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Minimum Memory for Generating Rare Events

Cina Aghamohammadi∗ and James P. Crutchfield†

Complexity Sciences Center and Department of Physics,
University of California at Davis, One Shields Avenue, Davis, CA 95616

(Dated: March 4, 2017)

We classify the rare events of structured, memoryful stochastic processes and use this to analyze
sequential and parallel generators for these events. Given a stochastic process, we introduce a
method to construct a new process whose typical realizations are a given process’ rare events. This
leads to an expression for the minimum memory required to generate rare events. We then show
that the recently discovered classical-quantum ambiguity of simplicity also occurs when comparing
the structure of process fluctuations.
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Keywords: stochastic processes, large deviation theory, computational mechanics, fluctuation spectra

I. INTRODUCTION

One of the most critical computations today is identi-

fying the statistically extreme events exhibited by large-

scale complex systems. Whether in the domains of ge-

ology, finance, or climate, or whether in natural or de-

signed systems (earthquakes and hurricanes versus mar-

ket crashes and internet route flapping), one can argue

that this class of problem is rapidly coming to define our

present scientific and technological era [1]. Success in un-

derstanding the origins and occurrence of extreme events

will have a major impact on social infrastructure and its

sustainability.

Large deviation theory [2–7] is a relatively new and

key tool for analyzing a process’ full range of statistical

fluctuations. Presaged by Shannon-McMillman-Breiman

type theory in communication theory [8, 9], the mathe-

matical development of large deviations was first pursued

by Donsker and Varadhan [10]. In essence, it can be seen

as a refinement of the Central Limit Theorem [11] or as

a generalization of Einstein’s fluctuation theory [12, 13].

Today, large deviation theory enters into physics in many

different circumstances [7]. One can also formulate statis-

tical mechanics in the language of large deviation theory

[7, 14, 15]. And, it appears in abstract dynamical sys-

tems under the rubric of the thermodynamic formalism

[16].

The following analyzes the memory resources required

to generate, and so study, extreme events in structured

temporal stochastic processes. It extends large deviation

theory in a constructive way that leads to exact calcula-

tions of the spectrum of fluctuations for processes gener-

ated by finite-state hidden Markov models. Fortunately,

in this setting the generation and fluctuation problems
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can be simply stated. And so, we first give a suitably in-

formal introduction to process generators and fluctuation

theory, leaving technical results for later.

II. MARKOV PROCESSES AND THEIR

GENERATORS

A discrete-time, discrete-value stochastic process [17,

18] is the probability space P =
{
A∞,Σ,P(·)

}
. Here,

P(·) is the probability measure over the bi-infinite chain

X−∞:∞ = . . . X−2X−1X0X1X2 . . ., where random vari-

ables Xi take values in a finite discrete alphabet A and

Σ is the σ-algebra generated by the cylinder sets in

A∞. The following only considers ergodic stationary pro-

cesses; that is, P(·) is invariant under time translation—

P(Xi1Xi2 · · ·Xim) = P(Xi1+nXi2+n · · ·Xim+n) for all n,

m—and over successive realizations. A familiar impor-

tant property of stochastic processes is Markov order

[19]. This is the minimum history length R required by

any generator to correctly generate the process. Specifi-

cally, R is the smallest integer such that:

P(Xt| . . . , Xt−2, Xt−1) = P(Xt|Xt−R, . . . , Xt−2, Xt−1) .

To keep matters uncomplicated, consider a process

consisting of time series . . . 10010011 . . . of binary sym-

bols. Having raw sequences in hand does represent the

process’ behaviors, but in and of themselves the se-

quences are not that useful. For example, how can we

predict future symbols? What mechanisms drive the pro-

cess’ behaviors? Much more helpful in answering such

questions is an algorithm that can produce the process’

sequences. And, a good one can be used to simulate

the process—generating example sequences, perhaps not

even in the original data, but statistically similar—that

allow one to predict future sequences, gain insight into

the process’ internal mechanisms, and estimate statistical

properties.
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Note that in most cases representing a process by spec-

ifying the probability measure P(·) is impossible due to

the infinite number of possible sequences. So, how should

we represent processes? Is there a more compact way

than specifying in-full the probability measure on the se-

quence sigma algebra? In a rather direct sense, Markov

chains and hidden Markov models provide constructive

answers. The quality of those answers depends, of course,

on how useful these representations are. We now fill in

their technical details, so that we can work with them.

Markov chains (MCs) [19, 20] and hidden Markov mod-

els (HMMs) [18, 21, 22] are widely-used algorithms for

generating stochastic processes. Both consist of a set

S of states and a set of state-transition probabilities.

