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ARTICLE

Infrared nano-spectroscopy of ferroelastic domain
walls in hybrid improper ferroelectric Ca3Ti2O7

K.A. Smith 1, E.A. Nowadnick2,3,4*, S. Fan5, O. Khatib 6,7, S.J. Lim8,9, B. Gao 9, N.C. Harms 1, S.N. Neal1,

J.K. Kirkland1, M.C. Martin 7, C.J. Won 10, M.B. Raschke6, S.-W. Cheong8,9,10, C.J. Fennie 3, G.L. Carr11,

H.A. Bechtel7 & J.L. Musfeldt 1,5*

Ferroic materials are well known to exhibit heterogeneity in the form of domain walls.

Understanding the properties of these boundaries is crucial for controlling functionality with

external stimuli and for realizing their potential for ultra-low power memory and logic devices

as well as novel computing architectures. In this work, we employ synchrotron-based near-

field infrared nano-spectroscopy to reveal the vibrational properties of ferroelastic

(90� ferroelectric) domain walls in the hybrid improper ferroelectric Ca3Ti2O7. By locally

mapping the Ti-O stretching and Ti-O-Ti bending modes, we reveal how structural order

parameters rotate across a wall. Thus, we link observed near-field amplitude changes to

underlying structural modulations and test ferroelectric switching models against real space

measurements of local structure. This initiative opens the door to broadband infrared nano-

imaging of heterogeneity in ferroics.
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Many unique properties in functional materials arise from
spatially heterogeneous electronic and magnetic states.
Examples include the formation of charge and spin

stripes in some cuprates and nickelates and phase separation
across the Mott transition of VO2

1–7. Ferroics also have naturally
occurring heterogeneities in the form of domains and domain
walls8–18. This is especially true for Ca3Ti2O7, a hybrid improper
ferroelectric19,20 where the polarization arises from a trilinear
coupling mechanism21–23 and abundant charged domain walls
have been observed19,20,24. Atomic force and piezoforce imaging
reveal the different orientations of directional order parameters
and domain wall character, providing a physical playground for
graph theory. Like other counterpart materials16,17, ferroelectric
domain walls in Ca3Ti2O7 are anisotropic and more conducting
than their surroundings—although the domains themselves are
insulating19,20,24. Theoretical modeling and electron diffraction
experiments recently revealed that polarization rotates across the
ferroelectric walls in a manner that is more Néel than Ising-like25.
Ferroelastic walls in Ca3Ti2O7 are linear and separate different
structural twin domains20. Because the boundaries connect
domains with different spontaneous strain states, mechanical
compatibility conditions determine their orientation24,26,27.
These ferroelastic walls are also 90� ferroelectric walls. Within
each twin, there also are meandering 180� ferroelectric walls20.

There is considerable interest in the dynamics of domain walls.
Broadband scanning impedance microscopy of hexagonal
ErMnO3 reveals a domain wall response dominated by bound
charge oscillations rather than free carrier conduction28. Second-
harmonic generation spectroscopies also provide insight into
local symmetries and chemical structure and, at the same time,
are sensitive imaging tools8. X-ray photon correlation spectro-
scopy has uncovered ferroelectric domain wall dynamics in
PbZr0:55Ti0:45O3 as well29. Despite a number of significant dis-
coveries, almost nothing is known about domain wall phonons.
Infrared spectroscopy, a powerful tool for probing phonons and
their symmetries, has been unable to address the nano-scale
heterogeneities of domain walls due to its poor spatial resolution.
The long wavelengths of infrared light necessarily mean that, even
for a diffraction-limited beam, traditional infrared techniques
average over any micro- and nano-structured character of a target
material, thereby reducing the sensitivity to these hetero-
geneities30. The development of near-field spectroscopic techni-
ques has made real space imaging of nano-scale heterogeneity
feasible, although most efforts are confined to the middle infrared
due to the availability of suitable laser and broadband sour-
ces31,32. The extension into the far infrared using an accelerator-
based source33 enables broadband measurement of the low-
frequency response including phonons. Synchrotron-based near-
field infrared spectroscopy34 thus has the potential to unlock the
properties of defect states such as domain walls in complex oxides
and chalcogenides. Near-field infrared spectroscopy is, of course,
quite different than tip-enhanced Raman scattering in that
ungerade (odd symmetry) phonon modes, which are crucial to
the development of ferroelectricity and other functionalities, can
be probed and analyzed.

