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ABSTRACT OF THE DISSERTATION 

Value-Based Allocation of Computing System Resources 

by 

Donald Clinton Loomis 

Doctor of Philosophy in Information and Computer Science 

University of California, Irvine, 1974 

Professor Julian Feldman, Chairman 

Allocation of all resources to maximize the total value 

of the completion times for all jobs in a multi programmed 

computing system is investigated in this study. In 

·t.raditional multiprogrammed operating systems, scheduling 

use of the central processor and main memory has been 

treated separately from allocation of other system 

resources. This study investigates the benefits of 

allocating all resources in a single framework using 

explicitly specified payoff functions. 

A model of resource allocation and scheduling forms the 

basis of the investigation. To aid understanding and 

designing resource allocation strategies, the model provides 

for uniform treatment of all resources. Each process is 

modeled as a series of resource requests and releases. The 

process requests resources. The operating system must 

either grant the requests or suspend the process. The 
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performance of the scheduler is represented by the set of 

response times produced when scheduling a job mix. 

A new resource allocation strategy which overcomes 

deficiencies of existing schedulers is presented. Explicit 

specification of the value of jobs as a function of the time 

taken to complete them allows the use of utility theory 

evaluations in making resource allocation decisions and 

provides the system manager better control over the 

operation of the system. 

Dynamic determination of the opportunity costs of 

resource assignments are used advantageously in making 

resource allocation decisions. Simulation experiments 

showed that value-based allocation is feasible. Because 

v.alue-based scheduling gives the system manager more 

flexibility in specifying system goals, it is more adaptable 

to specific requirements than traditional schedulers. When 

its parameters were set to approximate the value.function·of 

a modern multilevel queue scheduler, the value-based 

scheduler performed as well as the multi level queue 

scheduler. 

viii 
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INTRODUCTION 

Value-based allocation of a computing system~s 

resources among competing tasks can provide the system 

manager more control over job completion times, facilitate 

scheduler design and allow coordinated use of all system 

resources. Any object which may be explicitly or implicitly 

assigned to a process, thereby making it unavailable to 

another process, is a resource. Examples of resources are 

central processors, main memory, I/O channels, I/O devices, 

non-reentrant code sections, and data records which may not 

be accessed while being updated. 

Most operating systems and operating system models seek 

to attain high performance of single resources or pairs of 

resources individually without giving much consideration to 

the effect of these policies on the overall system. For 

example, studies of policies for scheduling disk access 

requests have considered minimizing average waiting time in· 

the queue and minimizing disk arm movement but generally 

ignore possible benefits to the whole system of giving 

priority to particular processes which need to be completed 

quickly. Where priorities are considered in the scheduling 

of resources, they do not adequately take into account 
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external requirements to complete particular tasks at 

required times as well as requirements to provide effective 

and balanced use of the system~s resources. 

The resource allocation strategy developed in this 

research is a step in overcoming these difficulties. In the 

model, all resources are treated in a uniform framework. 

Because the traditionally separate functions of scheduling 

processes to use the CPU and allocation of other resources 

are considered together, the terms scheduling and resource 

allocation are used synonymously in this dissertation. 

Organization of the Dissertation 

Chapter 1 summarizes the formulation of the problem, 

proposed solution, and experimental investigations. Chapter 

2 introduces the advantages of multiprogramming. It then 

surveys related resource allocation and scheduling research 

and development. The difficulties and shortcomings of 

tradi~ional approaches to resource allocation and scheduling 

are itemized at the end of Chapter 2. The next chapter 

formulates the resource allocation problem. The first part 

of Chapter 3 relates the model to traditional process 

structure, defines the resource concept, and develops the 

performance measure. In the final part of Chapter 3 a 

notation for the model is introduced. This notation allows 

both a precise specification of the problem and concise 

statements of algorithms to solve the problem. 
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The value-based scheduling philosophy is developed in 

Chapter 4 as a solution to the ·shortcomings of traditional 

schedulers. 

scheduling 

schedulers. 

The result of this development is not a single 

algorithm but a framework for constructing 

To demonstrate the feasibility of value-based 

schedulers, an algorithm was developed and implemented in a 

simulation model. The results of experiments with this 

resource allocator and performance comparisons with a 

multilevel queue scheduler are described in Chapter 5. 

Chapter 6 presents the conclusions drawn from these studies 

and suggestions for further research in the area. 

3 
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Chapter 1 

AN APPROACH TO RESOURCE ALLOCATION AND SCHEDULING 

Three contributions of primary significance have 

resulted from this investigation: 

1. a formulation of the resource allocation and 

scheduling problem, 

2. application of utility theory and decision analysis 

tools for solving this problem, and 

3. a demonstration of the usefulness and flexibility 

of applying these tools. 

The importance of each of the contributions is enhanced by 

the others. However, the problem formulation is significant 

separately since other techniques might be applied to its· 

solution (e.g., dynamic programming or other optimization 

techniques). Casting the resource allocation and scheduling 

problem into a form amenable to the application of utility 

theory and decision analysis is the most important 

contribution of this study. The algorithm which 

demonstrates the applicability of these tools is of interest 

itself. It is a scheduler which has efficiency comparable 

to conventional schedulers but gives the system manager much 

more flexibility in adjusting the scheduler parameters to 

indicate the relative values of jobs. 



The following sections informally discuss each 

contribution as a preview to the more detailed descriptions 

in the body of the dissertation. 

FORMULATION OF THE PROBLEM 

This formulation of the resource allocation and 

scheduling problems brings together a number of existing 

concepts. It also utilizes: 

1. the notion of response set as the important 

criterion for evaluating resource allocation and 

scheduling algorithms and 

2. a uniform framework for considering all resources. 

A scheduler has requests as inputs and request completion 

times as outputs. The requests arise from a job mix. The 

set of completion times is a response set. The-response set 

for a given job mix depends on the structure of the 

scheduler, the values of the scheduler parameters, and the 

quantities of resources available. 

Job 
Mix 

Scheduler 
Parameters 

Resources 

Scheduler 
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Process Structure and Resource Requirements 

Each process requires use of varying combinations of 

the system~s resources as it progresses toward completion of 

the request. Any object which must be explicitly or 

implicitly assigned to a process, thereby · making it 

unavailable to another process, is a resource. Resources 

include central processors, main memory, I/O channels, I/0 

.devices, non-reentrant code sections, and data records which 

cannot be accessed while being updated. 

As a consequence of this uniform treatment of all 

resources, the problems of scheduling use of the CPU and 

allocating other resources are combined. The scheduler must 

schedule (allocate) the use of all resources among the jobs. 

Scheduler Effectiveness 

Evaluation of the response sets for the range of job 

mixes to be encountered and resources available is the 

appropriate measure of the quality of a scheduler. Although 

other measures can be examined (and may be helpful in 

restructuring or parameterizing a· scheduler) they are 

unimportant as goals themselves. 

The evaluation of a response set is subjective. For 

interactive systems, better response times are generally 

expected on requests associated with terminal users than on 

other requests. Often it is satisfactory for response times 

to be proportional to the size (quantity of resources and 
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time needed) of a job. Frequently, however, it is desirable 

to provide much faster response times to small jobs. Except 

when the response times of one response set completely 

dominate the response times of another, either might be 

considered better in some circumstances. 

Most conventional schedulers 

priority, and multilevel queue with 

designed to provide a satisfactory 

(round robin, strict 

feedback) have been 

response set under 

specific operating conditions. However, they are not easily 

adapted to produce different response sets. 

Policy-driven schedulers provide more flexibility by 

allowing response time targets to be specified. However, 

the policies can over commit the system resources when the 

system load is heavier than anticipated. The desirability 

of giving better than target service is not considered by 

policy-driven schedulers. Also, op port uni ties to complete 

jobs in slightly more than the time target which could 

result in substantial increased system efficiency are not 

evaluated. Policy-driven schedulers are not applicable to 

all system resources and do not coordinate allocation of 

resources. 

APPLICATION OF UTILITY THEORY AND DECISION ANALYSIS 

Development of the following principles has allowed the 

application of utility theory and decision analysis to the 

resource allocation and scheduling problem. 

7 



1. Utility functions can represent subjective 

evaluations of response sets. 

2. Scheduling algorithms can use these functions as 

goals for the production of maximum value response 

sets. 

3. The utility functions can be parameters of the 

schedulers to allow convenient adaptation of a 

scheduler to individual utility functions. 

4. Decision analysis can be used to produce efficient 

schedulers which use these functions as goals. 

The use of utility theory and decision analysis to 

design resource allocators has significant advantages over 

traditional mechanisms: 

1. The schedulers give system managers more control 

over the response sets through parameterization of 

the utility functions. 

2. Expected value analysis of scheduler decisions 

facilitates the design of rational schedulers. 

3. The approach is applicable to all system resources 

and permits coordinated allocation of the 

resources. 

The 

resource 

scheduling 

feature which 

allocation and 

algorithms is 

distinguishes 

scheduling 

·the explicit 

'this 

from 

use 

approach to 

traditional 

of a value 

function as a scheduling goal. Providing this function as a 

parameter to the scheduler allows it to be changed easily. 
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This provides the system manager a convenient means to 

specify a personal utility function and thereby obtain a 

scheduler designed to maximize the utility of the system. 

The Utility of Response Sets 

The response times for each job determine the overall 

value or utility of a response set. Generally, the value of 

the jobs are independent and the total utility of the system 

is the sum of the utilities of the individual jobs. The 

dependence of the utility of requests on the time taken to 

complete them can be provided as a parameter to the 

scheduler as a function of the form: 

where 

Value of job at completion = V(class,size,time) 

class is the class of service, 

size is a function of the resources requir~d and 

time required, and 

time is the elapsed time to complete the request. 

The class parameter allows requests t? be valued differently 

on the basis of characteristics recognizable prior to 

execution (e.g., user name and estimated execution time). 

The size of the job can be an arbitrary non-decreasing 

function of the resources required and time they are 

·required. Generally, 

size of the request, 

the function is increasing with the 

since it is usually worth more to 
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complete a larger job rather than a smaller job of the same 

class in the same time. However, the function is usually 

decreasing with time since it is almost al ways better to 

finish jobs of the same class and size in shorter rather 

than longer elapsed time. 

A value can be assigned to each partially completed job 

by evaluating the portion of the job already processed as a 

completed request. Since the final size of a request is not 

known until after the job has been completed, the scheduler 

assumes the next increment of service will complete the job. 

Thus, to maximize the value of jobs at completion, the 

scheduler should allocate resources to maximize the value of 

the partially completed jobs. 

Scheduler Decisions 

The scheduler must decide how to allocate system 

resources among requesting jobs. Resource· requests may be 

satisfied by allocating unassigned resources or by 

preempting resources which have been assigned to jobs. 

These decisions require an evaluation of the best assignment 

of the resources. 

Jobs which have been assigned all of the resources they 

require can proceed; jobs which do not have all the 

resources they require cannot proceed and must be suspended. 

The value of an executing job will increase as it receives 

service . On the other hand , the v a 1 u e o f a suspended job 

10 



will decrease as the elapsed time increases. The rate of 

these changes can be calculated by examining the partial 

derivatives of the value function with respect to job size 

and time. In addition, executing jobs will free the 

resources they hold sooner. The value of freeing these 

resources can be calculated by determining the value of 

alternative use (i.e., the value of executing the processes 

which need them and have been suspended). 

Both the changes in the value of the partially 

completed jobs and the value of freeing resources must be 

considered to evaluate the best resource allocation. A 

simple allocation rule results from assuming that a process 

which is assigned the resources it requires will increase in 

value at the calculated rate for a significant period of 

time and assuming that, when a process releases resources it 

holds, there will still be the same alternative uses for the 

resources. Under these circumstances, the processes to be 

assigned resources should be selected on the basis of the 

current rate of value increase which will result from their 

execution and the current rate of value increase which would 

result from the best al terna ti ve use of the resources they'. 

already hold. 

A more complete evaluation could be made by considering 

the probability that the jobs may soon request the use of 

other resources and possibly be suspended. Determining the 

value of freeing resources based on current alternative uses 

1 1 



will be inaccurate if the demand has changed by the time the 

resources are released. Using models of program behavior 

and models for projected aggregate system requirements, 

probabilities can be used to compute expected values. Thus 

decisions can be made to maximize the mathematical 

expectation of the system value. 

Summary of Value-Based Resource Allocation 

are 

The central features of value-based resource allocation 

1. the parameterization of the scheduler with a 

specification of the values of jobs as a function 

of class of service, job size, and elapsed time to 

complete and 

2. a scheduling strategy which attempts to maximize 

the total value of the jobs processed by the 

system. 

This approach to resource allocation and scheduling 

permits a very flexible specification of the response set by 

the system manager. Scheduler design is facilitated by a 

rational framework for making resource allocation decisions. 

The technique is applicable to all resources and effects 

coordinated allocation of the resources. The features which 

differentiate value-based resource allocation from 

traditional scheduling techniques are listed in Table 1. 

12 



Table 1 

Comparison of Scheduling Techniaues 

Queue 
Order of executions determined by position in queue. 
Processes are entered into queue on basis of service 

class, quantum expiration, and/or other events. 
Response characteristics are built-in. 
Only slight tuning is possible by varying quantum time. 

Policy-Driven 
Response targets are specified by system manager. 
Scheduler evaluates difference between service received 

and target to determine process most in need of 
service. 

Policies can over commit system. 
No provision is provided for better or worse than 

target service. 
Interactions between resources are not considered. 

Value-Based 
System manager specifies values of jobs as a function 

of job size and completion time. 
Scheduler schedules jobs to maximize value of system. 
Allows more flexible response set goals. 
Scheduler design is facilitated by a rational decision 

framework. 
Coordinates allocation of all system resources. 

13 



EXPERIMENTAL DEMONSTRATION 

To 

resource 

investigate 

allocation 

the 

and 

feasibility of this approach to 

scheduling, experiments were 

conducted using simulation. Allocation of a CPU, pages of 

main memory, a disk, permission to open and close files, and 

a swapping channel was considered. Allocations were 

evaluated according to the basic rule discussed previously 

every time a resource was requested, a resource was freed, 

or after 1. 2 milliseconds passed without a reevaluation. 

The possible changes in the values of the jobs and the 

values of freeing resources were considered in the following 

steps: 

1. Determine current value of running each job from 

the value functions supplied by the system manager. 

2. Adjust the value of running each process by 

considering the alternative use of the 

non-preemptable resources held. 

3. Allocate free and preemptable resources beginning 

with highest value process. 

4. If swapping channel is free, assign it to make 

copies of programs in main memory starting with 

lowest value process so that main memory pages will 

be preemptable. 

The performance of the scheduler was observed under a 

variety of operating conditions by varying the scripts of 

the jobs to be scheduled. The job mixes were chosen to 

14 



explore both extreme and average mixes. These ranged from 

completely CPU bound to primarily I/O bound. They also 

differed in their requests for memory and permission to open 

and close files. Consequently, the conclusions are valid 

over a range of operating conditions. 

Three sets of value function parameters were chosen to 

demonstrate the ability of the scheduler to simulate 

implicit value functions typical of conventional schedulers. 

A value function designed to give all jobs the same average 

rate of CPU use and thus response time proportional to the 

CPU requirements did result in all jobs of a mix receiving 

equal CPU usage. By specifying a slightly different value 

function for part of the jobs in a mix, the jobs in one 

class could be caused to receive service at twice the rate 

of the jobs in the other class. The third parameterization 

gave a very high value to the completion of requests 

requiring less than 1. 2 seconds CPU time in a short time. 

As expected, this gave a significant bias to small 

interactive terminal requests. This value function is a 

good approximation to the value function implicit in the 

design of a conventional multilevel queue scheduler which·· 

was also simulated to allow comparison. The experimental 

value-based scheduler is much more flexible, but was able to 

produce response sets nearly identical to the multilevel 

queue scheduler. 

15 



Chapter 2 

MULTIPROGRAMMED COMPUTER SYSTEMS 

The first electronic computers executed a single 

program at a time. In performing their primary function of 

calculating ballistic tables, they performed each of the 

steps of the calculation sequentially until the entire 

calculation ~ras complete. The entire computer was available 

to and controlled by this single program. 

MULTIPROGRAMMING 

For. a number of reasons multiprogramming was 

introduced. In a multi programming system, each job is not 

necessarily completed before others are started: at any time 

many jobs are partially completed. The facilities of the 

computer must be shared or multiplexed (switched) among 

these jobs. The benefits of multiprogramming can be grouped 

into four categories: 

1. completion of a given set of jobs in less time (or 

more jobs in the same amount of time with a less 

than proportional increase in hardware), 

2. multiple interactive and real-time process control 

activities, 

16 



3. control over the order in which jobs complete 

(independent of the order in which they began), and 

4. efficient use of hardware facilities selected to 

accommodate a single large job by several small 

jobs. 

I/O Overlap 

The possibilities of using multiprogramming to complete 

several tasks in less time than would be used to do them 

sequentially can be illustrated by considering the use of a 

system's central processor and single input-output 

facilities. Spooling was introduced to take advantage of 

hardware designs which allow input-output operations to 

proceed without use of the central processor except briefly 

after each operation completes to initiate the next. 

By having a portion of another program perform these 

functions, 

data from 

it is possible to have a computing system move 

one input-output device to another while 

performing a 

the central 

input-output 

complete in 

completely independent computation. Because 

processor requirements for initiating the 

are minimal, the other program will still 

approximately the same amount of time as it 

would have if no input-output operations had been going on 

at the same time. Similarly if the input-output program had 

been run without other computation, the central processing 

unit would have been idle most of the time but it would have 

17 



taken the same amount of time. By multi programming these 

two jobs, they both can be completed in the amount of time 

required for one. To have jobs with such completely 

complementary resource requirements is ideal but not 

unusual. There are jobs in the real world whose progress is 

almost entirely limited by the computing system's 

input-output facilities. Other jobs which do essentially no 

input-output are completely CPU bound. 

Other tasks alternate their needs for input-output and 

central processor facilities. While one is performing I /0 

the other can use the central ·processor. If the jobs get to 

a point where they both need to use the I/O facility or both 

must use the central processor, one must wait. Unless they 

have requirements which are complimentary and periodic in 

time, they won't both be able to complete in the time 

required for one. Furthermore, some overhead is encountered 

every time a possible reassignment of the processor must be 

evaluated. However, usually they will be able to complete 

in le~s time than would be ~equired to run sequentially. 
I 

Timesharing 

Terminal oriented timesharing systems utilize 

multiprogramming to allow users to interact with their jobs 

as they progress toward solutions to their problems. Each 

user input, computation, and computer response constitutes a 

partial completion of that user's job. However, the user 

18 



context must be retained by the system between interactions. 

With multi programming, a number of users can retain their 

working context in a large system. Each user may have 

access to all or part of the facilities of the system on any 

request. Those system facilities not in use by the user 

(because he is thinking and has no request pending or 

because the facilities are in excess of his need while his 

request is being serviced) are available to other users. 

When there are sporadic and complementary requirements 

for the use of system facilities, more work can be performed 

per unit time with multi programming than would be possible 

if each job (user's session) were completed before beginning 

another. 

