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ABSTRACT OF THE DISSERTATION

Phase Manipulation of Fermionic Cold Atoms in Mixed Dimensions

by

Kyle Airell Irwin

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2014

Professor Shan-Wen Tsai, Chairperson

Ultra-cold fermionic atoms trapped in optical lattices may be a candidate for the discov-

ery of novel phenomena in condensed matter systems. Experiments afford the creation

of virtually any lattice geometry, and physical parameters of tight binding type lattice

models can be acurately and easily tuned. Although some theoretical work has been

conducted, few have used the power of the functional renormalization group method to

unearth rigorous methods for determining collective many-body phases in this regime.

Motivated by recent experimental achievements, we investigate novel condensed matter

systems involving interacting fermions which are engineered to be confined in different

dimensions. In this sense, we seek low energy effective theories for low-dimensional

fermionic lattice systems embedded into higher dimensional lattice systems, and show

how tuning physical quantities, such as the filling or density, can have dramatic effects

on the behavior of the lower dimensional system.
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Chapter 1

Introduction

The present work focuses on the classification of the phases that emerge in a

relatively new branch of theoretical and experimental condensed matter physics: sys-

tems with mixed species of fermions made to come together and interact in different di-

mensions. We’ll examine a system of one-dimensional fermions embedded into a square

lattice of a different species. The particulars of one-dimensional conducting systems and

renormalization group results on them have been an area of intense study in years past.

The work to follow should seem familiar to veterans of the field, but should also pique

their curiosity with regard to the expansion into density-controlled phase manipulation.

The idea of the one-dimensional line embedded into a square lattice may be extended to

ladder systems which involve two one-dimensional lines interacting with each other in

addition to their interactions with the surrounding two-dimensional lattice. The work

was inspired by experimental developments in the field of ultra-cold atoms trapped in

atomic lattices.

Cold atom systems have proven to be an invaluable tool in studying a wide

range of condensed matter phenomena. Relative ease in experimental tuning of inter-
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particle interactions and the ability to create various lattice geometries are notable

examples of the field’s breadth. Of particular interest is the creation of systems with

mixed species and dimensionality; these experimentally realizable systems are central to

the research presentation to follow.

In the early days of using cold atom systems to model condensed matter sys-

tems, much of the focus dealt with the realm of bosonic theories; in particular, much

interest was generated in expanding the knowledge of Bose-Einstein condensates (BECs).

Initially efforts were made to explain condensate properties of matter waves of weakly

interacting quantum gases [17, 38, 54, 53], and later evolved to include the effects of

strong coupling regimes [28]. These systems can be made to trap cold atoms in one,

two, or three dimensional lattice configurations by (effectively) creating uniform, steady-

state electric fields with overlapping laser light. The atoms are constrained to exist only

at these lattice sites, and may only “move” onto other lattice sites. In essence, cold

atoms trapped in optical lattices can be efficiently made to mock tight-binding and

Hubbard-like models [26, 5].

More recent experiments have shifted focus to Fermionic atoms [74, 51, 73, 60],

and a multitude of exotic phenomena normally not occuring in condensed matter sys-

tems can now be fabricated with exceptional tunability via controllable parameters

[29, 7, 55, 62, 70, 12, 43, 44, 22]. For instance, fermionic mixtures can be manipulated

to carry different internal properties such as population densities, group symmetries,

lattice geometries, and dimensionalities. By cooling two fermionic isotopes of ytter-

bium with different nuclear spins, a degenerate fermi mixture with an SU(2) × SU(6)

symmetry has recently been achieved [63]. Mixed two-species fermi gases with unequal

populations have also been extensively studied [52, 61], as well as systems of dipolar

atoms and molecules [41, 30, 23]. Many-body effects in these systems can be further
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enhanced when the system is loaded onto an optical lattice [8] and interactions tuned via

Feshbach resonances [16, 64, 66]. Fermions with imbalanced populations [36] and dipolar

fermions [21, 20] on a square lattice have been investigated and present a much richer

phase diagram than their gas counterparts, with lattice effects enhancing the transition

temperature for various phases.

Experimentally, it is also possible to confine components of an ultra-cold atom

mixture in different dimensions [37], and this has triggered some recent theoretical stud-

ies [48, 50, 27]. As pointed out by Nishida [47],the mediated intra-species interaction

generated may in fact reshape the phase diagram in a bi-layer fermi gas. Further-

more, Efimov physics with fermions is also proposed to energy in one/three-dimensional

mixed systems [49]. The properties of the lower-dimensional fermi gas can be manip-

ulated by tuning parameters in the higher dimensional species; it is precisely these

inter-dimensional interacting systems which form the bulk of the current research, and

will be discussed in the chapters to follow.

It was, in fact, the mixed-dimensional variety of cold atom systems which

provided the impetus for the current research. In particular the work of Lamporesi et

al. [37], in which 41K atoms were made to “live” on a two-dimensional lattice while 87Rb

atoms are confined to a three-dimensional lattice, provided much of the inspiration. In

light of this experimental success, some theoretical work was conducted [48, 27] wherein

quantum phases were investigated.

Chapter 2 provides the historical context of the renormalization group method

for understanding why phase transitions occur in principle. Kadanoff’s scaling hypothe-

sis is discussed, and Wilson’s renormalization group formulation is shown to be a rigorous

derivation of the scaling hypothesis. From this historical motivation, the renormaliza-

tion group technique is developed for one-dimensional fermionic systems at half-filling.
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The analysis results in a set of “flow equations” which govern the behavior of particular

couplings which in turn determine the phase of the system.

Chapter 3 introduces the mixed 1D/2D system engineered out of ultra-cold

atoms trapped in optical lattices and applies the renormalization group technique to

determine the phases of the system. The effect of the two-dimensional system manifests

itself in the form of a mediated interaction. This effective interaction between one-

dimensional particles plays a crucial role in the collective phase of the one-dimensional

system. A detailed analysis of the behavior of the four unique couplings, known collec-

tively as the “g-ology”, is conducted in a space parameterized by the mediated interac-

tion at momentum transfers of 0 and π between particles of the same spin.

Chapter 4 extends the idea of chapter 3 one dimension further by considering

a two-leg ladder embedded into a square lattice. The phase diagram of the system is

discussed and shows how phase manipulation exists (as with the 1D/2D system) by

tuning the density of the larger dimensional system.
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Chapter 2

Renormalization Group For

One-Dimensional Interacting

Fermions at Half-Filling

2.1 Motivation

In essence this work is an exposition on the Renormalization Group technique

applied to one-dimensional and, in the case of the two-leg ladder, quasi-one-dimensional

conducting systems. There exist many excellent reviews on the subject matter [58, 72, 9]

and this chapter merely serves to summarize the relevant issues insofar as to make the

treatise on the mixed-dimensional systems to follow self-contained.

