CPU bound· 22.5 13.3 .225
2 CPU bound 22.5 14.0 .225
3 CPU bound 22.5 12.8 .225
4 CPU bound 22.4 13.4 .224
5 Interactive 2.7 2.3 .218
6 Interactive 2.5 2.0 .215
7 Interactive 2.3 2.0 .213
8 Interactive 2.5 2.0 .214

Total 99.9 61. 8 1. 759

Table 11

Value-Based Scheduler with Interactive Bias
Value Function III

Script F

Job Type %CPU %Page Progress

1 CPU bound 22.9 14. 1 .229
2 CPU bound 23. 1 13.4 .231
3 CPU bound 22.5 15.4 .225
4 CPU bound 22.1 15. 1 .227
5 Interactive 2.3 1. 1 .483
6 Interactive 2.2 1. 0 .468
7 Interactive 1. 8 • 9 .474
8 Interactive 2.3 .9 .698

Total 99. 9 61. 8 3.035

95

points. First, simple global resource allocation strategies

can be used with value functions to do scheduling and

resource allocation. Second, the problems of allocating all

system resources including CPU's, memory, and I/0 devices

are basically the sa.me and can be handled in a single

framework. Third, global resource allocation can simplify

allocations of the various resources to avoid wasteful,

inconsistent allocations.

Value-Based Allocation

The quality of local resource allocation policies to

implement value-based allocation has not been evaluated.

However, the simulation experiments show global allocation

can be used satisfactorily for value-based scheduling. The

results described in the previous sections using the simple

experimental scheduler guided by value functions and doing

centralized resource allocation demonstrate the tractability

of global resource allocation in a value-based context.

Uniform Treatment of Resources

The operation of the experimental sriheduler also shows

the feasibility of considering the CPU, memory, I/O devices,

and all other resources in the same framework. With the

exception of the use of the swapping channel to make copies

of main memory pages onto the swapping device when it would

96

otherwise be idle, the experimental scheduler uses the same

algorithms and code to allocate all resources. Tables were

used to indicate capacity of the resources, whether they

were preemptable, etc. While the use of exactly the same

algorithms does work, it is probably extreme. To obtain the

most efficient utilization of individual resources, a system

should probably be structured so specialized policies can be

utilized within a global framework.

Consistent Resource Allocations

Intuitively, the use of centralized resource allocation

where the scheduler can coordinate the use of all the

resources should result in better use of the resources than

resource allocation decisions made separately and

independently. For example, it makes little sense to

allocate part of the resources requested by a process if

other resources it needs are not available. Similarily, if

a process already holds preemptable resources it is

frequently desirable to take them away while the process

waits for new requests to be filled.

The consideration given to the value of the resources

held by a process in adjusting the value of the execution of

that process is a global allocation policy whose benefit can

easily be demonstrated. Although not a calculation of the

true expected value of releasing the resources, this

adjustment will give preference to processes with inherently

97

low value while they hold resources needed by high value

processes so that the resources will be released and become

available to the high value processes. Experiments where

this provision of the scheduler was eliminated resulted in

situations with low value· processes holding non-preemptable

resources (exclusive right to open files) but not having

enough value to cause preemption of the memory held by

higher value processes waiting for permission to open files.

Since the lower value process could not get the memory it

needed to continue execution and release the right to open

files, deadlock resulted. With the adjustment of a

process's value to take into account the resources it holds,

this process would temporarily have enough value to cause

preemption and would be assigned the memory it needs.

EFFICIENCY OF VALUE-BASED RESOURCE ALLOCATION

The different circumstances for which· schedulers were

designed and the ways in which they operate make evaluation

of their performances difficult. While one scheduler may be

intended to favor one type of job, another is intended to

favor another type of job. Two other schedulers may have

been designed for different points of compromise between

those two extremes. Moreover, the performance of schedulers

is frequently dependent on the job mix being scheduled.

However, despite the conceptual difficulty of the

problem, the flexibility in setting the value functions in

98

the value-based scheduler allows some meaningful comparisons

to be made with the multilevel queue scheduler. As

described previously, value functions can be used which

approximate the implicit value functions in the multilevel

queue scheduler. For comparison with the multi level queue

scheduler, the value function described in the section on

Activity-Biased Functions (value function III) was used.

Comparisons with only these value function do not

consider the difference in flexibility to specify response

sets. However, if the experimental scheduler can perform as

well as the multilevel queue scheduler in the domain of

operation for which the multilevel queue scheduler was

designed and tailored, the flexib.ility of the value-based

scheduler implies it is more powerful.

Domain of Experimentation

The important external variables which determine

scheduler performance were identified in Chapter 1 as

1. job mix,

2. scheduler parameters, and

3. resources available.

In the previous experiments the job mixes and scheduler

parameters were varied to demonstrate the adaptability of

the scheduler to different job mixes and the flexibility of

the value function specifications.

As discussed previously, reasonable comparison of the

99

experimental and multilevel queue schedulers necessitates

fixing the scheduler parameters so the schedulers have

similar goals. For these comparisons the quantities of

resources have been held constant and the job mixes varied.

The quantity of a resource available is a measure which is

relative to the requirements of the jobs (e.g., the number

of jobs which can reside in main memory at one time). Thus,

varying both the job mix and resources available are

unnecessary.

There are several important factors to be considered in

varying the job mix:

· 1. frequency of requests for service,

2. number of jobs which fit in main memory at a time;

3. frequency of I/O, and

4. use of other resources.

The experiments test average and extreme conditions. Demand

for service includes both continuous and interactive

requests. In most cases three jobs will fit in main memory

at a time; however, with script G, one or two jobs can take

up all available memory. Both CPU bound and highly I/0

bound jobs have been included in the mixes. Scripts H and I

include requests for permission to open a file as well as

the basic CPU, memory, and disk resources. The experiments

are intended to demonstrate operation under typical

circumstances and do not exhaustively explore all posible

operating conditions.

100

Biases in the Comparisons

In making the comparison it is also important to take

into account the difference in the amount of effort which

has gone into development of the multilevel queue and

value-based schedulers. The multilevel queue simulation is

modeled after a production operating ~ystem which has

benefited from substantial investment in design and

refinement. On the other hand, the value-based simulation

has not received this attention.

Comparison Results

Comparisons were made on a number of job mixes of which

three are reported here. Each simulation was repeated four

times with different random numbers. In numbering the

tables of results, replications which differ only by the

random numbers have been given different letter suffixes.

For example, Tables 12-A, 12-B, 12-C, and 12-D show the

results of four repetitions. In Tables 12 and 1 3 the

results of a mix of four interactive jobs, one compute bound

job, and four jobs also doing I/O are shown. The CPU usage

(a measure of total computation) with both schedulers is

comparable. The value-based scheduler gave slightly more

total CPU usage. It gave slightly lower rates of progress.

The next mix of jobs which includes conflict over the

resource giving exclusive right to open or close files is

summarized in Tables 14 and 15. The first four processes

101

Table 12-A

Value-Based Scheduler
Value Function III

Script G

Job Type %CPU %Page %Disk Progress

1 Interactive 5.8 1.2 .457
2 Interactive 5.8 8.6 .367
3 Interactive 5.8 8.9 .410
4 Interactive 5.8 5.2 .557
5 CPU bound 9.7 4.7 .097
6 I/O 10.3 9.9 10.0 .203
7 I/O 1 0. 1 9.6 10.0 .202
8 I/O 6.8 8.0 7. 1 .139
9 I/O 7.5 7.4 1.1 • 152

Total 67.7 69.5 3l+. 9 2.584

Table 12-B

Value-Based Scheduler
Value Function III

Script G

Job Type %CPU %Page %Disk Progress

1 Interactive 5.0 10.0 .381
2 Interactive 5.8· 5.8 .465
3 Interactive 5.8 1.0 .399
4 Interactive 5.8 4.6 .750
5 CPU bound 9.3 4.7 .Q93
6 I/O 9.8 10.7 10.3 .200
7 I/0 8.2 8.3 8.3 . 165
8 I/O 8.3 8.8 8.7 . 171
9 I/O 8.5 7.9 8.6 .. 171

Total 67.9 66.6 35.9 2.795

102

Table 12-C

Value-Based Scheduler
Value Function III

Script G

Job Type %CPU %Page %Disk Progress

1 Interactive 6.6 8.5 .407
2 Interactive 5.8 6.4 .432
3 Interactive 5.0 5.9 .519
4 Interactive 5.8 1.1 .384
5 CPU bound 1.1 4.4 .011
6 I/O 11. 2 11. 8 11. 3 .224
1 I/O 8.0 1.6 7.9 .159
8 I/O 8.0 8. 1 1.1 . 157
9 I/O 8.0 1.1 8.2 • 162