Formally, both MCs and HMMs are specified by a tu-

ple
{
S,A, {T (x), x ∈ A}

}
. In this, S is a finite set of

states, A is a finite alphabet, and {T (x), x ∈ A} is a set

of |S| × |S| substochastic symbol-labeled transition ma-

trices whose sum T =
∑
x∈A T

(x) is an stochastic matrix.

In MCs states are past words, whereas in HMMs states

and words are distinct. Hence, their states are hidden—

not directly observed.

Consider an example HMM where S = {A,B}, A =

{0, 1}, T (0) =

[
p 0

0 0

]
, and T (1) =

[
0 1− p
1 0

]
. An HMM

such as this is graphically depicted via its state-transition

diagram—a directed graph with labeled edges. S is the

set of graph nodes and the edge from node i to j is la-

beled by p|x corresponding to the HMM transition with

probability p = T
(x)
ij that goes from state i to j and gener-

ates symbol x. Fig. 1 shows the state-transition diagram

for a two-state HMM that generates a process called the

binary-symbol Even Process [23].

The Even Process highlights why HMMs are such use-

ful algorithms. Since MC states are constrained to be

individual past, HMMs can be arbitrarily more compact

than MCs for the same process. In this case, the Even

Process is an infinite Markov order process since its cur-

rent state can depend on arbitrarily long histories. (If

only 1s have been observed, it can be in either state A

or state B.) Said in terms of algorithmic complexity, the

MC representing the Even Process requires an infinite

number of Markov states, each associated with a history

1k0, k = 0, 1, 2, . . .. In contrast, as the figure makes plain,

the Even Process’ HMM takes only two states. This is

why HMMs are preferred algorithms compared to MCs

when it comes to generating processes.

When using HMMs as process generators we can re-

strict attention to those that are unifilar : the current

state and next symbol uniquely determine the next state.

Unifilar HMMs are important since they are perfect pre-

dictors of their process. (The same is not generally true

of a process’ nonunifilar HMM generators. We return

A Bp|0

1 − p|1

1|1

FIG. 1: State-transition diagram for the hidden Markov
generator of the Even Process, which consists of random
binary sequences with an even number of 1s separated
by arbitrary-length blocks of 0s.

to the important, but subtle distinction between predic-

tion and generation using HMMs at the end.) For any

given process there is an infinite number of unifilar HMM

generators; so the restriction imposes no loss of represen-

tational generality. Given all of the alternative HMMs,

though, which do we choose?

III. OPTIMAL SERIAL AND PARALLEL

GENERATORS

Let’s say Alice wants to generate the Even Process.

The previous remarks indicate that she should not use

an MC algorithm since it has infinite states and, as a

result, needs an infinite amount of memory to generate

the process. Ands so, she uses an HMM algorithm, which

is finite. To do this, she writes a computer program: If

the current state is A, with probability p the program

emits symbol 0 and stays at state A and with probability

1− p it emits symbol 1 and goes to state B. However, if

the current state is B, it generates symbol 1 and goes to

the state A. The program continues in this fashion, again

and again, and in the long run generates a realization of

the Even Process. Moreover, if Alice chooses to start in A

or B using the asymptotic state probability distribution

π, then the resulting realization is stationary.

Imagine that a long time has passed and the HMM is

in state A. Alice decides to stop the program for now

and return tomorrow to continue generating the same

realization. She must make a decision, does she use the

realization generated today or start all over again tomor-

row? Not wanting to waste the effort already invested,

she decides to use today’s realization tomorrow and sim-

ply concatenate newly generated symbols.

The next day, though, can she randomly pick a state

and continue generating? The answer is no. If she ran-

domly picks state B, then there is a chance that after

concatenating the old and new realizations together, the

sequence has odd number of 1s between two 0s. How-

ever, she knows that the Even Process never generates

such subsequences. Thus, if she wants to use today’s

realization tomorrow then, she must record the HMM’s

current state and continue generating from that state to-
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morrow.1

Information theory [8] tells us that to record the cur-

rent state Alice needs log2 |S| bits of memory. This is the

cost of sequential generation. And, it gives a quantitative

way to compare algorithms across the infinite number of

alternatives. If Alice wants to use less memory, she se-

lects the HMM with the minimum number |S| of states.

Which representation achieves this?

Before answering, let’s contrast another scenario, that

for simultaneous generation. Now, Alice wants to gener-

ateN � 1 realizations for a given process simultaneously,

but insists that the individual sequences be statistically

independent. The latter means that she cannot simply

generate a single realization and copy it N times. At first

blush, it seems that she needs N log2 |S| bits of memory.