Historically, the renormalization group was used by Wilson [71] to show that

the Widom-Kadanoff scaling laws [31] used to explain how various physical couplings

should be (length-) scale dependent, could be derived through rigorous mathematical

means on a microscopic level. This analysis was famously used to discuss continuous
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phase transitions of the Ising model for ferromagnetism. The partition function for the

system is given by

Z(K,h) =
∑
{S}

eK
∑

~R

∑
~i S~RS~R+~i

+h
∑

~R
S~R = e−βF (2.1)

and describe a lattice of spins coupled to a local magnetic field h with interactions be-

tween nearest neighboring spins with strength K = −βJ . Kadanoff proposed that as

the temperature of the system approaches a critical value (K → Kc) the free energy

F develops a singularity. Furthermore, an “order parameter” is defined for the sys-

tem whose features change drastically as the temperature is lowered below the critical

temperature. In the Ising model this order parameter is the expectation value of the

magnetization 〈M〉 = 1/N
∑

~R〈S~R〉

Kadanoff (erroneously) imagined a scheme where instead of summing over each

configuration of spins, the spins were “unified” over cubic blocks of size Ld, in effect

replacing the theory of single spins with an equivalent theory in terms of appropriately

normalized “block spins.” He then hypothesized that the functional form of the free

energy F was precisely the same: having blocked the spins one can define new couplings,

local magnetic field strength, and order parameter such that K → KL, h → hL, and

〈M〉 → 〈µ〉. Kadanoff then proposed that the transformation from spins to block spins

leaves the free energy invariant. This consistency requires the free energy and correlation

length to satisfy the scaling laws

F (K,h) = L−dF (kL, hL) (2.2)

ξ(K,h) = Lξ(KL, hL) (2.3)

After n blocking transformations, the correlation length in 2.3 may be inverted
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to give ξ(KLn , hLn) = ξ(K0, h0)/Ln where K0 and h0 are the initial values in the un-

blocked system. As the blocking procedure carries on, the couplings find their way to

fixed values referred to as “fixed points” [67] which will be denoted as K∗ and h∗. Once

these fixed points have been reached, the correlation length satisfies

ξ(K∗, h∗) =
1

l
ξ(K∗, h∗) (2.4)

which implies that the correlation length must be either zero or infinity. Critical cor-

relations that grow to infinity form the basis of a microscopic understanding of phase

transitions.

While there is no reason to believe that the free energy should remain the same

after each blocking transformation in the Ising model, Kadanoff’s approach contains the

essence of the modern renormalization procedure:

• Classification of a phase transition requires the identification of an order parameter.

As the system reaches criticality the order parameter acquires a non-zero value of

which there may be many.

• Fluctuations of an order parameter grow as the system reaches criticality and the

correlation length of these fluctuations becomes infinite as signaled by a diverging

susceptibility.

• Long-wavelength physics (long-range fluctuations) of the system are found by in-

tegrating out high-energy terms in the partition function of the system, utilizing

the renormalization group technique. On each differential iteration of the process,

the action of the system is invariant.

• The flow of the couplings in the action is, as Wilson suggested, determined by a

7



differential equation referred to as the “beta function.”

2.2 Renormalization Group for Interacting Hubbard Fermions

at Half-Filling

With the tenets of the renormalization group procedure outlined in the previous

section, one begins the analysis by constructing the many-body coherent state path

integral for interacting fermions.

Z = e−βΩ = Tr e−β(Ĥ−µN̂) =

∫
D
[
φ̄φ
]
e−S(x,τ) (2.5)

where the action, S(x, τ) is given by

S(x, τ) =
∑
i

∫ β

0
dτ
[
φ̄i(τ)∂τφi(τ) + Ĥ(φ̄i(τ)φ̄i(τ))− µN̂(φ̄i(τ)φ̄i(τ))

]
(2.6)

and φ̄i(τ) (φi(τ)) is shorthand for the creation(annihilation) operators replaced by Grass-

man fields by taking the trace with respect to fermionic coherent states, and the index

i refers to the single-particle basis the second-quantized Hamiltonian was constructed

with (in this case the momentum basis). The Hamiltonian is composed of two terms

Ĥ = Ĥ0 + ĤI . After performing a Fourier transform from τ → ωn = (2n + 1)π/β, the

Matsubara frequencies, the total action decomposes into two terms given by

S0 =
∑
k,ω,σ

φ̄σ(kω) [−iω + ε(k)− µ]φσ(kω) (2.7a)

SI =
1

2

∑
{kω}

U({kω})φ̄σ(4)φ̄σ′(3)φσ′(2)φσ(1)δ̄(k1+k2−k3−k4)δ(ω1+ω2−ω3−ω4) (2.7b)

The numbers appearing in the Grassman fields are a shorthand notation φ(i) ≡ φ(kiωi)

and {kω} indicates the set of momenta and Matsubara frequencies with labels 1 through

4. The bar over the momentum conserving delta function indicates that the momenta
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k1 . . . k4 are conserved up to a reciprocal lattice vector, and in the case of fermions

on a one-dimensional lattice the reciprocal lattice vectors correspond to 2nπ for n =

±1,±2,±3, . . . where the lattice constant has been set to unity.

In keeping with the mantra laid out in the previous section, the aim is to dis-

cover the long-range physics of the system. To this end, a mode elimination is performed

in which the short-wavelength terms (high energy terms) in the action are explicitly in-

tegrated out. The high energy terms are those residing the furthest away from the

“fermi surface” - a manifold of k-values that satisfy ε(k)−µ = 0. In one dimension, this

surface consists of exactly two points, and at half filling (half as many fermions as there

are lattice sites) these two points lay at ±π/2. If the system is very cold, then it stands

to reason that all of the dynamics take place within a tight proximal region around

the fermi points. Taking this into account, a cutoff is introduced within which all the

dynamics of the system take place. Alternatively, one could imagine having partially

integrated the partition function from the edges of the full bandwidth, renormalizing the

action at each differential step, but being far enough away from the long-range features

of the system to have avoided any divergences.

The action has now been reduced to terms residing within a narrow band cen-

tered around the two fermi points. For one-dimensional fermions on a lattice restricted

to nearest-neighbor hopping, the dispersion may be replaced with its linearized form

ε(k) = −2tcos(k)

' ±2t(k ± π/2) = ±vF (k ∓ π/2) (2.8)

where vF is the fermi velocity and the upper (lower) sign refers to the linearized disper-

sion near the right (left) fermi point. By taking the thermodynamic limit (N →∞) and

letting the temperature go to absolute zero, the sums in the action are replaced with

9
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Figure 2.1: Dispersion for fermions on a one-dimensional lattice. The black dotted line
denotes the linearized form of the energy applicable within the narrow cutoff (red lines
at ±Λ) of the left and right fermi points (purple squares).
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the integrals

1

N

∑
k

→
∫
dk

2π
(2.9a)

1

β

∑
ω

→
∫
dω

2π
(2.9b)

To begin the mode elimination the fields in the action must be divided into

those which are slow and those which are fast. This is done with respect to a shell of

energy around the fermi points of value Λ as indicated by the red bars in fig.2.2. As

such, the fields divide as

φσ(kω) = Θ(|ξ(kω)| − Λ)φ>σ(kω) + Θ(Λ− |ξ(kω)|)φ<σ(kω) (2.10)

The slow modes are inside the shell ±Λ while the fast ones are outside. The

cutoff is only defined with respect to momentum space, while the Matsubara frequencies

are left unaltered. In this sense, the action now takes the form

Z =

∫
D<eS0(φ̄<φ<)

∫
D>eS0(φ̄>φ>)eSI(φ̄<φ<φ̄>φ>)

= Z>
∫
D<〈eSI(φ̄<φ<φ̄>φ>)〉>

=

∫
D<e(S0(φ̄<φ<)+SI(φ̄<φ< )+ln〈eSI (φ̄<φ<φ̄>φ>)〉>+lnZ>) (2.11)

This low energy effective action (LEEA) now represents the system at a lower energy,

closer to the fermi energy, and consequently contains the physics at longer wavelengths.

S0(φ̄<φ<) represents the kinetic part of the action which contains only the

slow modes. As a true renormalization, it retains the exact same funcitonal form as

the action before and mode elimination took place. S0(φ̄>φ>) is the kinetic part of

the action but contains purely fast modes. SI(φ̄<φ<φ̄>φ>) represents the interacting

11



part of the action containing both slow and fast modes. The notation 〈A〉> represents

the statistical average of the quantity A taken with respect to only the fast modes.

lnZ = βΩ> is the grand canonical potential [14] of the fast modes written for an action

consisting of purely fast modes; this term merely shifts the free energy and can be

disregarded.

Evaluating the natural log of the fast average involves invoking the so-called

linked cluster theorem [46] in which only “connected” Feynman diagrams contribute.

This is an expansion of connected contractions of SnI for n = 1, 2, 3, . . . that generates

terms in the LEEA containing two, four, six, etc. slow fields once the fast modes have

been integrated out. These terms are responsible for changes in the action. Terms with

odd mixes of slow and fast modes are possible since they can be contracted with simi-

lar terms, but these don’t represent changes to terms present before mode elimination

happened.