Total 66. 1 68.2 35. 1 2.521

Table 12-D

Value-Based Scheduler
Value Function III

Script G

Job Type %CPU %Page %Disk Progress

1 Interactive 5.8 8.7 .670
2 Interactive 5.0 5.0 .631
3 Interactive 5.8 8.5 .440
4 Interactive 5.0 6. 1 .411
5 CPU bound 11. 1 5.4 • 1 1 1
6 I/O 7.6 1.1 1.· 1 . 153
1 I/O 7.6 8.0 1.6 .152
8 I/O 11 .1 11. 4 11. 8 .235
9 I/O 7.5 7.5 7.8 .153

Total 67. 1 68.2 34.8 2.956

103

Table 13-A

Multilevel Queue Scheduler
Script G

Job Type %CPU %Page %Disk Progress

1 Interactive 5.5 4.9 .625
2 Interactive 5.0 4.4 .566
3 Interactive 5.8 4.7 .520
4 Interactive 5.8 5.8 .337
5 CPU bound 9.9 5.7. .099
6 I/O 7.9 8.7 8.4 • 163
7 I/O 7.9 9.2 8.9 • 168
8 I/O 1.9 9. 1 8.3 .163
9 I/O 7.9 7.6 1.1 .156

Total 63.7 60. 1 33.2 2.797

Table 13-B

Multilevel Queue Scheduler
Script G

Job Type %CPU %Page %Disk Progress

1 Interactive 5.0 5.3 .636
2· Interactive 5.8 4. 1 .732
3 Interactive 5.0 4.3 .265
4 Interactive 5.8 4.9 .767
5 CPU bound 7.9 4.3 .079
6 I/O 7.9 8.8 8.4 .163
7 I/O 7.9 9.0 8. 1 • 160
8 I/0 7.9 8.7 a.· o . 159
9 I/O 7.9 8.9 1.1 . 156

Total 61. 3 58.4 32. 1 3. 117

104

Table 13-C

Multilevel Queue Scheduler
Script G

Job Type %CPU %Page %Disk Progress

1 Interactive 5.8 4. 1 .378
2 Interactive 5.8 5.3 .798
3 Interactive 5.8 4.8 .325
4 Interactive 5.0 4.6 .425
5 CPU bound 10.0 4.9 .099
6 I/O 8.0 8.4 8. 1 . 161
1 I/O 8.0 8.6 7.6 .155
8 I/O 8.o 9.8 8. 1 • 161
9 IIO 8.0 8.6 7.9 . 158

Total 64.4 59.0 31. 7 2.660

Table 13-D

Multilevel Queue Scheduler
Script G

Job Type %CPU %Page %Disk Progress

1 Interactive 5.7 4.4 .838
2 Interactive 5.7 3. 1 .733
3 Interactive 5.7 4.2 .796
4 Interactive 4.9· 6.0 .297
5 CPU bound 9.8 5. 2 . .098
6 I/O 7.9 9.0 8.2 . 161
1 I/O 1.9 8.0 8.5 . 164
8 I/0 7.9 1.9 7.5 . i 54
9 I/0 7.9 9.2 1.8 .156

Total 63.3 57.0 32.1 3.437

105

simply alternate I/O access with central processor use. The

next four alternate I/O access and CPU use but repeatedly

request exclusive control of file opening and hold this

resources for five I/O accesses before releasing it. Thus,

the second group of processes model jobs opening files and

doing the I/O necessary to accomplish this and the first

group of jobs simply perform I/O on the same disk. The last

process is completely compute bound.

The total progress of all jobs as well as the total CPU

usage is similar. However, the variance among jobs is lower

with the experimental scheduler. The different utilization

of the resource for file opening is somewhat interesting

since the average progress of the jobs opening files in both

systems is nearly the same. Apparently, the time that

processes holding this resource were suspended while waiting

fer other resources was longer with the multilevel queue

scheduler. As a result, the total time the resource was

assigned was longer.

In the last example, reported in Tables 16 and 17, four

jobs opening and closing files and two compute bound jobs

have been simulated. The first two file opening jobs are

interactive while the others are not and have lower priority

after their first quantum is expended. The much greater

rate of progress for the interactive file opening processes

with the value-based scheduler is the most obvious

difference in these results. This occurs because the

106

Table 14-A

Value-Based Scheduler
Value Function III

Script H

Job Type %CPU %Page %Disk %Open Progress

1 I/O 9.7 1.8 9.7 .193
2 I/O 9.6 8.0 9.2 .188
3 I/O 9.6 8.0 8.7 .183
4 I/O 9.5 1.3 9. 1 .186
5 I/O for open 9.4 5.8 9. 1 22.5 .184
6 I/0 for open 10.0 6.0 10. 1 24.3 .201
7 I/.O for open 9.4 6.4 8.9 20.8 .183
8 I/0 for open 9.4 6.7 9.6 24.2 • 190
9 CPU bound 9.7 6. 1 .097

Total 86. 1 61. 8 74.2 91. 9 1. 602

Table 14-B

Value-Based Scheduler
Value Function III

Script H

Job Type %CPU %Page %Disk %Open Progress

1 I/O 9.5 7. 1 9.2 .187
2 I/O 9.7 7.4 9.3 • 190
3 I/O 9.5 1.1 9. 1 .186
4 I/O 9.5 6.8 9.2 • 187
5 I/O for open 9.3 6.6 9.7 21. 6 • 190
6 I/O for open 9.5 6.7 10.2 25.4 . 197
1 I/O for open 9.3 6.2 9.0 23.2 .184
8 I/O for open 9.3 1.6 9.3 21. 6 . 187
9 CPU bound 9.8 5.8 .098

Total 85.5 61. 8 75. 1 91. 8 1. 606

107

Table 14-C

Value-Based Scheduler
Value Function III

Script H

Job Type %CPU %Page %Disk %Open Progress

1 I/O 9.5 7.9 9.6 • 191
2 I/O 9.7 7.8 9.2 • 188
3 I/O 9.5 8.0 9.3 .188
4 I/O 9.7 7.4 9.0 • 187
5 I/O for open 9.5 5.9 9.6 22.2 . 1 9 1
6 I/O for open 9.4 6.0 9.3 23.5 . 187
1 I/O for open 1 0. 1 6.8 10.2 23.4 .202
8 I/O for open 9.4 5.9 8.8 23.0 fl 182
9 CPU bound 9.1 6.0 .097

Total 86.3 61. 8 74.9 92. 1 1. 613

Table 14-D

Value-Based Scheduler
Value Function III

Script H

Job Type %CPU %Page %Disk %Open Progress

1 I/O 9.7 7.4 9.9 .196
2 I/0 9.5 1.6 9.9 .194
3 I/O 9.1 7.4 9.6 .192
4 I/O 9.7 1.9 9.2 • 189
5 I/O for open 9.3 5.7 9.2 24.6 .186
6 I/O for open 9.3 6.7 9. 1 21. 8 • 185
1 I/O for open 10.0 6.3 1o.6 25.8 .206 /

8 I/O for open 9.3 6.0 8.6 20.5 • 179
9 CPU bound 9.6 6.8 .096

Total 86. 2 61. 8 76. 2 92.6 1. 623

108

Table 15-A

Multilevel Queue Scheduler
Script H

Job Type %CPU %Page %Disk %Open Progress

1 I/O 10. 8 8.0 11. 0 .218
2 I/0 13. 8 9.4 13.4 .212
3 I/0 9.9 6.9 9.7 • 196
4 I/O 11. 9 8.2 12.3 .242
5 I/O for open 1.1 6.2 1.1 25.7 . 154
6 I/O for open 10.2 7.8 1 0. 1 29.6 .202
7 I/O for open 1.1 6. 1 7.6 22.2 • 153
8 I/O for open 1.2 6. 1 1.3 21. 7 .144
9 CPU bound 8.0 3.0 .080

Total 87.1 61. 8 79. 1 9 9. 1 1. 661

Table 15-B

Multilevel Queue Scheduler
Script H

Job Type %CPU %Page %Disk %Open Progress

1 I/0 15.7 11. 3 15.6 .313
2 I/O 7.9 5. 1 1.1 .155
3 I/0 11. 8 8.6 12.6 .244
4 I/0 11 • 1 7.4 1 1. 3 .224
5 I/0 for open 7.6 6.6 7. 1 22.3 . 14 7
6 I/O for open 8.5 6.4 8.7 25.9 .172
7 I/O for open 7.6 5.8 1. 1 20.0 • 148
8 I/O for open 9.4 1.1 9.2 29.8 .187
9 CPU bound 1.9 2.9 .079