According to Shannon’s source coding theorem [8, 24],

though, she can compress the sequence information and,

for large N , she needs only N H[S] ≤ N log2 |S| bits

of memory, where H[S] = −∑σ∈S π(σ) log2 π(σ) is the

Shannon entropy of the stationary probability distribu-

tion π(.) over the HMM’s states. That is, on average

Alice needs H[S] bits of memory to generate each real-

ization. So, if Alice wants to use less memory, she selects

the process HMM with the minimum H[S] in the set

of unifilar HMMs. Again, which representation achieves

this?

Crutchfield and Young [25] showed that over all unifi-

lar HMMs that generate a given process, there is a unique

HMM with the minimum number of states. Surprisingly,

this same HMM is also the one with the minimum en-

tropy over its states. It is now known as the ε-machine

[26, 27] and its state entropy is the process’ statistical

complexity Cµ [25, 26]. The consequence is that, for

a given stochastic process, the minimum memory re-

quired for any unifilar HMM to sequentially generate it is

log2 |Sε| bits, where Sε is the set of states in the process’

ε-machine. And, for simultaneous generation the average

minimum required memory for each realization is Cµ.

Today, Cµ is often used as a measure of structural

complexity for stochastic processes, from stochastic res-

onance [28] to hydrodynamic flows [29], atmospheric

turbulence [30], geomagnetic volatility [31], and single-

molecule dynamics [32–34]. In short, we use ε-machines

and Cµ to measure the memory inherent in a stochastic

process. And, by the preceding argument we now know

how they determine the memory required for sequential

1 The time period over which Alice pauses generation can be set to
any duration—an hour, a minute, or a second. In particular, the
period can be that required to generate a single symbol. In this
case, after every symbol emitted Alice must know in what state
the generator is. In short, Alice needs to remember the current
state during generation.

and parallel generation.

IV. TYPICAL AND ATYPICAL BEHAVIORS

So far, the discussion implicitly assumed that models

captured a process’ typically observed behaviors. How-

ever, most stochastic processes exhibit statistical fluctu-

ations and so occasionally generate atypical, statistically

extreme behaviors. Now, we turn to define what we mean

by typical and atypical behaviors. Once done, we finally

state our problem: How much memory is needed to gen-

erate a process’ atypical behaviors.

So, what does it mean that a process exhibits statistical

fluctuations? Let’s say Alice has a biased coin, meaning

that when she flips it, the probability p of seeing heads

is greater than one half. Alice now flips the coin n � 1

times and sees k heads. The Strong Law of Large Num-

bers [35] guarantees that for large n, the ratio k/n almost

surely converges to p:

P
(

lim
n→∞

k

n
= p

)
= 1 .

Informally, for large n the typical sequence has close to p

percent Heads. This does not mean that Alice never sees

long runs of all Heads or all Tails, for example. It simply

means that the latter are rare events.

We now show that a process’ typically observed real-

izations are those sequences in its so-called typical set.

Consider a given process and let An denote the set of

length-n sequences. Then, for an arbitrary ε > 0 the

process’ typical set [8, 36, 37] is:

Anε ={w : 2−n(hµ+ε) ≤ P(w) ≤ 2−n(hµ−ε), w ∈ An}, (1)

where hµ is the process’ metric entropy (Shannon entropy

rate) [38]:

hµ(P) = − lim
n→∞

1

n

∑
w∈An

P(w) log2 P(w) .

According to the Shannon-McMillan-Breiman theorem

[24, 39, 40], for a given ε� 1 and sufficiently large n:

P(w /∈ Anε , w ∈ An) ≤ ε . (2)

There are two important lessons here. First, coming from

Eq. (1), all sequences in the typical set have approxi-

mately the same probability. Second, coming from Eq.

(2), for large n the probability of sequences falling outside

the typical set is close to zero—they are rare.

One consequence is that sequences generated by a sta-

tionary ergodic process fall into one of three partitions;
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FIG. 2: For a given process, the space A∞ of its
realizations is partitioned into forbidden sequences,
sequences in the typical set, and sequences in atypical
sets.

see Fig. 2. The first contains those that are never gener-

ated by a process—sequences with zero probability. (For

example, the Even Process cannot generate realizations

containing a subsequence in {012k+10}, k = 0, 1, 2, . . .—

those with an odd number of 1s between 0s.) These are

the forbidden sequences. The second partition consists

of those in the typical set—the set with probability close

to one, as in Eq. (1). And, the last contains sequences

in a family of atypical sets—realizations that are rare to

different degrees. We now refine this classification.

Mirroring the familiar Boltzmann weight in statistical

physics [41], in the n → ∞ limit, we define the subsets

ΛPU ⊂ A∞ for a process P as:

ΛPU,n =

{
w : − log2 P(w)

n
= U, w ∈ An

}
ΛPU = lim

n→∞
ΛPU,n . (3)

In effect, this partitions A∞ into subsets ΛPU in which

all w ∈ ΛPU have the same probability decay rate U .