In order to uncover the behavior of fundamental excitations
like phonons at domain walls and to explore the structural dis-
tortions that they represent, we performed far infrared
synchrotron-based near-field nano-spectroscopy of the local
phonon response at domain boundaries in Ca3Ti2O7 and com-
pared our findings with theoretical models of how the order
parameter evolves across the wall. Analysis of the Ti-O stretching
and bending modes across the ferroelastic wall reveals subtle
changes in the frequency and matrix element that we relate to the
underlying modulation of the crystal structure and to the rotation
of the structural order parameters. There is significant width to

the residual structural distortion across the walls (60–100 nm)
and semiconducting character. This research opens the door to
broadband imaging of heterogeneity in ferroics and represents a
first step to revealing the rich dynamics of domain walls in these
systems. At the same time, it provides crucial information for the
development of ultra-low-power devices, switches, polarizers, and
computing architectures based upon domain walls35,36. Loss
mechanisms involving phonons are also key to controlling
decoherence in domain wall-based computing architectures28,37.

Results
Structure and order parameters across the domain boundary.
The structure of Ca3Ti2O7 consists of slabs that contain two
layers of CaTiO3 perovskite separated by CaO rocksalt layers. At
room temperature, Ca3Ti2O7 crystallizes in the orthorhombic
polar space group A21am

38,39. This structure (Fig. 1a) decom-
poses into three distinct distortions: an out-of-phase octahedral
tilt (a�a�c0 in Glazer notation40) that transforms like the X�

3
irreducible representation of the high-symmetry prototype
structure I4=mmm, an in-phase octahedral rotation (a0a0cþ in
Glazer notation) that transforms as Xþ

2 , and a polar distortion
that transforms like Γ�5 . Each distortion is represented by a
structural order parameter with amplitude Q and phase ϕ24. For
the chosen setting of the orthorhombic axes relative to the tet-
ragonal axes, the twin domains are labeled by different settings of
the space group symbol: A21am (twin A) and Bb21m (twin B).
Figure 1b shows their structure. In twin A, the X�

3 tilt axis (and
polarization direction) lie along [−110], whereas they lie along
[110] in twin B. The Xþ

2 rotation axis lies along [001] in both
twins, but the adjacent perovskite slabs have different rotation
senses: in twin A, the rotations in the two slabs are in-phase (red
arrows), whereas in twin B, they are out of phase. The boundaries
connect domains with different spontaneous strain states, so
mechanical compatibility conditions determine their orienta-
tion27. The wall symmetry is obtained by combining the sym-
metry elements of the two domains and those transforming one
domain into the other. To go from twin A to twin B, all three
structural order parameters rotate (change phase ϕ) by 90�
(Fig. 1b, c). Thus the X�

3 tilt axis rotates by 90�, whereas the sense
of the Xþ

2 rotation reverses in every other perovskite slab. At the
center of the domain wall, the local structure is C2mm (Fig. 1b),
where the X�

3 tilt axes in slabs 1 and 2 are perpendicular to each
other (tilts about [100] and [010] axes in slabs 1 and 2, respec-
tively). The Xþ

2 rotation is unchanged in slab 1 and zero in slab 2.
Thus the amplitude of the X�

3 order parameter remains relatively
constant across the domain wall, whereas the Xþ

2 order parameter
amplitude is suppressed in the middle of the path (Fig. 1d, e).
Whether local C2mm structure is realized at the center depends
on wall width. If it is atomically thin, the structural change from
one domain to the other will be abrupt, but if (as observed here)
the walls are wide, a macroscopic region with C2mm symmetry
may be realized.