Total 87.6 61. 8 79.3 98.0 L669

109

Table 15-C

Multilevel Queue Scheduler
Script H

Job TyQe ~CPU ~Page ~Disk ~Open Progress

1 I/0 17.8 11. 6 17.9 .357
2 I/O 6.2 4.4 6.0 . 122
3 I/O 11. 9 7.9 11. 5 .234
4 I/0 1 1. 9 7.2 12.2 .241
5 I/O for open 5.2 4.7 5.2 16.4 • 103
6 I/0 for open 9.9 9.6 9.6 35.8 .194
7 I/0 for. open 5.2 4.7 4.9 17.2 . 101
8 I/O for open 9.4 8.8 9.3 28.3 • 186
9 CPU bound 10.0 2.9 .100

Total 87.3 61. 8 76.6 97.7 1. 638

Table 15-D

Multilevel Queue Scheduler
Script H

Job TyQe %CPU %Page %Disk %Open Progress

1 I/O 10.9 7.8 11. 0 .219
2 I/.O 13.9 . 9. 6 13.5 .274
3 I/O 11. 9 8.5 12.6 .245
4 I/O 9.9 6.9 9.5 • 194
5 I/0 for open 7.8 6.6 7.4 23.3 • 153
6 I/0 for open 8.5 6.3 8.7 26.2 .172
7 I/O for open 7.7 6.6 8.4 25.0 • 161
8 I/O for open 8.5 6.5 8.6 . 24. 0 • 1 7 1
9 CPU bound 8.8 3. 1 .088

Total 88.0 61. 8 79.6 98.5 1. 677

110

value-based scheduler does not simply allocate use of the

file opening resource on a first-come-first-served basis as

the multilevel queue does. However, the improvement in the

progress rate for the interactive jobs was greater than the

decrease in the progress rate of the other two jobs.

Apparently, better use was made of the resource for file

opening. Presumably, this is due to the global resource

allocation strategy of giving preference to low value jobs

which are holding critical resources.

A comparison of the times for running the experimental

and multilevel queue simulations indicates the amount of

scheduling overhead for the two strategies is roughly equal.

Since the simulators were coded in APL, the execution times

are not representative of the execution times for routines

implemented in assembly language or high system

implementation languages. The interpretive APL

implementation results in slower execution; the relative

efficiency of many APL primitives is quite different from

other language implementations. Furthermore, the data

structures and code for the simulated schedulers are not

designed for efficiency but to facilitate experimentation

and to utilize the specialized APL primitives. Due to these

factors, the run time for either simulation is thirty to

forty times the length of time simulated. However,

comparison of execution times between the two is probably

not biased significantly.

11 1

Table 16-A

Value-Based Scheduler
Value Function III

Script I

Job Type %CPU %Page %Disk %Open Progress

1 Interactive 9.2 6.4 8.4 16.7 .523
open

2 Interactive 8.6 7.7 7.6. 14.2 .428
open

3 Open 5.8 9.0 6. 1 25. 1 . 119
4 Open 6.0 8.6 5.6 20.7 • 116
5 Interactive 34.0 14.5 .384

CPU bound
6 Interactive 32. 8 15.5 .374

CPU bound

Total 96.4 61. 8 27.7 76.7 1. 944

Table 16-B

Value-Based Scheduler
Value Function III

Script I

Job Type %CPU %Page %Disk %Open Progress

1 In·terac ti ve 9.4 . 7. 1 8.8 17.4 .453
open

2 Interactive 8.3 7.0 7.9 14.5 .464
open

3 Open 5.9 8.7 5.9 24.0 • 1 1 8
4 Open 5.8 8.4 5.6 22. 1 . 115
5 Interactive 31. 4 15.0 .381

CPU bound
6 Interactive 35. 3 15.6 .416

CPU bound

Total 96.2 61. 8 28.2 78.0 1. 947

112

Table 16-C

Value-Based Scheduler
Value Function III

Script I

Job Type %CPU %Page %Disk %Open Progress

1 Interactive 8.3 6. 1 7.4 17. 1 .441
open

2 Interactive 10.0 7.5 8.9 20.8 .478
open

3 Open 5.2 1.2 4.7 17.2 .099
4 Open 5.2 9.0 4.8 18.4 .100
5 Interactive 37.0 15.8 .432

CPU bound
6 Interactive 31. 5 16. 1 .368

CPU bound

Total 91. 1 61. 8 25.7 73.5 1. 918

Table 16-D

Value-Based Scheduler
Value Function III

Script I

Job Type %CPU %Page %Disk ·%open Progress

1 Interactive 7.5 5.3 6.8 1 3. 1 .434
open

2 Interactive 10. 4 8.0 9.2 18.3 .490
open

3 Open 5.2 7.4 5.0 15.0 • 102
4 Open 5.8 10.6 6.3 23.6 • 121
5 Interactive 33. 1 15.9 .383

CPU bound
6 Interactive 33. 1 14.5 .389

CPU bound

Total 95. 1 61. 8 21.2 70. 1 1. 919

11 3

Table 17-A

Multilevel Queue Scheduler
Script I

Job Type ~CPU ~Page ~Disk ~Open Progress

1 Interactive 5.8 10.9 5.0 20.7 . 185
open

2 Interactive 5.7 10.9 5.2 15.4 . 170
open

3 Open 7.7 7.8 1.0 30.2 . 14 7
4 Open 6.8 8.7 7. 1 33.4 • 138
5 Interactive 33.9 12.3 .394

CPU bound
6 In terac ti ve 32. 9 11. 4 .369

CPU bound

Total 92.7 61. 8 24.3 99.6 1. 403

Table 17-B

Multilevel Queue Scheduler
Script I

Job Type %CPU %Page %Disk %Open Progress

1 Interactive 5.8 13.3 5.2 30. 1 .149
open

2 In'teracti ve 5.5 ·10. 6 5.3 17. 1 .182
open

3 Open 6.8 6.7 6.8 29.2 . 137
4 Open 5.2 5.7 4.7 23.3 .099
5 Interactive 36.0 13.0 .416

CPU bound
6 Interactive 33.0 12.5 .379

CPU bound

Total 92.2 61. 8 22.0 99.6 1.362

114

Table 17-C

Multilevel Queue Scheduler
Script I

Job Type %CPU %Page %Disk %Open Progress

1 Interactive 6. 1 15. 1 5.3 30.8 • 140
open

2 Interactive 5.5 12.3 4.8 24.9 • 149
open

3 Open 6.8 5.2 6.5 22.2 • 133
4 Open 5.2 5.9 4.8 21. 7 .100
5 Interactive 37.0 11. 1 .435

CPU bound
6 Interactive 31. 5 12. 1 .360

CPU bound

Total 92.2 61. 8 21.4 99.7 1. 317

Table 17-D

Multilevel Queue Scheduler
Script I

Job Type %CPU %Page %Disk %Open Progress

1 Interactive 5.7 13.6 5. 1 19.8 • 148
op.en

2 Interactive 5.4 14.0 5.2 29.6 .133
open

3 Open 5.8 4.7 6. 1 20. 1 • 119
4 Open 6.0 6.9 6. 1 29.6 • 121
5 Interactive 35.3 11. 4 .421

CPU bound
6 Interactive 34.4 11. 4 .392

CPU bound

Total 92.7 61. 8 22.5 99. 1 1. 334

115

Random Scheduler

Another evaluation of the value-based scheduler can be

made by comparing it with a hypothetical scheduler that

makes random allocation decisions. A number of algorithms

qualify as making random decisions.

algorithm which only allocates

This comparison uses an

resources when they are

requested and always allocates a resource if it has been

requested. However, the priori ties of the processes are

selected randomly every time a resource allocation decision

is made. This is not completely random since it attempts to

keep all resources in use. Instead of taking previous

resource usage and type of job into account, it decides

among conflicting requests randomly.

The experimental value-based scheduler resolves these

conflicts by considering requests for allocations in an

order determined from the value functions for the processes.

Modifying the value-based scheduler given in Appendix III by

changing steps VBS3 through VBS6 to select randomly an order

for considering the processes produced the random scheduler.

The results of simulations using the same scripts as

the comparisons between the value-based and multilevel queue

scheduler are given in Tables 18, 19, and 20. These results

differ from both value-based and multilevel queue in several

ways. Al though the total CPU utilization is similar, the

distribution among the same type of jobs is much less even.

The rates of progress for jobs are lower with the random

116

scheduler. Also, it has no bias toward interactive jobs.

Summary of Comparisons

The experimental value-based scheduler performance and

multilevel queue scheduler performance are quite similar

over the range of performance goals which could be tested.

Both were superior to the random scheduler. The value-based

scheduler allows flexible specification of many other

response targets besides those implicit in the multilevel

queue scheduler.