Physics vernacular would speak of the sequences hav-

ing the same energy density U .2 Figure 3 depicts these

subsets as “bubbles” of equal energy. (Though, to be

clear about their “shape”, these subsets are isomorphic

to Cantor sets.) The definition guarantees that any bi-

infinite sequence P generates belongs to one of these sets.

Equation (1) says the typical set is that bubble with en-

ergy equal to the process’ entropy rate: U = hµ. All the

other bubbles contain rare events.

When Alice uses a process’ HMM to generate realiza-

tions, what she does is generate sequences in the typi-

cal set with probability close to one and, rarely, atypical

sequences. Imagine, though, that Alice is interested in

a particular class of rare sequences, those in a different

2 U , considered as a random variable, is sometimes called a self
process [5].

isoenergy bubble; say, those with energy U in the set ΛPU .

How can Alice efficiently generate these rare sequences?

We now show that she can find a new process PU whose

typical set is ΛPU .

V. GENERATING RARE EVENTS

To do this, we return to considering HMMs for a given

process. With suitable HMMs and a precise definition

of a process’ atypical sequences we can now ask, How

much memory is required to generate them? How does

this compare to the memory required to generate typical

behaviors?

Given a process P and its ε-machine M(P), How do

we construct an ε-machine M(PU ) that generates P’s

atypical sequences at some energy U 6= hµ? Here, we

answer this question by constructing a map Bβ : P → Pβ
from the original P to a new process Pβ . The latter is

parametrized by β ∈ R/{0} which indexes the atypical

set of interest. Both processes P =
{
A∞,Σ,P(·)

}
and

Pβ =
{
A∞,Σ,Pβ(·)

}
are defined on the same measurable

sequence space. The measures differ, but their supports

(allowed sequences) are the same. We refer to Bβ as the

β-map.

Assume we are given M(P) =
{
S,A, {T (x), x ∈ A}

}
.

We will now show that for every probability decay rate

or energy U , there exists a particular β such that M(Pβ)

typically generates the words in ΛPU,n for large n. The β-

map which establishes this is calculated by a construction

that relates M(P) to M(Pβ) =
{
S,A, {S(x)

β , x ∈ A}
}

—

the HMM that generates Pβ :

1. For each x ∈ A, construct a new matrix T
(x)
β for

which
(
T

(x)
β

)
ij

=
(
T(x)

)β
ij

.

2. Construct a new matrix Tβ =
∑
x∈A T

(x)
β .

3. Calculate Tβ ’s maximum eigenvalue λ̂β and corre-

sponding right eigenvector r̂β .

4. For each x ∈ A, construct new matrices S
(x)
β for

which:

(
S
(x)
β

)
ij

=

(
T

(x)
β

)
ij

(r̂β)j

λ̂β(r̂β)i
. (4)

Theorem 1. For the new process Pβ in the limit

n → ∞ the probability of the set ΛPU,n converges to one

lim
n→∞

Pβ(ΛPU,n) = 1 where:

U = β−1
(
hµ(Pβ)− log2 λ̂β

)
. (5)

Also, in the same limit the process Pβ assigns equal en-

ergies over all the members of the set ΛPU,n.



5

Typical 
Set

Forbidden 
Set

U

FIG. 3: A∞ partitioned into ΛU s—isoenergy or equal
probability-decay-rate bubbles—in which all sequences
in the same ΛU have the same energy U . The typical set
is one such bubble with energy equal to metric entropy:
U = hµ. Another important partition is that of the
forbidden sequences, in which all sequences have zero
probability. The forbidden set can also be interpreted
as the subset of sequences with infinite energy.

Proof. See the appendix.

As a result, for large n the process Pβ typically gen-

erates the set ΛPU,n, where U = β−1
(
hµ(Pβ) − log2 λ̂β

)
.

And so, there is a one-to-one relationship between β and

U and we can denote the process Pβ by PU . More for-

mally, every word in ΛPU with probability measure one is

in the typical set of process Pβ .

This says that changing β controls which class of rare

events we focus on. Informally, the β-map acts like a

magnifier (Fig. 3) by enhancing particular isoenergy bub-

bles. That is, changing β moves the magnifier from one

bubble to another. The β-map construction guarantees

that the HMMs M(P) and M(Pβ) have the same states

and transition topology:
(
T

(x)
β

)
ij
6= 0 ⇐⇒

(
S
(x)
β

)
ij
6= 0.

The only difference is in their transition probabilities.