Collecting all the terms in the new LEEA we see that both the kinetic and

interacting terms are modified, and terms consisting of higher numbers of slow fields are

generated (although once the scaling of the action is discussed these terms will be dubbed

“irrelevant,” and renormalize to zero eventually). Terms with two remaining slow fields

in the linked cluster expansion modify the kinetic terms on each renormalization step. In

principle these are collected and grouped with the chemical potential. Terms containing

four slow fields renormalize the interaction. Each renormalization step will produce the

terms that existed at the previous energy scale. These terms are referred to as “tree

level” terms.

In the present work, only contractions at “one loop” are considered since they

are essentially the lowest order terms in an expansion of powers of the (weak) interaction

12
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Figure 2.2: Feynman diagram schematic for the fast-field contracted terms that renor-
malize the action to one loop. a)The renormalized kinetic term is a sum of the tree level
kinetic energy and 〈SI〉 with two contracted fast modes. b)Corrections to the interac-
tion consist of the tree level interaction plus the ZS, ZS’, and BCS terms as shown in
succession.

U . A schematic of the renormalized terms in the action are shown in Fig.2.2

2.3 Scaling of the Renormalized Action

In the previous section the diagrammatic expansion of the renormalization was

considered. By performing a mode elimination, breaking the action of the partition

function into slow and fast modes (long and short wavelength physics) , and partially

integrating out the fast modes, a low energy effective action was found for an energy

scale closer to the fermi points. The new action, however, is written for a subset of the

original bandwidth of momenta. By performing a rescaling of the terms, the new low

energy effective action retains the exact form but with physical quantities rescaled.

Firstly, one must replace the momenta and dispersion with those written with

respect to the fermi points. In this sense the dispersion in Eq. 2.8 becomes εi(K)vFK
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with K = |k|−kF and the subscript i refers to the right or left fermi points. The integral

over the momentum is limited by the cutoff as

∫ Λ

−Λ

dK

2π
(2.12)

By introducing the scaling parameter s, the momenta remaining after a mode

elimination lay in the range −Λ/s ≤ |K| ≤ Λ/s while the fast modes that have been

eliminated in the previous renormalization step lay in the range Λ/s ≤ |K| ≤ Λ. To

make the new LEEA a fixed point of the interaction, one defines new scaled momenta,

Matsubara frequencies, and fields according to

K ′ = sK (2.13a)

ω′ = sω (2.13b)

φ(K ′ω′) = s−3/2φ(kω) (2.13c)

Terms that renormalize the kinetic energy are diagonal in k, ω, σ. Schematically

they are represented by the second diagram in Fig. 2.2a and have the explicit form

δS2 =

L,R∑
iσ

∫ Λ/s

Λ/s

dK

2π

∫
dω

2π
Γ2(Kω)φ̄iσ(Kω)φ̄iσ(Kω) (2.14)

By implementing the scaling of Eq.(2.13) the one-body function Γ(Kω) scales as

Γ(K ′ω′) = sΓ(Kω) (2.15)

By expanding the one-body function in a Taylor series expansion in both K and ω, the

relevance of each term may be examined under the scaling procedure. This expansion

goes as
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Γ(Kω) = Γ00 + Γ10K + Γ01iω + · · ·+ ΓmnK
m(iω)n (2.16)

and indicates that Γ00 → sΓ00, i.e. that it is a relevant parameter. As s→∞ reducing

the cutoff closer to the fermi surface upon each renormalization step, Γ00 diverges. The

next two terms have no dependence on s after all substitutions of Eq.(2.13) are made

and this type of parameter is said to be marginal. The remaining terms in the series

scale as some negative power of s and as such renormalize to zero.

A similar method applies to the terms with four fields that renormalize the

interaction. These are the tree level, ZS, ZS’, and BCS terms in the diagrammatic

expansion in Fig. 2.2b. Each has four “external” legs of the diagram corresponding to

the four slow modes that were untouched during the mode elimination. The external

legs lay in the region of the Brillouin zone bounded by ±Λ/s.

First consider the tree level term which contains purely slow modes and comes

about when all the integrals over momentum are limited by −Λ/s ≤ |K| ≤ Λ/s Af-

ter scaling the momenta, Matsubara frequencies, and fields, and Taylor expanding the

renormalized interaction around the fermi points we discover that the constant term is

marginal and the rest are irrelevant. In one dimension it is, in fact, the flow of couplings

evaluated precisely at the fermi points in all possible combinations that are allowed

for by the momentum conserving delta function. In total there are only four distinct

scattering processes in this sense and are shown in Fig. 2.3.

The next 3 terms in Fig. 2.2b contain an integral over momenta in the range

Λ/s ≤ |K| ≤ Λ. These terms are proportional to two coupling functions each containing

two slow and two fast modes. The fast modes between the two coupling functions

are contracted leading to two Green’s functions. The topology of the different diagrams
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Figure 2.3: Four unique one-dimensional scattering processes for chemical potential
µ = 0 (which allows for Umklapp scattering) referred to as the “g-ology”:g1 is back
scattering, g2 is the forward scattering, g3 is the Umklapp scattering, and g4 is an
additional type of forward scattering.
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indicates which of the momenta 1 through 4 in each coupling function is taken as fast and

slow, and it’s symmetries will determine if it can contribute to the one-loop correction

of the different terms making up the g-ology. Ultimately these terms are proportional to

two factors of a marginal coupling (the topology of the particular diagram determining

which of the four unique scatterings from the g-ology), and to a factor of ∆Λ/Λ. ∆Λ is

the size of the shell of fast modes eliminated during the renormalization step. Thus at

tree level, the different couplings are still marginal and it is left to the one-loop term to

determine how the coupling flows under the RG process.

2.4 Differential Renormalization and the Flow Equations

In the last section scaling was applied to the renormalization procedure to

determine how the various terms in the action would change as the renormalization

procedure cranked on. Scaling provided the machinery to determine which terms to

keep track of during renormalization but in what follows the process of reducing the

Brillouin zone to the fermi points will be handled in a more controllable manner.

The originally placed cutoff defining the effective limit of low energy physics

will be dubbed Λ0. The process of eliminating fast modes will be conducted by defining

a floating energy surface parameterized by a renormalization step l by defining

Λ(l) = Λ0e
−l (2.17)

and taking the action through a series of infinitesimal model eliminations defined by

SΛ0 → S1
Λ0e−dl

→ S2
Λ0e−2dl → . . . (2.18)

At each step Λdl of modes are eliminated at a distance of Λ(l) from either side of

17



the two fermi points. In what follows it is imagined that the renormalization process has

been cranking on, starting from the original cutoff Λ0 and proceeding down to Λ(l) = 0

at which point it will be exactly at the fermi points. In this sense the diagrammatic

combination of four-field terms in Fig. 2.2b becomes a differential equation governing the

flow of the coupling functions (the g-ology) from their initial values at l = 0. Under this

scheme the flow equations for the four unique one-dimensional scatterings are functions

of the renormaliation step l and satisfy

dg1

dl
= −g2

1 (2.19a)

d

dl
(2g2 − g1) = g2

3 (2.19b)

dg3

dl
= g3(2g2 − g1) (2.19c)

dg4

dl
= 0 (2.19d)

Before closing this section it is important to discuss the correlation functions.

As previously stated, a phase transition should be accompanied by a diverging corre-

lation length. Strictly speaking, the correlation function associated with a particular

order parameter changes as the renormalization procedure cranks on. As such a differ-

ential equation for the correlation function must be obtained in the same vein as the

flow equations for the g-ology. Similar to the Ising model in Eq.(2.1) the correlation

function’s flow equation can be calculated by adding a set of source fields to the action

which couple to the order parameter as

S(φ̄, φ, hδ) = S(φ̄, φ) +
∑
δq

(h∗δ(q)∆δ(q) + h.c.) (2.20)

With this addition, the correlation function may be calculated as a derivative of the

thermodynamic potential as
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Figure 2.4: Diagrammatic representation of the renormalization process for the a) 2-
point vertex zδ(l, q) and b) correlation function.