Locating domain walls in different fields of view. Figure 2
summarizes the character of the different ferroelastic and ferro-
electric domain walls in Ca3Ti2O7 at room temperature. The fer-
roelastic (90� ferroelectric) walls are apparent under cross-polarized
light and readily identified by a color change as linear twin
boundaries in an optical microscope as illustrated in Supplementary
Fig. 1. They appear as faint parallel lines in higher-magnification
images. These features are present in a field of view where we have
both atomic force microscopic (AFM) topography and near-field
infrared spectroscopy. Nano-spectroscopic line scans (where a
spectrum is acquired at each pixel) are set up accordingly to cross
ferroelastic walls of interest. The line scans discussed here are
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indicated with arrows in Fig. 2a, b. We also identified candidate
180� ferroelectric walls for analysis and near-field line scans using a
combination of AFM, piezoforce microscopy, and a careful exam-
ination of the ridges and topography of the crystal surface as illu-
strated in Fig. 2c, d. These walls are much more challenging to
locate because they meander between twin boundaries. A detailed
explanation of this process and a summary of our spectroscopic
findings are available in Supplementary Information.

Near-field imaging of ferroelastic domain wall phonons. Fig-
ure 3a, b displays the near-field scattering amplitude A(ω), which
encodes the sample dielectric response across two different fer-
roelastic domain walls in the hybrid improper ferroelectric
Ca3Ti2O7. Each contour plot shows the line scan distance (the
exact position of which is shown in Fig. 2a, b) vs. frequency, with
the color scheme indicative of near-field amplitude. We selected
these particular scans to illustrate typical wall variations. The
features in A(ω) are in reasonable agreement with the far-field
spectra (Supplementary Information).

A group theoretical analysis shows 72 zone-center phonons
that transform as

Γ ¼ 19A1 � 17A2 � 19B1 � 17B2: ð1Þ
The A1, B1, and B2 modes are infrared and Raman active, whereas
the A2 modes are Raman active only. By considering the atomic
displacement patterns arising from the phonon eigenvectors, the
broad structures with maxima at 645 and 450 cm�1 are assigned
as Ti-O stretching and Ti-O-Ti bending modes, respectively. In
order to associate these localized vibrations with the rotations and

tilts that are crucial for the trilinear coupling and ferroelectric
switching, we projected out the character of each calculated
phonon. This process is described in detail below. We find that
the Ti-O stretching mode has a component that transforms as
Xþ
2 , whereas the Ti-O-Ti bending mode transforms primarily as

X�
3 . Thus the symmetry of long-range rotations and tilts are

mapped onto the more localized vibrations that are available in
our experimental energy window.

Strikingly, the near-field infrared spectrum is sensitive to the
ferroelastic (90� ferroelectric) domain walls. Focusing first on
Fig. 3a, we see that this line scan crosses a twin boundary. Both
spectral amplitude and line shape are altered across the wall. This
is interesting and important because domain walls in perovskites
are traditionally considered to be atomically sharp boundaries41.
Turning to the second set of data in Fig. 3b, a near-field scan over
an independent ferroelastic domain wall again reveals a
significant decrease in phonon amplitude and line width. There
are also very slight frequency shifts (toward the blue) that are at
the limit of our resolution. We therefore see that, while the height
and width of the wall vary somewhat, the general spectral
characteristics are similar.

Point spectra taken from the contour data (Fig. 3c) unveil a
more traditional spectral view of the ferroelastic wall, which
we can compare to that of the surrounding domain. In order
to highlight spectral changes between the wall and the
surroundings, we calculated a difference spectrum as ΔA(ω)=
A(ω)DW2 � AðωÞDomain. This quantity, which reveals average
changes (indicated by overbars) in the near-field amplitude, is
shown in the upper part of Fig. 3c. We find that the wall phonons
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Fig. 1 Bulk crystal and ferroelastic domain wall structure. a Crystal structure of Ca3Ti2O7 (space group A21am). The two CaTiO3 perovskite slabs are shown
in light and dark gray, with the Ca cations in light blue. The structure of the two orthorhombic twin domains is shown in b real space and c order parameter
space. The order parameters for the X�

3 octahedral tilt and Xþ
2 octahedral rotation are shown with blue and red arrows, respectively, in c and the

corresponding atomic motions are highlighted using the same colors in b. The bold black arrows show the setting of the orthorhombic relative to the
tetragonal axes. The rotation direction of the Γ�5 order parameter is indicated by the arrows with a P, indicating polarization direction, above the structures.
Upon crossing a ferroelastic domain wall, the octahedral rotation order parameters rotate by 90�; at the midpoint, the local structure is space group C2mm.
d, e The order parameter amplitudes are plotted as a function of the normalized wall width. These amplitudes (reported for a Z= 2 cell) were obtained
using density functional theory calculations of a trajectory through the bulk energy surface. The units of these structural order parameters are that of
distance (in Å) because they are measuring the amount of distortion—which is calculated by adding up how much all of the atoms in the unit cell are
displaced from their high symmetry positions. See Supplementary Information for details
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have reduced amplitude and a slight blue shift. The frequency
shift is at the limit of our sensitivity, which unfortunately
precludes a more detailed analysis. In any case, the blue shift
suggests that there is a spontaneous strain across the wall27. The
strain across the wall occurs because a ferroelastic wall connects
domains with different spontaneous strain states; this strain
together with the modulation of order parameter amplitudes
determines the local wall structure. Another property of interest is
conductivity. We immediately notice that the twin boundary is
semiconducting rather than metallic because there are strong
phonons with no hint of a Drude response. Therefore, the
ferroelastic walls are not metallic in the conventional sense—
although they may be slightly more conducting than their
surroundings. To verify this observation, we calculated the band
gap for the bulk C2mm structure (the hypothetical structure
realized at the midpoint of the domain wall). We find that the
computed gap is 0.26 eV less than that of the A21am structure—
not even close to closing the 3.94 eV gap in this system42. This
confirms that the ferroelastic walls remain insulating.

Constant frequency cuts in the range of the Ti-O stretching and
Ti-O-Ti bending modes uncover another surprising aspect of the
walls (Fig. 3d). We take these cuts of the contour data at 460 and
640 cm�1, where the change in near-field amplitude between the
wall and the surrounding domain as quantified by ΔA(ω) in Fig. 3c
is strongest. Rather than an atomically sharp boundary, this direct
and microscopic probe of the ungerade modes suggests that there is
a significant width to the structural distortion. We find widths from
60 to 100 nm for the range of domain walls investigated. This is akin
to the length scale of structural relaxations in strained epitaxial thin
films. The four different types of ferroelastic domain walls in

Ca3Ti2O7 (head-to-head, head-to-tail, tail-to-head, and tail-to-tail)
20

along with the prediction from Landau theory that charged walls are
thicker than their neutral counterparts43 provide a natural
explanation for this variation.

Relating near-field amplitude to the order parameters. We now
consider how localized phonons map onto the underlying long-
range structural order parameters in Fig. 1d, e. We know that the
19 A1 phonons maintain A21am crystal symmetry across the wall,
so we can loosely think of the A1 phonons as excitations of the
structural order parameters. Since distortions that transform like
the X�

3 , X
þ
2 , Γ

�
5 , and Γþ1 irreducible representations of I4=mmm

contribute to the A21am structure, each A1 phonon can (in
principle) excite a mixture of these four structural order para-
meters. We therefore performed a change of basis and projected
the computed A1 phonon eigenvectors eA1

onto a basis of
symmetry-adapted modes eiτ that transform like the irreducible
representation τ ¼ fΓþ1 ; Γ�5 ;X�

3 ;X
þ
2 g of the high-symmetry pro-

totype structure I4=mmm. Figure 4a displays the results of this
projection. Details are in Supplementary Information.