Urgent Requests 

In non-timesharing systems, multiprogramming allows 

high priority jobs to be introduced into the· system and 

completed quickly even though others were already in 

progress. Those which were there first can be susp-ended 

completely or continue but with a lower priority in the use 

of the system's facilities than the high prioritr job. When 

the high priority job completes, those remaining will again 

be able to proceed at their previous rate. In contrast, in 

a system without multi programming, either 1the high priority 

job could not begin until the current (possibly very long) 

job completed or the computer operator would have to 

19 



terminate the current job and restart it later. The 

multiprogramming alternative allows preference to be given 

to jobs without the need to end other jobs. Conversely, 

even when the arrival of high priority jobs is expected, the 

computer need not be left idle but low priority jobs may be 

initiated without fear that the effort will be wasted. 

Efficient Alternative Use 

The minimum equipment configuration for a computer 

system must be large enough to accommodate the requirements 

of the jobs to be run which have the greatest requirements. 

However, frequently smaller jobs only require a fraction of 

the resources needed by the largest jobs. Multiprogramming 

permits partitioning and multiplexing of the resources to 

allow efficient execution of several small jobs instead of a 

single large job. 

TRADITIONAL APPROACHES TO PROCESS SCHEDULING 

The problems of allocating the resources and 

particularly scheduling use of the central processor in 

multiprogrammed systems have been studied and reported 

extensively in the literature. Since most of the 

developments are summarized in review articles, the 

following is limited to a survey of the techniques used, an 

indication of the appropriate review articles, and more 
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detailed descriptions of work with direct relevance to the 

model and techniques developed in this dissertation. 

Central Processor Schedulers 

The development of increasingly sophisticated 

schedulers are reflected in publications by implementors and 

proposers of multiprogrammed operating systems. These 

schedulers utilize the basic techniques of 

first-come-first-served, shortest job first, round robins, 

and multilevel queuing with numerous variations in the 

handling of preemptions, external priorities, and special 

circumstances. Kleinrock (1968) has summarized the 

important principles of these schedulers together with the 

major drawbacks and limitations. 

Analytic Models 

Analytic models based on probability theory, queuing 

theory, and Markov chains have 

scheduling problems. McKinney 

been used to investigate 

(1969) and Chang (1970) 

review the use of these techniques. 

Memory Allocation 

The use of secondary storage to hold programs while 

they were not executing with the CPU led to the need for 

swapping and main memory allocation strategies. As a 
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result, an efficient system depended on coordinated 

allocation of the central processor and swapping channel. 

The requirements are discussed in Denning ( 1968a, 1968b, 

1969, and 1970). 

Other Resources 

Allocation of almost all other resources except I/0 

devices has been with first-come-first-served algorithms. 

In some cases I/O channels have been allocated on a priority 

basis. Scheduling accesses to disks and drums has received 

considerable attention. Teorey ( 1972) discusses disk 

scheduling; Fuller (1973) discusses drum scheduling. 

Deadlocks 

Avoidance and detection of deadlocks are surveyed by 

Coffman, El phick, and Shoshani ( 1971) and later by Holt 

( 1972). Deadlocks result when two or more processes hold 

non-preemptable resources needed by the other(s) and neither 

can proceed to release the resources needed by the other. 

All resource allocation algorithms must satisfy the· 

constraints resulting from the possibility of deadlocking. 

Two aspects of deadlock studies are significant to this 

work. First, deadlock research is the only situation where 

resources have been treated in a uniform framework: since, 

the central· processor and main memory are normally 
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preemptable they are not considered in deadlock evaluations. 

Second, the notation which is frequently used to express 

deadlock problems and solutions lent itself to adaptation 

and extension for formalizing value-based resource 

allocation. 

POLICY-DRIVEN SCHEDULERS 

An 

provided 

analytic approach to policy-driven scheduling is 

by Kleinrock (1970). Two operating system 

implementations schedule on the basis of policy functions. 

The Research and Development Center Operating System ( R & 

DC) for the GE 600 described by Bernstein and Sharp ( 1971) 

motivated development of value-based scheduling. The IBM 

370 OS/VS2 Release 2 system described by Scherr ( 1973a and 

1973b) and IBM (1973a and 1973b) was developed independently 

and concurrently with value-based resource allocation. 

B & ~C Operating System 

The policy-driven scheduler des~ribed by Bernstein and 

Sharp concentrates on allocation of the central processor 

and main memory. There are two aspects to the 

implementation: service policies and scheduling rules. 

The policies are based on a resource count function 

which defines the service received by a process as a 

weighted sum of its accumulated resource usage. Resource 
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usage is measured as the time of use (e.g., milliseconds CPU 

usage) or number of times used (e.g., number disk accesses), 

depending on the resource. The weighting vector is chosen 

arbitrarily to control the emphasis on use of each resource. 

Since the resource count increases as the process receives 

service, it is a non-decreasing function of the elapsed time 

from receipt of the request for service. 

For each class of service to be provided (e.g., 

interactive terminal, batch, or spooling) a policy function 

is parameterized which specifies the minimum acceptable 

resource count as a function of the elapsed time from 

receipt of the request for service. Typically, an 

interactive policy specifies an initial rapidly increasing 

part of the function to ensure small requests get prompt 

service and lesser service for greater elapsed time. Batch 

job policies would be linear indicating no preference to 

short jobs. 

The scheduling rules attempt to keep the resource count 

for each process greater than the policy specification for 

the class of job. When a job has received less service than 

specified so that the resource count becomes less than the. 

policy, the process has a critical need for service. 

The processor is always allocated to the process in 

main memory which has been . critical longest, or, if there 

are no critical processes, the process which will become 

critic al soonest. The processor is reassigned if a time 
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quantum expires or the process voluntarily relinquishes it. 

The swapping rules are designed to minimize the 

ove1•head of unnecessary swapping. A process which becomes 

critical while not in main memory is swapped into memory if 

either free memory can be found or it can replace a 

noncritical process. Once in main memory a critical process 

is never swapped out until it receives enough service to 

become noncritical. A noncritical process is swapped in 

only if there is free memory or it can replace a process 

waiting for terminal input. As a consequence of these 

rules, critical processes are never swapped out; noncritical 

processes are only swapped out to make room for a critical 

process. 

IBM .31.Q OSIVS2 Release £ 

The progress of jobs under OS/VS2 Release 2 is also 

measured as a weighted sum of the resources used. CPU use, 

number of I/O operations, and .. the product of CPU use with 

memory size are considered. Classes of service are allowed. 

However, in place of parameterizable equations for 

specifying policies, the IBM system utilizes tables which 

specify a discrete service rate for each interval in the 

life of the request. The intervals may be either periods of 

elapsed time or virtual process time. The inability of 

policy-driven schedulers to adapt to changes in system load 

has been reduced by allowing separate tables to be specified 
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for different workload levels. The system dynamically 

selects a new table if the workload increases or decreases. 

The centralization of many resource allocation 

algorithms into a single routine is significant. 

Centralizing the algorithms and data for these decisions 

potentially allows global resource allocation strategies to 

be implemented. However, no global framework was adopted: 

the few situations where allocations interact utilize 

specialized techniques. The swapping : algorithm is 

influenced by I/O usages to maintain a balance of I/0 and 

CPU bound jobs. The swapping of a job is delayed when it 

holds certain resources required by another process. 

OTHER RELATED RESEARCH 

Mahl (1970) has investigated algorithms for maximizing 

a cost-weighted total of the rates of progress for the jobs 

in a system. Mahl' s algorithms are based on the premise 

that pricing should be based on marginal costs and the 

scheduler should maximize the revenue of the system. 

Value-based scheduling allows a greater range of scheduling 

goals including priorities based on pricing. 

Al though not directly related to this research, the 

work of Grochow ( 1972) may have importance in the future. 

Grochow argues that system managers should assess the 

requirements of the system users by determining the utility 

of alternative kinds and levels of computing service which 
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could be provided to them. By measuring the individual 

utility functions of users, Grochow believes the manager 

will be aided in both the problem finding and choice aspects 

of decision making. 

Value-based scheduling operates on the premise that the 

operating system should be based on the system manager" s 

utility functions, not individual user 

is the one who has responsibility 

functions, 

for the 

since he 

system. 

Furthermore, there are no techniques for combining several 

individual utility functions into a single utility function: 

the utility of' a group of people is not defined. However, 

at least one of the system manager" s goals is to increase 

the utility of individual users. If the individual user 

utility functions can be related to the system managers 

utility .function, these two areas of research will become 

relevant to each other. 
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Chapter 3 

A FORMULATION OF THE RESOURCE ALLOCATION PROBLEM 

The definitions and notation presented in this chapter 

provide a more precise framework for considering the 

resource allocation problem. 

PROCESS STRUCTURE 

The terms process, job, and task are used in different 

systems and different parts of the literature to describe 

the concept of independent activity. The definitions for 

these terms vary only slightly and will be used 

interchangeably here. In many systems, processes are 

entirely independent except for conflict over the use of 

system facilities. In other systems, they may be more 

closely related throu·gh initiation, termination, 

synchronization, and communication primitives implemented in 

the supervisor program or system hardware. In virtually· 

every system, each process may be ident'ified by a set of 

state information maintained by the supervisor program 

controlling that process. 

The following additions and restrictions on the 

standard notion of a process are useful in understanding the 
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ideas which follow. There are two ways to measure execution 

time. The difference between the current time and the time 

of the request for service is the amount of elapsed time the 

process has been in execution. 

ET is time since. activity requested 

The accumulated amount of time a process has been assigned 

the system resources it requires is the virtual time of-

execution. 

VT is time the process has been assigned 
all needed resources 

This definition differs from some other definitions of 

virtual process time based on the accumulated time the 

process used the central processor. For the global and 

t;miform treatment of resources this new definition is more 

convenient. If a single process is executing in a system, 

there can be no conflict over use of system resources and 

its virtual and elapsed times will be eq~al. In a 

multiprogramming system where there is conflict over 

resources, the virtual time will be the length of time the 

process would have run if it had been the only process in 

the system. 

If a process is unable to continue because of some 

condition other than lack of a necessary resource, the 

process is inactive. The time that a process is inactive is 

the inactive time. 

IT is time process is inactive 
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An inactive process may be waiting for a response from a 

terminal users, the passage of some amount of real time, 

etc. An active process is either running or suspended. A 

process is running if it has all the resources it currently 

requires and is therefore continuing execution. If it is 

unable to continue because it does not have the required 

resources, it is suspended. The suspended time is the 

accumulated time the process has been suspended. 

ST is time process suspended 

Since a process is either inactive, suspended, or running, 

ET = IT + ST + VT 

These definitions 

definitions of 

(Denning 1971, 

blocked, 

p. 202) to 

differ from the traditional 

ready, and running processes 

allow uniform treatment of all 

resources. In traditional systems which have been centered 

around central processor scheduling, the traditional terms 

are useful. However, in this model of resource allocation, 

a process is in execution when it is doing input-output and· 

does not require use of the· central processor. The I/O unit 

may be thought of as a special purpose processor which is 

needed for some parts of the calculation while the central. 

processor is needed for other parts. · Furthermore, the 

development of new multiprocessor computer architectures is 

resulting in a potential for programs which need or are able 

to use more than one processor at a time. 
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Resource Requirements 

In general, the resource requirements of a process vary 

over the life of the process. When the process progresses 

to a point where it needs more resources, it requests the 

desired resources, from the system supervisor. When the 

process no longer needs some resources, it releases them to 

the supervisor. When the process terminates, all the 

resources it still has are released. When a process 

requests resources it must have them to continue and must be 

suspended if they cannot be provided. There are important 

exceptions to this assumption such as when a program 

requests all of the available tape drives to do a tape sort; 

also, when a program asks for but does not expect to be 

assigned all of a large amount of main memory for use as 

input-output buffers or in a "free storage" pool. 

Furthermore, it is assumed that the process resource 

requirements are inherent in the program and input data and 

thus completely determined at the time of the request. 

Hence, they do not depend on the process's environment, 

resources available at the time of a. request, or job's rate 

of progress. They could be listed as a function of the 

process's virtual time. They do not need to' be known in 

advance by the system supervisor but must be predetermined. 

Request Size 

The size of the request is an arbitrary function based 
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on the resources required and the virtual time they have 

been used. This function may be as simple or as complex as 

required. A simple function could specify request size as 

the amount of central processor time required to complete 

the request. Another function could be calctilated by first 

taking the quantity of each resource used multiplied by the 

virtual time that quantity of resource was required and then 

taking a weighted sum of the products. The size function 

could even be non-linear with the quantiti.es of resources 

used or with time. The only restriction is that the size of 

each partially complete request must be less than the size 

of the complete request. 

SYSTEM RESOURCES 

A system resource is anything which can cause a · 

conflict preventing the simultaneous execution of two or 

more processes. The exact items which are considered 

resources vary from system to system but typically include 

hardware facilities, non-reentrant code, data records which 

may not be accessed while being updated, etc. Process 

synchronization primitives may be repres~nted with 

resources. This will be discussed later. 

Any system facility, segment of code, etc. for which 

there can be no conflict, is not a resource. For example, 

since reentrant code is sharable, it is not a resource. If 

an entire data file is assigned to a process before it 
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updates any records, the individual data records cannot be 

resources themselves. Resolving the conflicts completely at 

the file level precludes any conflict over accessing 

must be 

requesting 

particular records. To be a resource there 

possibility of a conflict between two or more 

processes. 

The resources are the only absolute constraint on the 

scheduling of processes. Any schedule of resource 

allocation is feasible if it meets the constraints: 

1. A process is always suspended when the resources it 

requires cannot be assigned to it. 

2. The schedule does not result in a deadlock or 

deadly embrace. A deadlock occurs when two (or 

more) processes are waiting for non-preemptable 

The 

(Coffman 

· resources held by the other. When this happens 

neither can proceed and release the resources 

needed by the other. 

deadlock problem 

1971, Holt 1972). 

has been studied extensively 

All the following assumes 

appropriate provisions are also taken to handle deadlocks. 

In a system with a single central processor, the 

central processor is a unique r·esource. There is only one 

unit of central processor which must be multiplexed among 

all processes. In a classical multiprocessor system there 

are several processors each of which can be assigned to a 

process . The number of ind iv id ua 11 y assign ab 1 e units o :f a 
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system resource is the capacity of the resource. In the 

case of a multiprocessing system the capacity of processors 

is the number of processors. In a system with a single 

processor the capacity of processors is one. In a paged 

memory system the page map allows the physical pages of 

memory to be treated as identical, separately assignable 

uni ts of the memory resource. The capacity of main memory 

is then the number of pages which can be assigned to the 

processes. 

Resource Classes 

If one resource may in some cases be acceptable as a 

substitute for another, they belong to a common resource 

class. A process may request a resource by class to obtain 

use of whichever is available. A resource may be a member 

of more than one class. Classes may be overlapping or one 

can be a proper subset of another. For example, consider a 

system which has two line printers with different character 

sets. Processes which need the unique capabilities of 

either printer require assignment of a specific resource. 

Processes which use only the capabilities they have in 

common can make a request for an assignment from the line 

printer class of resources. Similar situations exist with 

processors having different instruction sets, data storage 

devices, etc. When a process requests use of a resource by 

class, the system is free to assign any member of that 

34 



class. 

Conflict over use of a resource is the only obstacle 

which can prevent processes from running simultaneously. As 

long as there are no resource conflicts, any number of 

processes may be running simultaneously. When there is a 

conflict, one or more of the processes must be suspended 

while the others continue. 

If a resource has been assigned to a process it may be 

possible to suspend the process and reassign~the resource to 

another process temporarily and then return it to the 

original process without affecting that process except to 

delay its progress. If this preemption is possible the 

resource is 

preemptable. 

preemptable. 

Others are 

Some resources 

never preemptable. 

are 

Some 

always 

may be 

pr~emptable only under certain circumstances. For example, 

a central processor can almost always be taken away and 

returned later. Exclusive permission to.update a file could 

not be preempt~d without possibility of destroying the 

integrity of the file. 

SYSTEM PERFORMANCE 

Response Time 

The amount of real time which elapses between the user 

request and the response by. the computer is the response 
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RT is ET at request completion 

For an interactive user this is the (hopefully) short time 

from the entry of a command on his terminal until the 

computer types a reply and prompts for a new command. For 

batch jobs the size of requests is typically much larger and 

takes much longer to complete. Nevertheless, the response 

time is the amount of real time elapsed from the time the 

job is submitted until the results are output. A user 

sitting at a terminal or submitting a batch job need not be 

concerned with the internal scheduling policies of the 

syst_em. Only the response time is important. Whether the 

system gives a large amount of service to the process at the 

beginning of the response interval and a little at the end, 

none at the beginning and all at the end, or even increments 

throughout the period is irrelevant to the user. Generally 

the user is unaware of how the service he receives is 

distributed over time. He only knows that he requested the 

performance of a task of some approximate size and it was 

completed in a certain amount of time. He doesn .. t really 

care how it is done but wants a response in a reasonable 

amount of time. 

Response Set 

The response times of all 

constitute the response set, RS. 
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RS: {RT 1,RT2 ,RT
3

, ... ,RT
0

} 

Scheduling the execution of a set of jobs will result in a 

response set for that scheduling algorithm. The response 

set can be compared with requirements or preferences for 

completion of the jobs to evaluate the efficiency and 

applicability of the scheduling algorithm. To complete a 

request, a process will require use of the system resources 

for some virtual time. The mix of resources needed may vary 

during this time as the process requests and releases 

resources. 

RESOURCE ALLOCATION NOTATION 

To explore resource allocation and scheduling in more 

depth it is useful to have a more formal notation. The 

following notation is an extension of the notation used by a 

number of authors in dealing with the problem of deadlocks 

which can arise in resource allocation. The first part of 

this section defines the notation and gives its relation to 

the activities of resource allocation and scheduling in 

computing systems. The resource allocation problem is then 

stated using the notation. 

Processes 

Let {P1,P2,P3, ... ,Pn} designate the processes in a 

computing system. The subscript p is used to denote the 
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typical element of a set, vector, or array which is indexed 
-

by process number. There is an upper bound (possibly quite 

large) of n processes existing in the system at any point in 

time. After jobs or requests are completed, their positions 

are available for new jobs or requests. Hence, an infinite 

number of jobs or requests are allowed over time but at any 

point in time at most n may be present in the computing 

system. 

Resources 

The set {R1,R2,R3, ..• ,Rm} is the set of resource 

classes available for allocation to the processes. The 

typical element of a set, vector, or array which is indexed 

by resource class number is denoted by the subscript r. A 

resource class includes one or more identical system 

resources. In a computing system with two undifferentiated 

processing units, both are members of the resource class of 

processing units. If, however, the processors are not 

identical, they are different resources and belong to 

separate resource classes such as master processing unit and 

slave processing unit. Resources belong to the same class 

if and only if they are identical in capability. Resources 

of different capabilities may have common capabilities where 

the capabilities of one class are a superset of the other or 

where there are different capabilities in each which are not 

in common. Included in the set of resource classes are all 
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resources which could potentially be a source of conflict in 

the progress of any of the processes in the system. Any 

facility--hardware or logical--over which conflict can occur 

and suspension of a process result is a resource. The 

number of resource classes is m. 