χ = −β ∂Ω

∂h∗δ(q)∂hδ(q
′)

= −〈∆̄δ(q)∆δ(q
′)〉 (2.21)

As the renormalization procedure cranks on with this addition to the the source

term will acquire corrections and the correlation function will be generated (and contin-

ually modified with increasing RG step l) giving

S(φ̄, φ, h)Λ(l) = S(φ̄, φΛ(l)) +
∑
δq

(zδ(l, q)∆δ(q)h
∗
δ(q) + h.c.)− χδ(l, q)h∗δ(q)hδ(q) + . . .

(2.22)

zδ(l, q) is a general function that appears after continual renormalization. The

correlation function χδ(l, q) aslo continually changes under the renormalization proce-

dure. A diagrammatic representation of the process is given in Fig. 2.4. General

differential equations for the 2-point vertex function and the correlation function are

d

dl
lnz =

1

2
gδ (2.23a)
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d

dl
lnχδ = gδ (2.23b)

where gδ is a combination of terms from the g-ology that can contract with the free legs

of the vertex diagram. It is straight forward to see how a divergence in the combination

couplings from the g-ology that make up gδ will lead to a divergence in the correlation

corresponding to a particular order parameter (indicated by the subscript δ).
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Chapter 3

The 1D-2D Mixed Fermi System

3.1 The Model

In a previous chapter I explained how cold atom systems can be engineered

to produce a wide array of simulated Bravais lattices by utilizing laser and magnetic

trapping and cooling. Additionally, inter-atom interactions can be finely tuned via

Feshbach resonances. With these rich and highly tunable robust features, cold atom

systems may, in fact, lead to experimental verification of condensed matter phenomena

previously only hypothesized theoretically.

In what follows we’ve imagined an experiment can be constructed which brings

into contact two separate species of fermionic atoms which are distinguishable from each

other: species A and species B. Species A exists on a 1-dimensional lattice engineered

as described previously. A-atoms can hop from site to site with a hopping strength tA,

and two A-atoms (with opposing spin) may occupy the same lattice site at the cost of a

repulsive energy UA. Similarly, species B is constrained to a 2-dimensional square lattice.

B-atoms can hop around the sites of the square lattice with hopping strength tB and,

like the 1-dimensional counterpart, incur an energy penalty of UB when two adjacent
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B-atoms hop onto the same square lattice site. Additionally, the 1-dimensional lattice

is “embedded” into one of the rows of the 2-dimensional lattice in such a way that the A

and B atoms can hop onto the same site. Since the A and B atoms are distinguishable,

the Hilbert spaces of the two sub-systems are disjoint, and therefore an A and B atom

may hop onto the same 1-dimensional lattice site with either spin alignment. Both

systems are taken as having a lattice spacing a. While in principle the 2-dimensional

system could have different horizontal and vertical spacings, they are taken to be the

same ax = ay = a. However, without loss of generality, this lattice spacing is set to

unity: a = 1.

Both of these subsystems can be described by a Hubbard model [26], each of the

energetic parameters completely controllable in the laboratory. The second-quantized

Hamiltonian of the system is given by

Ĥ = ĤA + ĤB + ĤI (3.1)

where ĤA, ĤB, and ĤI are the Hamiltonians of the 1D, 2D, and interactions between

1D and 2D systems, respectively, given by

ĤA = tA
∑
x,σ

c†A,σ(x)cA,σ(x+ a) + h.c.

+
UA
2

∑
x,σ

c†A,σ(x)c†A,−σ(x)cA,−σ(x)cA,σ(x) (3.2a)

ĤB = tB
∑
~x,σ,i

c†B,σ(~x)cB,σ(~x+ ~Ri) + h.c.

+
UB
2

∑
~x,σ

c†B,σ(~x)c†B,−σ(~x)cB,−σ(~x)cB,σ(~x) (3.2b)

ĤI = UI
∑
x,σ,σ′

c†A,σ(x)cA,σ(x)c†B,σ′(x, 0)cB,σ′(x, 0) (3.2c)
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1D-2D Mixed Hubbard System Energetics

Figure 3.1: Diagram illustrating the physics of the 1D-2D mixed dimensional system.
A-fermions (blue) can hop between neighboring sites with strength tA and incur an
energy penalty UA when occupying the same site (with opposing spins). B-fermions
(red) behave similarly but may move in two dimensions. A and B fermions my occupy
the same site (with any spin configuration) at a cost of energy UI
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Indeed this is a simplified version of the most general model, constraining the

physics to that of nearest neighbors. In essence the Hubbard model is a simplification of a

more general tight-binding model where fermions may “hop” beyond neighboring atoms

insofar as there is a non-zero overlap between localised wave-functions from any two

lattice sites. Thus, the hopping parameter is a relaxed version of the more fundamental

hopping integral, akin to the replacement t(x, x′) → t. The coupling strength of the

interaction term has also been simplified, U(x4, x3;x1, x2)→ U , limiting the interactions

to either on-site repulsion or attraction. Lastly, the localized states are reduced to a

single band, equivalent to tuning the lattice parameters such that a single one-particle

level on each site is isolated from the rest.

The focus of this work is to determine the zero-temperature collective phase

of the system which begins with constructing the many-body path integral partition

function [5, 46]

Z = e−βΩ = Tr e−β(Ĥ−µN̂) =

∫
D
[
φ̄φ
]
e−S(x,τ) (3.3)

where the action, S(x, τ) is given by

S(x, τ) =
∑
i

∫ β

0
dτ
[
φ̄i(τ)∂τφi(τ) + Ĥ(φ̄i(τ)φ̄i(τ))− µN̂(φ̄i(τ)φ̄i(τ))

]
(3.4)

and φ̄i(τ) (φi(τ)) is shorthand for the creation(annihilation) operators replaced by Grass-

man fields by taking the trace with respect to fermionic coherent states. Ω is the grand

canonical thermodynamic potential Ω = 〈Ĥ〉 − TS − µN [14]. In this sense the system

is regarded as being connected to a particle reservoir allowing for, in principle, an infi-

nite number of particles. However, a fixed particle system is achieved by imposing the

constraint
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N = 〈N̂〉 = Tr
∑
x,σ

c†σ(x)cσ(x)e−β(Ĥ−µN̂) (3.5)

which amounts to fixing the chemical potential µ [4].

The most convenient set of single particle states to work in are those in which

the kinetic (or one-body) term is diagonal. The basis used to write the Hamiltonian

in 3.2 is the Wannier basis [68, 69], and in the simplified, single-band restriction of the

basis there are two states for every lattice site in the system (namely |x, ↑〉 and |x, ↓〉),

where the total number of lattice sites in the system is denoted by N . Diagonalising the

two-body term is achieved by Fourier transforming from the Wannier states to the Bloch

states. For added convenience in evaluating various physical quantities, an additional

Fourier transform is made from the imaginary “time” τ to the Matsubara Frequency ωn

[3]. This results in the replacement of the fields

φσ(~x, τ) =
1√
Nβ

B.Z.∑
~k

∑
ωn

ei(
~k·~x−ωnτ)φσ(~k, ωn) (3.6)

where, due to the anti-commuting nature of the fermionic creation/annihilation op-

erators (Grassman numbers) the Matsubara frequencies are ωn = (2n + 1)π/β with

n = 0,±1,±2, . . .. With these substitutions, the action takes the form in which each of

the one-body terms are diagonal
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SA =
∑
k,ω,σ

φ̄σ(kω)[−iω + εA(k)− µA]φσ(kω) +

UA
2Nβ

∑
{kω},σ

φ̄σ(k4ω4)φ̄−σ(k3ω3)φ−σ(k2ω2)φσ(k1ω1)δ̄(k1+k2−k3−k4)δ(ω1+ω2−ω3−ω4)