Thus, M(Pβ) is also a unifilar HMM, but not necessarily

an ε-machine, since the latter requires a minimal set of

states. Minimality is not guaranteed by the β-map. Typ-

ically, though, M(Pβ) is an ε-machine and there is only

a finite number of βs for which it is not. (More detailed

development along these lines will appear in a sequel.)

Historically, a similar map was found for the first time

in 1961 by Miller [42], but only for Markov order-one

processes. In the setting of continuous-time first-order

Markov evolution a similar map was introduced by Refs.

[43, 44] (s-ensemble), by Ref. [45] (biased ensemble), and

Ref. [46, 47] (exponential tilting). In these settings Pβ is

sometimes called an auxiliary process [45].

The β-map for unifilar HMMs and, consequently,

for finite- or infinite-order discrete-time discrete-value

Markov processes was introduced for the first time in

1993 [4]. A proof was not provided, which we rem-

edy here, explaining why this β-map works so generally.

There Pβ was called the twisted distribution.

VI. MEMORY SPECTRA

For an arbitrary stochastic process P, using its

ε-machine the last section presented a method to con-

struct a (unifilar) generator whose typical set is the pro-

cess PU—the rare events of the original P. Now, we de-

termine the minimum memory required to generate PU .

Recalling the earlier coding-theoretic arguments, this is

rather straightforward to answer. The minimum memory

to generate PU is determined by the size of its ε-machine.

(As noted, this is the size of M(PU ) except for finite num-

ber of U .)

And so, except for a finite number of rare-event

classes, to sequentially generate sequences in a given rare

class, one requires the same memory—the number |S| of

states—as that to generate the original process. This is

our first result on the minimum Markov memory for a

process’ rare events.

The story differs markedly, however, for simultaneous

generation. The minimum required memory for simul-

taneous generation of PU is Cµ(PU ), putting the earlier

coding argument together with last section’s calculations.

More to the point, this is generally not equal to Cµ(P).

To better appreciate this result, let us examine three ex-

amples.

First, consider the Two-Biased Coins (TBC) Process

with p = 1/3, whose ε-machine is shown in Fig. 4(a)(top

left). To generate its realizations one flips a biased coin

repeatedly. At first, label Heads a 0 and Tails a 1. Af-

ter flipping, switch the labels and call a Head 1 and Tail

0. A TBC process sequence comes from repeating these

steps endlessly. As Fig. 4(a) makes clear, there is a sym-

metry in the process. In the stationary distribution π,

state A has probability half, as does state B, and this

is independent of p. This gives Cµ(P) = 1 bit. Recall-

ing the β-map construction, we see that changing β does

not change the ε-machine topology. All that changes is

p. This means, in turn, that the symmetry in states

remains and Cµ(PU ) = 1 is constant over allowed Us

(or βs); Cµ(U) versus U is the horizontal line shown in

Fig. 4(c).

What energies are allowed? The TBC Process has a

finite energy range: U ∈ [≈ 0.586,≈ 1.584]. From Eq. (3)

we see that the maximum Umax corresponds to the bubble

with the rarest sequences that can be generated. Con-

versely, Umin corresponds to the bubble with the most

probable. The energy extremes delimit the domain of

the Cµ(PU ) curves in Fig. 4(c). In addition, the U asso-
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p|0

1 � p|1

p|1

1 � p|0

(a)

D

E F

p|1
1-p|0

1|1

1|1

(b)

(c)

FIG. 4: (a) Two-Biased Coins (TBC) Process ε-machine
generator. (b) Intermittent Periodic Process (IPP)
ε-machine generator. (c) Statistical complexity Cµ
versus energy U (or fluctuation class) for each, along
with the energies U∗ at which their typical sets are
found (vertical dashed lines).

ciated with P’s typical set is marked in the figure with a

dashed (green) vertical line near U ≈ 0.9183.

The difference between the typical set and that with

Umin is important to appreciate. The typical set is that

set of sequences with probability close to one and with en-

ergy U = hµ. The latter is generally different from Umin.

That is, typical sequences are not necessarily the most

probable sequences, considered individually, but rather

they belong to the most probable subset—the typical set.

As a result of this analysis for this example, one 1 bit

of memory is uniformly required for generating the TBC

Process’ events, rare or not and independent of which

class of rare events we examine.

Second, this is not the general case, since Cµ(PU )

can be a nonconstant function of U , as we now show.

Consider the Intermittent Periodic Process (IPP) with

p = 0.35; its ε-machine is given in Fig. 4(b)(top right).