The vector C :: ( c 1 'c 2' ••• , c r' ..• 'cm-1 'cm) is the 

capacity of the system. Each element of the vector 

specifies the number of units of the corresponding resource 

which are available for allocation to proce.sses before any 

allocation has occurred. The reserve vector 

R: (r 1 ,r2 , ••• ,r , .•• ,r 1 ,r) gives the number of units of r m- m 

the corresponding resource currently available for 

allocation to processes. As resources are allocated, the 

number of uni ts allocated are deducted from R. When they 

are released, the number of uni ts released are added to R. 

Thus the difference between C and R is the number of 

resource units currently allocated .. The units of 

measurement for resources depend on the exact nature of the 

resource and will be different for different resource 

classes. Typically, the processor resource unit would be 

the number of processor units; main memory would use number 

of pages. For other resources the count of the number of 

processes simultaneously using the resource is the 

appropriate unit. For non-reentrant code sections the 

capacity is one process. 
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Computation Steps 

Each process goes through a series of computation steps 

Each step of the sequence 

corresponds to a level of resource requirement. The 

transition from one step to another is associated with 

either a request for allocation of more resources, the 

releasing of resources, or both the releasing of some 

resources and a request for allocation of others. 

Resource Requirements 

The number of units of a resource required by a process 

is the demand for the resource by the process. The demand 

for resource r by process p at step b is dprb· The sequence 

of demands by process p for all resources and steps is 

The sequences of resources required by all processes is 

At any time t the quantity of resource r assigned to 

process p is aprt' The state of quantities of all resources 

assigned to all process is 

What resources are not assigned to process are in the 

reserve. This can be expressed: 
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The difference between the quantities of resources 

requested by a process and the quantities allocated by the 

system is the want: 

If w t > 0 for any r then process p is suspended until pr 

the requested resources are allocated. 

Requirement Intervals 

The time interval required by process p to complete 

step b is ipb· The sequence of time for all steps is 

Then 

is the time sequences for all processes. 

Together D and I specify the resource requirements of. 

the processes. C is the capacity of· the system. The 

allocation sequence for the system is the sequence of 

assignments 

Where lt is the length of time for which the assignment is 
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At' the sequence 

is the sequence of allocation lengths. 

THE RESOURCE ALLOCATION PROBLEM 

The resource allocation and scheduling algorithms of a 

computing system must determine an A and L such that 

for all t. 

The sequence of ordered pairs (d i ) over s is a prs' ps 

subsequence of the reduced sequence (aprt'lt) overt for all 

p. Any A and L which meet the above condition represent a 

feasible schedule. The resource allocation problem is then 

to find a feasible schedule which maximizes the value of the 

response set. 
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Chapter 4 

VALUE-BASED SCHEDULING 

System Goals 

Every computer has been procured by an individual or 

organization to fulfill some function. Depending on the 

situation, the statement of the application may be 

relatively specific (e.g., maintain the inventory records 

for a particular product) or be more general (e.g., perform 

research computing). Furthermore, over a period of time the 

computer's function may change. 

Recognizing the existence of a purpose and consequent 

value in fulfilling this purpose is important to place the 

problems of resource allocation in perspective. Associated 

with the purpose for the computer's existence are one or 

more goals. The value of the computer depends on how well 

the computer fvlfills the goals. While in some cases the 

computer may either fulfill the goals satisfactorily or fail 

to meet the requirements, in most circumstances various 

degrees of goal fulfillment are possible. 

Activities outside the computer as well as inside 

affect the amount of goal fulfillment. An individual, 

committee, or complex organizational structure has the 

responsibility to form and implement plans which will result 
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in the most value from the use of the computer. For 

convenience, this individual, committee or organizational 

structure will be referred to as the system manager. This 

is appropriate since the system manager is responsible for 

managing the use of the system. The system manager must 

make decisions between alternative jobs to which the 

computer resources may be applied. These decisions may be 

categorized into three separate but closely related areas. 

1. Job submission--selection of which: potential jobs 

to submit 

2. Manual selection--selection of which submitted jobs 

to enter into the computer 

3. Automatic resource allocation and scheduling-­

selection of which entered jobs to give service 

Job Submission 

Where the origin of the work to be performed is not 

under the control of the system manager, the interface 

between the system manager and users or originators of the 

work is one policy area. For example, a commercial service 

bureau does not have direct control over requests for 

computing services from its customers. At·the other extreme 

the system manager may be the user and originate all of the 

work himself. A situation between these extremes results 

when an organization designates to one department of the 

organization re~ponsibility for operating a computer and 
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providing service to one or more other departments. While 

the organization manages the computer for its own use there 

need to be policies governing the relation between the 

computer management department and user departments. 

There are two important aspects of the manager-user 

relation for resource allocation and scheduling. 

1. The user must communicate information to the 

computer manager which specifies the value of work 

relative to all other work. 

2. The computer manager must provide to the user 

information which allows the user to decide under 

what circumstances potential computer applications 

are cost-effective and should be submitted. 

Manual Selection 

The second area of resource allocation and scheduling 

is the manual selection by the system management of the work 

to be done. The degree of control exercised here can vary 

greatly. It may involve the evaluation of each job's value 

and computer resource requirements individually or be 

implicit in a first-come-first-served policy. 

Automatic Resource Allocation and Scheduling 

The third area is the automatic resource allocation and 

scheduling performed by the computer operating system. 
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After a job has been entered into the computer, barring any 

manual intervention, all decisions with respect to resource 

allocation and scheduling will be made automatically by.the 

computer system. The purpose of leading up to the internal 

computer resource allocation and scheduling algorithm in 

this way is to illustrate that these algorithms are really a 

part of the implementation of policies for the system 

managers. Hence, they ought to implement policies for the 

system manager which will maximize the value of the computer 

system. 

VALUE OF RESPONSE TIMES 

Each possible response set has a value to the system 

manager. The total value of the response set will depend on 

the values of the individual job response times. In most 

cases the values of the individual jobs will be independent 

and the total value will be the sum of the individual 

values. 

Thus: 

where: 

and 

where: 

U = the total value of the response se~ 

Vi = the value of the response time for job i 

V. = V.(RT.) 
1 1 1 
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RT.=the response time of job i. 
1 

The value function described below will allow the 

system manager to specify a policy by which the system can 

determine the response time value function for any job. 

Using these response time value functions and the procedures 

described later, the system will attempt to allocate 

resources and schedule jobs so the response set will have a 

maximum value. The value function V is defined as follows: 

V = V(class,size,time) 

where: 

class = the class of service 

size = the size of the job 

time = the elapsed runtime to complete the job 

This function gives the value of completing a job in the 

specified class which has the specified resource 

requirements in the specified time. A more detailed 

discussion of each parameter follows. 

Class of Service 

To avoid evaluating each job separately, it is 

convenient to enable the system manager ~o specify policies 

which the operating system can use to categorize jobs into 

classes of service. Based on information available prior to 

the start of execution, a job can be assigned to a class of 

service. The purpose of the class of service designation is 

to specify groups of jobs to be treated in the same way. 
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The criterion used may be decided by the system manager. It 

may include items such as 

1. the function of the job, 

2. who submitted the job, 

3. runtime estimated by user, 

4. runtime estimated by system from previous 

executions of job, 

5. maximum running time allowed by user, 

6. resource requirements, number tape. drives, amount 

core, 

7. the price to be charged, and 

8. a deadline after which the job is of no value. 

In some circumstances the system manager; s policy will not 

differentiate among jobs based on a priori knowledge and 

they would all be placed in the same class. In rare 

instances every job would be assigned to a separate class. 

In many circumstances it makes sense to categorize jobs 

into discrete classes of service. Jobs which will require 

use of a tape drive are distinct from those that will not. 

In other situations, while there are differences, discrete 

classi fica ti on may be too harsh. For example, while the 

estimated running time may be a desirable class determinant, 

ten and eleven minute jobs are not so different. The use of 

many class categories or, in the extreme, a continuous 

variable notion of class solves this problem. 

The actual resources which the job will require are 



almost never known before the job executes. Hence, ithe 

actual resource requirements cannot be a factor in 

assignment to a class of service. Only estimates and 

maximum limits are available before the job is run. The 

estimates may be supplied by the user or be derived by the 

system from previous execution of the job. The estimates 

may be very good or quite poor but are still only estimates. 

The resources required by a job are an important 

characteristic the system manager may want to use for 

differentiation among jobs. Since the resource requirements 

are not known until the job is run these cannot be used to 

classify jobs into separate classes. However, the resource 

usage can be determined as the job runs. 

Response Time 

As defined previously, response time is the elapsed 

time from submission of the request until it is completed. 

Comparison with Simple Policy Functions 
. 

Response policy functions are a special case of value 

functions. This can be seen by considering for the moment 

only one class of service, a scalar measure of ·resource 

requirements and a single level of system load. If the 
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function has only two values so that, for each job size, 

jobs completed within a specified time have a high value and 

jobs completed in longer time have a low value, then the 

value function gives the same specification as a policy 

obvious when the resource function. This becomes 

requirements are plotted against the elapsed time and choice 

of value is indicated. 

resource 

requirements 

High value 

low value 

elapsed time for completion 

The loci of transition between the high value and low 

value are the policy curve. A system attempting to fulfill 

such a policy function would attempt to complete jobs in the 

high value region if possible; oth~rwise, in the low value 

region. 

THE RESOURCE ALLOCATION AND SCHEDULING STRATEGY 

The next topic is how resource allocation and 

scheduling can be performed to maximize the value functions. 

For the purposes of resource allocation and scheduling, each 

process appears to the system as a series of resource 
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requests and releases separated by periods of execution with 

the currently assigned resources. When a process requests a 

resource, the system must either assign the resource or 

suspend the process and assign the resource at a later time. 

When a resource is released, the system must return it to 

the pool of available resources. In addition, for those 

resources which are preemptable, the system should preempt 

the use of a resource and return it later if warranted by 

the system circumstances. Each opportunity to allocate or 

preempt a resource is a decision point. 

Decisions· are classified in the management science 

literature (Luce and Raiffa 1965, Morris 1964) as either 

decisions under certainty, risk, or uncertainty according to 

the following criteria. 

1. Certainty--The outcome of each choice is known with 

certainty. 

2. Risk--Some information about the likelihood of each 

possible outcome for each choice is known. 

3. Uncertainty--No in·formation about the likelihood of 

each possible outcome is available. 

Resource allocation decisions can be made as decisions. 

under assumed certainty by ignoring the possibility that 

future resource requirements may be different than the 

current requirements. With this short horizon viewpoint, 

the system can make decisions to maximize the current 

increase in value of the system. Following a discussion of 
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decisions under assumed certainty, resource allocations will 

be evaluated as decisions under risk to consider the effects 

of changes in requirements over a longer horizon. 

DECISIONS UNDER ASSUMED CERTAINTY 

To make resource allocation decisions under certainty 

it is necessary to consider: 

1. the available alternative choices, 

2. the outcome or state of the world resulting from 

each choice, and 

3. the payoff or value of each outcome. 

Thes~ data for a decision are sometimes tabulated: 

Choice 

alternative-1 

alternative-2 

alternative-3 

Outcome 

state-1 

state-2 

state-3 

Payoff 

value-1 

value-2 

value-3 

alternative-4 state-4 ·value-4. 

Then the choice with the highest payoff is selected. The 

next step is to look in more detail at the alternative 

choic~s, outcomes,_ and payoffs. 

Alternative Choices 

Decisions must be made on the allocation of resources. 

Whenever either a process requests a resource and the 

resource is available or when a resource is released and 
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there are one or more processes suspended waiting for that 

resource, a decision must be made on the allocation of that 

resource. Assignment of the resource to each of the 

requesting processes is a separate choice alternative. 

Another alternative is to assign it into holding and thus 

keep it available for more important use later. This may be 

necessary, for example, if it is necessary to wait for 

additional units of the resource to be released in order to 

accumulate the quantity of the resource requested by a 

process. 

The other type of decision is the deci~1ion to preempt 

assignment of a resource. This is a choice to withdraw a 

previous assignment to a process or to holding and then 

reassign it. Preemption is really a special case of the 

assignment decision. In preemption the current holder of 

the resource is contending with requesters. Because there 

are usually costs associated with the the preemption, the 

cost of preemption must be considered in evaluating whether 

to coritinue the present ·assignment or to reassign the 

resource to another process. 

While allocation decisions must be made only when a· 

resource is requested or freed, there are'no specific events 

which indicate a preemption or reallocation decision is in 

order. 
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Outcomes 

The job which is assigned the resource it requested 

will make progress toward completion and possibly complete. 

Jobs which are not assigned the resource will remain 

suspended and not progress toward completion. 

When a job completes, it will release the resources it 

is using. Even if it does not complete, its progress will 

bring it closer to completion and release of the resources 

it holds. Al though the entire job may not be completed, 

completion of a step may result in the release of resources. 

Resources which are released will become available for use 

by other jobs (if needed). Jobs which are not assigned 

requested resources will be suspended and continue to hold 

resources assigned previously (unless preempted) and keep 

them unavailable for use by other processes. 

Payoffs 

Knowledge of the function 

V(service class,requ~st size,response time), 

which gives the value of a completed job, allows calculation 

of the value or a partially completed job. Let 

where 

v(service class,s,t) 

s = the size of the service received by the 

partially completed request and 

t = the ET of the partially completed request 
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be the function which gives the value of a partially 

completed job. When the size of a request is not known in 

advance of processing the request, the next increment of 

service may complete the required processing. Since it is 

trivial to provide this increment of service, the value for 

a request which is just short of completion is approximately 

the same as the value of the completed request. Since this 

is true for requests of all sizes, the value function for a 

completed request, V, can be used to give the value, v, of a 

partially complete request. 

An increase in the value of the system will result from 

the progress of the jobs assigned the resource. The rate of 

·this increase will be 

not suspended p 

There will be a decrease in the value of the system as a 

result of suspending other processors. The rate will be 

Suspended p 

'OV 
'Ot. 

'OV Since the term 'Ot appears in the payoff functions for both 

suspended and not suspended processes, these will be 

constant for all outcomes. Thus, for decision purposes only 

the 
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~ dV dS 
L.J dS dt 

not suspended p 

needs to be considered. 

When there is more demand for a resource than the 

capacity of the resource, some of the requesting processes 

must be suspended. If additional increments of the resource 

were available, the productivity of the system could be 

improved by assigning the additional uni ts of the resource 

to processes which would remain suspended otherwise. Thus 

the current opportunity value of a resource is the value of 

the best assignment of additional uni ts of the resource. 

The opportunity value can also be considered a marginal 

value. By considering the value of placing suspended 

processes into execution, the opportunity value, OV , of 
r 

each resource can be calculated: 

max 

p, w. t>O . pr 

The execution of a process which has been assigned a 

resource brings the process nearer to release of the 

resource. If a process is suspended wit~out preempting use 

of the resource, the resource is not in productive use. 

Thus, in addition to the payoff associated with the increase 

in the value of the process, there is a payoff associated 

with earlier freeing of the resource. The value of this 

earlier freeing is the marginal or opportunity value of the 

56 



resource. 

It is necessary to be cautious in summing up the rate 

of change in the value of the progress of a process and the 

marginal values of the resources it holds to determine the 

total value of put ting the process into execution. This 

opportunity cost concept suffers from the limited range of 

applicability of all measurements made at the margin. The 

opportunity values only approximate the value of freeing the 

resource. Except when there is only one unit of a resource 

(e.g., a disk or permission to access a file) the following 

circumstances can arise. If the requesting process needs 

more of the resource than will be released, it will still 

remain suspended. If a large quantity of the resource is 

released, several processes with differing rates of progress 

may be able to run. 

This definition of the opportunity value allots the 

full value of the progress for each process to every needed 

resource. If a suspended process needs more than one of the 

resources held by a procesi, attaching the potential rate of 

increase in value of the suspended process to each resource 

and then adding the opportunity values together will double­

count the value of getting the process :lnto execution. It 

might be appropriate to treat the resource valuation as a 

shared cost problem and allocate the costs among the 

required resources. The other possibility is to allocate 

the full value to each resource since lack of that resource 
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would prevent any progress. To 

resource requirements, a process 

avoid double counting 

can be valued at the 

maximum of the opportunity 

cases, understate the value 

values. This will, in many 

of placing into execution a 

process which has already been assigned needed resources. 

Resource Specific Factors 

The 

factors 

previous discussions considered the system 

which affect resource assignment decisions. 

level 

In 

addition, there are considerations unique- to specific 

resources. For example, in scheduling use of a moving head 

disk it can be advantageous to schedule the disk based on 

the disk locations to be accessed in order to minimize the 

time wa~ted in arm movement. The possible increased 

utilization of the disk must be weighted against the system 

level factors. Techniques specific to individual resources 

can be important when evaluated in the context of the system 

values. 

Summary· of.Decisions under Certainty 

To make a scheduler decision under assumed certainty it 

is necessary to consider the possible resource allocations 

and the short-term outcomes implied by each choice. In 

evaluating the payoff of each outcome it is necessary to 

consider the rate of increase in value of the processes 
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which do not need to be suspended and the value of their 

freeing earlier the resources they hold. The rate of 

increase of the value of a process can be determined from 

the rate of change with service in the value function 

supplied by the system manager for the service class, 

service received, and elapsed time. The value of freeing 

resources held can be determined from the rates of increase 

in value for the processes waiting for the resources held. 

A decision should be made from among the choices which 

maximizes the rate of increase in the value of the jobs. 

DECISIONS UNDER RISK 

-Resource allocation decisions can be evaluated more 

precisely by treating them as decisions under risk. In this 

framework the possibilities of various future events 

affecting the outcomes can be considered. The outcome of 

the allocation choice is not known with certainty, but some 

informa tion--based on past history--is available about the 

likelihood of various outcomes. The·se decisions are 

frequently represented in a table with each alternative 

choice in a row. Each possible outcome is placed in a 

column with the probability of the outcome. Each entry in 

the table is the payoff value for the choice (row) and 

outcome (column). 
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outcome-1 outcome-2 outcome-3 
probability-1 probability-2 probability-3 

choice-1 payoff( 1, l) payoff(1,2) payoff(1,3) 

choice-2 payoff ( 2, 1) payoff(2,2) payoff(2,3) 

choice-3 payoff(3,1) payoff( 3, 2) payoff ( 3 , 3) 

choice-4 payoff(4,1) payoff(4,2) payoff(4,3) 

The usual approach to making decisions under risk is 

based on maximizing the expected utility for the outcomes of 

a choice. Utility is a measure of the value of a payoff. 

The expected utility for a choice is the sum of the 

utilities of the possible outcomes weighted by their 

probabilities. When these decisions are made by selecting 

the choice with the highest expected value, in the long run 

the average utility of the outcomes of the decisions will be 

maximized. Thus if the value function specified by the 

system manager is used as the utility measurement in 

evaluating decision choices, over a long interval the 

resource allocation will maximize the value of the system to 

the m(;!.nager. 