(3.7a)

SB =
∑
~p,Ω,σ

Φ̄σ(~pΩ)[−iΩ + εB(~p)− µB]Φσ(~pΩ) +

UB
2N2β

∑
{~p,Ω},σ

Φ̄σ(~p4Ω4)Φ̄−σ(~p3Ω3)Φ−σ(~p2Ω2)Φσ(~p1Ω1)δ̄(~p1+~p2−~p3−~p4)δ(Ω1+Ω2−Ω3−Ω4)

(3.7b)

SI =
UI
N2β

∑
k,k′,σ
~p,~p′,σ′

φ̄σ(kω)φ̄σ(k′ω′)Φ̄σ′(~pΩ)Φ̄σ′(~p
′Ω′)δ̄(k+px−k′−p′y)δ(ω+Ω−ω′−Ω′)

(3.7c)

and the 1D/2D dispersions are given by

εA(k) = −2tAcos(k) (3.8a)

εB(~p) = −2tB (cos(px) + cos(py)) (3.8b)

Up until now the interactions in the two-dimensional system have been included

in the model. In what follows, however, they will be dropped. This is equivalent to a

one dimensional fermionic Hubbard system interacting with a two-dimensional “lattice

gas.” This simply refers to an action (or Hamiltonian) with a two-body term only, and

describes B-fermions moving freely on the square lattice, but with a dispersion given by

3.8b. The notation δ̄ means momentum is conserved up to multiples of 2π which will

play a crucial roll in the Renormalization Group treatment to follow.

The interaction term between systems A and B reveals important information
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about the symmetry of the combined system. As can be seen from the momentum

conserving delta function in the inter-system interaction term in 3.7, momentum is

only conserved in the x-direction. This is an artifact of translational symmetry in the

x-direction, but no translational symmetry in the y-direction.

3.2 The Mediated Interaction

The action of 3.7 is the starting point of obtaining an effective model for the 1D

system. By constructing the partition function of the entire system and carrying out the

partial sum over only the fast 2D Grassman fields (Φ̄,Φ), an effective model describing

the physics in 1D is achieved. The resulting model is different from the original model

in that a new interaction, dubbed Ueff , contains the effects of 1D fermions due to

scatterings events involving processes where two A-fermions scatter into two B-fermions

which eventually scatter into two more A-fermions.

The A-B partition function has the schematic form

Z =

∫
DAe−SA

∫
DBe−(SB+SI) (3.9a)

= ZB
∫
DAe−SA〈e−SI 〉B (3.9b)

=

∫
DAe−(SA+ln〈e−SI 〉B−lnZB) (3.9c)

=

∫
DAe−Seff (3.9d)

In 3.9d the effective action has been identified as the remnants from the original ac-

tion after all B-fermions have been explicitly summed over. The expression 〈e−Si〉B

denotes the many-particle statistical average with respect to the B-fermions only. By

re-exponentiating this term, the contribution to the effective action comes from the
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evaluation of the expression ln〈e−SI 〉B. In doing so, the so-called “cumulant expansion”

[2, 32] is used. As with the 1D on-site interactions, the density-density inter-species

interaction strength, UI , is taken to be weak. Thus, it is sufficient to keep only terms

up to order U2
I .

The expansion is defined as

ln〈e−SI 〉B =

∞∑
n=1

(−1)n

n!
〈SnI 〉B,con. (3.10)

where 〈X〉con. denotes a “connected” average. The n = 1 term in the sum is trivially

connected, while for n ≥ 2 this implies the terms in the Wick’s theorem [19] expansion

cannot be factored into multiples of 〈SI〉. Up to n = 2 the effective action becomes

Seff = SA + 〈SI〉B −
1

2
〈S2
I 〉B,con. − lnZB (3.11)

The term lnZB is simply a constant logarithmic correction and can be dis-

missed. 〈SI〉B contains two A-fermion fields and thus modifies the existing two-body

terms. Evaluating this term gives

〈SI〉B = − 2UI
N2β

∑
k,ω

∑
~p,Ω

GB(~p; Ω)φ̄σ(kω)φ̄σ(kω) (3.12a)

= −UIνBφ̄σ(kω)φ̄σ(kω) (3.12b)

where GB(~p; Ω) is the 2D Green function 1/(−iΩ + εB(~p) − µB) and νB represents the

fraction of particles with energy less than the 2D chemical potential. This term is

diagonal in k, ω and is simply absorbed into a new definition of the chemical potential

µ′A = µA + UIνB (3.13)
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The next highest order term is proportional to U2
I and involves only connected

contractions of 〈Φσ(~p′1Ω′1)Φσ′(~p
′
2Ω′2)Φ̄σ(~p1Ω1)Φ̄σ′(~p2Ω2)〉. Being proportional to four

A-fermion fields, this term represents an effective 1D interaction of the A-fermions,

mediated through scattering processes involving B-fermions. Evaluation of the mediated

two-body term goes as

〈SI(1)SI(2)〉con. =

−1

Nβ

∑
{kω}σσ′

Ueff (k4, k3; k1, k2)φ̄σ(4)φ̄σ′(3)φσ′(2)φσ(1)δ̄(k1+k2−k3−k4)δ(ω1+ω2−ω3−ω4)

(3.14)

Ueff ({k, ω}) is a function of the momenta and Mtsubara frequencies of a two

A-particle scattering event “mediated” by B-fermions that have found their way onto

the 1D line and is given by

Ueff ({k, ω}) =
2U2

I

N3β

∑
~p,q,Ω

GB(~p; Ω)GB(px + k41, q; Ω + ω41). (3.15)

k41 (ω41) is shorthand for k4 − k1 (ω4 − ω1), the momentum (Matsubara frequency)

difference between A-fermions 4 and 1.

The effective action for the purely 1D A-fermions can now be written as follows

Seff =
∑
k,ω,σ

φ̄A,σ(kω) [−iω + εA(k)− (µA + UIνB)]φA,σ(kω)

+
1

2

∑
{kω}σ

[UA + Ueff (4, 3; 1, 2)] φ̄σ(4)φ̄−σ(3)φ−σ(2)φσ(1)δ(1+2−3−4)

+
1

2

∑
{kω}σ

Ueff (k4, k3; k1, k2)φ̄σ(4)φ̄σ(3)φσ(2)φσ(1)δ(1+2−3−4) (3.16)

The appearance of the numbers 1−4 in the terms above is a shorthand for momenta and
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Matsubara frequencies with those indices. To further evaluate the effective interaction

coupling in 3.15 requires a technique for carrying out Matsubara sums of the form

1

β

∑
ωn

f(ωn) (3.17)

with a clever techniqe that involves dreaming up a contour integral whose sum of residues

results in the Matsubara sum in question [35]. This leaves the effective interaction in

the form

2U2
I

N3

∑
~p,q

n[εB(px + k41, q)]− n[εB(px, py)]

iω41 + εB(px + k41, q)− εB(px, py)
(3.18)

in which the momentum and Matsubara frequencies of the A-fermions appear only in the

differences k4−k1 and ω4−ω1. Here, n(ε) is the familiar fermi-function 1/(eβ(ε−µ) + 1).

The frequency dependence is often referred to as “retardation” and is a common oc-

currence in problems of fermions coupling to lattice phonons [34]. In what follows

retardation effects of the problem will be ignored. Additionally, the difference of mo-

menta 4 and 1 in Ueff is an indicator of translational invariance in the x-direction of

the system.