It gets its name since when p = 0, it periodically emits

the subsequence 101 and when p > 0, it randomly inserts

1s. Using the β-map and Thm. 1 we can find the pro-

cesses PU and calculate Cµ. Fig. 4(c) shows how their

Cµ(PU ) depends on U . The IPP is similar to the TBC

Process in that it also has a finite energy range; IPP en-

ergies U ∈ [≈ 0.207,≈ 1.515]. It turns out that for any

process with a finite ε-machine the allowed energy range

is also finite. In addition, the U associated with P’s typi-

cal set is marked in the figure with a dashed (red) vertical

line near U ≈ 0.406.

Thus, IPP’s Cµ(PU ) is a nontrivial function of U .

Practically, this means that generating various rare-

sequence classes requires less memory than for other

classes. For example, for events with Umax—p = 1 and

β → −∞—ones needs no memory, since the class of

maximum energy has only one sequence—the all-1s se-

quence. This can be generated by an IID process that

emits only 1s. Generally, due to its IID character we

do not need to remember or store the process’ current

state. In other words, the ε-machine M(PU ) that gen-

erates this class only has one state and so Cµ = 0 bits

there. For Umin, occurring at p = 0 and β → ∞, there

are three “ground state” sequences—the three shifts of

. . . 101101 . . . and three equally probable states. Thus,

Cµ(Umin) = log2 3 ≈ 1.585 bits are necessary for genera-

tion.

Third and finally, for a more complex example consider

the process generated by the ε-machine with p = 1/3

given in Fig. 5(a)(top). Using the β-map and Thm. 1 we

again find the processes PU and calculate their Cµ, as

shown in Fig. 5(b)(bottom). The difference between this

process and IPP is that at no inverse temperature β do

we have an IID process Pβ . As a consequence Cµ(PU ) is

nonzero for all allowed U .

The insets in Fig. 5(b)(bottom) highlight the details of

the process’ ε-machines for two limits of β. In the limit
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self-transition that and generates 0s. In other words, the

process has two phases that rarely switch between them-

selves. As a result, over moderate durations the process

exhibits nonergodic behavior. We note that this has pro-

found e↵ects on predictability: substantial resources are

required for predicting nonergodic processes [48], despite

their requiring finite resources for generation.

VII. CONCLUDING REMARKS

To generate the rare behaviors of a stochastic process

one can wait, if one wants, for exponentially long times

for them to occur. Here, we introduced an alternative

to rare-event generation from large deviation theory and

its predecessors. Given a process, we first classified its

events into those that are forbidden, typical, and atypi-

cal. And, then we refined the atypical class. For any cho-

sen rare class we introduced an algorithm that constructs

a new process, and its unifilar HMM, that typically gen-

erates those rare events. Appealing to the optimality of

computational mechanics’ ✏-machines then allowed us to

analyze the minimal memory costs of implementing rare-

event generators. Depending on the goal—producing a

single correct sample (sequential generation) or a large

number of correct of samples (simultaneous generation)

from the rare class of interest—memory cost di↵ers. We

studied both costs. Taken together the three examples

analyzed give a complete survey of applying the method

and how memory costs vary across classes of rare events.

There are two main types of algorithms for generat-

ing stochastic processes: Monte Carlo versus finite-state

machine algorithms. Monte Carlo algorithms are appro-

priate if the process can be written as a probability dis-

tribution generated by a Hamiltonian system and if what

we are interested are macroscopic statistics. For a given

process, finding a compact Hamiltonian generator can

be challenging. In addition, to generate long realizations

using Monte Carlo algorithms one needs corrspondingly

long initial data. This data, which changes during the al-

gorithm, must be stored by the algorithm. And so, this

approach can be memory intensive. These limitations do

not exist for finite-state machine algorithms.

The introduction emphasized that we only focused on

unifilar HMMs as process generators and then we con-

structed the minimal unifilar generator for a given class

of rare events. The unifilar condition is necessary when

using a process’ past behavior to optimally predict its fu-

ture [49]. However, one may not be interested in predic-

tion, only generation for which unifilarity is not required.

While removing unifilarity expands the space of HMMs,

it greatly complicates finding minimal generators. For

one, nonunifilar HMMs can be more memory e�cient

than unifilar HMMs for a given process [18, 50, 51]. For

another, constructing a minimal nonunifilar HMM for a

general process is still an open and hard question [52–54].

The required memory Cµ(P) for (unifilarly) generat-

ing realizations of a given process P has been used as a

measure of structural complexity for over two decades. It

places a total order over stochastic-process space, ranking

processes by the di�culty to generate them. The theo-

rem introduced here extends the measure Cµ(P) to the

full memory spectrum Cµ(PU ) to generate fluctuations.