117

Table 18-A

Random Scheduler
Script G

Job Type %CPU %Page %Disk Progress

1 Interactive 3.3 5.5 .074
2 Interactive 2.5 6. 1 .049
3 Interactive 3. 1 5.7 .060
4 Interactive 3.3 5.5 .106
5 CPU bound 34.4 17.0 .344
6 I/0 . 5 3.2 .5 .010
7 I/0 6.9 8.5 7. 1 . 140
8 I/O 5.2 7.3 5.2 . 104
9 I/O 6.6 6.6 6.6 • 132

Total 65.9 66.5 19.4 1. 019

Table 18-B

Random Scheduler
Script G

Job Type %CPU %Page %Disk Progress

1 Interactive 3.3 6. 1 .090
2. Interactive 3.3 4.3 .086
3 Interactive 3.3 6.4 .081
4 Interactive 3.3 4.2 .068
5 CPU bound 15.4 9.5 .154
6 I/O 14.0 14.4 14.0 .280
7 I/O .5 4.2 .7 .012
8 I/O 2.6 5.6 2.8 .054
9 I/O 13.8 14. 1 13.9 .277

Total 59. 6 68.9 31. 3 1. 102

118

Table 18-C

Random Scheduler
Script G

Job TyQe ~CPU ~Page ~Disk Progress

1 Interactive 2.5 3. 1 .048
2 Interactive 3.3 4.9 .063
3 Interactive 1. 7 2.4 .028
4 Interactive 2.5 6. 1 .051
5 CPU bound 64.3 27.9 .643
6 I/0 1. 4 3.7 1. 6 .030
7 I/O . 4 3.3 . 5 .010
8 I/O .6 2.3 .8 .014
9 I/O 7.7 8.9 8.0 .156

Total 84.3 62.6 10.9 1. 043

Table 18-D

Random Scheduler
Script G

Job Type %CPU %Page %Disk Progress

1 Interactive 3.3 4.4 .076
2 Interactive 3.3 6.5 .092
3 Interactive 2.5 4.0 .053
4 Interactive 3. 3 . 4.9 .069
5 CPU bound 34.0 17. 1 .340
6 I/O 3.7 5.9 3.6 .073
7 I/O 12.5 12.7 12.6 .251
8 I/O 2.3 5. 1 2.4 .647
9 I/0 4.0 6.2 4.3 .083

Total 69.0 66.9 22. 9 1. 084

119

Table 19-A

Random Scheduler
Script.H

Job Type %CPU %Page %Disk %Open Progres:s

1 I/O 11. 0 9.7 10.9 .219
2 I/O 11. 2 9.4 1 1. 7 .229
3 I/O 9.3 8.7 9. 1 .184
4 IIO 10.8 9.4 10.6 .214
5 IIO for open 3.4 3.6 3.5 34.3 .070
6 I/O for open .1 .6 • 4 1. 3 • 011
7 I/0 for open 6.8 6.0 7. 1 56.3 . 140
8 IIO for open 1. 8 1. 3 1. 5 4.7 .034
9 CPU bound 32.0 13. 3 .320

Total 87.2 62.0 54.9 96.1 1. 421

Table 19-B

Random Scheduler
Script H

Job Type ~CPU ~Page ~Disk ~Open Progress

1 I/O 10.3 9.6 11. 1 .214
2 IIO 1 1. 0 10.2 11. 4 .224
3 IIO 10. 1 8.5 10.2 .203
4 IIO 10.2 8.2 10.4 .206
5 IIO for open 1. 8 2.0 i.·6 11. 9 .035
6 I/O for open 1. 0 1. 5 1. 0 4.3 .020
1 IIO for open 3.5 3.9 3.2 11. 6 .067
8 I/O for open 5.0 4.9 4.9 44.8 .099
9 CPU bound 34. 1 13.2 .341

Total 87 .. 0 62. 1 53. 8 92.6 1. 409

120

Table 19-C

Random Scheduler
Script H

Job Type %CPU %Page %Disk %Open Progress

1 I/O 10.0 8.8 9.8 .198
2 I/O 10. 8 9. 1 1 0. 1 .210
3 I/O 13. 0 10. 9 13.2 .262
4 I/O 8.8 8.3 8.8 .176
5 I/0 for open 1. 0 .1 .8 1. 8 .018
6 I/O for open 2.1 2.1 2.8 30.0 .055
7 I/O for open 1. 0 1. 6 .8 18.2 .018
8 I/0 for open 5.2 4.5 5. 1 43.4 .103
9 CPU bound 36.7 14.4 .367

Total 89.3 61. 1 51.5 93.5 1. 407

Table 19-D

Random Scheduler
Script H

Job Type %CPU %Page %Disk %Open Progress

1 I/O 9.7 8.6 9.7 • 194
2 IIO 10. 7 9.2 10. 6 .213
3 I/O 11. 9 9.9 11. 1 .230
4 I/O 1 1. 3 9. 1 1 1. 4 .226
5 I/O for open 1.1 5.8 7.8 42.8 • 155
6 I/0 for open 2.1 2.9 2.1 34.8 .053
7 I/O for open 1. 0 1. 5 1. 0 7.5 .020
8 I/O for open 1. 0 1. 2 • 9 1.1 .019
9 CPU bound 33.9 13.8 .339

Total 89. 8 61. 9 55.3 92.9 1. 449

121

Table 20-A

Random Scheduler
Script I

Job TyQe ~CPU ~Page ~Disk ~OQen Progress

1 Interactive 5.6 8.9 5.2 18.6 .178
open

2 Interactive 4.0 1.1 3.4 18.2 .097
open

3 Open 10. 1 8.3 9.9 37. 1 .199
4 Open 4.3 4.3 4.0 18.3 .083
5 Interactive 33. 4 16.0 .383

CPU bound
6 Interactive 33. 2 16.5 .381

CPU bound

Total 90.6 61.. 8 22.4 92.2 1. 321

Table 20-B

Random Scheduler
Script I

Job TyQe %CPU %Page %Disk %Open Progress

1 Interactive 2.9 5.6 2.1 14.7 .067
open

2 Interactive 2.5 6.0 2.2 16.6 .057
open

3 Open 10. 2 1L1 10.4 48. 1 .206
4 Open 1. 8 2.3 1.7 9.4 .035
5 Interactive 38. 5 18.2 .453

CPU bound.
6 Interactive 39. 3 18.4 .464

CPU bound

Total 95o2 61. 6 17.0 88.8 1. 282

122

Table 2o~c

Random Scheduler
Script I

Job T~Qe icPU ~Page ~Disk ~OQen Progress

1 Interactive 3.8 8.6 3.3 18.J • 118
open

2 Interactive 4.0 8.6 3.6 13.5 .126
open

3 Open 1.6 1.3 1.1 33.4 • 153
4 Open 6.8 5.6 6.2 21.2 • 130
5 Interactive 30.8 15.7 .373

CPU bound
6 Interactive 37.3 16.0 .435

CPU bound

Total 90.4 61. 8 20.8 92.4 1. 335

Table 20-D

Random Scheduler
Script I

Job TyQe %CPU %Page %Disk %0Qen Progress

1 Interactive 3.8 5.7 3.6 16.8 .081
open

2 Interactive 3.8 5.9 3.3 20. 1 .011
open

3 Open 5.2 6.0 5.2 25.4 • 104
4 Open 6.8 7. 1 6. -a 29.4 • 137
5 Interactive 39.3 18.6 .468

CPU bound
6 Interactive 35.8 17.8 .423

CPU bound

Total 94.8 61. 2 19.0 91. 7 1. 290

123

Chapter 6

CONCLUSIONS

This investigation has resulted in a number of findings

which are of interest for both the design of opera ting

systems and

scheduling.

further

This

research on resource allocation

chapter summarizes these ideas

describes some areas for additional research.

Problem Formulation

and

and

A model of resource allocation in multiprogrammed

computer· systems forms the basis of this approach. This

model relates the progress of processes to the resources

required by the processes. A conventional, general notion

of a process has been adopt·ed. However·, the concepts of·

resources and progress of processes take on specific

meanings in the model.

The important aspect of a process which is recognized

in the model is the sequential nature of the requests and

releases of resources. When a request carinot be fulfilled,

the process must be suspended and the process can not make

progress. A resource is a facility or privilege for which

there are constraints on its availability for assignment to

124

a process. The principal constraint which has been examined

is a restriction on the number of processes which may

simultaneously be assigned the resource.

As a consequence of these definitions, a more general

approach can be taken to the problem of allocating resources

or scheduling the processes. For example, this viewpoint

shows that, while usually considered separately, the same

type of constraints apply to scheduling the use of the CPU

and main memory resources as other resources.