By taking the thermodynamic limit of the sum and utilizing the transforma-

tion 1/N
∑

k f(k) →
∫
B.Z. dk/2πf(k), Ueff becomes solvable by numerical integration

techniques. The present work uses a Monte Carlo integration routine available through

the Python “skmonaco” package. The effective interaction as a function of k4 − k1 is

depicted in 3.2 for 0 < µb < 4tB. The function is symmetric with respect to posi-

tive and negative chemical potential. As seen from the figure, the form of the function

changes as µB varies, but remains negative for all values within the Brillouin zone. As

will be more important in the Renormalization Group analysis to follow, the relative
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values of the mediated interaction for momentum transfers of zero and π (Ueff (0) and

Ueff (π)) vary as the 2D filling (or, equivalently, µB) ranging from |Ueff (0)| > |Ueff (π)|

to |Ueff (0)| ∼ |Ueff (π)| to |Ueff (0)| < |Ueff (π)|.

Up until now the mediated interaction has been represented in the Bloch ba-

sis states. By performing the inverse transformation of 3.6 (neglecting the Matsubara

frequency transformation) the mediated interaction in the Wannier basis is recovered.

This gives a direct reflection of the behavior the mediated interaction in the physical

space of the lattice. With this transfer of basis Ueff becomes

Ueff (x) =
1

N

B.Z.∑
k41

e−ik41xUeff (k41) (3.19)

A summary of the behavior for Ueff (x) can be seen in Fig. 3.3 where x can be thought

of as the difference in position of two interacting particles. For simplicity, one particle

is centered at x = 0 and the other particle can sit at one of 100 neighboring lattice sites.

For each value of µB the second particle experiences an attraction if it finds itself at

x = 0 (with opposing spin to the original particle). As µB varies, a second particle on

the nearest neighboring site will experience an interaction which varies from repulsion

to attraction. This interaction damps out to zero from the next-nearest neighboring site

on to the rest of the sites on the lattice which is concurrent with the prescription that

the interaction be “weak.”
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Figure 3.2: Ueff (k41) for positive values of the 2D chemical potential
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Figure 3.3: Ueff (x) for positive values of the 2D chemical potential
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3.3 Results of the Renormalization

In the previous section the flow equations for the four unique scatterings, de-

noted by the g-ology, were obtained. It was shown that a divergence of particular

combinations of g-ology couplings is accompanied by a divergence of a correlation func-

tion corresponding to a particular order parameter. To determine the phase of the

effective one-dimensional system at hand, it is necessary to solve the flows of Eq.(2.19).

The initial conditions of the flows correspond to the values of the interaction before the

renormalization process started, i.e. S(φ̄, φ)l=0.

Referring to the diagrams for the g-ology scatterings in Fig.2.3, it is seen that

the momentum transfer between particles 1 and 4 is ±π for g1, g3 and 0 for g2, g4. Thus

the initial conditions to the flows of g1 . . . g4 are

gl=0
1 = gl=0

3 = UA + Ueff (k41 = π) (3.20a)

gl=0
2 = gl=0

4 = UA + Ueff (k41 = 0). (3.20b)

Fig. 3.2 shows the effective interaction as a function of k4 − k1 for various

values of the two-dimensional chemical potential. Since the relative values of Ueff (0)

and Ueff (π) are fixed by fixing µB, the zero-temperature quantum phase is essentially

controlled by the two-dimensional density. The phase diagram of the system is thus

parameterized in the space of |Ueff (0)| and |Ueff (π)|.

The prescription for determining the phase for the mixed one-dimensional/

two-dimensional system goes as follows:

• fix the two-dimensional chemical potential

• simultaneoulsy solve the flow equations for the g-ology couplings and the correla-
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Phase Order Parameter 1D Coupling

CDWπ
∑

α φ̄α(k)φα(k + π) g2 − 2g1 ∓ g3

SDWπ
∑

i

∑
α,β φ̄α(k)σiαβφ(k + π) g2 ± g3

SS0 1/
√

2
∑

α αφα(k)φα(−k) −g1 − g2

ST0
∑

α

(
1/
√

2φα(k)φ−α(−k) + φα(k)φα(−k)
)

g1 − g2

Table 3.1: Parameters for various one-dimensional phases and the g-ology couplings that
influence the renormalization of the correlation functions. The subscript indicates the
momentum in the particle-hole (CDW/SDW) and particle-particle (SS/ST) channels.

tion functions

• check the couplings and correlations for divergences to determine the dominant

phase of the system

• if no correlations diverge, the phase corresponds to the largest correlation function

at long renormalization step values.

The phase diagram for the 1D/2D mixed dimensional system is shown in Fig.

3.4. The topology is typical of one-dimensional SU(2) symmetric interacting fermi sys-

tems, and is divided into distinct regions where particular couplings diverge due to the

divergence of the g-ology couplings. These special couplings derive from the partition-

ing of the most general SU(2) symmetric interaction into charge-spin and singlet-triplet

components. Following the renormalization of these components involves renormalizing

the combination of g-ology couplings given in the third column of Table 3.1.

The most generic SU(2) symmetric interaction can be partitioned into distinct

pieces as

SI =
∑
kk′q

Uc(k, k
′, q)∆̄CDW

q (k)∆CDW
q (k′) + Uσ(k, k′, q)∆̄SDW

q (k)∆SDW
q (k′) (3.21a)

SI =
∑
kk′q

USS(k, k′, q)∆̄SS
q (k)∆SS

q (k′) + UST(k, k′, q)∆̄ST
q (k)∆ST

q (k′) (3.21b)
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TLL TLL

FL
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W
/S
S

UA
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|Ueff (π)|

|Ueff (0)|

ST/SSSDW

CDW

SS

Figure 3.4: Phase diagram for the 1D/2D mixed dimensional system. The CDW, SDW,
CDW/SS (single line), regions correspond to diverging correlations. The TLL lines
indicate g1, g3 → 0 and g2, g4 remain constant, signaling Tomonaga-Luttinger behavior.
The FL (fermi liquid) line corresponds to all g-ology couplings renormalizing to zero
from non-zero values. The lower left region sees decaying correlations where ST decays
the slowest followed by SS.
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where the order parameters of interest are given in the second column of Table 3.1. As

can be seen from the table, the focus is on momenta of ±π for particle-hole couplings

and of zero for particle- particle couplings.

Fig. 3.6a shows enhancement of the SDW coupling due to a divergence of the

Umklapp and forward scatterings, while the back scattering and g4 couplings remain

at zero in the region with |Ueff (π)|, |Ueff (0)| < |UA|. As Ueff (π) approaches the line

|Ueff (π)| = |UA|, the Umklapp and back scattering terms remain at zero while the

forward and g4 terms remain at a constant positive value as in Fig. 3.6e. A model

with only g2 and g4 may be recast and described by the Tomonaga-Luttinger model

[65, 42, 24]. As the line is crossed into the region with |Ueff (π)| > |UA|, the forward

scattering diverges to positives values again, but the Umklapp scattering diverges to

negative values as seen in Fig. 3.6b. This leads to an enhancement and dominance

of the CDW coupling. The CDW phase persists in the region until crossing the line

|Ueff (π)| = |Ueff (0)| with both |Ueff (π)|, |Ueff (0)| > |UA|. At this boundary the back

and forward scattering diverge to negative values while the Umklapp and g4 terms start

and remain at zero. Here the CDW and SS couplings diverge equally and simultaneously

as indicated in Fig. 3.6c. As this boundary is crossed, the SS coupling is enhanced and

dominates. When |Ueff (0)| = |UA| and |Ueff (π)| < |UA| the backward and Umklapp

scatterings flow to zero while the forward and g4 scatterings start and remain at zero

as seen in Fig.3.6f. Thus, the renormalized system is one in which the interactions have

vanished which is precisely the definition of a fermi liquid. precisely the description of

a fermi liquid and

In the region where |Ueff (0)| > |UA| and |Ueff (π)| < |UA| no couplings diverge.