As one consequence, this structural accounting intro-

duces the new phenomenon of the ambiguity of simplicity

[55] to the domain of fluctuation theory. Say that process

A is simpler than process B, since it requires less mem-

ory to generate: Cµ(A) < Cµ(B). However, if instead

we are interested in the rarest events at U , we showed

that it is possible that A is more complex than process

B since it requires more memory for that event class:

Cµ(AU ) > Cµ(BU ). As Ref. [55] notes, this fundamen-

tal ambiguity flies in the face of appeals to simplicity via
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process has two phases that rarely switch between them-
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e note that this has pro-
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predictability: substantial resources are

required for predicting nonergodic processes [48], despite

their requiring finite resources for generation.
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self-transition that and generates 0s. In other words, the

process has two phases that rarely switch between them-

selves. As a result, over moderate durations the process

exhibits nonergodic behavior. We note that this has pro-

found effects on predictability: substantial resources are

required for predicting nonergodic processes [48], despite

their requiring finite resources for generation.
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To generate the rare behaviors of a stochastic process

one can wait, if one wants, for exponentially long times

for them to occur. Here, we introduced an alternative

to rare-event generation from large deviation theory and

its predecessors. Given a process, we first classified its

events into those that are forbidden, typical, and atypi-

cal. And, then we refined the atypical class. For any cho-

sen rare class we introduced an algorithm that constructs

a new process, and its unifilar HMM, that typically gen-

erates those rare events. Appealing to the optimality of

computational mechanics’ ε-machines then allowed us to

analyze the minimal memory costs of implementing rare-

event generators. Depending on the goal—producing a

single correct sample (sequential generation) or a large

number of correct of samples (simultaneous generation)

from the rare class of interest—memory cost differs. We

studied both costs. Taken together the three examples

analyzed give a complete survey of applying the method

and how memory costs vary across classes of rare events.

There are two main types of algorithms for generat-

ing stochastic processes: Monte Carlo versus finite-state

machine algorithms. Monte Carlo algorithms are appro-

priate if the process can be written as a probability dis-

tribution generated by a Hamiltonian system and if what

we are interested are macroscopic statistics. For a given

process, finding a compact Hamiltonian generator can

be challenging. In addition, to generate long realizations

using Monte Carlo algorithms one needs corrspondingly

long initial data. This data, which changes during the al-

gorithm, must be stored by the algorithm. And so, this

approach can be memory intensive. These limitations do

not exist for finite-state machine algorithms.

The introduction emphasized that we only focused on

unifilar HMMs as process generators and then we con-

structed the minimal unifilar generator for a given class

of rare events. The unifilar condition is necessary when

using a process’ past behavior to optimally predict its fu-

ture [49]. However, one may not be interested in predic-

tion, only generation for which unifilarity is not required.

While removing unifilarity expands the space of HMMs,

it greatly complicates finding minimal generators. For

one, nonunifilar HMMs can be more memory efficient

than unifilar HMMs for a given process [18, 50, 51]. For

another, constructing a minimal nonunifilar HMM for a

general process is still an open and hard question [52–54].

The required memory Cµ(P) for (unifilarly) generat-

ing realizations of a given process P has been used as a

measure of structural complexity for over two decades. It

places a total order over stochastic-process space, ranking

processes by the difficulty to generate them. The theo-

rem introduced here extends the measure Cµ(P) to the

full memory spectrum Cµ(PU ) to generate fluctuations.

As one consequence, this structural accounting intro-

duces the new phenomenon of the ambiguity of simplicity

[55] to the domain of fluctuation theory. Say that process

A is simpler than process B, since it requires less mem-

ory to generate: Cµ(A) < Cµ(B). However, if instead

we are interested in the rarest events at U , we showed

that it is possible that A is more complex than process

B since it requires more memory for that event class:

Cµ(AU ) > Cµ(BU ). As Ref. [55] notes, this fundamen-

tal ambiguity flies in the face of appeals to simplicity via
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Occam’s Razor and practically impacts employing statis-

tical model selection as it relies on a total order of model

complexity.

The same fluctuation theory has recently been used

to identify fluctuations in macroscopic thermodynamic

functioning in Maxwellian Demons [56]. Moreover, the

method can be applied to many stochastic systems to

explore their rare behaviors, from natural processes ob-

served in fluid turbulence [57, 58], physiology [59, 60],

surface science [61, 62], meteorological processes [63], cos-

mic microwave background radiation [64], seismic time

series [65] to designed systems found in finance [66–69],

renewable energy [70, 71], and traffic [72, 73]. It gives a

full description of a process, from its typical to its rare

behaviors. And, it determines how difficult it is to simu-

late a process’ rare events.