Since similar decisions are made frequently, the goal 

is long-term system performance, and without information 

about the future on which better decis.ions can be made, 

viewing the choice in this framework is appropriate. This 

implies choosing at each decision point the alternative with 

the highest total of value potential outcomes weighted by 

the estimated probabilities of the outcomes. The complexity 

of the system is the basis for assuming randomness among the 
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outcomes consequent of any decision. The frequency of the 

decisions is the basis of expecting the high system 

performance goal to be satisfied in the long run. The next 

step is to look in more detail at the probabilities of each 

outcome with each choice. 

Probabilities Qf Outcomes 

To make decisions which maximize expected utility, a 

priori estimates of the probabilities of each outcome are 

needed. Processes which are suspended will, with certainty, 

make no progress. Thus a probability of 1.00 can be 

attached to this aspect of the outcome. 

Estimating what will happen to a process which is 

assigned the resources it requires is harder. In particular 

it is necessary to know the chances in the next interval 

that it will release resources, request more resources, or 

just continue execution. Al though these events are 

deterministically 

probabilities can 

specified in 

be attached 

the 

to 

programs, 

them. In 

Bayesian 

this way 

decisions under uncertainty are treated as decisions under 

risk. There are several approaches which can. be used to 

estimate the probabilities. 

Estimates and limits provided by the user can be a 

rough indication of how soon a job or step of a job will 

end. Given the amount of processing complete and the 

estimated amount, the likelihood of completion in the next 
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interval can be estimated. Means for users to indicate 

their expectations in more detail could be provided. 

For example, data on the expected duration of the 

requirement could be provided with every resource request. 

In some cases compilers or loaders may be able to extract 

information about the programs they process which will be of 

use when the programs are run. 

User supplied estimates and limits can have a number of 

biases which will affe~t their usefulness for resource 

allocation and scheduling. Being estimates, their accuracy 

depends not only on the type of job but the skill of the 

estimator. In addition, the way in which the estimates are 

used by the system may influence users to purposely bias 

their estimates. For example, if an estimate is used to 

determine the class of service for a job this may influence 

him to make an estimate which causes the job to be assigned 

to a preferred service class. It is important that such 

biases be taken into account or eliminated by effective 

penalties or sanctions. 

Another approach to developing 

about a job;s future behavior is 

probability estimates 

to infer them from 

characteristics of the job. The rules for characterizing 

the jobs and then developing estimates can be based on the 

management's knowledge about the jobs or measurements made 

on typical jobs or both. To facilitate this, the 

probability estimating code for resource allocation and 

62 



scheduling can be based on tables specifiable by the system 

manager. 

Statistics on job behavior can be automatically 

collected by the system and the probability estimating 

mechanisms altered dynamically. This eliminates the need 

for intervention by the system. It will also make the 

system more adaptable to the operation of the specific types 

of jobs processed by the installation. 

In some cases it may be possible to make better 

probability estimates by looking at the history of the 

particular job rather than only aggregates of jobs having 

similar characteristics. If, as a job executes, it becomes 

apparent that the job is behaving differently than other 

jobs with similar characteristics, then the probability 

estimates should be revised to take the specific behavior 

into account. Data on the behavior of programs could be 

kept in a file to aid prediction of the behavior of later 

executions with different data. This of course requires a 

means of identifying successive executions of the same 

program (e.g. , job name, program name, program location, 

etc. ) • 

The opportunity values needed to evaluate payoffs and 

make decisions should be estimates of the opportunity values 

in the future rather than ·the values of the best current 

assignment. These estimates can be derived on the basis of 

the recent history of the best assignment of additional 
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units of the resource. While the current best assignment of 

additional units of the resource may fluctuate through a 

wide range, a statistic based on recent history will be a 

much better estimate of the future marginal value. To 

provide adaptability to changing system loads and still 

maintain stability, the use of a statistic which 

exponentially decays the weight of past best assignments is 

appropriate. The exponentially decayed statistic will be 

relatively unaffected by unusual and one-time requests for 

the resource; yet, it will adapt to prolonged changes in 

system load. The rate of decay will determine the speed of 

adaptation and sensi ti vi ty to unusual requests. It must be 

chosen to operate at a satisfactory tradeoff point to give 

adaptability and still be insensitive to one-time demands on 

the resource. 

Summary of Decisions Under Risk 

Unlike decisions under assumed certainty where a single 

outcome for each choice is considered, a decision under risk 

allows for several possible outcomes with each choice 

al terna ti ve. Based on past behavior of the ,program and 

other programs, probabilities can be attached to each of the 

outcomes for a choice. By summing the rates of increase in 

system value for each outcome weighted by the probabilities, 

the expected value of each choice can be computed. The 

choice which will give the highest mathematical expectation 
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can then be selected. 

THE FLEXIBILITY OF VALUE FUNCTIONS 

System implementors have designed numerous scheduling 

algorithms to satisfy diverse requirements. Most of these 

algorithms focus on particular situations, use a limited set 

of goals, and are difficult to change. Although these 

traditional algorithms vary in their details, they are based 

on a few scheduling goals. 

With appropriate value functions, a value-based 

scheduler can approximate these goals. Thus, the same basic 

scheduler can be used in quite diverse situations. Only the 

value functions must be tailored to the specific 

circumstances. If the requirements change, the value 

functions can be changed. The following sections discuss 

traditional scheduling principles and the implementation of 

these goals with value functions. 

used individually or jointly in 

utility function. 

Equal Service 

These principles can be 

specifying the manager's 

Scheduling to give each job an equal rate of service is 

frequently used in systems where the resource requirements 

and urgencies of the jobs are similar. The service rate is 

frequently based only on use of the central processor but 
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sometimes other resources are considered. Round robin· 

scheduling is the standard way of providing equal service. 

Basing t.he value function on the ratio of the service 

received to elapsed time implements this goal. Value 

functions which attach a higher value of execution to jobs 

with lower ratios will cause all jobs to receive equal 

service. This type of value function is demonstrated in 

Chapter 5. 

Declining Rate of Service 

To bias a scheduler toward short jobs when the sizes of 

the jobs are not known, a declining rate of service is 

implemented. All jobs start with equal priority but after a 

job has received service, its priority is gradually or 

abruptly reduced below that of new requests. Thus, large 

jobs only run for a short time at high priority and then run 

in the background at lower priority than new requests. This 

is implemented in a traditional scheduler through multiple 

queues or adjustments to the dispatching priority. An 

abrupt change in the rate of service results from a value 

function which is discontinuous with respect to time. 

Chapter 5 illustrates a discontinuity after 1200 

milliseconds of virtual time have elapsed. Continuous 

dependence on time can produce more gradual declines in the 

rate of service. 
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Classes of Service 

As discussed earlier in this chapter, the value 

functions for all jobs do not need to be identical. Jobs 

can be classified into discrete classes or on a continuum. 

The value function for each class can have a very different 

form with ,consequent different response characteristics. 

The following properties can be implemented with appropriate 

value functions and class assignments. 

Priority 

Strict pr~ority schedulers always assign requested 

resources to the highest priority requesting task. Value 

functions which depend only on the class of the job can 

implement this type of resource assignment. If required, 

priority changes can be affected by reassigning jobs to new 

classes. 

Inter~ctive/Batch Distinction 

Biases between interactive terminal requests and batch 

requests can be implemented by assigning these jobs to· 

different classes. Appropriate value functions permit 

varying the amount of bias toward either type of service. 

Even strict priority for terminal requests is possible. 
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Flexible Pricing 

In some contexts it is desirable to base the rate of 

service a job receives on the price the user is willing to 

pay. Assignment to a class of service on the basis of the 

price the user is willing to pay makes this possible. 

Depending on the particular circumstances., this could be a 

flat payment or a surcharge on other charges for service. 

Service Guarantees 

Specific rates of service and consequent response times 

for jobs can be guaranteed to users through classes of 

service that have a sufficiently high value of execution to 

attain these rates of service. 

service, it is necessary to 

resources available. 
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Chapter 5 

EXPERIMENTAL INVESTIGATIONS 

A simple scheduler incorporating value-based resource 

allocation under assumed certainty principles was simulated 

to learn more about its behavior. The development and 

experimentation with this example of value-based resource 

allocation was conducted for three main purposes. First, 

the simulation demonstrates the feasibility of the 

value-based resource allocation. Second, specific aspects 

of the allocation system have been explored. The third 

purpose is to allow comparisons of the strategy with a 

conventional scheduler. 

Feasibility Demonstration 

A primary constraint on any scheduler is that it not 

have major defects which result in degenerate, obviously 

unacceptable behavior. Possible signs of degeneracy are low 

priority processes receiving more service than high priority 

processes, some jobs receiving no service or very little 

service for no good reason. Thrashing and deadlocking are 

also unacceptable. The algorithm should not be too complex. 

Since execution of the scheduling program requires use of 
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computing services, if the calculations performed by the 

scheduler are too complex, scheduling will consume an 

unacceptable portion of the systems resources. 

Exploration of Mechanisms 

The experimental resource allocation· mechanisms have 

been explored by varying the operation of the mechanisms and 

the environment. 

1. Value functions. Varying the value functions has 

allowed observation of the effect of different 

value functions. 

2. Job mix. Varying the job mix has allowed 

exploration of adaptability to different types of 

system load. 

3. Resource valuation mechanism. The effect of the 

resource valuation mechanism has been observed by 
i 

removing it from the scheduler in some of the · 1 

experiments. 

Comparison with Other Strategies 

Comparison of the value-based resource allocation 

philosophy with traditional approaches to scheduling was the 

third goal of the experimentation. To do this, a simulation 

model of a traditionally organized scheduler was implemented 

so both the value-based and traditional schedulers could be 
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compared in their ability to allocate exactly the same 

resources to identical job mixes. The simulation of 

traditional resource allocation is patterned after the 

scheduler in the Universal Time-Sharing System (UTS) for the 

Xerox Sigma 6/7/9 computers (Xerox, January 1972). This is 

a multilevel queue structured scheduler which has undergone 

considerable refinement to make it a high quality example of 

modern general purpose timesharing system schedulers. 

Simulation as the Vehicle for Experimentation 

Simulation was chosen as the vehicle for 

experimentation to avoid several problems which would have 

arisen in experimenting with an actual operating system. 

Most of the advantages to simulation can be classified as 

either greater control over operation or ease of 

implementation. 

1. The technique of scripting used in the simulation 

allows a set of jobs to be defined to have desired 

resource requirements in advance and then used for 

successive e~periments. Experimentation in the 

context of a complete operating system would make 

control of the environment in which the scheduler 

operates as well as control of the job mix much 

more difficult. 

2. Coding the important aspects of a scheduler for 

simulation is considerably simpler than coding the 
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entire scheduler since many housekeeping details 

which are irrelevant to performance evaluation can 

be omitted from the simulation. For example, while 

the saving and loading of the central processor .. s 

status and register cont'ents is important when 

changing the assignment of the central processor in 

a real scheduler, these activities are irrelevant 

to evaluating the performance of the scheduler. 

They can be neglected in a simulation designed to 

evaluate performance. 

3. Provisions for measuring and recording the 

4·. 

activities and aspects of performance most relevant 

to the experiments were easily incorporated into 

the simulation without interfering with the 

operation of the simulated system. Making similar 

measurements on a real system would require 

considerable care to avoid affecting operation of 

the system. 

By using simula tio·n, the need for dedicated use of 

a computer during the debugging and testing of the 

experimental scheduler was avoided. 

5. Possibly the most important advantage to the use of 

simulation was freedom in choice of a language in 

which to code the ~chedulers. 
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Structure of the Simulator 

The operation of the simulator is based on the 

formulation of the resource allocation problem in Chapter 3. 

Jobs are modeled as sequences of requests and releases of 

system resources. The states of the processes are 

maintained and their progress measured on .the basis of the 

process structure description. The resource allocation 

notation, which encompasses the most important variables of 

the simulation program, describes the system state. The 

scheduler algorithms, including one which is based on the 

value-based discussions in Chapter 4, implement different 

resource allocation decision rules. 

The simulator consists of program scripts, a script 

interpreter, the scheduler to be investigated, and the 

simulation housekeeper and statistics recorder. A script is 

the input to the simulation system consisting of the script 

interpreter and scheduler. The outputs. of the simulation 

are the response results. 

Interpreter 

Script Response Results 

Scheduler 

To study the effect of the different job mixes new 

scripts can be writ ten and the other parts left unchanged. 

To compare different scheduling algorithms, just the 
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scheduler portion can be replaced. 

Program Scripts 

The program scripts specify the system load or job mix 

to be synthesized for the simulation. A simple example of a 

script will illustrate the basic features of the script 

definition. 

Alpha: 

4 Class-1 processes. 

Request 20 pages memory. 

Request 1 central processor. 

Run 100 milliseconds. 

Release 1 central processor. 

Think-type 5000 milliseconds. 

Go to Alpha. 

The first line declares that 4 processes are to execute the 

script that follows. They are to be scheduled in the first 

class of service. The second and third lines indicate 

requests for 20 pages of memory and then use of the CPU. 

The third line is labeled to be used as a target for a 

program loop. The specification to run for 100 milliseconds 

in the fourth line indicates the interval of. time that 

resources are required by the process after they have been 

assigned. Following this interval the CPU will be released. 

Five seconds of thinking and typing by the terminal user 

will ensue. In addition to the passage of time this step is 

significant in that it signals the beginning of a new 
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request for service. 

line 3. 

The last step indicates a return to 

Typically, a script will consist of not just a single 

program but several programs with varying numbers of 

processes executing each. Time intervals may be specified 

as draws from a random distribution of specified parameters. 

Other l"E!sources may also be represented. In addition to the 

CPU and main memory, these simulations considered disk I/0 

devices, permission to open/close files, and a high speed 

swapping channel. The scripts for all experiments are in 

Appendix I. 

Script Interpreter 

The script interpreter utilizes the script definitions 

to simulate process behavior. For each simulated process 

its progress in completing each step of its script is 

maintained. Requests for resources are passed to the 

scheduler for decisions on allocations. Resources which are 

released are returned to the reserve of resources for 

assignment to another process by the scheduler. 

Scheduler 

The scheduler makes decisions on allocations and 

preemptions based on new requests recognized by the script 

interpreter, pending requests, previous assignments, and the 
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total capacity of resources 

not fulfilled or resources 

available. When requests are 

are preempted, the processes 

needing them must be suspended. The resources consumed in 

scheduling (scheduler overhead) have been ignored in the 

simulation on the assumption that all of the schedulers 

investigated are of similar complexity. Observation of 

simulation runtimes substantiate this assumption. 

The schedulers which were simulated varied in the 

algorithms used. However, the data available and data 

structures are the same for each. The data base, kept in 

APL arrays, contains all of the data needed by any of the 

schedulers; none of them uses all of the data. More 

detailed descriptions of the schedulers for the specific 

scheduling policies will be given later. 

Housekeeping and Performance Measurement 

The final part of the simulation is maintenance of 

housekeeping details such as the simulation clock, time of 

the next event, etc., as well as the recording of statistics 

for analyzing the performance of the scheduler. To evaluate 

the response times which would result in a system utilizing 

the algorithm being simulated, the progress during the 

interval simulated of the simulated jobs must be measured. 

Response times could not be measured directly since most of 

the jobs would not finish during the relatively short 

simulation interval (60 seconds). 
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Two types of progress measurements are important. The 

relative rate of progress for a process is the virtual 

execution time divided by the real time. Thus the relative 

rate of progress is the ratio of the progress the process 

actually made to the progress it could have made if it were 

the only process in the system and did not have to compete 

with other jobs for use of the system resources. The total 

of the individual rates of progress of the processes in a 

system can be considerably greater than unity since there 

will be periods while terminal users are thinking pr typing 

and the process will not require service. Also, to the 

extent that the processes of the resource requirements are 

complementary, more than one process may be making progress 

at a time. 

A second type of important information collected from 

the simulation is the percentage of the total available 

quantity of each resource over time a·ssigned to each 

process. Most schedulers do not assign the CPU to a process 

unless· it has all of the other resources it needs to make 

progress. Hence, for a fixed interval of simulation the 

percentage of time the process is assigned the CPU is a. 

measure of its absolute progress. The ·percentage of the 

time other resources are assigned do not necessarily reflect 

useful assignments since a process may be holding a resource 

unproductively while it waits for other resources it needs. 

Other types of performance statistics which are 
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frequently examined have not been studied. The interval 

from receipt of a request until the process has all the 

resources it needs to begin execution on the request is 

sometimes measured as an indication of the responsiveness of 

an operating system. This is useful for tuning particular 

operating systems but is less useful for comparing different 

schedulers. As pointed out previously, the performance 

users see is the interval between the request and the end of 

processing the request. 

The measurements of rate of progress and CPU usage over 

the entire simulation period reflect the average service 

received by the process. The variance of the service rate 

for individual requests is also of interest. Direct 

~easurements of the variances have not been made. However, 

the variances can be estimated. Demonstrations of the 

ability of experimental scheduler to allocate accurately on 

the basis of value functions imply a small variance in 

performance for all but small requests. For small requests, 

length of the initial interval until the process has the 

resources it needs determines this variance. Since this is 

the delay which impedes the progress for the process, it is 

reflected in the rate of progress statistic. 

Simulated Schedulers 

Experiments were actually conducted on four types of 

schedulers. The first two experimental schedulers combined 
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a global resource allocation scheme with the simple policy 

functions developed by Bernstein and Sharp. Difficulty in 

designing reasonable policies for these schedulers provided 

the impetus for development of the concept of value-based 

resource allocation. Following development of this concept, 

the experimental scheduler based on these principles was 

written. The other scheduler simulated for comparison is 

the traditional multilevel queue scheduler. Because the 

limitations of the first two experimental schedulers 

resulted in their rejection as less powerful and flexible, 

the following discussion will concentrate on the 

experimental value-based example 

multilevel queue scheduler. 

Experimental Value-Based Example 

The experimental value-based 

and the traditional 

scheduler evaluates 

resource assignments in the system every . time a process 

requests a resource, releases a resource, or after a period 

of running when no resources have been requested or 

released. The first step in evaluating the assignments is 

the determination of the current value of running each 

process from the value functions supplied by the system 

manager. The value functions used in these experiments are 

given in Table 2. More detailed descriptions of the various 

value functions used in each of the experiments is included 

with the descriptions of the particular experiments. Each 
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Table 2 

Experimental Value Functions 

I. Identical Value Functions--Equal Service 

Value of executing job 

real time 
= CPU assigned time 

II. Two Classes of Service 

Value of executing job 

2 . real time if class = CPU assigned time 

real time if class = CPU assigned time 

III. Activity-Biased Function--Multilevel 
Queue Approximation 

Value of executin$ job 

1 

2 

job 

job 

real time 
= lOOO + CPU assigned time if CPU assigned 

time < 1200 ms. 

real time = otherwise CPU assigned time 
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Table 3 

Experimental Value-Based Scheduler Algorithm 

(Appendix III contains a more detailed 
description of this algorithm.) 

Executed every time a resource is requested, a resource is 
freed, or no resource has been requested or freed for one 
quantum. 