The backward and Umklapp couplings start out at non-zero positive initial values but

quickly renormalize to zero. g4 starts at a negative value and remains at that constant
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Figure 3.5: Renormalization of the g-ology couplings in the region of the phase diagram
where |Ueff (0)| > |UA| and |Ueff (π)| < |UA|

negative value. The forward scattering starts at a negative value and renormalizes

to another more-negative value and remains constant as the renormalization cranks

on. This behavior is shown in Fig.3.3. The system can be bosonized and recast in the

language of the Tomonaga-Luttinger model. The behavior here is similar to the behavior

at the TLL line in the phase diagram except that the couplings start out at non-zero

values and change as discussed previously rather than starting and remaining constant.

Since no couplings diverge, there isn’t a truly long-range order as when the correlations

diverge like in the other regions of the phase diagram. In this case, the phase of the

system is quoted as owing to the correlations which decay the slowest in a bosonized

version of the system [45]. Here, the ST correlations are the slowest decaying followed

by the SS correlations.
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Figure 3.6: a), b), c), and d) show the behavior of the g-ology couplings accompanied
by divergences of couplings associated with CDW, SDW, SS, and ST interactions. e)
shows g1,g3 starting (and remaining) at zero while g2,g4 remain constant. f) shows all
g-ology couplings either remaining or renormalizing to zero suggesting a fermi liquid.
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Chapter 4

Phase-Manipulation of a Two-Leg

Ladder in Mixed Dimensions

4.1 Introduction

In the previous chapter a 1D-2D mixed dimensional system was considered.

In what follows, this idea is extended to a two-leg ladder embedded into 2D square

lattice; in this vein the system of the previous chapter could be considered a “one-leg”

ladder. This is study a mixed-dimensional two-species fermionic system: one species

confined in a two-leg ladder with on-site repulsion, the other moving freely in a two-

dimensional (2D) square lattice. An inter-species interaction is also introduced as on-site

due to the energy cost of double occupation. Integrating out the 2D fermionic gas, a

mediated long-range interaction is generated in the ladder. We show that the mediated

interaction moves the bare on-site interaction in the two-leg ladder off the symmetric

point, and enhances the charge density wave (CDW) instability in the renormalization

group (RG) transformation. Here we use the term charge-density-wave to refer to density

modulations in analogy with nomenclature used in the study of electronic systems, even
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Figure 4.1: A two-leg ladder embedded in a 2D square lattice and the coordinate system
are illustrated.

though the atoms are charge neutral. We find that, by controlling the filling in the 2D

gas, the phase of the ladder can be tuned. By mapping out the phase diagram for various

parameters, we show the possible quantum phase-manipulation of a two-leg ladder in

mixed dimensional fermionic cold atoms.

4.2 Formalism

A schematic of the system we consider here is illustrated in Fig. 4.1. The action

can be written as S = Sl+S0
c +Scl, where Sl stands for the action for the two-leg ladder

with on-site interaction Ul. The action of the non-interacting 2D system is denoted as

S0
c =

∫
dτ
∑
〈~r,~r′〉

φ̄α(~r, τ)
[
∂τδ~r,~r′ +Hc(~r, ~r

′)
]
φα(~r′, τ) (4.1)
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where φ̄α,φα are Grassmann fields with (pseudo) spin index α, and the Hamil-

tonian is represented as Hc(~r, ~r
′) =

[
tc(~r, ~r

′)− µ2Dδ~r,~r′
]

with chemical potential µ2D.

Moreover, the uniform hopping amplitude tc(~r, ~r
′) = −1 when ~r and ~r′ represent nearest

neighbor sites. The energy cost of for overlap of two atoms of different species can be

regarded as the on-site inter-species repulsion with strength Ucl and represented as

Scl =

∫
dτUcl

∑
a

∑
~r

nc(~r, τ)nl(~r, τ)δy,a, (4.2)

where nc =
∑

α φ̄α(~r)φα(~r) and nl =
∑

α ϕ̄yα(x)ϕyα(x) are the densities for the 2D

lattice and the ladder, respectively. The summation over a = 1, 2, · · · , N stands for the

position of N -legs along the y-direction, as shown as Fig. 4.1. Here we focus on the

N = 2 case.

Considering the limit of weak inter-species interactions (Ucl/tc < 1), we expand

the action in powers of Ucl and integrate out the non-interacting 2D gas, neglecting terms

O(U3
cl). The first term in the expansion gives a self-energy correction to the chemical

potential of the ladder system. Since this only slightly shifts the phase boundaries, we

ignore it here. The second term generates a mediated interaction, modifying the profile

of the total effective interaction in the two-leg ladder. The action for the ladder can

now be written as Seff = Sl + Smed, where

Smed '
∫
dτ1

∫
dτ2

U2
cl

2

∑
a,b

δy1,aδy2,btr
[
nl(~r1, τ1)G0(~r1, τ1;~r2, τ2)nl(~r2, τ2)G0(~r2, τ2;~r1, τ1)

]
,

(4.3)

with G0(~r, τ ;~r′, τ ′) =
[
∂τδ~r,~r′ −Hc(~r, ~r

′)
]−1

the imaginary-time Green’s func-

tion. This shows that a mediated interaction between particle nl(~r1, τ1) and nl(~r2, τ2)

with retardation effects is generated in the ladder system. Retardation effects can be
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neglected when the Fermi velocity of the 2D fermions is large compared with the one

for the ladder.

4.3 The Mediated Interaction

We now study the effects of the effective interaction on the ladder system

and determine its phase diagram using a RG technique. By ignoring retardation ef-

fects, the Grassmann number ϕ is decomposed into chiral pairs [6, 39, 40, 15, 10, 11],

ϕy(x) ≈ ∑P,i TyiψPn(x)eiPkFix, where P = R/L = +/− represent right /left-moving

particles, and kFi is the Fermi wavelength of the band index i. The transforma-

tion matrix between leg-index y and band-index i in the N -ladder is introduced as

Tyi =
√

2
N+1 sin

[
π

N+1yi
]
[39, 40]. The interactions between these chiral fermions can

be categorized as Cooper scatterings clij , c
s
ij and forward scatterings f lij , f

s
ij , where we

set fii = 0 since fii = cii. Thus, the mediated interactions in a ladder system can be

written as

Smed '
U2
cl

Ul

∫
dτ

∫
dx
[
fsijψ̄RiαψRiαψ̄LjβψLjβ + f lijψ̄RiαψLjαψ̄LjβψRiβ

+csijψ̄RiαψRjαψ̄LiβψLjβ + clijψ̄RiαψLjαψ̄LiβψRjβ

]
, (4.4)

where the bare values of the couplings are expressed as

fsij = Umed
iijj (0) (4.5a)

f lij = Umed
ijji (kFi + kFj ) (4.5b)

csij = Umed
ijij (kFi − kFj ) (4.5c)

clij = Umed
ijij (kFi + kFj ) (4.5d)
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with the definition of dimensionless mediated interactions,

Umed
ijkl (k) = Ul

∫ π

−π

dq

2π
Γijkl(q)χ0(k, q). (4.6)

Here the particle-hole propagator is defined as

χ0(k, q) =

∫
d~p

4π2

nF

[
ε(~p)

]
− nF

[
ε(px + k, py + q)

]
ε(~p)− ε(px + k, py + q) + i0+

, (4.7)

coming from the convolution of the two momentum-space Green’s functions

in Eq. (4.3), where ε(~p) = −2(cos px + cos py) − µ2D is the dispersion of the 2D gas

and nF is the Fermi-Dirac distribution. Furthermore, the extra kernel in the mediated

interactions is defined as Γijkl(q) =
∑

a,b e
iq(b−a)T ∗aiTajT

∗
bkTbl, summing over the leg

indices a, b = 1, 2, · · · , N . It is worthwhile to notice that the mediated interactions are

the Ruderman-Kittel-Kasuya-Yoshida (RKKY) type [4]. However, the exact profile in

real space can not be computed analytically since we consider a lattice model.