Remarkably, certain phonons almost completely overlap with a
single symmetry-adapted mode—exciting only one structural order
parameter—whereas, others are a mixture. Focusing first on the
low-frequency phonons with calculated frequencies 428 and
466 cm�1, we find that they transform primarily as eX�

3
. These

phonons are Ti-O-Ti bends although they involve different bond
angles (Fig. 4b, c). We next consider the phonons calculated to be at
652 and 546 cm�1. They primarily overlap with eΓþ1 and eXþ

2
. The

atomic displacement patterns (Fig. 4d, e) reveal that the 652 cm�1
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Fig. 2 Combining scanning techniques to locate domain walls. a, b Atomic force microscopic (AFM) images of the crystal surfaces showing the two
ferroelastic domain walls of interest (at the edges of the dark blue stripes). These ferroelastic walls separate domains of different spontaneous strain and
are also 90� ferroelectric walls. DW 1 and DW 2 refer to domain walls 1 and 2. Red arrows indicate direction and path of the line scans. The nano-
spectroscopic line scans are taken perpendicular to the wall, and the contact angle from one domain to another is 90�. c AFM topography of a smooth area
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d the piezoresponse force microscopic (PFM) image of the same area revealing the placement and orientation of the 180� ferroelectric domains, indicated
by yellow(+) or blue(−) regions with black or white arrows to indicate the polarization direction. All of these structures are present at room temperature
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phonon is a c-polarized Ti-O stretch, whereas the 546 cm�1 mode is
an ab-polarized Ti-O stretch. This motivates our assignment of the
broad experimental structure centered at 645 cm�1 as bond
stretching. The width of the spectral peak suggests that the
ab-plane and c-directed Ti-O stretching modes overlap.

There are three distinct types of oxygen centers in the layered
Ruddlesden–Popper structure. These include the equatorial
oxygens Oeq, as well as two different types of apical oxygens:
those that border the rocksalt layer ORS and those that lie in the
middle of the perovskite slab, OP. We find that the 466 cm�1

phonon is primarily a Ti-OP-Ti bend, whereas the 428 cm�1

mode involves both Ti-ORS-Ti and Ti-Oeq-Ti bending motion.
From this analysis, we conclude that the broad experimental peak
centered near 645 cm�1 contains excitations that transform like
Xþ
2 and Γþ1 , whereas the wide experimental feature centered near

450 cm�1 in the near-field spectrum transforms primarily as the
X�
3 irreducible representation.

Order parameter trends vs. near-field response of ferroelastic
domain walls. In order to test the correspondence between these
symmetry objects, we plotted the near-field amplitude of the 460
and 640 cm�1 phonons as a function of distance across the fer-
roelastic domain wall and overlaid predictions for how the order

parameters change across the wall. Importantly, these two fre-
quencies are most sensitive to the presence of the domain wall,
and they are very near the calculated A1 mode positions (Fig. 3c).
The agreement, while not perfect, has several striking aspects. Our
model predicts that the X�

3 amplitude is relatively constant across
the wall, whereas the amplitude of the Xþ

2 rotation changes sig-
nificantly and is suppressed in the center. Domain wall 1 exhibits
reasonable overall agreement with these predictions (Fig. 5a, b).
The 460 cm�1 feature remains relatively constant across the wall,
although the anticipated minimum in the fixed frequency scan at
640 cm�1 is not well pronounced. Domain wall 2 is different
(Fig. 5c, d), illustrating what we have found to be typical varia-
tions. The fixed frequency near-field scan at 460 cm�1 is relatively
flat across the wall—in agreement with the predictions of the X�

3
order parameter. At the same time, the 640 cm�1 feature is sup-
pressed at the center of the wall, as anticipated. Overall, both X�

3
and Xþ

2 track the behavior of the walls fairly well albeit with some
deviation. Therefore, we can loosely but not completely think of
the long-range rotations and tilts as mapping onto the more
localized vibrations that are available in our experimental energy
window. Mixing effects (Fig. 4a) and signal-to-noise issues are the
primary reasons that the agreement is not better.