Traditionally, comple~ely different algorithms have been

used for different resources. As a result, the slight

amount of coordination between the algorithms has been

through specialized techniques. Formulating the resource

allocation in a uni form framework allows a single, general

coord~nation mechanism.

Value-Based Scheduling

The value-based scheduling strategy provides . an

improved means for utilizing the system manager" s goals in
. I

the decisions made by the resource allocation and scheduling

programs. This is achieved by allowing the system manager

to tell the system how to calculate the relation between the

time taken to complete the job and the value of completing

the job in that time for every job submitted. The scheduler

then attempts to maximize the total value of all jobs

submitted for processing.

125

Several aspects of the " manager s control over the

system operation are different from other systems. First,

the manager has much more flexibility in specifying the

rates of service jobs will receive. In most systems the

rates of service that jobs with different characteristics

will receive were built into the system at the time the

scheduler was designed. Only slight adjustments such as a

change of the quantum time can be made easily. Schedulers

based on external priorities, such as strict priority class

schedulers, cannot take other factors into account. In

almost all other schedulers there is little flexibility in

adjusting the response set.

Tailoring a value-based scheduler to the requirements

of a specific installation is easier since the response to

be given jobs is specified directly. Unlike other types of

schedulers where the responses are a consequence of juggling

internal scheduler parameters, there is a direct

relationship between scheduler performance and the values

·specified by the system manager: the value-based scheduler
,,

seeks to attain responses specified by the system manager

directly.

As a consequence of this direct control and the 1

flexibility in specifying . rates of services for jobs, the

value-based scheduler can facilitate interfacing the

internal computer soheduling policies with extra-computer

pricing and ad minis tr at iv e cont r o 1 po 1 i c i es • Various

126

schemes of flexible pricing,

guaranteed response, etc. can be

dynamic partitioning,

accommodated. With the

right choice of value functions, the response characteristic

of a variety of conventional schedulers can be approximated.

Significant or slight changes can be made easily to the

value functions. This is one of the most.important virtues

of the value-based schedulerc It is natural to implement

the value functions in tables or easily changed routines

separate from the rest of the scheduler. Where the need to

recode a substantial part of the scheduler of a conventional

system would make changes impractical, the changes could be

made easily in a value-based system.

The use of value functions provides a convenient means

of combining process priorities with efficient use of system

resources. The more complete information about the value of

execution of each process allows tradeoffs to be made

between efficient use of the system resources . and getting

spec.ific timely required work done. Since the value of

process execution is al ways based on both the elapsed time

and total service received· instead of short-term rate of

service, individual decisions made to gain efficient use of

a resource will only delay a process temporarily. Any delay

will cause it to have higher value and get preferential

treatment in later decisions. This preferential treatment

will continue until it has received a sufficient average

rate of service.

127

Global, Centralized Scheduling

Global scheduling allows decisions about allocation of

one resource to be made with the additional information

about requirements in the system for other resources. Thus,

a coordinated allocation of all resources is possible. IBM

has developed, independently, a scheduler in which most

resource allocation is centralized to allow the use of some

rather specialized techniques to coordinate the use of the

resources. In contrast, the global allocation used with the

value-based scheduler is based on a uniform treatment of the

resources with dynamic assignment of values to the resources

to effect coordination.

In the context of the value-based scheduler,

centralized allocation is beneficial for several reasons.

The technique of dynamically attaching values to resource

facilitates consistent decisions on all resources. Separate

al.location mechanisms would result in conflicting,

inefficient allocations.

Value-based scheduling can be implemented most easily

with centralized resource allocation since information about

the allocations of· system resources are needed to calculate.

the expected values. Centralized control of the resources

facilitates access to this information.

The use of the same or similar code for allocating

several resources is less complex than the use of completely

different strategies. Where special characteristics of the

' 128

resource are not important in its allocation, the same code

can be shared.

Summary of Findings

There are several important results of this study.

1. The model of the resource allocation and scheduling

problem forms the basis of this investigation. The

uniform treatment of all resources in the ·model

aids in understanding and designing resource

allocation strategies. Each process is modeled as

a series of resource requests and releases. The

operating system must either grant the requests or

suspend the process. The performance of the

scheduler is the set of response times produced

when scheduling a job mix.

2. The value-based resource allocation strategy

overcomes de.ficiencies of existing schedulers.

Explicit specification of the value of jobs as a

function of the time taken to complete them allows
. ;

the use of utility theory evaluations in making

resource allocation decisions and provides the

system manager better control over operation of the

system. Dynamic determinations of the opportunity

costs of resource assignments can be used

advantageously in making resource allocation

decisions.

129

3. Simulation experiments showed that value·-based

allocation is feasible. When its parameters were

set to approximate the value functions of a modern

multilevel queue scheduler, the value-based

scheduler performed as well as the multilevel queue

scheduler.

SUGGESTIONS FOR FURTHER RESEARCH

These studies of resource allocation can be extended in

several directions. The rest of this chapter itemizes some

opportunities for additional investigation.

Production System

The· development of a complete operating system which

utilizes value-based resource allocation would allow more

complete evaluation of its performance. Although simulation

has been used to study the e~fect of various job mixes, only·

a limited number of processes could be simulated and only

for relatively short periods of time. ·Performance on'a real

job mix over an extended period of time should be measured

in a production system.

Implementation of a system would also allow

experimentation with the effect of different value functions

in accomplishing the system manager's goals. The difficulty

and payoffs of tailoring the system by specifying value

130

functions need to be assessed. An important part of this

evaluation is to determine the forms of value functions

which are useful to the system manager in specific

organizational contexts.

Expected Value Decision Analysis

Additional study into ways of estimating both the

probabilities and payoffs of outcomes from decisions made by

the resource allocator would be useful. Several possible

indicators were pointed out -in the section on decisions

under risk in Chapter 4. Experimental determination of the

reliability of these indicators or the determination of

better ones is needed.

Additional study is needed on incorporation of resource

specific allocation policies into the value· analysis

framework. Techniques for balancing efficient use of

individual resources with overall system efficiency need to

be developed.

Better means of coordinating allocations when a process

has outstanding requests for several resources would be

useful. This situation can arise if a process requests

several resources at the same time or when resources have

been preempted from the process. Practical algorithms for

assuring all the resources will become available at the same

time without unproductive holding of resources while waiting

for others to become available will result in better system

. 1 31

performance. Similarly, knowing when to preempt resources

while waiting for others to become available is also

important.

Cooperating Processes

Process coordination using P and V operations on

semaphores or equivalent synchronization primitives can be

treated in the same manner as other types of resource

allocation problems using this resource allocation model. A

P operation corresponds to a resource request which may

result in the process b1.~ing blocked. A V operation is the

release of a resource. The capacity of the resource is the

initial value of the semaphore.

The standard example of a producer process generating

data for a cons um er process i 11 us tr ates the · use o f P and V

operations to represent requests for real resources--the

buffers in the buffer. pool. Other semaphores can be used

with imaginary resources such as permission or ex cl usi ve

right to access certain data. In the context of this model,
. {

the effect on system performance of the interrelationships

between cooperating processes could be analyzed.. The amount

of unproductive resource assignment which results from

complex resource requirements needs to be assessed.

The examination of I/0 devices as sources and sinks of

data is a related area for study. For example, when a

process is considered a producer and an output device a

132

consumer the situation is similar to the two cooperating

processes in the previous example. If the output device is

slow compared to the rate the process produces. the data, the

process often is unproductively assigned a substantial

amount of resources while it is waiting for the I/O device

to catch up. A solution to this inefficiency was developed

long ago by decoupling the production and consumption of the

data through spooling. However, other inefficiencies

similar to this are potential candidates for investigation

from a resource allocation viewpoint.

Demand Paging

-The presence of

translation hardware on

page-organized

a computer

memory address

facilitates the

management of a process's address -space and allows the pages

of real memory to be used interchangeably.

In these studies, the schedulers always allocated all

of a process's requirement for memory at one time (i.e., the

process was either entirely in core or swapped out). In a

virtual memory or demand paging system the scheduler needs

to allocate only part of the requirement. If the program

references data which is not in main memory, a fault occurs

and the scheduler must swap in the required data to an

unassigned page of memory or replace the data of an assigned

page.

From a resource allocation viewpoint, the scheduler can

133

dynamically vary the amount of memory assigned and

consequently vary requirements for use of the swapping

channel to bring in needed pages. If all the requested

memory has been allocated, all the data can be kept in

memory and faults will not occur. With a small allocation

of memory, page faults will be very frequent and the

frequent use of the swapping channel will be required.