V1. Calculate value of execution of each process. 
This is rate of increase in value function with 
respect to service (job size) as function of job 
class, service received, and elapsed time. 

V2. Adjust values by value of resources held. Values 
of resources held are determined from the values 
of processes waiting for these resources. 

V3. Sort processes by value. 

V4. Assign free and preemptable resources to 
requesting processes in descending order of value. 

V5. If the swapping channel is not still free, go to 
va. 

V6. Select suspended process with lowest .value which 
has not been copied out of main memory. If none, 
select a running process when there is need for 
memory which exceeds the loss from suspending the 
running process. If there is nothing to swap out, 
go to VB. 

V7. Initiate copy of selected process out of memory. 

VB. Exit to job processing. 
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of the values is then adjusted to take into account the 

additional value attributable to the possibility that the 

process will release resources it holds and make them 

available to other processes which are suspended waiting for 

the resources. In the experimental scheduler the adjusted 

value has been calculated as the maximum. of the value of 

running the process and the value of running any process 

which is waiting for a non-preemptable resource the process 

holds. 

A set of resource allocations then needs to be found to 

maximize the sum of the adjusted values of the processes 

assigned all the resources they require. A procedure for 

obtaining an allocation which approximates this is to 

allocate to one process at a time in order of descending 

adjusted value. In most cases this will be almost as good. 

If only part of the requests for a process can be satisfied, 

these resources are placed in holding un.til the .rest become 

available. 

If a resource can be preempted from a process with a 

lower adjusted value, this is done. The central processor 

is always preemptable. Pages in main memory are preemptable 

only if there is a current copy of their contents on the 

swapping device. After a process has had its pages 

preempted, the swapping channel resource is required (in 

addition to main memory page and other requirements) to copy 

the information· back in. When not in use to copy 
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information into main memory, the swapping channel is used 

to create current copies of pages on the swapping device 

starting with the process having the lowest adjusted value 

for running. Table 3 outlines the steps of the algorithm. 

Consider, for example, three jobs with the following 

resource assignments and wants. 

Assigned Want 

Job 1 memory, open CPU 

Job 2 memory CPU 

Job 3 memory, swap channel 
open, CPU 

The scheduler will first calculate the value of running each 

job from the value function specified by the system manager. 

Assume these to be 2, 4, and 6. for jobs 1, 2, and 3 

respectively. Since job 1 holds the nonpreemptable 

permission to open files and this resource is needed by job 

3, job 1 will have an adjusted running value of 6. 

Therefore, it will be allocated use of the CPU. If job 2 is 

not already copied out, the swap channel will be assigned to 

copy it out. In this example, holding permission to open 

files causes job 1 to receive extra service until it 

releases this critic al resource. Following the release of 

the critic al resource, it will receive a less than normal 

share of service until its average rate of service declines 

and its value of execution rises as high as the values of 

execution for other jobs in the system. 
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Multilevel Queue Scheduler 

The multilevel queue scheduler which was implemented 

for comparison with the value-based example is considerably 

more complicated and contains the essential details of the 

UTS scheduler. However, since it was intended only to be 

representative of the class of high quality multilevel 

schedulers 

validated 

and not just 

against the 

UTS, 

UTS 

it was not 

scheduler. 

statistically 

An informal 

examination showed its performance with various job mixes to 

be consistent with UTS performance. Only an overview of its 

operation will be given here. Additional details are 

contained in Appendix IV and the UTS system documentation. 

The basic strategy for a multilevel queue scheduler is 

to enter jobs into first-in-first-out queues based on the 

occurrence of events relevant to the scheduling activity. 

In general, all processes which have just received a request 

from a user terminal are placed in a queue with first 

priority for use of the CPU. Processes which become 

unblocked because their terminal output buffer emptied have 

next priority and processes which have just completed other 

types of I /0 have the next priority. Lowest priority is· 

given to jobs which have .already had a ·quantum of service 

(typically 500 to 2000 milliseconds CPU usage) since the 

last request was made. 

has been swapped out 

A process which needs the CPU but 

will be swapped in if jobs not 

currently needing the CPU or lower priority jobs also 
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waiting for the CPU can be found for it to r•eplace. 

Exceptions to the basic rules are made in special 

circumstances such as keeping jobs waiting to do I/O in 

memory and reducing the likelihood that a job with exclusive 

permission to . open or close a file will be swapped out. 

Table 4 outlines the steps of this algorithm. 

VIABILITY OF SCHEDULING USING VALUE FUNCTIONS 

In the initial tests of the experimental scheduler, 

identical value functions were used for all jobs so each job 

would receive an approximately equal share of central 

proce_ssor time. 

The value function has been defined: 

V 1 f t . . b real time 
a ue 0 execu ing JO = CPU assigned time· 

Jobs which have been in the system longer than average 

for the amount of CPU assigned have higher than average 

value of execution and will receive better than average 

serviceo Jobs which have received more than average use of 

the CPU for the time they have been in the system will have 

lower value and receive less service. Thus the value 

function should cause all jobs to receive approximately 

equal use of the CPU. A special problem occurs in computing 

this function immediately following a user request when the 

process has had no CPU assigned time and the value of the 
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Table 4 

Multilevel Queue Scheduler Algorithm 

(Appendix IV contains a more detailed 
description of this algorithm.) 

Executed on the occurrence of events 
requesting or freeing specific resources 
one quantum of CPU use. 

associated with 
and completion of 

Q1. Enter processes at appropriate queue level on the 
basis of the event which has occurred. 

Q2. If the swapping channel is not free, go to Q7. 

Q3. Search down queue for first process which needs to 
be swapped into main memory. If none, go to Q7. 

·Q4. If the needed pages are free initiate the swap in 
and go to Q7. 

Q5. Search up the bottom of the queue for a process or 
processes which can be swapped out of memory to 
make enough room. If none, go to Q7. 

Q6. Initiate swap out and swap in. 

Q7. Select the first process in core from the top of 
the queue and allocate the CPU and· other resources 
required. 

QB. Exit to job processing. 

86 



function is infinite. Setting a small minimum value to be 

used as the CPU assigned time avoids this initial problem 

while still causing the execution value to be relatively 

high. 

Each of the simulation runs reported in the following 

is based on 60 seconds of simulated time. The figures 

include data gathered during starting transients before the 

system reached a steady state. While start up transients 

should be eliminated from the results of most simulations, 

they are of interest in some of the following cases. Except 

as specifically noted, the start up transients last 

approximately two to ten seconds and do not significantly 

affect the overall measurements. 

Single Value Functions 

The results from running several identical CPU bound 

jobs with the experimental scheduler are spown in Table 5. 

Column three, percentage of CPU usage, which is a measure of 

the absolute progress of each job, shows each job received 

approximately the same share of CPU use and thus achieved 

the same progress. The last column shows for each job the 

rate of progress as a fraction of the rate of progress which 

would have resulted if the job were the only job in the 

system. As expected, since the resource requirements are 

not complementary, the total rounds off to unity with each 

job receiving an equal share. The fourth column (%Page) 
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shows the average percentage of the total available pages 

assigned to the jobs. 

A slightly more complicated situation results when jobs 

doing I/O are also included. Table 6 summarizes the results 

of a job mix with four compute bound jobs and also four jobs 

doing I/O. The third column shows that, as specified by the 

value function, . each job receives equal use of the CPU. 

However, because of the complementary requirements for 

resources, the total rate of progress for all jobs exceeds 

one. 

In the last test of this value function, which causes 

each job to receive an equal share of the CPU, several 

interactive jobs which request and receive input from 

terminals are also included. During the time that one of 

these processes is requesting terminal input, it is not in 

contention for use of the CPU. Receipt of the input 

constitutes a new request for service and the job begins 

contention on par with all other jobs. Hence, the total 

percentage of CPU usage by the interactive jobs is different 

for each job and is less than that of non-interactive jobs. 

This is shown in Table 7. 

Value Functions Giving Class Preference 

We now examine the consequences of using value 

functions which do not simply cause the CPU usage to be 

distributed equally among the processes. First, the effect 
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Table 5 
-

Value-Based Scheduler with Identical Value Functions 
Value Function I 

Script A 

Job Type %CPU %Page Progress 

1 CPU bound 12.4 7.5 .125 
2 CPU bound 12.5 7.8 • 125 
3 CPU bound 12. 5 7.8 .125 
4 CPU bound 12.5 1.6 .125 
5 CPU bound 12.5 1.1 • 125 
6 CPU bound 12.5 7.9 • 125 
7 CPU bound 12.5 7.8 • 125 
8 CPU bound 12.5 6.8 • 125 

Total 99.9 61. 0 1. 000 

Table 6 

Value-Based Scheduler with Identical Value Functions 
Value Function I 

Script B 

Job Type %CPU %Page %Disk Progress 

l CPU bound 1 1. 8 6.2 • 118 
2 CPU bound 11. 9 6. 1 .119 
3 CPU bound 1 1. 9 6.6 • 119 
4 CPU bound 11. 8 9.2 • 1 1 8 
5 I/0 1 1. 8 9.2 11. 1 .229 
6 I/O 11. 9 9.3 11. 5 .234 
7 I/O 11. 8 8.7 11~9 .237 
8 I/O 11. 8 8.8 12.0 .238 

Total 94.7 61. 8 46.6 1. 416 
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Table 7 

Value-Based Scheduler with Identical Value Functions 
Value Function I 

Script C 

Job Type %CPU %Page %Disk Progress 

1 CPU bound 11. 2 6. 1 • 1 1 2 
2 CPU bound 11. 2 6.2 • 112 
3 CPU bound 11. 2 6.2 • 112 
4 CPU bound 11. 3 6. 1 .113 
5 I/O 11. 2 8.6 11. 3 .226 
6 I/O 11. 2 8.4 11. 3 .224 
7 I/O 1 1. 2 8.3 11. 0 .223 
8 I/O 11. 2 8.5 11. 4 .227 
9 Interactive 1. 8 1. 5 • 125 
10 Interactive 2.2 1. 9 .138 

Total 93.7 61. 8 45. 1 1. 612 
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of changes in the value functions to implement different 

classes of service will be investigated. Half of the jobs 

(the first half) were arbitrarily assigned to a class of 

service with a value function designed to cause them to 

receive twice as much use of the CPU: 

Value of executing of job = 2 • real time 
CPU assigned time · 

A summary of the results of these two classes of service 

with all CPU bound jobs is shown in Table 8. Similarly, a 

mix of CPU bound jobs and jobs with I/O are shown in Table 

9. In both cases about twice as much service is received by 

those jobs with value functions designed to result in twice 

the CPU usage of the other jobs. 

Activity-Biased Value Functions 

In large timesharing systems it is usually desirable to 

give better service to processes associated with interactive 

terminals than batch jobs. When fulfilling each request 

from a terminal requires only a short period of resource 

usage, preference can be given to these requests with 

relatively little effect on service to longer batch jobs. 

Terminal users are thus given very quick response to their 

small requests. However, long terminal requests cannot be 

shown the same amount of preference without degrading the 

response to small requests. The usual solution to this 

dilemma in multilevel queue schedulers is to place processes 
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Table 8 
-

Value-Based Scheduler with Two Classes of Service 
Value Function II 

Script D 

Job Type Class %CPU %Page Progress 

1 CPU bound 1 16.6 9.7 .166 
2 CPU bound 1 16.6 9.0 • 166 
3 CPU bound 1 16.6 9. 1 .166 
4 CPU bound 1 16.7 8.6 . 167 
5 CPU bound 2 8.4 6.5 .084 
6 CPU bound 2 8.3 6.2 .084 
1 CPU bound 2 8.3 6.4 .083 
8 CPU bound 2 8.4 5.5 .084 

Total 100.0 61. 0 1. 000 

Table 9 

Value-Based Scheduler with Two Classes of Service 
Value Function II 

Script E 

Job Type Class %CPU %Page %Disk Progress 

1 cp·u bound 1 15.8 8.2 • 158 
2 CPU bound 1 15.8 1.8 .158 
3 I/O 1 15.8 1 1. 4 15.3 . 311 
4 I/0 1 15.8 11. 6 7.5 .320 
5 CPU bound 2 7.9 4.7 .079 
6 CPU bound 2 8.0 4.8 .080 
7 I/O 2 8.0 6.5 . 1 6. 1 .155 
8 I/O 2 7.9 6.7 7.6 .155 

Total 95.0 61. 8 46.5 1. 415 
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in a high priority queue at the beginning of a request. If· 

the request cannot be completed in a fixed time period 

(quantum), the process is placed in a lower priority queue. 

In the model of the multilevel queue scheduler the 

quantum has been set at 1200 milliseconds. The approximate 

effect of this is to give all requests which have received 

less than 1200 milliseconds first priority and other jobs 

second priority. The value function of the value-based 

scheduler can also be designed to give higher priority to 

jobs which have not yet received one quantum of CPU service 

by assigning a higher value to execution of these jobs. 

Since 1000 is a large number relative to normal values for 

executing jobs, a function with a discontinuity after one 

quantum of CPU usage can be formed: 

Value of executing job 

= 1000 +CPU rea~ ti~et' if CPU assigned time <1200 ms assigne ime 

real time = otherwise. CPU assigned time 

This specifies a value function which approximates the value 

function implicit in the multilevel queue scheduler. 

Tables 10 and 11 contrast the effect of value functions. 

without initial higher execution value (Table 10) and with 

initial high execution value (Table 11) on the same job mix. 

The rate of progress in the last column for interactive 

processes is greater in Table 11 where the initial service 

was given a higher value. Except during the initial startup 
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period, where none of the processes had received a quantum 

of CPU usage and all had similar values for execution, the 

interactive jobs had much higher values of execution and 

were given preference when they needed use of the CPU. 

These experiments and others not reported confirm the 

ability of a simple scheduler to use value functions in 

performing resource allocations. The value functions can be 

changed easily, without rewriting the scheduler, to 

implement different policies for the system management. 

GLOBAL RESOURCE ALLOCATION 

Value functions and global or centralized allocation of 

resources were explored together because the preliminary 

analysis indicated they were improvements in resource 

allocation which have the potential to work well together. 

It is possible to conceive of a traditional scheduler which 

schedules use of the CPU using priori ties based on value 

functions while other resources are allocated on another 

basis such as first-come-first-served. Also, resource 

allocation could be centralized without being based on value 

functions. Global resource allocation in the IBM OS/370 VS2 

Release 2 system is described by Scherr ( 1970b). However, 

some conclusions can be drawn from the simulation 

experiments about global allocation in the context of 

value-based scheduling. 

Discussion of each i tern will follow a listing of the 
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Table 10 

Value-Based Scheduler without Interactive Bias 
Value Function I 

Script F 

Job Type %CPU %Page Progress 

1 CPU bound· 22.5 13.3 .225 
2 CPU bound 22.5 14.0 .225 
3 CPU bound 22.5 12.8 .225 
4 CPU bound 22.4 13.4 .224 
5 Interactive 2.7 2.3 .218 
6 Interactive 2.5 2.0 .215 
7 Interactive 2.3 2.0 .213 
8 Interactive 2.5 2.0 .214 

Total 99.9 61. 8 1. 759 

Table 11 

Value-Based Scheduler with Interactive Bias 
Value Function III 

Script F 

Job Type %CPU %Page Progress 

1 CPU bound 22.9 14. 1 .229 
2 CPU bound 23. 1 13.4 .231 
3 CPU bound 22.5 15.4 .225 
4 CPU bound 22.1 15. 1 .227 
5 Interactive 2.3 1. 1 .483 
6 Interactive 2.2 1. 0 .468 
7 Interactive 1. 8 • 9 .474 
8 Interactive 2.3 .9 .698 

Total 99. 9 61. 8 3.035 
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points. First, simple global resource allocation strategies 

can be used with value functions to do scheduling and 

resource allocation. Second, the problems of allocating all 

system resources including CPU's, memory, and I/0 devices 

are basically the sa.me and can be handled in a single 

framework. Third, global resource allocation can simplify 

allocations of the various resources to avoid wasteful, 

inconsistent allocations. 

Value-Based Allocation 

The quality of local resource allocation policies to 

implement value-based allocation has not been evaluated. 

However, the simulation experiments show global allocation 

can be used satisfactorily for value-based scheduling. The 

results described in the previous sections using the simple 

experimental scheduler guided by value functions and doing 

centralized resource allocation demonstrate the tractability 

of global resource allocation in a value-based context. 

Uniform Treatment of Resources 

The operation of the experimental sriheduler also shows 

the feasibility of considering the CPU, memory, I/O devices, 

and all other resources in the same framework. With the 

exception of the use of the swapping channel to make copies 

of main memory pages onto the swapping device when it would 

96 



otherwise be idle, the experimental scheduler uses the same 

algorithms and code to allocate all resources. Tables were 

used to indicate capacity of the resources, whether they 

were preemptable, etc. While the use of exactly the same 

algorithms does work, it is probably extreme. To obtain the 

most efficient utilization of individual resources, a system 

should probably be structured so specialized policies can be 

utilized within a global framework. 

Consistent Resource Allocations 

Intuitively, the use of centralized resource allocation 

where the scheduler can coordinate the use of all the 

resources should result in better use of the resources than 

resource allocation decisions made separately and 

independently. For example, it makes little sense to 

allocate part of the resources requested by a process if 

other resources it needs are not available. Similarily, if 

a process already holds preemptable resources it is 

frequently desirable to take them away while the process 

waits for new requests to be filled. 

The consideration given to the value of the resources 

held by a process in adjusting the value of the execution of 

that process is a global allocation policy whose benefit can 

easily be demonstrated. Although not a calculation of the 

true expected value of releasing the resources, this 

adjustment will give preference to processes with inherently 
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low value while they hold resources needed by high value 

processes so that the resources will be released and become 

available to the high value processes. Experiments where 

this provision of the scheduler was eliminated resulted in 

situations with low value· processes holding non-preemptable 

resources (exclusive right to open files) but not having 

enough value to cause preemption of the memory held by 

higher value processes waiting for permission to open files. 

Since the lower value process could not get the memory it 

needed to continue execution and release the right to open 

files, deadlock resulted. With the adjustment of a 

process's value to take into account the resources it holds, 

this process would temporarily have enough value to cause 

preemption and would be assigned the memory it needs. 

EFFICIENCY OF VALUE-BASED RESOURCE ALLOCATION 

The different circumstances for which· schedulers were 

designed and the ways in which they operate make evaluation 

of their performances difficult. While one scheduler may be 

intended to favor one type of job, another is intended to 

favor another type of job. Two other schedulers may have 

been designed for different points of compromise between 

those two extremes. Moreover, the performance of schedulers 

is frequently dependent on the job mix being scheduled. 

However, despite the conceptual difficulty of the 

problem, the flexibility in setting the value functions in 
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the value-based scheduler allows some meaningful comparisons 

to be made with the multilevel queue scheduler. As 

described previously, value functions can be used which 

approximate the implicit value functions in the multilevel 

queue scheduler. For comparison with the multi level queue 

scheduler, the value function described in the section on 

Activity-Biased Functions (value function III) was used. 