4.4 Results of the Renormalization

In the absence of the mediated interaction, all bare values of the couplings in

RG equations would be the same since only on-site interactions are considered. In the

presence of the mediated interactions, this symmetry is broken and the initial couplings

renormalize in very different ways, as shown as Eq. (4.5). However, since the mediated

interactions are determined only by the exchanged momenta in spin-conserving scatter-

ing processes, couplings sharing the same exchanged momenta remain the same bare

values. For instance, zero momenta is exchanged in both csii and fsij and they therefore

have the same bare value, similarly, for clij and f lij with exchanged momenta (kFi +kFj ).

The RG equations of a N -leg ladder can be found in the literature [57], and
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are only solved numerically. After taking the effective interactions as the initial con-

dition and integrating the differential RG equations, the flows of the couplings can be

obtained. By analyzing these flows with the scaling Ansatz, gi ∼ 1/ (ld − l)γi , where ld

is the divergent length scale in one-loop RG, the hierarchy of the relevant couplings can

be directly read out from the RG exponent γi [59, 13]. Combining with the Abelian

bosonization method, the phase diagram of a ladder system is determined[39, 10, 11].

Furthermore, the relative values of the charge and spin gaps between different

Fermi points can be determined by the RG exponents[59]. This allows us to distinguish

the d-wave superconductivity with an anisotopic spin-gap (referred as d-SC2 here) in

a two-leg ladder with heavy doping, n < 0.6. We note that there is not a real phase

transition between the d-wave superconductivity with isotropic spin gaps (d-SC) and

d-SC2, because the number of spin and charge gaps and relative sign of relevant cou-

plings are the same. However, it is useful to emphasize this difference here because the

anisotropic spin gaps can measured, and therefore the two phases can be distinguished

experimentally.

To illustrate how the mediated interaction depends on the filling of the 2D

fermions, we show results for µ2D = 0, when the 2D Fermi surface is nested (Fig. 4.2a),

and for µ2D = 1 (Fig. 4.2c)[1].

The corresponding phase diagrams are shown in Fig. 4.2b and Fig. 4.2d. In

Fig. 4.2b, when the strength of the coupling Ucl/Ul is larger than 1.2, a CDW starts

to emerge from d-SC near half-filling (n ' 1). Increasing Ucl/Ul brings the phase

boundary to higher hole-doping. It is interesting to note that the Luttinger liquid phase

that appears near n & 0.5 for the standard Hubbard model [39] is destroyed by the

mediated interactions. We find a three-phase “triple-point” (CDW, d-SC and s-SC)
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at Ucl/Ul = 1.85 and n = 0.55. From there, increasing the Ucl/Ul ratio gives cl11(0)

(or cσ11(0)) negative, and an s-SC phase occurs, as expected by BCS theory. Doping

away from the “triple-point”, fσ12(0) becomes negative and CDW dominates. Roughly

speaking, when Ucl/Ul > 1.85, the phase will be determined by the competition between

the negative values of fσ12(0) and cσ11(0). It is worthy to notice that though the interaction

Ucl and Ul are in the limit of weak couplings, the ratio Ucl/Ul can be very large.

The arising of the CDW phase emerges is caused by enhanced mediated inter-

actions f l12 near half-filling. When n ' 1, the momentum exchanged during f l12 processes

approaches π. The particle-hole propagator in the mediated interaction shows a max-

imum contribution at µ2D = 0, resulting from maximum electron-hole pairing [from

cos px and cos(px + π) = − cos px] in the 2D dispersion along the x-direction. Moving

away from n = 1, the mediated interaction of f l12 decreases, at which point the CDW

phase ceases to occur. When we increase the 2D chemical potential, the same behavior

occurs. As shown in Fig. 4.2 (d), the regime of the CDW phase shrinks at µ2D = 1

resulting from weak mediated interactions. In this situation the mediated interactions

vary smoothly, and show little effect in the ladder system. Therefore, the mediated

interaction depends strongly on the chemical potential in the 2D system, and conse-

quently, the phase diagram of a two-leg ladder can be modified/tuned via the filling in

the 2D square lattice.

To further illustrate the influence of the 2D density, we show the mediated

interactions and corresponding phase diagrams parameterized by the chemical potential

in the 2D system in Fig. 4.3 (a)(b) and (c)(d) for fixed density in the ladder, n = 0.55 and

n = 0.95, respectively. When Ucl/Ul is larger than 1.2 at n = 0.95, the phase transition

between CDW and d-SC happens near µ2D = 0. However, the phase boundary moves
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to higher values of Ucl/Ul when the chemical potential µ2D increases and the mediated

interaction decreases. In general, the tendency of the mediated interaction is to decrease

upon the increasing of the filling in the 2D system (or µ2D), due to the non-interacting

assumption. Under this condition, the strength of the mediated interactions is roughly

proportional to the density near the Fermi surface, which is maximum at µ2D = 0.

Although the pattern of the mediated interactions in real space is rather com-

plicated, it can be approximated as an effective on-site attraction and a nearest-neighbor

repulsion, since longer range terms are rapidly decaying. The phase diagram can then

be understood from these two effective interactions. By tuning the chemical potential

in 2D, CDW emerges when the effective nearest-neighbor repulsion exceeds the original

on-site repulsive interaction. However, increasing the Ucl/Ul ratio makes the magnitude

of the effective on-site attraction larger than the original on-site repulsion. When the

average on-site attraction is weak, CDW and s-SC phases compete. Nevertheless, the

s-SC phase is dominant for large Ucl/Ul, and the inter-species interaction can be re-

garded as a glue to pair the fermions, similar to the electron-phonon interaction in a

conventional superconductor.
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Chapter 5

Conclusion

Chapter 3 was concerned with the quantum many-body phases of a 1D/2D

mixed dimensional fermionic cold atom system. This sytem is composed of a 1D line

embedded into a 2D square lattice where the two species were taken to interact via

a density-density interaction on the 1D line. An effective theory for the 1D system

was found by first carrying out a partial trace of the partition function with respect

to the 2D fermions. This process manifested itself via an effective interaction amongst

1D atoms mediated by 2D atoms. The density of the 2D system influenced the form

of this mediated interaction whose values at k4 − k1 = 0, π directly influenced the

quantum many-body phase of the 1D system. The phase diagram could thus be written

in the parameter space of |Ueff (0)| and |Ueff (π)|. The phase diagram was quite rich

indicating instabilities in CDW, SDW, SS, and ST channels, as well as producing regions

where the system flowed to a non-interacting fermi liquid and a system described by the

Tomonaga-Luttinger model (a.k.a. a Luttinger liquid). In one region however, none of

the couplings diverged while back scattering and Umpklapp scattering scaled to zero.

This left a model that could be bosonized and the phase was determined by the slowest
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decaying correlation function.

Chapter 4 extended the idea of chapter 3 to the two-leg ladder. This system

is described by a two-leg ladder embedded into a 2D square lattice. Again, integrating

out the 2D system is akin to a mediated interaction between ladder-fermions mediated

by the 2D lattice. The presence of the mediated interaction skews the results had the

2D lattice not been present. This is due to the addition of particle-particle and forward

scatterings which affect the way the couplings would otherwise renormalize. In this

modified system, a d-wave superconducting state with an anisotropic spin-gap develops

with heavy doping, n < 0.6 Increasing the density sees the emergence of CDW, d-SC and

s-SC phases. One novel attribute of the system is the quenching of the typical Luttinger

liquid phase due to the presence of the mediated interaction. Although precise analytical

forms for the mediated interaction in real space are complicated, there seems to be an

overall pattern of on-site attraction and nearest neighbor repulsion. By looking at the

phase diagram as parameterized by the 2D chemical potential, one gets a better feel

for the way the 2D chemical potential acts as a knob, directly tuning the phase for the

ladder system.

Thus we have shown how systems that have been studied in depth in the

past have seen new growth in the application of connecting them to systems of higher

dimensions. The presence of the higher dimensional system (in this case 2D) manifests

itself as an effective interaction amongst the lower dimensional fermions. In both cases,

the chemical potential of the 2D system acts as a knob with which the phases of the

1D/ladder system may be tuned.
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