Also, the page faults result in delaying the process's

progress and unproductive assignment of the other resources

it holds while the page swap is being performed. The

resource allocation model could be used to evaluate an

optimum allocation of real memory and prefetch strategy on

the basis of the dynamic value to the system of memory

pages, the swapping channel, other resources held, and the

value of. the process's progress.

134

BIBLIOGRAPHY

Adiri, Igal. "A Dynamic Time-Sharing Priority Queue. 11

Journal of the Association for· Computing Machinery,
Vo 1 • 1 8 , No . 4 , Oc to b er 1 9 7 1 , pp • 6 0 3 - 6 1 0 .

Balas, E. 11 Project Scheduling with Resource Constraints. u

Applications of Mathematical Programming Techniques.
Ed. E. M. L. Beale.. London: English University Press,
1970.

Bernstein, A. J. and J.C. Sharp. "A Policy-Driven Scheduler
for a Time-Sharing System. 11 Communications of the
Association for Computing Machinery, Vol. 14, No. 2,
February 1971, pp. 74-78.

Chamberlin, D. D., H. P. Schlaeppi, and I. Wladawsky.
11 Experimental Study of Deadline Sc.heduling for
Interactive Systems." IBM Journal of Research and
Development, Vol. 17, No. 3, May 1973, pp. 263-269.

Chang, W. 11 Single-Server Queuing Processes in' Computing
Systems.•i IBJ1 Systems Journal, Vol. 9, NO'. 1, 1970, pp.
36-71.

Chao, S. K. and W. W. Chu. 11 A Cost-Priority Scheduling
System. 11 Proceedings of the. Second International
Conference on Computer Communication, Stockholm, August
12-14 1974, pp. 395-400.

Coffman, E. G., Jr. ••Analysis of Two Time-Sharing Alg6rithms
Designed for Limited Swapping. 11

Association for Computing Machinery,
July 1968, pp. 341-353.

Journal of the
Vol. 15, No. 3,·

Coffman, E. G., Jr., M. J. Elphick, and A. Shoshani. ''System
Deadlocks. 11 Computing Surveys, Vol. 3, No. 2, June
1971, pp. 67-78.

Coffman, E. G., Jr. and L. 'Kleinrock. "Computer Scheduling
Methods and their Countermeasures. 11 Proceedings of _t_he m Spring Joint Computer Conference, Vol. 32, pp.
11-21.

. 135

Coffman, E. G._, Jr. and L. Kleinrock. 11 Feedback Queueing
Models for Time-Shared Systems.•• Journal of the
Association for Computing Machinery, October 1968, pp.
549-576.

Cosine Committee. 11 An Undergraduate Course on Operating
System Principles. 11 Washington, D. C. : Commission on
Education, National Academy of Engineering, June 1971.

Denning, P. J. 11 Equipment Configuration in Balanced Computer
Systems • 11 .IEEE Transactions on Electronic Computers,
Vol. C-18, November 1969, pp. 1008-1012.

Denning, P. J. u Resource Allocation in Multiprocess Computer
Systems. 11 Project MAC Report MAC-TR-50 (Ph.D. Thesis).
Cambridge, Massachusetts: Massachusetts Institute of
Technology, May 1968a.

Denning, P. J. 11 Third Generation
Computing Surveys, Vol. 3, No. 4,
175-216.

Computer
December

Systems. 1'

1971, pp.

Denning, P. J. u Virtual Memory. 11 Computing Surveys, Vol. 2,
No • 2 , Se pt em be r 1 9 7 0 , pp • 1 5 3 - 1 8 9 •

Denning, P. J. 11 The Working Set Model for Program Behavior. 11

Communications of the Association for Computing
Machinery, Vol. 11, No. 5, May 1968b, pp. 323-333.

Dijkstra, E. W. 11 Co-opera ting
Programming Languages. Ed. F.
Press, 1968, pp. 43-112.

Sequential Processes. 11

Genuys. London: Academic

Elmaghraby, S. E. The Design of Production Systems. New
York: Reinhold, 1966.

·Fuller, S. H. ''Summary of t·iinimal-Total-Processing-Time Drum
and Disk Scheduling Disciplines • 11 Operating Systems
Review: Fourth Symposium on Operating 'system
Principles, Vol. 7, No. 4, October 1973, pp. 54-57.

Grochow, J. M. "A Utility Theoretic Approach to Evaluation
of a Time-Sharing System. 11 Statistical Computer
Performance Evaluation. Ed. W. Freiberger. New York:
Academic Press, 1972, .pp. 25-53.

Hellerman, H. "Some Principles of Time-Sharing Scheduler
Strategies. 11 IBM Systems Journal, Vol. 8, No. 2, 1969.

136

Ho 1 t , R • C • 11 Some De ad 1 o ck Properties of Computer Systems • 11

Computing Surveys, Vol. 4, No. 3, September 1972, pp.
179-196.

IBM Corporation.
Poughkeepsie,
1973a.

11 Introduction to OS/VS2 Release 2. 11

New York: IBM Corpora ti on, February

IBM Corporation. uos;vs 2 Planning Guide for Release 2. 11

Poughkeepsie, New York: IBM Corporation, March 1973b.

Kleinrock, L. 11 A Continuum of Time-Sharing Scheduling
Algorithms. Ii Proceedings of the 151.IQ Spring Joint
Computer Conference, Vol. 36, pp. 453-458.

Kleinrock, L. and R. R. Muntz. "Processor Sharing Queueing
Models of Mixed Scheduling Disciplines ·for Time Shared
Systems." Journal of the Association for: Computing
Machinery, Vol. 19, No. 3, July 1972, pp. 464-482.

Luce, R. D. and H. Raif fa. Games and Decisions. New York:
Wiley, 1965.

Mahl, R. 11 An Analytical Approach to Computer Systems
Scheduling. 11 Computer Science· Report UTECH-CSC-70-100
(Ph.D Thesis). Salt Lake, Utah: University of Utah,
June 1970.

Marshall, B.. S. "Dynamic Calculation of Dispatching
Priorities under OS/360 MVT. 11 Datamation, Vol. 15, No.
8, August 1969, pp. 93-97.

Manrak, . S. A. "Simulation Analysis of a Pay-for-Priority
Scheme for th~ IBM 360/75." · Techni.cal Report
UIUCDCS-R-73-605, Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana,
Illinois, August 1973.

McKinney, J. M. 11 A Survey of Analytical Time~Sharing
Models. 11 Computing Surveys, Vol: 1, No. 2, June 1969.

McNaughton, Robert. ''Scheduling with Deadline.s
Functions • 11 Management Science, Vol. 6, No.
1959, pp. 1-12.

and Loss
1, October

Michel, J. A. and E. G. Coffman, Jr. ''Synthesis of a
Feedback Queuing Discipline for Computer Operation . 11

Journal of the Association for Computing Machinery,
Vol. 21, No. 2, April 1974, pp. 329-339.

137

Morris, W. T. The Analysis
Homewood, Illinois: Irwin,

of
1964.

Management Dec i's ions.

Nicholson, T. A. J. Optimization in Industrv. Volume .I.Ls.
Industrial·
1971.

Applications. Chicago: Aldine-Atherdon,

Pass, E. M. and J. Gwynn. 11 An Adaptive Microscheduler for a
Multi programmed Computer System." froceedings of the
ACM 1..91.3. Annual Conference, pp. 327-331.

Raiffa, H. Decision Analysis. Reading, Massachusetts:
Addi~ion-Wesley, 1968.

Ryder, K. D. 11 A Heuristicc Approach to Task Dispatching."
IBM Systems Journal, Vol. 9, No. 3, 1970.

Scherr, A. L. "The Design of IBM OS/VS2 Release 2. 11

Proceedings of the 1..91.3.
1

National Computer Conference
and Exposition, Vol. 42, June 1973a, pp. 387-394.

Scherr, A. L. "Functional Structure of IBM Storage Operating
Systems Part II: OS/VS2-2 Concepts and Philosophies.''
IBM Systems Journal, Vol. 12, No. 4, 1973b, pp.
382-400.

Sevcik, K. C. 11 Scheduling for Minimum Total Loss Using
Service Time Distributions." Journal of the Association
for· Computing Machinery, Vol. 21, No. 1, January 1974,
pp. 66-75. ..

Teorey, T. J. 11 Properties of Disk Scheduling Policies in
Multiprogrammed Computer Systems. 11 Proceedings of the
1.91.£ Fall Joint Computer Conference, Vol. 41, pp. 1-11.

Watson, R. W. Timesharing System Design Concepts. New York:
McGraw-Hill, 1970.

Xerox Corporation. Xerox APL Language and Operations
Reference Manual. El Segundo, California: Xerox
Corporation, September 1972.

Xerox Corporation. Xerox Universal Time-Sharing System
System Management Reference Manual. El Segundo,
California: Xerox Corporation, January 1972.