Comparisons with only these value function do not 

consider the difference in flexibility to specify response 

sets. However, if the experimental scheduler can perform as 

well as the multilevel queue scheduler in the domain of 

operation for which the multilevel queue scheduler was 

designed and tailored, the flexib.ility of the value-based 

scheduler implies it is more powerful. 

Domain of Experimentation 

The important external variables which determine 

scheduler performance were identified in Chapter 1 as 

1. job mix, 

2. scheduler parameters, and 

3. resources available. 

In the previous experiments the job mixes and scheduler 

parameters were varied to demonstrate the adaptability of 

the scheduler to different job mixes and the flexibility of 

the value function specifications. 

As discussed previously, reasonable comparison of the 
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experimental and multilevel queue schedulers necessitates 

fixing the scheduler parameters so the schedulers have 

similar goals. For these comparisons the quantities of 

resources have been held constant and the job mixes varied. 

The quantity of a resource available is a measure which is 

relative to the requirements of the jobs (e.g., the number 

of jobs which can reside in main memory at one time). Thus, 

varying both the job mix and resources available are 

unnecessary. 

There are several important factors to be considered in 

varying the job mix: 

· 1. frequency of requests for service, 

2. number of jobs which fit in main memory at a time; 

3. frequency of I/O, and 

4. use of other resources. 

The experiments test average and extreme conditions. Demand 

for service includes both continuous and interactive 

requests. In most cases three jobs will fit in main memory 

at a time; however, with script G, one or two jobs can take 

up all available memory. Both CPU bound and highly I/0 

bound jobs have been included in the mixes. Scripts H and I 

include requests for permission to open a file as well as 

the basic CPU, memory, and disk resources. The experiments 

are intended to demonstrate operation under typical 

circumstances and do not exhaustively explore all posible 

operating conditions. 
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Biases in the Comparisons 

In making the comparison it is also important to take 

into account the difference in the amount of effort which 

has gone into development of the multilevel queue and 

value-based schedulers. The multilevel queue simulation is 

modeled after a production operating ~ystem which has 

benefited from substantial investment in design and 

refinement. On the other hand, the value-based simulation 

has not received this attention. 

Comparison Results 

Comparisons were made on a number of job mixes of which 

three are reported here. Each simulation was repeated four 

times with different random numbers. In numbering the 

tables of results, replications which differ only by the 

random numbers have been given different letter suffixes. 

For example, Tables 12-A, 12-B, 12-C, and 12-D show the 

results of four repetitions. In Tables 12 and 1 3 the 

results of a mix of four interactive jobs, one compute bound 

job, and four jobs also doing I/O are shown. The CPU usage 

(a measure of total computation) with both schedulers is 

comparable. The value-based scheduler gave slightly more 

total CPU usage. It gave slightly lower rates of progress. 

The next mix of jobs which includes conflict over the 

resource giving exclusive right to open or close files is 

summarized in Tables 14 and 15. The first four processes 
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Table 12-A 

Value-Based Scheduler 
Value Function III 

Script G 

Job Type %CPU %Page %Disk Progress 

1 Interactive 5.8 1.2 .457 
2 Interactive 5.8 8.6 .367 
3 Interactive 5.8 8.9 .410 
4 Interactive 5.8 5.2 .557 
5 CPU bound 9.7 4.7 .097 
6 I/O 10.3 9.9 10.0 .203 
7 I/O 1 0. 1 9.6 10.0 .202 
8 I/O 6.8 8.0 7. 1 .139 
9 I/O 7.5 7.4 1.1 • 152 

Total 67.7 69.5 3l+. 9 2.584 

Table 12-B 

Value-Based Scheduler 
Value Function III 

Script G 

Job Type %CPU %Page %Disk Progress 

1 Interactive 5.0 10.0 .381 
2 Interactive 5.8· 5.8 .465 
3 Interactive 5.8 1.0 .399 
4 Interactive 5.8 4.6 .750 
5 CPU bound 9.3 4.7 .Q93 
6 I/O 9.8 10.7 10.3 .200 
7 I/0 8.2 8.3 8.3 . 165 
8 I/O 8.3 8.8 8.7 . 171 
9 I/O 8.5 7.9 8.6 .. 171 

Total 67.9 66.6 35.9 2.795 
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Table 12-C 

Value-Based Scheduler 
Value Function III 

Script G 

Job Type %CPU %Page %Disk Progress 

1 Interactive 6.6 8.5 .407 
2 Interactive 5.8 6.4 .432 
3 Interactive 5.0 5.9 .519 
4 Interactive 5.8 1.1 .384 
5 CPU bound 1.1 4.4 .011 
6 I/O 11. 2 11. 8 11. 3 .224 
1 I/O 8.0 1.6 7.9 .159 
8 I/O 8.0 8. 1 1.1 . 157 
9 I/O 8.0 1.1 8.2 • 162 

Total 66. 1 68.2 35. 1 2.521 

Table 12-D 

Value-Based Scheduler 
Value Function III 

Script G 

Job Type %CPU %Page %Disk Progress 

1 Interactive 5.8 8.7 .670 
2 Interactive 5.0 5.0 .631 
3 Interactive 5.8 8.5 .440 
4 Interactive 5.0 6. 1 .411 
5 CPU bound 11. 1 5.4 • 1 1 1 
6 I/O 7.6 1.1 1.· 1 . 153 
1 I/O 7.6 8.0 1.6 .152 
8 I/O 11 .1 11. 4 11. 8 .235 
9 I/O 7.5 7.5 7.8 .153 

Total 67. 1 68.2 34.8 2.956 
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Table 13-A 

Multilevel Queue Scheduler 
Script G 

Job Type %CPU %Page %Disk Progress 

1 Interactive 5.5 4.9 .625 
2 Interactive 5.0 4.4 .566 
3 Interactive 5.8 4.7 .520 
4 Interactive 5.8 5.8 .337 
5 CPU bound 9.9 5.7. .099 
6 I/O 7.9 8.7 8.4 • 163 
7 I/O 7.9 9.2 8.9 • 168 
8 I/O 1.9 9. 1 8.3 .163 
9 I/O 7.9 7.6 1.1 .156 

Total 63.7 60. 1 33.2 2.797 

Table 13-B 

Multilevel Queue Scheduler 
Script G 

Job Type %CPU %Page %Disk Progress 

1 Interactive 5.0 5.3 .636 
2· Interactive 5.8 4. 1 .732 
3 Interactive 5.0 4.3 .265 
4 Interactive 5.8 4.9 .767 
5 CPU bound 7.9 4.3 .079 
6 I/O 7.9 8.8 8.4 .163 
7 I/O 7.9 9.0 8. 1 • 160 
8 I/0 7.9 8.7 a.· o . 159 
9 I/O 7.9 8.9 1.1 . 156 

Total 61. 3 58.4 32. 1 3. 117 
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Table 13-C 

Multilevel Queue Scheduler 
Script G 

Job Type %CPU %Page %Disk Progress 

1 Interactive 5.8 4. 1 .378 
2 Interactive 5.8 5.3 .798 
3 Interactive 5.8 4.8 .325 
4 Interactive 5.0 4.6 .425 
5 CPU bound 10.0 4.9 .099 
6 I/O 8.0 8.4 8. 1 . 161 
1 I/O 8.0 8.6 7.6 .155 
8 I/O 8.o 9.8 8. 1 • 161 
9 IIO 8.0 8.6 7.9 . 158 

Total 64.4 59.0 31. 7 2.660 

Table 13-D 

Multilevel Queue Scheduler 
Script G 

Job Type %CPU %Page %Disk Progress 

1 Interactive 5.7 4.4 .838 
2 Interactive 5.7 3. 1 .733 
3 Interactive 5.7 4.2 .796 
4 Interactive 4.9· 6.0 .297 
5 CPU bound 9.8 5. 2 . .098 
6 I/O 7.9 9.0 8.2 . 161 
1 I/O 1.9 8.0 8.5 . 164 
8 I/0 7.9 1.9 7.5 . i 54 
9 I/0 7.9 9.2 1.8 .156 

Total 63.3 57.0 32.1 3.437 
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simply alternate I/O access with central processor use. The 

next four alternate I/O access and CPU use but repeatedly 

request exclusive control of file opening and hold this 

resources for five I/O accesses before releasing it. Thus, 

the second group of processes model jobs opening files and 

doing the I/O necessary to accomplish this and the first 

group of jobs simply perform I/O on the same disk. The last 

process is completely compute bound. 

The total progress of all jobs as well as the total CPU 

usage is similar. However, the variance among jobs is lower 

with the experimental scheduler. The different utilization 

of the resource for file opening is somewhat interesting 

since the average progress of the jobs opening files in both 

systems is nearly the same. Apparently, the time that 

processes holding this resource were suspended while waiting 

fer other resources was longer with the multilevel queue 

scheduler. As a result, the total time the resource was 

assigned was longer. 

In the last example, reported in Tables 16 and 17, four 

jobs opening and closing files and two compute bound jobs 

have been simulated. The first two file opening jobs are 

interactive while the others are not and have lower priority 

after their first quantum is expended. The much greater 

rate of progress for the interactive file opening processes 

with the value-based scheduler is the most obvious 

difference in these results. This occurs because the 
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Table 14-A 

Value-Based Scheduler 
Value Function III 

Script H 

Job Type %CPU %Page %Disk %Open Progress 

1 I/O 9.7 1.8 9.7 .193 
2 I/O 9.6 8.0 9.2 .188 
3 I/O 9.6 8.0 8.7 .183 
4 I/O 9.5 1.3 9. 1 .186 
5 I/O for open 9.4 5.8 9. 1 22.5 .184 
6 I/0 for open 10.0 6.0 10. 1 24.3 .201 
7 I/.O for open 9.4 6.4 8.9 20.8 .183 
8 I/0 for open 9.4 6.7 9.6 24.2 • 190 
9 CPU bound 9.7 6. 1 .097 

Total 86. 1 61. 8 74.2 91. 9 1. 602 

Table 14-B 

Value-Based Scheduler 
Value Function III 

Script H 

Job Type %CPU %Page %Disk %Open Progress 

1 I/O 9.5 7. 1 9.2 .187 
2 I/O 9.7 7.4 9.3 • 190 
3 I/O 9.5 1.1 9. 1 .186 
4 I/O 9.5 6.8 9.2 • 187 
5 I/O for open 9.3 6.6 9.7 21. 6 • 190 
6 I/O for open 9.5 6.7 10.2 25.4 . 197 
1 I/O for open 9.3 6.2 9.0 23.2 .184 
8 I/O for open 9.3 1.6 9.3 21. 6 . 187 
9 CPU bound 9.8 5.8 .098 

Total 85.5 61. 8 75. 1 91. 8 1. 606 

107 



Table 14-C 

Value-Based Scheduler 
Value Function III 

Script H 

Job Type %CPU %Page %Disk %Open Progress 

1 I/O 9.5 7.9 9.6 • 191 
2 I/O 9.7 7.8 9.2 • 188 
3 I/O 9.5 8.0 9.3 .188 
4 I/O 9.7 7.4 9.0 • 187 
5 I/O for open 9.5 5.9 9.6 22.2 . 1 9 1 
6 I/O for open 9.4 6.0 9.3 23.5 . 187 
1 I/O for open 1 0. 1 6.8 10.2 23.4 .202 
8 I/O for open 9.4 5.9 8.8 23.0 fl 182 
9 CPU bound 9.1 6.0 .097 

Total 86.3 61. 8 74.9 92. 1 1. 613 

Table 14-D 

Value-Based Scheduler 
Value Function III 

Script H 

Job Type %CPU %Page %Disk %Open Progress 

1 I/O 9.7 7.4 9.9 .196 
2 I/0 9.5 1.6 9.9 .194 
3 I/O 9.1 7.4 9.6 .192 
4 I/O 9.7 1.9 9.2 • 189 
5 I/O for open 9.3 5.7 9.2 24.6 .186 
6 I/O for open 9.3 6.7 9. 1 21. 8 • 185 
1 I/O for open 10.0 6.3 1o.6 25.8 .206 / 

8 I/O for open 9.3 6.0 8.6 20.5 • 179 
9 CPU bound 9.6 6.8 .096 

Total 86. 2 61. 8 76. 2 92.6 1. 623 
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Table 15-A 

Multilevel Queue Scheduler 
Script H 

Job Type %CPU %Page %Disk %Open Progress 

1 I/O 10. 8 8.0 11. 0 .218 
2 I/0 13. 8 9.4 13.4 .212 
3 I/0 9.9 6.9 9.7 • 196 
4 I/O 11. 9 8.2 12.3 .242 
5 I/O for open 1.1 6.2 1.1 25.7 . 154 
6 I/O for open 10.2 7.8 1 0. 1 29.6 .202 
7 I/O for open 1.1 6. 1 7.6 22.2 • 153 
8 I/O for open 1.2 6. 1 1.3 21. 7 .144 
9 CPU bound 8.0 3.0 .080 

Total 87.1 61. 8 79. 1 9 9. 1 1. 661 

Table 15-B 

Multilevel Queue Scheduler 
Script H 

Job Type %CPU %Page %Disk %Open Progress 

1 I/0 15.7 11. 3 15.6 .313 
2 I/O 7.9 5. 1 1.1 .155 
3 I/0 11. 8 8.6 12.6 .244 
4 I/0 11 • 1 7.4 1 1. 3 .224 
5 I/0 for open 7.6 6.6 7. 1 22.3 . 14 7 
6 I/O for open 8.5 6.4 8.7 25.9 .172 
7 I/O for open 7.6 5.8 1. 1 20.0 • 148 
8 I/O for open 9.4 1.1 9.2 29.8 .187 
9 CPU bound 1.9 2.9 .079 

Total 87.6 61. 8 79.3 98.0 L669 
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Table 15-C 

Multilevel Queue Scheduler 
Script H 

Job TyQe ~CPU ~Page ~Disk ~Open Progress 

1 I/0 17.8 11. 6 17.9 .357 
2 I/O 6.2 4.4 6.0 . 122 
3 I/O 11. 9 7.9 11. 5 .234 
4 I/0 1 1. 9 7.2 12.2 .241 
5 I/O for open 5.2 4.7 5.2 16.4 • 103 
6 I/0 for open 9.9 9.6 9.6 35.8 .194 
7 I/0 for. open 5.2 4.7 4.9 17.2 . 101 
8 I/O for open 9.4 8.8 9.3 28.3 • 186 
9 CPU bound 10.0 2.9 .100 

Total 87.3 61. 8 76.6 97.7 1. 638 

Table 15-D 

Multilevel Queue Scheduler 
Script H 

Job TyQe %CPU %Page %Disk %Open Progress 

1 I/O 10.9 7.8 11. 0 .219 
2 I/.O 13.9 . 9. 6 13.5 .274 
3 I/O 11. 9 8.5 12.6 .245 
4 I/O 9.9 6.9 9.5 • 194 
5 I/0 for open 7.8 6.6 7.4 23.3 • 153 
6 I/0 for open 8.5 6.3 8.7 26.2 .172 
7 I/O for open 7.7 6.6 8.4 25.0 • 161 
8 I/O for open 8.5 6.5 8.6 . 24. 0 • 1 7 1 
9 CPU bound 8.8 3. 1 .088 

Total 88.0 61. 8 79.6 98.5 1. 677 
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value-based scheduler does not simply allocate use of the 

file opening resource on a first-come-first-served basis as 

the multilevel queue does. However, the improvement in the 

progress rate for the interactive jobs was greater than the 

decrease in the progress rate of the other two jobs. 

Apparently, better use was made of the resource for file 

opening. Presumably, this is due to the global resource 

allocation strategy of giving preference to low value jobs 

which are holding critical resources. 

A comparison of the times for running the experimental 

and multilevel queue simulations indicates the amount of 

scheduling overhead for the two strategies is roughly equal. 

Since the simulators were coded in APL, the execution times 

are not representative of the execution times for routines 

implemented in assembly language or high system 

implementation languages. The interpretive APL 

implementation results in slower execution; the relative 

efficiency of many APL primitives is quite different from 

other language implementations. Furthermore, the data 

structures and code for the simulated schedulers are not 

designed for efficiency but to facilitate experimentation 

and to utilize the specialized APL primitives. Due to these 

factors, the run time for either simulation is thirty to 

forty times the length of time simulated. However, 

comparison of execution times between the two is probably 

not biased significantly. 
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Table 16-A 

Value-Based Scheduler 
Value Function III 

Script I 

Job Type %CPU %Page %Disk %Open Progress 

1 Interactive 9.2 6.4 8.4 16.7 .523 
open 

2 Interactive 8.6 7.7 7.6. 14.2 .428 
open 

3 Open 5.8 9.0 6. 1 25. 1 . 119 
4 Open 6.0 8.6 5.6 20.7 • 116 
5 Interactive 34.0 14.5 .384 

CPU bound 
6 Interactive 32. 8 15.5 .374 

CPU bound 

Total 96.4 61. 8 27.7 76.7 1. 944 

Table 16-B 

Value-Based Scheduler 
Value Function III 

Script I 

Job Type %CPU %Page %Disk %Open Progress 

1 In·terac ti ve 9.4 . 7. 1 8.8 17.4 .453 
open 

2 Interactive 8.3 7.0 7.9 14.5 .464 
open 

3 Open 5.9 8.7 5.9 24.0 • 1 1 8 
4 Open 5.8 8.4 5.6 22. 1 . 115 
5 Interactive 31. 4 15.0 .381 

CPU bound 
6 Interactive 35. 3 15.6 .416 

CPU bound 

Total 96.2 61. 8 28.2 78.0 1. 947 
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Table 16-C 

Value-Based Scheduler 
Value Function III 

Script I 

Job Type %CPU %Page %Disk %Open Progress 

1 Interactive 8.3 6. 1 7.4 17. 1 .441 
open 

2 Interactive 10.0 7.5 8.9 20.8 .478 
open 

3 Open 5.2 1.2 4.7 17.2 .099 
4 Open 5.2 9.0 4.8 18.4 .100 
5 Interactive 37.0 15.8 .432 

CPU bound 
6 Interactive 31. 5 16. 1 .368 

CPU bound 

Total 91. 1 61. 8 25.7 73.5 1. 918 

Table 16-D 

Value-Based Scheduler 
Value Function III 

Script I 

Job Type %CPU %Page %Disk ·%open Progress 

1 Interactive 7.5 5.3 6.8 1 3. 1 .434 
open 

2 Interactive 10. 4 8.0 9.2 18.3 .490 
open 

3 Open 5.2 7.4 5.0 15.0 • 102 
4 Open 5.8 10.6 6.3 23.6 • 121 
5 Interactive 33. 1 15.9 .383 

CPU bound 
6 Interactive 33. 1 14.5 .389 

CPU bound 

Total 95. 1 61. 8 21.2 70. 1 1. 919 
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Table 17-A 

Multilevel Queue Scheduler 
Script I 

Job Type ~CPU ~Page ~Disk ~Open Progress 

1 Interactive 5.8 10.9 5.0 20.7 . 185 
open 

2 Interactive 5.7 10.9 5.2 15.4 . 170 
open 

3 Open 7.7 7.8 1.0 30.2 . 14 7 
4 Open 6.8 8.7 7. 1 33.4 • 138 
5 Interactive 33.9 12.3 .394 

CPU bound 
6 In terac ti ve 32. 9 11. 4 .369 

CPU bound 

Total 92.7 61. 8 24.3 99.6 1. 403 

Table 17-B 

Multilevel Queue Scheduler 
Script I 

Job Type %CPU %Page %Disk %Open Progress 

1 Interactive 5.8 13.3 5.2 30. 1 .149 
open 

2 In'teracti ve 5.5 ·10. 6 5.3 17. 1 .182 
open 

3 Open 6.8 6.7 6.8 29.2 . 137 
4 Open 5.2 5.7 4.7 23.3 .099 
5 Interactive 36.0 13.0 .416 

CPU bound 
6 Interactive 33.0 12.5 .379 

CPU bound 

Total 92.2 61. 8 22.0 99.6 1.362 
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Table 17-C 

Multilevel Queue Scheduler 
Script I 

Job Type %CPU %Page %Disk %Open Progress 

1 Interactive 6. 1 15. 1 5.3 30.8 • 140 
open 

2 Interactive 5.5 12.3 4.8 24.9 • 149 
open 

3 Open 6.8 5.2 6.5 22.2 • 133 
4 Open 5.2 5.9 4.8 21. 7 .100 
5 Interactive 37.0 11. 1 .435 

CPU bound 
6 Interactive 31. 5 12. 1 .360 

CPU bound 

Total 92.2 61. 8 21.4 99.7 1. 317 

Table 17-D 

Multilevel Queue Scheduler 
Script I 

Job Type %CPU %Page %Disk %Open Progress 

1 Interactive 5.7 13.6 5. 1 19.8 • 148 
op.en 

2 Interactive 5.4 14.0 5.2 29.6 .133 
open 

3 Open 5.8 4.7 6. 1 20. 1 • 119 
4 Open 6.0 6.9 6. 1 29.6 • 121 
5 Interactive 35.3 11. 4 .421 

CPU bound 
6 Interactive 34.4 11. 4 .392 

CPU bound 

Total 92.7 61. 8 22.5 99. 1 1. 334 
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Random Scheduler 

Another evaluation of the value-based scheduler can be 

made by comparing it with a hypothetical scheduler that 

makes random allocation decisions. A number of algorithms 

qualify as making random decisions. 

algorithm which only allocates 

This comparison uses an 

resources when they are 

requested and always allocates a resource if it has been 

requested. However, the priori ties of the processes are 

selected randomly every time a resource allocation decision 

is made. This is not completely random since it attempts to 

keep all resources in use. Instead of taking previous 

resource usage and type of job into account, it decides 

among conflicting requests randomly. 