Finally, there is another potentially important appli-

cation domain. The rapid progress in quantum compu-

tation and information suggest that, perhaps soon even,

one will be able to generate processes, both classical and

quantum, using programmable quantum systems. The

equivalent memory Cq for the simultaneous quantum

simulation of processes also has already been introduced

[49, 74–77]. And so, a sequel will analyze quantum mem-

ory fluctuation spectra Cq(U) and how they differ from

the classical spectra introduced here.
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PROOF OF THE THEOREM

This appendix establishes the main theorem via a sin-

gle lemma relying on a process’ cryptic order.

Cryptic order is a recently introduced topological prop-

erty of stochastic processes [78] that is bounded by, but

is rather different in motivation from, the more familiar

Markov order [79]. Formally, given a process’ ε-machine,

its cryptic order is K = inf
{
l : H[Sl|X0X1 · · · ] = 0, l ∈

Z
}

. Informally, this means that if we observe an infinite

length realization, we can be certain about in which state

the ε-machine is in after the Kth symbol [80].

Lemma 1. For any given process with finite states and

cryptic order, for every U and β ∈ R/0 we have:

ΛPU = Λ
Pβ
βU−log2 λ̂β

.

Proof. Consider an arbitrary word w = x0x1 . . . xn−1 ∈
An generated by process P where n � 1. Since the

ε-machine is unifilar, immediately after choosing the ini-

tial state, all the successor states are uniquely deter-

mined. Using this, we can decompose w to two parts: The

first part wK is the first K symbols and the second part

is w’s remainder. Knowing w, the state σK and all suc-

cessor states following σK+1, σK+2, . . . are uniquely de-

termined. As a consequence, the probability of process P
generating w can be written as:

P(w) = P(wK)

n−1∏
i=K

(
T(xi)

)
σiσi+1

.

We can adapt the energy definition in Eq. (3) to finite-

length sequences. Then, w’s energy is:

U(w) = − log2 P(w)

n

= − log2 P(wK)

n
−

log2

(∏n−1
i=K

(
T(xi)

)
σiσi+1

)
n

.

Now, consider the same word, but this time generated by

the ε-machine M(Pβ). Then, the probability of generat-

ing w is:

Pβ(w) = Pβ(wK)

n−1∏
i=K

(
S
(xi)
β

)
σiσi+1

= Pβ(wK)

n−1∏
i=K

(
T

(xi)
β

)
σiσi+1

(r̂β)σi+1

λ̂β(r̂β)σi

= Pβ(wK)
(r̂β)σn
(r̂β)σK

(
λ̂β

)n−K n−1∏
i=K

(
T

(xi)
β

)
σiσi+1

= Pβ(wK)
(r̂β)σn
(r̂β)σK

(
λ̂β

)n−K (n−1∏
i=K

(
T(xi)

)
σiσi+1

)β
.

The new energy for the same word is:

Uβ(w) =− log2 P(w)

n

= −
log2

(
Pβ(wK)

(r̂β)σn
(r̂β)σK

)
n

− n−K
n

log2 λ̂β

− β
log2

(∏n−1
i=K

(
T(xi)

)
σiσi+1

)
n

.

In the limit of large n the first terms in U(w) and Uβ(w)

vanish and we have Uβ(w) = βU(w)− log2 λ̂β. Thus, for

any two long sequences w1, w2 ∈ An, if U(w1) = U(w2),

then Uβ(w1) = Uβ(w2). And, the partitions induced by
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FIG. 6: The β-map acts like a magnifier: In the
parlance of large deviation theory, it “twists” or “tilts”
the sequence distribution in a way that focuses on the
probability of a chosen rare-event class. Fixing β, the
β-map changes the energy U of a class to

Uβ = βU − log2 λ̂β . In particular, a subset with energy
U∗ maps to the typical set of a new process that has
energy hµ(Pβ). The set FW of forbidden sequences is
invariant under the β-map.

Eq. (3) are invariant under the β-map. In other words,

the energy of an arbitrary bubble after β-mapping changes

from U to Uβ, where:

Uβ = βU − log2 λ̂β .

This completes the lemma’s proof.

This demonstrates how the β-map changes bubble en-

ergy: U → βU − log2 λ̂β . So, now we ask for the bubble

(and its energy) that maps to the typical set of the new

process Pβ . That is, we use the β-map to find the class

ΛPU of rare sequences typically generated by M(Pβ).

This sets up the theorem’s proof. Using the fact that

the process’ metric entropy is the typical set’s energy, the

energy of Pβ ’s typical set is hµ(Pβ). (Refer to Fig. 6.)

The lemma tells us how the β-map changes energy. Using

this, we can identify the bubble with energy U∗ that is

typically generated by M(Pβ), it has:

hµ(Pβ) = βU∗ − log2 λ̂β .

This completes the theorem’s proof.
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