This order parameter framework provides appealing insight
into the spatial extent of the ferroelastic domain walls in
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ΔA(ω)= A(ω)DW2 � AðωÞDomain, reveal the difference and, at the same time, reduce the noise. Here the bars denote an average response. This analysis
demonstrates that wall phonons have reduced amplitude and a slight blue shift. The six A1 modes within the experimental energy window are indicated by
double-sided orange arrows. d Fixed frequency cuts of the contour data in b showing how intensity at 460 and 640 cm�1 varies across DW 2. According to
the calculation of ΔA(ω) in c, these frequencies are most sensitive to the presence of the domain wall. They are also very near the calculated A1 symmetry
vibrational modes (shown as orange arrows in c)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13066-9 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5235 | https://doi.org/10.1038/s41467-019-13066-9 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Ca3Ti2O7. Twin boundaries are traditionally considered to be
quite narrow41,44, although recent work suggests that they may be
wider than previously supposed45. In systems with octahedral
rotations, the width and energy of a ferroelastic wall depends on
the orientation of the octahedral rotation axes with respect to the
domain wall plane41,46. In particular, symmetry constraints that
require the octahedral rotation amplitude to go to zero at the
center of the wall can increase the wall’s width. In Ca3Ti2O7, as
the Xþ

2 order parameter rotates by 90� across the ferroelastic wall,
symmetry dictates that the a0a0cþ rotation turns off in every
other perovskite slab (Fig. 1c). The spatial extent of the
ferroelastic walls—ranging from 60 to 100 nm in our measure-
ments—may therefore originate from frustration of the Xþ

2
rotation. In addition to the octahedral rotation order parameters
discussed here, the spontaneous strain also changes across the
ferroelastic wall. This means that the elastic properties also play a
role in determining the domain wall width and energy27,47. Based

on experimentally reported room temperature lattice para-
meters38, Ca3Ti2O7 has a small orthorhombic distortion with
spontaneous strain η ¼ ðb� aÞ=ðbþ aÞ ¼ 8 ´ 10�4. The elastic
energy per area of a ferroelastic wall can be estimated as η2Cd,
where C is the elastic stiffness coefficient and d is the domain wall
width. Taking C from density functional theory (DFT) calcula-
tions48 and estimated wall widths from our experiments, we
find the elastic energy per area to be roughly 10 mJ/m2. This
relatively small elastic energy contribution may make wide walls a
favorable situation.

Discussion
In this work, we combine synchrotron-based infrared nano-
spectroscopy and theoretical modeling to unlock a nano-scale
view of ferroelastic domain walls in hybrid improper ferroelectric
Ca3Ti2O7. While domain walls have long been known to play a
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key role in determining the functionality of ferroic materials,
exploration of the atomic- and nano-scale structure and prop-
erties of these walls is in its early stages, enabled by new high-
resolution imaging techniques and complementary theoretical
methods. In particular, we elucidate how the phonon response
evolves across a 90� ferroelastic wall and relate it to the under-
lying structural changes that occur within the wall. We find that
these twin boundaries have a surprisingly large spatial extent,
suggesting that ferroelastic walls are not always narrow objects.

Methods
Crystal growth and scanning techniques to locate domain walls. High-quality
single crystals of Ca3Ti2O7 were synthesized by optical floating zone techniques as
described previously20. Surface topography was scanned using AFM, and ferroe-
lastic domain walls were identified using a combination of visual inspection of
orthorhombic twin boundaries and cross-polarized light. We also carried out
piezoforce microscopy to identify ferroelectric domains and walls. Identification of
common step edges and defects allow these images to be overlaid—even though
they are not in the same field of view. In this manner, we are able to navigate
around the surface and examine the lattice dynamics across different ferroelastic
and ferroelectric domain walls.

Synchrotron-based near-field infrared spectroscopy. Near-field infrared spec-
troscopy was performed using the set-ups at beamlines 5.4 and 2.4 at the Advanced
Light Source, Lawrence Berkeley National Laboratory34. The apparatus is config-
ured as an asymmetric Michelson interferometer, in which one arm consists of an
AFM (Bruker Innova or Neaspec neaSNOM) and the other arm is a moving
mirror. Synchrotron infrared light is focused and scattered off an AFM tip in close
proximity to the sample surface. The scattered light is combined with the reference
beam from the moving mirror on a silicon or KRS-5 beamsplitter and detected by a
liquid helium-cooled Ge:Cu detector. Scanning the mirror of the reference arm
creates an interferogram, which is Fourier-transformed to obtain both amplitude
and phase information, which is related to the real and imaginary parts of the
optical dielectric function of the material. The incident light is p-polarized with
respect to the sample such that the polarization is parallel to the tip axis. This
configuration enables the most efficient coupling to the antenna modes of the tip,
but there is also a component of polarization in the plane of the sample due to the
focusing angle of the off-axis parabolic mirror. However, the strong enhancement
of the metal tip localizes and enhances the optical field linearly polarized parallel to