The experimental value-based scheduler resolves these 

conflicts by considering requests for allocations in an 

order determined from the value functions for the processes. 

Modifying the value-based scheduler given in Appendix III by 

changing steps VBS3 through VBS6 to select randomly an order 

for considering the processes produced the random scheduler. 

The results of simulations using the same scripts as 

the comparisons between the value-based and multilevel queue 

scheduler are given in Tables 18, 19, and 20. These results 

differ from both value-based and multilevel queue in several 

ways. Al though the total CPU utilization is similar, the 

distribution among the same type of jobs is much less even. 

The rates of progress for jobs are lower with the random 
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scheduler. Also, it has no bias toward interactive jobs. 

Summary of Comparisons 

The experimental value-based scheduler performance and 

multilevel queue scheduler performance are quite similar 

over the range of performance goals which could be tested. 

Both were superior to the random scheduler. The value-based 

scheduler allows flexible specification of many other 

response targets besides those implicit in the multilevel 

queue scheduler. 
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Table 18-A 

Random Scheduler 
Script G 

Job Type %CPU %Page %Disk Progress 

1 Interactive 3.3 5.5 .074 
2 Interactive 2.5 6. 1 .049 
3 Interactive 3. 1 5.7 .060 
4 Interactive 3.3 5.5 .106 
5 CPU bound 34.4 17.0 .344 
6 I/0 . 5 3.2 .5 .010 
7 I/0 6.9 8.5 7. 1 . 140 
8 I/O 5.2 7.3 5.2 . 104 
9 I/O 6.6 6.6 6.6 • 132 

Total 65.9 66.5 19.4 1. 019 

Table 18-B 

Random Scheduler 
Script G 

Job Type %CPU %Page %Disk Progress 

1 Interactive 3.3 6. 1 .090 
2. Interactive 3.3 4.3 .086 
3 Interactive 3.3 6.4 .081 
4 Interactive 3.3 4.2 .068 
5 CPU bound 15.4 9.5 .154 
6 I/O 14.0 14.4 14.0 .280 
7 I/O .5 4.2 .7 .012 
8 I/O 2.6 5.6 2.8 .054 
9 I/O 13.8 14. 1 13.9 .277 

Total 59. 6 68.9 31. 3 1. 102 
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Table 18-C 

Random Scheduler 
Script G 

Job TyQe ~CPU ~Page ~Disk Progress 

1 Interactive 2.5 3. 1 .048 
2 Interactive 3.3 4.9 .063 
3 Interactive 1. 7 2.4 .028 
4 Interactive 2.5 6. 1 .051 
5 CPU bound 64.3 27.9 .643 
6 I/0 1. 4 3.7 1. 6 .030 
7 I/O . 4 3.3 . 5 .010 
8 I/O .6 2.3 .8 .014 
9 I/O 7.7 8.9 8.0 .156 

Total 84.3 62.6 10.9 1. 043 

Table 18-D 

Random Scheduler 
Script G 

Job Type %CPU %Page %Disk Progress 

1 Interactive 3.3 4.4 .076 
2 Interactive 3.3 6.5 .092 
3 Interactive 2.5 4.0 .053 
4 Interactive 3. 3 . 4.9 .069 
5 CPU bound 34.0 17. 1 .340 
6 I/O 3.7 5.9 3.6 .073 
7 I/O 12.5 12.7 12.6 .251 
8 I/O 2.3 5. 1 2.4 .647 
9 I/0 4.0 6.2 4.3 .083 

Total 69.0 66.9 22. 9 1. 084 
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Table 19-A 

Random Scheduler 
Script.H 

Job Type %CPU %Page %Disk %Open Progres:s 

1 I/O 11. 0 9.7 10.9 .219 
2 I/O 11. 2 9.4 1 1. 7 .229 
3 I/O 9.3 8.7 9. 1 .184 
4 IIO 10.8 9.4 10.6 .214 
5 IIO for open 3.4 3.6 3.5 34.3 .070 
6 I/O for open .1 .6 • 4 1. 3 • 011 
7 I/0 for open 6.8 6.0 7. 1 56.3 . 140 
8 IIO for open 1. 8 1. 3 1. 5 4.7 .034 
9 CPU bound 32.0 13. 3 .320 

Total 87.2 62.0 54.9 96.1 1. 421 

Table 19-B 

Random Scheduler 
Script H 

Job Type ~CPU ~Page ~Disk ~Open Progress 

1 I/O 10.3 9.6 11. 1 .214 
2 IIO 1 1. 0 10.2 11. 4 .224 
3 IIO 10. 1 8.5 10.2 .203 
4 IIO 10.2 8.2 10.4 .206 
5 IIO for open 1. 8 2.0 i.·6 11. 9 .035 
6 I/O for open 1. 0 1. 5 1. 0 4.3 .020 
1 IIO for open 3.5 3.9 3.2 11. 6 .067 
8 I/O for open 5.0 4.9 4.9 44.8 .099 
9 CPU bound 34. 1 13.2 .341 

Total 87 .. 0 62. 1 53. 8 92.6 1. 409 
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Table 19-C 

Random Scheduler 
Script H 

Job Type %CPU %Page %Disk %Open Progress 

1 I/O 10.0 8.8 9.8 .198 
2 I/O 10. 8 9. 1 1 0. 1 .210 
3 I/O 13. 0 10. 9 13.2 .262 
4 I/O 8.8 8.3 8.8 .176 
5 I/0 for open 1. 0 .1 .8 1. 8 .018 
6 I/O for open 2.1 2.1 2.8 30.0 .055 
7 I/O for open 1. 0 1. 6 .8 18.2 .018 
8 I/0 for open 5.2 4.5 5. 1 43.4 .103 
9 CPU bound 36.7 14.4 .367 

Total 89.3 61. 1 51.5 93.5 1. 407 

Table 19-D 

Random Scheduler 
Script H 

Job Type %CPU %Page %Disk %Open Progress 

1 I/O 9.7 8.6 9.7 • 194 
2 IIO 10. 7 9.2 10. 6 .213 
3 I/O 11. 9 9.9 11. 1 .230 
4 I/O 1 1. 3 9. 1 1 1. 4 .226 
5 I/O for open 1.1 5.8 7.8 42.8 • 155 
6 I/0 for open 2.1 2.9 2.1 34.8 .053 
7 I/O for open 1. 0 1. 5 1. 0 7.5 .020 
8 I/O for open 1. 0 1. 2 • 9 1.1 .019 
9 CPU bound 33.9 13.8 .339 

Total 89. 8 61. 9 55.3 92.9 1. 449 

121 



Table 20-A 

Random Scheduler 
Script I 

Job TyQe ~CPU ~Page ~Disk ~OQen Progress 

1 Interactive 5.6 8.9 5.2 18.6 .178 
open 

2 Interactive 4.0 1.1 3.4 18.2 .097 
open 

3 Open 10. 1 8.3 9.9 37. 1 .199 
4 Open 4.3 4.3 4.0 18.3 .083 
5 Interactive 33. 4 16.0 .383 

CPU bound 
6 Interactive 33. 2 16.5 .381 

CPU bound 

Total 90.6 61.. 8 22.4 92.2 1. 321 

Table 20-B 

Random Scheduler 
Script I 

Job TyQe %CPU %Page %Disk %Open Progress 

1 Interactive 2.9 5.6 2.1 14.7 .067 
open 

2 Interactive 2.5 6.0 2.2 16.6 .057 
open 

3 Open 10. 2 1L1 10.4 48. 1 .206 
4 Open 1. 8 2.3 1.7 9.4 .035 
5 Interactive 38. 5 18.2 .453 

CPU bound. 
6 Interactive 39. 3 18.4 .464 

CPU bound 

Total 95o2 61. 6 17.0 88.8 1. 282 
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Table 2o~c 

Random Scheduler 
Script I 

Job T~Qe icPU ~Page ~Disk ~OQen Progress 

1 Interactive 3.8 8.6 3.3 18.J • 118 
open 

2 Interactive 4.0 8.6 3.6 13.5 .126 
open 

3 Open 1.6 1.3 1.1 33.4 • 153 
4 Open 6.8 5.6 6.2 21.2 • 130 
5 Interactive 30.8 15.7 .373 

CPU bound 
6 Interactive 37.3 16.0 .435 

CPU bound 

Total 90.4 61. 8 20.8 92.4 1. 335 

Table 20-D 

Random Scheduler 
Script I 

Job TyQe %CPU %Page %Disk %0Qen Progress 

1 Interactive 3.8 5.7 3.6 16.8 .081 
open 

2 Interactive 3.8 5.9 3.3 20. 1 .011 
open 

3 Open 5.2 6.0 5.2 25.4 • 104 
4 Open 6.8 7. 1 6. -a 29.4 • 137 
5 Interactive 39.3 18.6 .468 

CPU bound 
6 Interactive 35.8 17.8 .423 

CPU bound 

Total 94.8 61. 2 19.0 91. 7 1. 290 
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Chapter 6 

CONCLUSIONS 

This investigation has resulted in a number of findings 

which are of interest for both the design of opera ting 

systems and 

scheduling. 

further 

This 

research on resource allocation 

chapter summarizes these ideas 

describes some areas for additional research. 

Problem Formulation 

and 

and 

A model of resource allocation in multiprogrammed 

computer· systems forms the basis of this approach. This 

model relates the progress of processes to the resources 

required by the processes. A conventional, general notion 

of a process has been adopt·ed. However·, the concepts of· 

resources and progress of processes take on specific 

meanings in the model. 

The important aspect of a process which is recognized 

in the model is the sequential nature of the requests and 

releases of resources. When a request carinot be fulfilled, 

the process must be suspended and the process can not make 

progress. A resource is a facility or privilege for which 

there are constraints on its availability for assignment to 
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a process. The principal constraint which has been examined 

is a restriction on the number of processes which may 

simultaneously be assigned the resource. 

As a consequence of these definitions, a more general 

approach can be taken to the problem of allocating resources 

or scheduling the processes. For example, this viewpoint 

shows that, while usually considered separately, the same 

type of constraints apply to scheduling the use of the CPU 

and main memory resources as other resources. 

Traditionally, comple~ely different algorithms have been 

used for different resources. As a result, the slight 

amount of coordination between the algorithms has been 

through specialized techniques. Formulating the resource 

allocation in a uni form framework allows a single, general 

coord~nation mechanism. 

Value-Based Scheduling 

The value-based scheduling strategy provides . an 

improved means for utilizing the system manager" s goals in 
. I 

the decisions made by the resource allocation and scheduling 

programs. This is achieved by allowing the system manager 

to tell the system how to calculate the relation between the 

time taken to complete the job and the value of completing 

the job in that time for every job submitted. The scheduler 

then attempts to maximize the total value of all jobs 

submitted for processing. 
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Several aspects of the " manager s control over the 

system operation are different from other systems. First, 

the manager has much more flexibility in specifying the 

rates of service jobs will receive. In most systems the 

rates of service that jobs with different characteristics 

will receive were built into the system at the time the 

scheduler was designed. Only slight adjustments such as a 

change of the quantum time can be made easily. Schedulers 

based on external priorities, such as strict priority class 

schedulers, cannot take other factors into account. In 

almost all other schedulers there is little flexibility in 

adjusting the response set. 

Tailoring a value-based scheduler to the requirements 

of a specific installation is easier since the response to 

be given jobs is specified directly. Unlike other types of 

schedulers where the responses are a consequence of juggling 

internal scheduler parameters, there is a direct 

relationship between scheduler performance and the values 

·specified by the system manager: the value-based scheduler 
,, 

seeks to attain responses specified by the system manager 

directly. 

As a consequence of this direct control and the 1 

flexibility in specifying . rates of services for jobs, the 

value-based scheduler can facilitate interfacing the 

internal computer soheduling policies with extra-computer 

pricing and ad minis tr at iv e cont r o 1 po 1 i c i es • Various 
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schemes of flexible pricing, 

guaranteed response, etc. can be 

dynamic partitioning, 

accommodated. With the 

right choice of value functions, the response characteristic 

of a variety of conventional schedulers can be approximated. 

Significant or slight changes can be made easily to the 

value functions. This is one of the most.important virtues 

of the value-based schedulerc It is natural to implement 

the value functions in tables or easily changed routines 

separate from the rest of the scheduler. Where the need to 

recode a substantial part of the scheduler of a conventional 

system would make changes impractical, the changes could be 

made easily in a value-based system. 

The use of value functions provides a convenient means 

of combining process priorities with efficient use of system 

resources. The more complete information about the value of 

execution of each process allows tradeoffs to be made 

between efficient use of the system resources . and getting 

spec.ific timely required work done. Since the value of 

process execution is al ways based on both the elapsed time 

and total service received· instead of short-term rate of 

service, individual decisions made to gain efficient use of 

a resource will only delay a process temporarily. Any delay 

will cause it to have higher value and get preferential 

treatment in later decisions. This preferential treatment 

will continue until it has received a sufficient average 

rate of service. 
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Global, Centralized Scheduling 

Global scheduling allows decisions about allocation of 

one resource to be made with the additional information 

about requirements in the system for other resources. Thus, 

a coordinated allocation of all resources is possible. IBM 

has developed, independently, a scheduler in which most 

resource allocation is centralized to allow the use of some 

rather specialized techniques to coordinate the use of the 

resources. In contrast, the global allocation used with the 

value-based scheduler is based on a uniform treatment of the 

resources with dynamic assignment of values to the resources 

to effect coordination. 

In the context of the value-based scheduler, 

centralized allocation is beneficial for several reasons. 

The technique of dynamically attaching values to resource 

facilitates consistent decisions on all resources. Separate 

al.location mechanisms would result in conflicting, 

inefficient allocations. 

Value-based scheduling can be implemented most easily 

with centralized resource allocation since information about 

the allocations of· system resources are needed to calculate. 

the expected values. Centralized control of the resources 

facilitates access to this information. 

The use of the same or similar code for allocating 

several resources is less complex than the use of completely 

different strategies. Where special characteristics of the 
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resource are not important in its allocation, the same code 

can be shared. 

Summary of Findings 

There are several important results of this study. 

1. The model of the resource allocation and scheduling 

problem forms the basis of this investigation. The 

uniform treatment of all resources in the ·model 

aids in understanding and designing resource 

allocation strategies. Each process is modeled as 

a series of resource requests and releases. The 

operating system must either grant the requests or 

suspend the process. The performance of the 

scheduler is the set of response times produced 

when scheduling a job mix. 

2. The value-based resource allocation strategy 

overcomes de.ficiencies of existing schedulers. 

Explicit specification of the value of jobs as a 

function of the time taken to complete them allows 
. ; 

the use of utility theory evaluations in making 

resource allocation decisions and provides the 

system manager better control over operation of the 

system. Dynamic determinations of the opportunity 

costs of resource assignments can be used 

advantageously in making resource allocation 

decisions. 
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3. Simulation experiments showed that value·-based 

allocation is feasible. When its parameters were 

set to approximate the value functions of a modern 

multilevel queue scheduler, the value-based 

scheduler performed as well as the multilevel queue 

scheduler. 

SUGGESTIONS FOR FURTHER RESEARCH 

These studies of resource allocation can be extended in 

several directions. The rest of this chapter itemizes some 

opportunities for additional investigation. 

Production System 

The· development of a complete operating system which 

utilizes value-based resource allocation would allow more 

complete evaluation of its performance. Although simulation 

has been used to study the e~fect of various job mixes, only· 

a limited number of processes could be simulated and only 

for relatively short periods of time. ·Performance on'a real 

job mix over an extended period of time should be measured 

in a production system. 

Implementation of a system would also allow 

experimentation with the effect of different value functions 

in accomplishing the system manager's goals. The difficulty 

and payoffs of tailoring the system by specifying value 
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functions need to be assessed. An important part of this 

evaluation is to determine the forms of value functions 

which are useful to the system manager in specific 

organizational contexts. 

Expected Value Decision Analysis 

Additional study into ways of estimating both the 

probabilities and payoffs of outcomes from decisions made by 

the resource allocator would be useful. Several possible 

indicators were pointed out -in the section on decisions 

under risk in Chapter 4. Experimental determination of the 

reliability of these indicators or the determination of 

better ones is needed. 

Additional study is needed on incorporation of resource 

specific allocation policies into the value· analysis 

framework. Techniques for balancing efficient use of 

individual resources with overall system efficiency need to 

be developed. 