Xerox Corporation. Xerox Universal Time-Sharin~ System
Time-Sharing Reference Mamw.l. El Segundo, California:
Xerox Corporation, February 1971.

138

Appendix I

SIMULATION SCRIPTS

The scripts in this appendi)_{ were used as system

loads in the simulation studies.

resources were available.

Resource

CPU

main memory pages

disk

permission to
open/close files

swapping channel

Capacity

1

78

1

1

The following

Preemptable

always

if copied to
swapping device

no

no

no

A range of time indicates use of a random draw from a

uniform distribution between the_ specified limits.

SCRIPT A

8 class-1 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L1: Run 30,000 milliseconds.
-Go to L 1.

. 139

SCRIPT B

4 class-1 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L1: Run 30,000 milliseconds.
Go to L 1.

4 class-1 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L2: Run 100 milliseconds.
Release 1 CPU.
Request 1 disk.
Run 50 to 150 milliseconds.
Release 1 disk.
Request 1 CPU.
Go to L2.

SCRIPT C

4 class-1 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L1: Run 30,000 milliseconds.
Go to L 1.

4 class~1 pro~esses.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L2: Run 100 milliseconds.
Release 1 CPU.
Request 1 disk.
Run 50 to 150 milliseconds.
Release 1 disk.
Request 1 CPU.
Go to L2.

2 class-1 processes.
Request 20 pages.
Request 1 CPU .

. 140

Run 1 millisecond.
L3: Run 100 milliseconds.

Release 1 CPU.
Think-type 1 to 8000 milliseconds.
Re.quest 1 CPU;
Go to L3.

SCRIPT D

4 class-1 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L1: Run 30,000 milliseconds.
Go to L 1.

4 class-2 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L2: Run 30,000 milliseconds.
Go to L2.

SCRIPT E

2 class-1 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L1: Run 30,000 milliseconds.
Go to L 1.

2 class-1 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L2: Run 100 milliseconds.
Release 1 CPU.
Request 1 disk.
Run 50 to 150 milliseconds.
Release 1 disk.
Request 1 CPU.
Go to L2.

. 141

2 class-2 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L3: Run 30,000 milliseconds.
Go to L3.

2 class-2 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L4: Run 100 milliseconds.
Release 1 CPU.
Request 1 disk.
Run 50 to 150 milliseconds.
Release 1 disk.
Request 1 CPU.
Go to L4.

SCRIPT F

4 class-1 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L1: Run 30,000 milliseconds.

L2:

Go to L 1.

4 class-1 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.
Run 100 millis~conds.
Release 1 CPU.
Run 1 to 80,000 milliseconds.
Request 1 CPU.
Go to L2.

SCRIPT G

4 class-1 processes.
Request 30 pages.
Request 1 CPU.
Run 1 millisecond.

142

. ;

L1: Release 1 CPU.
Think-type 5001 to 10000 milliseconds.
Request 1 CPU.
Run 500 milliseconds.
Go to L 1.

1 class-1 process.
Request 40 pages.
Request 1 CPU.

L2: Run 30,000 milliseconds.
Go to L2.

4 class-1 processes.
Request 40 pages.
Request" 1 CPU.
Run 1 millisecond.

L3: Release 1 CPU.

L 1:

Request 1 disk.
Run 50 to 150 milliseconds.
Release 1 disk.
Request 1 CPU.
Run 100 milliseconds.
Go to L3.

SCRIPT H

4 class-1 processes.
Request 20 pages.
Request .1 CPU.
Run 1 millisecond.
Run 100 milliseconds.
Release 1 CPU.
Request 1 disk.
Run 50 to 150 milliseconds.
Release 1 disk.
Request 1 CPU.
Go to L 1.

4 class-1 processes.
Request 20 pages.·
Request 1 CPU.
Run 1 millisecond.

L2: Run 100 milliseconds.
Request 1 open.
Release 1 CPU.
Request 1 disk.

143

. ,,

Run 50 to 150 milliseconds.
Release 1 disk.
Request 1 CPU.
Run 100 milliseconds.
Release 1 CPU.
Request 1 disk.
Run 50 to 150 milliseconds.
Release 1 disk. ·
Request 1 CPU.
Run 100 milliseconds.
Release 1 CPU.
Request 1 disk.
Run 50 to 150 milliseconds.
Release 1 disk.
Request 1 CPU.
Run 100 milliseconds.
Release 1 CPU.
Request 1 disk.
Run 50 to 150 milliseconds.
Release 1 disk.
Request 1 CPU.
Run 100 milliseconds.
Release 1 CPU.
Request 1 disk.
Run 50 to 150 milliseconds.
Release 1 disk.
Release 1 open.
Request 1 CPU.
Go to L2.

1 class-1 process.
Request 20 pages.
Request 1 CPU.

L3: Run 30,000 milldseconds.
Go to L3.

SCRIPT I

2 class-1 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L1: Run 100 milliseconds.
Request 1 open.
Run 1 millisecond .

. Release 1 CPU.
Request 1 disk.
Run 50 to 100 milliseconds.

144

Release 1 disk.
Request 1 CPU.
Run 100 milliseconds.
Release 1 CPU.
Re.quest 1 disk.
Run 50 to 100 milliseconds.
Release 1 disk.
Request 1 CPU.
Run 100 milliseconds.
Release 1 CPU.
Request 1 disk.
Run 50 to 100 milliseconds.
Release 1 disk.
Request 1 CPU.
Run 100 milliseconds.
Release 1 CPU.
Request 1 disk.
Run 50 to 100 milliseconds.
Release 1 disk.
Request 1 CPU.
Run 100 milliseconds.
Release 1 CPU.
Request 1 disk.
Run 50 to 100 milliseconds.
Release 1 disk.
Release 1 open.
Request 1 CPU.
Run 50 milliseconds.
Release 1 CPU.
Think-type 1 to 8000 milliseconds.
Request 1 CPU.
Go to L 1.

2 class-1 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L2: Run 100 milliseconds.
Request 1 open.
Release 1 CPU.
Request 1 disk.
Run 50 to 100 milliseconds.·
Release 1 disk.
Request 1 CPU.
Run 100 milliseconds.
Release 1 CPU~
Request 1 disk.

_Run 50 to 100 milliseconds.
Release 1 disk.
Request 1 CPU.
Run 100 milliseconds.

. 145

Release 1 CPU.
Request 1 disk.
Run 50 to 100 milliseconds.
Release 1 disk.
Request 1 CPU.
Run 100 milliseconds.
Release 1 CPU.
Request 1 disk.
Run 50 to 100 milliseconds.
Release 1 disk.
Request 1 CPU.
Run 100 milliseconds.
Release 1 CPUo
Request 1 disk.
Run 50 to 100 milliseconds.
Release 1 disk.
Release 1 open.
Request 1 CPU.
Go to L2.

2 class-1 processes.
Request 20 pages.
Request 1 CPU.
Run 1 millisecond.

L3: Run 1 to 1400 milliseconds.
Release 1 CPU.
Think-type 300 milliseconds.
Request 1 CPU.
Go to L3.

146

. I

Appendix II

SCRIPT INTERPRETER

Variable Definitions

ASSIGNED[R,P] = Number of resource units assigned.
Indexed by resource and process.

CAPACITY[R] = Total number of resource units in system.
Indexed by resource.

CODE[I,J] = Script code. First
instruction. Second
instruction fields:

index
index

selects
selects

1 = type resource to be released (if any)
before process step

2 = quantity of resource to be released
3 = type resource to be requested (if

any) before process step
4 = quantity of resource to be requested
5 = index (add~~ss) of next instruction
6 = minimum time for this process step in

milliseconds
1 = range of time for process step for

uniform distribution·
8 = activi·ty type fo-r ·process step:·

inactive (thinking and typing) .or
active.

ENTERED[P] = Real
STATES.

time when process
Indexed by process.

last 6hanged

FUTUREWANT[R,P] = Number
be needed to
specified.

of resource uni ts which will
proceed after WANT has been

IA[P] = Pointer to script instruction for current
process step. Indexed by process.

INTERVAL[P] = Milliseconds remaining in current process
- step. Indexed by process.

M = Number of resources.

147

N = Number of processes.

NEWWANT [R, P] = Number of
process step.
process.

resources requested for next
Indexed by resource and

PREEMPTABLE[R,P] = Logical values specifying whether or
not current resource assignment is
preemptable.

QUANTUMREMAINING[P] = Milliseconds of time remaining in
current quantum allotment. Indexed by
process.

REALTIME = Milliseconds of real time simulated.

RELEASED[R,P] = Number of resource units released at
end of process step. Indexed by resource and
process.