the tip axis, such that the technique is most sensitive to phonon and vibrational
modes perpendicular to the sample surface49. To discriminate the near-field signal
from the far-field background signal, the AFM is operated in non-contact (tapping)
mode at a typical frequency of 250–300 kHz, and the corresponding detector signal
is demodulated at twice the tapping frequency. Our measurements were performed
with typical free oscillation tip amplitudes in the 80–100-nm range with a setpoint
between 70% and 78% of the free-tapping amplitude, such that the engaged tapping
amplitude values were in the 55–75-nm range. Routine approach curves with free
oscillation tip amplitudes in the 80–100-nm range taken on gold indicate a near-
field tip enhancement within <30 nm of the surface with little-to-no second-
harmonic signal when the sample is withdrawn further. Different setpoints within
the 70–78% range have minimal-to-no effects on the sample amplitude or shape.
The setpoint is typically chosen to have the least damping (i.e., closer to 78%) while
still maintaining good AFM feedback and reproducibility between the forward and
backward traces. This approach minimizes tip wear as well.

Our near-field infrared measurements were carried out at room temperature
over a frequency range between 330 and 800 cm�1. The near-field spectra are
corrected for the limited transmissivity of the entire set-up by normalizing the
power spectrum of the sample to that of a gold reference mirror. Both second- and
third-harmonic signals were analyzed. The spatial resolution of this technique is
limited by the AFM tip radius, which is typically <25 nm for the tips used
(Nanosensor PtSi-NCH). Our line scans employed a step size of 20 nm. Multiple
line scans across the same domain wall are very similar in character with variances
on the order of the noise level. Scans across different domain walls reveal some
variations, which is why we show the results for two different walls in this work.

Far-field infrared spectroscopy. We also carried out traditional, far-field spec-
troscopy using a suite of Fourier transform and grating spectrometers covering the
spectral range from 15 to 65,000 cm�1 for comparison with the near-field infrared
response. Data were collected in reflectance mode in the ab-plane and along the
c-direction. A summary of mode positions and assignments is available in Sup-
plementary Information.

Symmetry analysis and lattice dynamics calculations. DFT calculations were
performed using projector augmented wave pseudopotentials50 and the PBEsol
functional, as implemented in VASP51. We used the (Ca_sv, Ti_sv, O) VASP
pseudopotentials with electronic configurations 3s23p64s2, 3s23p64s23d2, and
2s22p4, respectively. Calculations were performed in a 48-atom supercell com-
mensurate with both orthorhombic twins of Ca3Ti2O7 with a 6 ´ 6 ´ 2
Monkhorst–Pack k-point mesh and a 600 eV plane wave cutoff. All structural
relaxations were performed with a force convergence tolerance of 2 meV/A. The
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theoretical curves across domain walls were obtained by considering a path
through the bulk energy surface connecting the two domains and calculating a
sequence of bulk structures along that path. This was done using nudged elastic
band calculations, allowing the ions to relax at each image along the path—between
the A21am domain to the midpoint structure C2mm and into the Bb21m domain.
Note that we are considering a sequence of bulk structures along the path
through the bulk energy landscape that connects the two domains; we are not
taking into account order parameter gradients and strains, which are known to be
important at the domain wall. While this level of theory does not permit quanti-
tative predictions of, e.g., domain wall widths, we find that it places a simple focus
on the evolution of the structural order parameters across the domain wall. Phonon
frequencies and eigenvectors were calculated using density functional perturbation
theory52. We performed group theoretic analysis with the aid of ISOTROPY53

and the Bilbao Crystallographic Server54–57 and visualized crystal structures
using VESTA58.

Data availability
Relevant data are available upon request from the corresponding authors, J.L.M. (email:
musfeldt@utk.edu) and E.A.N. (email: enowadnick@ucmerced.edu)
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