Better means of coordinating allocations when a process 

has outstanding requests for several resources would be 

useful. This situation can arise if a process requests 

several resources at the same time or when resources have 

been preempted from the process. Practical algorithms for 

assuring all the resources will become available at the same 

time without unproductive holding of resources while waiting 

for others to become available will result in better system 
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performance. Similarly, knowing when to preempt resources 

while waiting for others to become available is also 

important. 

Cooperating Processes 

Process coordination using P and V operations on 

semaphores or equivalent synchronization primitives can be 

treated in the same manner as other types of resource 

allocation problems using this resource allocation model. A 

P operation corresponds to a resource request which may 

result in the process b1.~ing blocked. A V operation is the 

release of a resource. The capacity of the resource is the 

initial value of the semaphore. 

The standard example of a producer process generating 

data for a cons um er process i 11 us tr ates the · use o f P and V 

operations to represent requests for real resources--the 

buffers in the buffer. pool. Other semaphores can be used 

with imaginary resources such as permission or ex cl usi ve 

right to access certain data. In the context of this model, 
. { 

the effect on system performance of the interrelationships 

between cooperating processes could be analyzed.. The amount 

of unproductive resource assignment which results from 

complex resource requirements needs to be assessed. 

The examination of I/0 devices as sources and sinks of 

data is a related area for study. For example, when a 

process is considered a producer and an output device a 
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consumer the situation is similar to the two cooperating 

processes in the previous example. If the output device is 

slow compared to the rate the process produces. the data, the 

process often is unproductively assigned a substantial 

amount of resources while it is waiting for the I/O device 

to catch up. A solution to this inefficiency was developed 

long ago by decoupling the production and consumption of the 

data through spooling. However, other inefficiencies 

similar to this are potential candidates for investigation 

from a resource allocation viewpoint. 

Demand Paging 

-The presence of 

translation hardware on 

page-organized 

a computer 

memory address 

facilitates the 

management of a process's address -space and allows the pages 

of real memory to be used interchangeably. 

In these studies, the schedulers always allocated all 

of a process's requirement for memory at one time (i.e., the 

process was either entirely in core or swapped out). In a 

virtual memory or demand paging system the scheduler needs 

to allocate only part of the requirement. If the program 

references data which is not in main memory, a fault occurs 

and the scheduler must swap in the required data to an 

unassigned page of memory or replace the data of an assigned 

page. 

From a resource allocation viewpoint, the scheduler can 
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dynamically vary the amount of memory assigned and 

consequently vary requirements for use of the swapping 

channel to bring in needed pages. If all the requested 

memory has been allocated, all the data can be kept in 

memory and faults will not occur. With a small allocation 

of memory, page faults will be very frequent and the 

frequent use of the swapping channel will be required. 

Also, the page faults result in delaying the process's 

progress and unproductive assignment of the other resources 

it holds while the page swap is being performed. The 

resource allocation model could be used to evaluate an 

optimum allocation of real memory and prefetch strategy on 

the basis of the dynamic value to the system of memory 

pages, the swapping channel, other resources held, and the 

value of. the process's progress. 
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Appendix I 

SIMULATION SCRIPTS 

The scripts in this appendi)_{ were used as system 

loads in the simulation studies. 

resources were available. 

Resource 

CPU 

main memory pages 

disk 

permission to 
open/close files 

swapping channel 

Capacity 

1 

78 

1 

1 

The following 

Preemptable 

always 

if copied to 
swapping device 

no 

no 

no 

A range of time indicates use of a random draw from a 

uniform distribution between the_ specified limits. 

SCRIPT A 

8 class-1 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L1: Run 30,000 milliseconds. 
-Go to L 1. 
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SCRIPT B 

4 class-1 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L1: Run 30,000 milliseconds. 
Go to L 1. 

4 class-1 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L2: Run 100 milliseconds. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 150 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Go to L2. 

SCRIPT C 

4 class-1 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L1: Run 30,000 milliseconds. 
Go to L 1. 

4 class~1 pro~esses. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L2: Run 100 milliseconds. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 150 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Go to L2. 

2 class-1 processes. 
Request 20 pages. 
Request 1 CPU . 
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Run 1 millisecond. 
L3: Run 100 milliseconds. 

Release 1 CPU. 
Think-type 1 to 8000 milliseconds. 
Re.quest 1 CPU; 
Go to L3. 

SCRIPT D 

4 class-1 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L1: Run 30,000 milliseconds. 
Go to L 1. 

4 class-2 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L2: Run 30,000 milliseconds. 
Go to L2. 

SCRIPT E 

2 class-1 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L1: Run 30,000 milliseconds. 
Go to L 1. 

2 class-1 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L2: Run 100 milliseconds. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 150 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Go to L2. 
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2 class-2 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L3: Run 30,000 milliseconds. 
Go to L3. 

2 class-2 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L4: Run 100 milliseconds. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 150 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Go to L4. 

SCRIPT F 

4 class-1 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L1: Run 30,000 milliseconds. 

L2: 

Go to L 1. 

4 class-1 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 
Run 100 millis~conds. 
Release 1 CPU. 
Run 1 to 80,000 milliseconds. 
Request 1 CPU. 
Go to L2. 

SCRIPT G 

4 class-1 processes. 
Request 30 pages. 
Request 1 CPU. 
Run 1 millisecond. 
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L1: Release 1 CPU. 
Think-type 5001 to 10000 milliseconds. 
Request 1 CPU. 
Run 500 milliseconds. 
Go to L 1. 

1 class-1 process. 
Request 40 pages. 
Request 1 CPU. 

L2: Run 30,000 milliseconds. 
Go to L2. 

4 class-1 processes. 
Request 40 pages. 
Request" 1 CPU. 
Run 1 millisecond. 

L3: Release 1 CPU. 

L 1: 

Request 1 disk. 
Run 50 to 150 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Run 100 milliseconds. 
Go to L3. 

SCRIPT H 

4 class-1 processes. 
Request 20 pages. 
Request .1 CPU. 
Run 1 millisecond. 
Run 100 milliseconds. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 150 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Go to L 1. 

4 class-1 processes. 
Request 20 pages.· 
Request 1 CPU. 
Run 1 millisecond. 

L2: Run 100 milliseconds. 
Request 1 open. 
Release 1 CPU. 
Request 1 disk. 
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Run 50 to 150 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Run 100 milliseconds. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 150 milliseconds. 
Release 1 disk. · 
Request 1 CPU. 
Run 100 milliseconds. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 150 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Run 100 milliseconds. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 150 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Run 100 milliseconds. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 150 milliseconds. 
Release 1 disk. 
Release 1 open. 
Request 1 CPU. 
Go to L2. 

1 class-1 process. 
Request 20 pages. 
Request 1 CPU. 

L3: Run 30,000 milldseconds. 
Go to L3. 

SCRIPT I 

2 class-1 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L1: Run 100 milliseconds. 
Request 1 open. 
Run 1 millisecond . 

. Release 1 CPU. 
Request 1 disk. 
Run 50 to 100 milliseconds. 
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Release 1 disk. 
Request 1 CPU. 
Run 100 milliseconds. 
Release 1 CPU. 
Re.quest 1 disk. 
Run 50 to 100 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Run 100 milliseconds. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 100 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Run 100 milliseconds. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 100 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Run 100 milliseconds. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 100 milliseconds. 
Release 1 disk. 
Release 1 open. 
Request 1 CPU. 
Run 50 milliseconds. 
Release 1 CPU. 
Think-type 1 to 8000 milliseconds. 
Request 1 CPU. 
Go to L 1. 

2 class-1 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L2: Run 100 milliseconds. 
Request 1 open. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 100 milliseconds.· 
Release 1 disk. 
Request 1 CPU. 
Run 100 milliseconds. 
Release 1 CPU~ 
Request 1 disk. 

_Run 50 to 100 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Run 100 milliseconds. 
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Release 1 CPU. 
Request 1 disk. 
Run 50 to 100 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Run 100 milliseconds. 
Release 1 CPU. 
Request 1 disk. 
Run 50 to 100 milliseconds. 
Release 1 disk. 
Request 1 CPU. 
Run 100 milliseconds. 
Release 1 CPUo 
Request 1 disk. 
Run 50 to 100 milliseconds. 
Release 1 disk. 
Release 1 open. 
Request 1 CPU. 
Go to L2. 

2 class-1 processes. 
Request 20 pages. 
Request 1 CPU. 
Run 1 millisecond. 

L3: Run 1 to 1400 milliseconds. 
Release 1 CPU. 
Think-type 300 milliseconds. 
Request 1 CPU. 
Go to L3. 
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Appendix II 

SCRIPT INTERPRETER 

Variable Definitions 

ASSIGNED[R,P] = Number of resource units assigned. 
Indexed by resource and process. 

CAPACITY[R] = Total number of resource units in system. 
Indexed by resource. 

CODE[I,J] = Script code. First 
instruction. Second 
instruction fields: 

index 
index 

selects 
selects 

1 = type resource to be released (if any) 
before process step 

2 = quantity of resource to be released 
3 = type resource to be requested (if 

any) before process step 
4 = quantity of resource to be requested 
5 = index (add~~ss) of next instruction 
6 = minimum time for this process step in 

milliseconds 
1 = range of time for process step for 

uniform distribution· 
8 = activi·ty type fo-r ·process step:· 

inactive (thinking and typing) .or 
active. 

ENTERED[P] = Real 
STATES. 

time when process 
Indexed by process. 

last 6hanged 

FUTUREWANT[R,P] = Number 
be needed to 
specified. 

of resource uni ts which will 
proceed after WANT has been 

IA[P] = Pointer to script instruction for current 
process step. Indexed by process. 

INTERVAL[P] = Milliseconds remaining in current process 
- step. Indexed by process. 

M = Number of resources. 
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N = Number of processes. 

NEWWANT [ R, P] = Number of 
process step. 
process. 

resources requested for next 
Indexed by resource and 

PREEMPTABLE[R,P] = Logical values specifying whether or 
not current resource assignment is 
preemptable. 

QUANTUMREMAINING[P] = Milliseconds of time remaining in 
current quantum allotment. Indexed by 
process. 

REALTIME = Milliseconds of real time simulated. 

RELEASED[R,P] = Number of resource units released at 
end of process step. Indexed by resource and 
process. 

RESERVE[R] = Number of currently available resource 
units. Indexed by resource. 

STATE[P] = Current state (queue) for process. Indexed 
by process. Indicates one of . the following 
multilevel queue states: 

current-user, 
request-received, 
special-compute, 
I/0-complete, 
compute-interrupted, 
compute, 
I/0-in-progress, 
waiting-to-open/close, 
waiting-for-request, and 
wait~ng-for-request-outswapped. 

SWAPTIME = Milliseconds until swap complete. 

TIMESLICE = Milliseconds until timeslice expires. 

TOTALINACTIVETIME[P] = Milliseconds . process has been 
inactive since simulation began. 

TOTALUSE[ R, P] = Milliseconds process has been assigned 
resources since simulation began. Indexed by 
resource and process. 

TOTAL VIRT-UALT IME [ P] = Milli seconds 
active since simulation 
process. 

. 148 

process has been 
began. Indexed by 



USE[R, P] = Milliseconds process has been assigned 
resources since it was inactive. Indexed by 
resource and process. 

VIRTUALTIME [ P] = Milliseconds process has been active 
since it was inactive. Indexed· by process. 

WANT[R,P] = Number of resource units needed to proceed. 
Indexed by resource and process. 
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SCRIPT INTERPRETER & HOUSEKEEPING ALGORITHM 

Simulation Starts Here 

I 1. Set currently available resources (RESERVE) to 
total available resources (CAPACITY). 

I2. Point instruction address (IA) to beginning of 
appropriate script for each process. Set STATE 
to special-compute state for all processes. 

I3. Zero USE, TOTAL USE, REALTIME, VIRTUALTIME, 
TOTALVIRTUALTIME, WANT, FUTUREWANT, ENTERED. 

I4. Set PREEMPTABLE to indicate resources which are 
always preemptable are preemptable and all others 
are non-preemptable. 

I5. Go to I 12. 

I6. Advance REALTIME by minlmum of 
a) SWAPTIME if swap in progress, 
b) TIMESLICE, or 
c) INTERVAL for active processes. 

I7. Reduce INTERVAL for active processes and SWAPTIME 
by time increment. 

I8. Update USE and TOTALUSE by adding ASSIGNED 
multiplied by time increment. 

I9. Advance VIRTUALTIME and TOTALVIRTUALTIME . of 
active processes by time interval. 

I 10. Advance TOTALINACTIVETIME o·r inactive processes 
by time interval. 

I11. If REALTIME greater than simulation period, print 
TOTALUSE, TOTALVIRTUALTIME, and 
TOTALINACTIVETIME. 

112. Zero RELEASED and NEWWANT. 

I 1 3 • Do step I 1 4 f o r each a c ti v e process P • Then , go 
to I19. 

114. While the time 
(INTERVAL[P]) is 

to the end of the next step 
non-zero, do steps I 15 through 
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I18. 

I 15. If a resource is to be released, place quantity 
into RELEASED array. 

I16. If a resource is to be requested, place quantity 
into NEWWANT array. 

I17. Set time for step (fixed time or random draw from 
uniform distribution) into INTERVAL[P]. 

I18. Set IA to address of next script instruction. 

I17. Subtract RELEASED from ASSIGNED. 

I18. Add total released resources to RESERVE. 

119. Add NEWWANT array to WANT array. 

I20. Go to scheduler being .tested. 
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Appendix III 

VALUE-BASED SCHEDULER 

(See Appendix II for script interpreter 
and variable definitions) 

Enter from Interpreter 

VBS 1. 

VBS2. 

VBS3. 

VBS4. 

VBS5. 

VBS6. 

VBS7. 

If swapping completed, then 
a) Set memory pa~es preemptable, 
b) Deassign swapping channel, 
c) Set swapping channel available, and 
d) Add FUTUREWANT for process to WANT. 

Set currently available resources 
currently available ~~sources and 
preemptable resources. 

to sum of 
assigned, 

Calculate value ' of running each process from 
rate of change in value with respect to service 
for class of service, current service received, 
and elapsed time. (See functions in text.) 

Calculate.opportunity value of each resource as 
maximum valuE~ of processes which have ·been 
suspended and need the resource. 

Calculate the adjusted value of running each 
process as the ·maximum of the value of tunning 
and the maximum value of non-preemptable 
resources held. 

Do steps VBS7 through VBS9 for each process, P, 
in order of descending adjusted value. 

If assigned resources are preemptable and not 
available, deallocate them and increase want; 
Otherwise, decrease quantity available. If 
memory pages were deallocated, move want for 
other preemptable resources in to future want 
and set swapping channel wanted. 
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VBS8. If all resources wanted are available; then 
assign them, decrease available, zero want, and 
do not do step VBS9. 

VBS9. If pages of memory are assigned and not 
preemptable, set the swapout candidate to the 
current process number. 

VBS10. If the swap channel is not free, go to VBS11. 
If there is a running job which holds only 
memory and preemptable resources, there is a 
job waiting for memory, and the adjusted value 
of the suspended job exceeds the adjusted value 
of the running job by the value which would be 
lost by suspending t.he running job to copy it 
out, suspend the running job and make it the 
swapout candidate. If there is a swapout 
candidate, initiate swapout: assign swap 
channel and set swap channel unavailable. 

VBS11. Set pages for process using CPU and I/O devices 
non-preemptable. 

VBS12. If a new swap was started, set swaptime to 
transfer time for number of memory pages 
allocated (.83 milliseconds per page)+ uniform 
random rotational latency (0 to 34 
milliseconds). 

VBS13. Set TIMESLICE to 12oa·milliseconds. 

VBS14. Go to interpreter step I6. 
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Appendix IV 

MULTILEVEL QUEUE SCHEDULER 

(See Appendix II for script interpreter 
and variable definitions) 

Enter from Interpreter 

MQS 1. 

MQS2. 

MQS3. 

MQS4@ 

Assign process releasing disk (if any) to I/O 
complete state. .Assign process completing 
inactive period (if any) to request-received 
state. 

Assign current user of CPU (if any) to new 
state: 

a) Requested disk to I/0-in-progress 
state 

b) Became inactive to wait-for-request 
state 

c ) Re quested open I c 1 o s e and un av a i 1ab1 e 
to waiting-to-open/close state 

d) If neither a, b, or c and less than 
40 milliseconds remain in quantum 
allotment to compute state 

e) If neither a, b, c, or d and quantum 
has expired or both at least 20 
milliseconds of quantum allotment has 
been used and there are other 
processes in request-received or 
special-compute state to 
compute-interrupted state. 

If the open/close resource is available, assign 
it to the first process if any in the 
open/close state. Place the process in the 
special compute state. 

If the swap out of a process waiting for a 
r~quest (inactive) was completed, place the 
process in the wait-for-request-out swapped 
state. 
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MQS5. 

MQS6. 

MQS7. 

new quantum allotment (1200 Assign a 
milliseconds) 
milliseconds 
allotment, 
state, and 
state. 

to processes with less than 4 0 
remaining in their old quantum 

processes in the request-received 
processes in the special-compute 

If the swap channel is not free, go to MQS12. 

If a swap has been completed, free the swap 
channel, zero the WANT for memory pages swapped 
in, set the pages swapped in ASSIGNED, zero 
f,,~SIGI'JED fer the p2gcs .S\!D.ppr:d out, and adjust 
the RESERVE for the difference between the 
number of pages swapped out and swapped in. 

M QS 8 • Se 1 e ct a candidate to swap in ·fr om the states 
(in order) 

request-received, 
special-compute,· 
I/0-complete, 
compute-interrupted, and 
compute. 

If more than one process is in the same state, 
choose the process which has been in the state 
longest. If none, go to MQS12. 

MQS9. If required pages are free, go to MQS 11. 

MQS10. Look for a single process which can be swapped 
out to provide enough free pages. This process 
must have received at least 40 milliseconds CPU 
use and not be opening or closing a file. The 
process i.s selected by searching in order the 
states 

waiting-for-request and 
waiting-to-open/close 

and choosing the process which entered the 
state most recently. If no single process can 
be found, multiple processes are selected by 
searching in order the states 

waiting-for-request, 
waiting-to-open/close, 
compute, 
compute-int~rrupted, 
I/0-complete, 
special-compute, and 
request-received 

starting with the process which entered the 
state most recently. If the swap in candidate 
is encountered before enough pages can be found 
go to MQS12. 
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MQS 11. Initiate swap out (if any) and swap in. 
Calculate SWAPTIME from transfer time for 
number of pages to swap ( . 83 milliseconds per 
page) + uniform random latency (0 to 34 
milliseconds). Set pages WANTED for pages 
being swapped out. 

MQS12. If the disk is available, assign it to the 
proccess which has been in the I/0-in-progress 
state longest. Reduce RESERVE. Reduce WANT. 

MQS13. Assign the CPU by searching the following 
states in order and choosing the process which 
has been in the state longest. 

current-user 
request-received 
special-compute 
I/0-complete 
compute-interrupted 
compute 

If a process is found, set ASSIGNED, reduce 
RESERVE, reduce WANT, and place the process in 
the current user state. Set TIMESLICE to 
remaining portion of quantum for this process 

MQS14. Go to interpreter step I6. 
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