RESERVE[R] = Number of currently available resource
units. Indexed by resource.

STATE[P] = Current state (queue) for process. Indexed
by process. Indicates one of . the following
multilevel queue states:

current-user,
request-received,
special-compute,
I/0-complete,
compute-interrupted,
compute,
I/0-in-progress,
waiting-to-open/close,
waiting-for-request, and
wait~ng-for-request-outswapped.

SWAPTIME = Milliseconds until swap complete.

TIMESLICE = Milliseconds until timeslice expires.

TOTALINACTIVETIME[P] = Milliseconds . process has been
inactive since simulation began.

TOTALUSE[R, P] = Milliseconds process has been assigned
resources since simulation began. Indexed by
resource and process.

TOTAL VIRT-UALT IME [P] = Milli seconds
active since simulation
process.

. 148

process has been
began. Indexed by

USE[R, P] = Milliseconds process has been assigned
resources since it was inactive. Indexed by
resource and process.

VIRTUALTIME [P] = Milliseconds process has been active
since it was inactive. Indexed· by process.

WANT[R,P] = Number of resource units needed to proceed.
Indexed by resource and process.

149

SCRIPT INTERPRETER & HOUSEKEEPING ALGORITHM

Simulation Starts Here

I 1. Set currently available resources (RESERVE) to
total available resources (CAPACITY).

I2. Point instruction address (IA) to beginning of
appropriate script for each process. Set STATE
to special-compute state for all processes.

I3. Zero USE, TOTAL USE, REALTIME, VIRTUALTIME,
TOTALVIRTUALTIME, WANT, FUTUREWANT, ENTERED.

I4. Set PREEMPTABLE to indicate resources which are
always preemptable are preemptable and all others
are non-preemptable.

I5. Go to I 12.

I6. Advance REALTIME by minlmum of
a) SWAPTIME if swap in progress,
b) TIMESLICE, or
c) INTERVAL for active processes.

I7. Reduce INTERVAL for active processes and SWAPTIME
by time increment.

I8. Update USE and TOTALUSE by adding ASSIGNED
multiplied by time increment.

I9. Advance VIRTUALTIME and TOTALVIRTUALTIME . of
active processes by time interval.

I 10. Advance TOTALINACTIVETIME o·r inactive processes
by time interval.

I11. If REALTIME greater than simulation period, print
TOTALUSE, TOTALVIRTUALTIME, and
TOTALINACTIVETIME.

112. Zero RELEASED and NEWWANT.

I 1 3 • Do step I 1 4 f o r each a c ti v e process P • Then , go
to I19.

114. While the time
(INTERVAL[P]) is

to the end of the next step
non-zero, do steps I 15 through

150

I18.

I 15. If a resource is to be released, place quantity
into RELEASED array.

I16. If a resource is to be requested, place quantity
into NEWWANT array.

I17. Set time for step (fixed time or random draw from
uniform distribution) into INTERVAL[P].

I18. Set IA to address of next script instruction.

I17. Subtract RELEASED from ASSIGNED.

I18. Add total released resources to RESERVE.

119. Add NEWWANT array to WANT array.

I20. Go to scheduler being .tested.

. 151

Appendix III

VALUE-BASED SCHEDULER

(See Appendix II for script interpreter
and variable definitions)

Enter from Interpreter

VBS 1.

VBS2.

VBS3.

VBS4.

VBS5.

VBS6.

VBS7.

If swapping completed, then
a) Set memory pa~es preemptable,
b) Deassign swapping channel,
c) Set swapping channel available, and
d) Add FUTUREWANT for process to WANT.

Set currently available resources
currently available ~~sources and
preemptable resources.

to sum of
assigned,

Calculate value ' of running each process from
rate of change in value with respect to service
for class of service, current service received,
and elapsed time. (See functions in text.)

Calculate.opportunity value of each resource as
maximum valuE~ of processes which have ·been
suspended and need the resource.

Calculate the adjusted value of running each
process as the ·maximum of the value of tunning
and the maximum value of non-preemptable
resources held.

Do steps VBS7 through VBS9 for each process, P,
in order of descending adjusted value.

If assigned resources are preemptable and not
available, deallocate them and increase want;
Otherwise, decrease quantity available. If
memory pages were deallocated, move want for
other preemptable resources in to future want
and set swapping channel wanted.

152

VBS8. If all resources wanted are available; then
assign them, decrease available, zero want, and
do not do step VBS9.

VBS9. If pages of memory are assigned and not
preemptable, set the swapout candidate to the
current process number.

VBS10. If the swap channel is not free, go to VBS11.
If there is a running job which holds only
memory and preemptable resources, there is a
job waiting for memory, and the adjusted value
of the suspended job exceeds the adjusted value
of the running job by the value which would be
lost by suspending t.he running job to copy it
out, suspend the running job and make it the
swapout candidate. If there is a swapout
candidate, initiate swapout: assign swap
channel and set swap channel unavailable.

VBS11. Set pages for process using CPU and I/O devices
non-preemptable.

VBS12. If a new swap was started, set swaptime to
transfer time for number of memory pages
allocated (.83 milliseconds per page)+ uniform
random rotational latency (0 to 34
milliseconds).

VBS13. Set TIMESLICE to 12oa·milliseconds.

VBS14. Go to interpreter step I6.

153

Appendix IV

MULTILEVEL QUEUE SCHEDULER

(See Appendix II for script interpreter
and variable definitions)

Enter from Interpreter

MQS 1.

MQS2.

MQS3.

MQS4@

Assign process releasing disk (if any) to I/O
complete state. .Assign process completing
inactive period (if any) to request-received
state.

Assign current user of CPU (if any) to new
state:

a) Requested disk to I/0-in-progress
state

b) Became inactive to wait-for-request
state

c) Re quested open I c 1 o s e and un av a i 1ab1 e
to waiting-to-open/close state

d) If neither a, b, or c and less than
40 milliseconds remain in quantum
allotment to compute state

e) If neither a, b, c, or d and quantum
has expired or both at least 20
milliseconds of quantum allotment has
been used and there are other
processes in request-received or
special-compute state to
compute-interrupted state.

If the open/close resource is available, assign
it to the first process if any in the
open/close state. Place the process in the
special compute state.

If the swap out of a process waiting for a
r~quest (inactive) was completed, place the
process in the wait-for-request-out swapped
state.

. 154

MQS5.

MQS6.

MQS7.

new quantum allotment (1200 Assign a
milliseconds)
milliseconds
allotment,
state, and
state.

to processes with less than 4 0
remaining in their old quantum

processes in the request-received
processes in the special-compute

If the swap channel is not free, go to MQS12.

If a swap has been completed, free the swap
channel, zero the WANT for memory pages swapped
in, set the pages swapped in ASSIGNED, zero
f,,~SIGI'JED fer the p2gcs .S\!D.ppr:d out, and adjust
the RESERVE for the difference between the
number of pages swapped out and swapped in.

M QS 8 • Se 1 e ct a candidate to swap in ·fr om the states
(in order)

request-received,
special-compute,·
I/0-complete,
compute-interrupted, and
compute.

If more than one process is in the same state,
choose the process which has been in the state
longest. If none, go to MQS12.

MQS9. If required pages are free, go to MQS 11.

MQS10. Look for a single process which can be swapped
out to provide enough free pages. This process
must have received at least 40 milliseconds CPU
use and not be opening or closing a file. The
process i.s selected by searching in order the
states

waiting-for-request and
waiting-to-open/close

and choosing the process which entered the
state most recently. If no single process can
be found, multiple processes are selected by
searching in order the states

waiting-for-request,
waiting-to-open/close,
compute,
compute-int~rrupted,
I/0-complete,
special-compute, and
request-received

starting with the process which entered the
state most recently. If the swap in candidate
is encountered before enough pages can be found
go to MQS12.

155

MQS 11. Initiate swap out (if any) and swap in.
Calculate SWAPTIME from transfer time for
number of pages to swap (. 83 milliseconds per
page) + uniform random latency (0 to 34
milliseconds). Set pages WANTED for pages
being swapped out.

MQS12. If the disk is available, assign it to the
proccess which has been in the I/0-in-progress
state longest. Reduce RESERVE. Reduce WANT.

MQS13. Assign the CPU by searching the following
states in order and choosing the process which
has been in the state longest.

current-user
request-received
special-compute
I/0-complete
compute-interrupted
compute

If a process is found, set ASSIGNED, reduce
RESERVE, reduce WANT, and place the process in
the current user state. Set TIMESLICE to
remaining portion of quantum for this process

MQS14. Go to interpreter step I6.

156

.j

	20150205114429295
	20150205114656059
	20150205114915289
	20150205115139301
	20150205115345066

