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RESEARCH ARTICLE
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Abstract

Improved sanitation has been associated with a reduced prevalence of soil-transmitted hel-

minth (STH) infection and has been hypothesized to prevent fecal contamination from

spreading throughout the household environment. We evaluated the effect of providing

households with a pit latrine with a plastic slab and drophole cover, child feces management

tools, and associated behavioral messaging on reducing STH eggs in household soil. We

collected soil samples from 2107 households (898 control and 1209 improved sanitation

intervention households) that were enrolled in the WASH Benefits cluster randomized con-

trolled trial in rural Kenya and performed a post-intervention analysis after two years of inter-

vention exposure. Following a pre-specified analysis plan, we combined all households that

received the sanitation intervention into one group for comparison to control households.

The prevalence of STH eggs in soil was 18.9% in control households and 17.0% in interven-

tion households. The unadjusted prevalence ratio of total STH eggs in the intervention

groups compared to the control group was 0.94 (95% CI: 0.78–1.13). The geometric mean

concentration was 0.05 eggs/g dry soil in control households and intervention households.

Unadjusted and adjusted models gave similar results. We found use of a shared latrine,

presence of a roof over the sampling area, and the number of dogs owned at baseline was

associated with an increased prevalence of STH eggs in soil; the presence of a latrine that

was at least 2 years old and a latrine with a covered drophole was associated with a reduc-

tion in the prevalence of STH eggs in soil. Soil moisture content was also associated with an

increased prevalence of STH eggs in soil. Our results indicate that an intervention designed

to increase access to improved latrines and child feces management tools may not be
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enough to impact environmental occurrence of STH in endemic areas where latrine cover-

age is already high.

Author summary

Soil is crucial for the lifecycle and transmission of soil-transmitted helminths (STH), a

class of parasitic intestinal worms that infect over a billion people globally. Past studies

have shown that water, sanitation, and handwashing may be able to reduce STH infection,

but the causal pathway is unclear. This study was nested within a large randomized con-

trolled trial evaluating the impact of individual and combined water, handwashing, and

sanitation interventions on child health in western Kenya. The sanitation intervention

included upgrading pit latrines by installing a plastic slab, as well as delivery and promo-

tion of child safe feces management tools. The sanitation intervention did not reduce STH

contamination in household soil, suggesting households with access to improved sanita-

tion may still be exposed to STH in the household environment. Risk factors for the

presence of STH soil contamination included sharing toilets, an uncovered latrine pit,

latrines<2 years old, owning dogs, shade on the sampling location, and high soil moisture

content.

Introduction

Soil plays a crucial role in the lifecycle of soil transmitted helminths (STH). Eggs need to incu-

bate in soil in a warm, moist environment to become infective. Hookworm species need up

to 14 days to become viable and infectious, Ascaris lumbricoides eggs need 8 to 37 days, and

Trichuris trichiura eggs need 20 to 100 days.[1] Once the eggs become infectious, Ascaris and

Trichuris eggs can remain infectious for a few months and hookworm larvae can remain infec-

tious for a few weeks[1]. Two species of STH, Ascaris lumbricoides and Trichuris trichiura, are

transmitted through the ingestion of infective eggs. Both hookworm species, Ancylostoma duo-
denale and Necator americanus, infect people through larvae penetrating the skin, but Ancylos-
toma duodenale is also transmitted by ingesting infective larvae[2]. Soil-transmitted helminth

(STH) eggs are excreted in the feces of an infected person and are present in the environment

in endemic areas. STH eggs have been found in soil in rural households in Poland, southern

Thailand, the Philippines, Tanzania, Kenya, and South Africa; urban households in Ethiopia

and Jamaica; informal settlements in Brazil and Turkey; urban and rural towns in Nepal; and

primary schools in northern Vietnam and South Africa[3–14].

Soil-transmitted helminth infections are endemic in our study area in rural western Kenya.

An evaluation of the Kenya national deworming program reported a reduction in the preva-

lence of overall STH infection from 2012 to 2014[15]. After two years of annual deworming,

the prevalence of STH infection in schoolchildren in Kakamega county dropped from 58.3%

to 24.8% (calculated from [15]). Much of this reduction was due to a decrease in hookworm

infection, which went from 28.8% to 0.1% (calculated from [15]). The prevalence of Ascaris
and Trichuris infection remained at similar levels at approximately 25% prevalence of Ascaris
and 1% prevalence of Trichuris[15].

Water treatment, sanitation, and handwashing (WSH) interventions may help prevent STH

infections. Pit latrines with slabs were classified as improved sanitation facilities by the Joint

Monitoring Programme for Water Supply and Sanitation (JMP) under the Millennium
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Development Goals[16]. Pit latrines with a slab may be more likely to be used and easier to

clean, which could reduce egg transfer from the latrine to the household. Ventilated pit latrines

with slabs may also reduce the spread of fecal contamination by reducing flies in the latrine.

Previous laboratory and field studies have found STH eggs on the bodies of and inside the gut

of flies,[17–19] which suggests that flies may be able to transfer STH eggs from one location to

another. Improved sanitation facilities may reduce STH infection prevalence by making it

more likely that feces are safely contained, thereby reducing STH eggs in the environment and

the chance of exposure to infectious STH eggs. A meta-analysis of descriptive, cross-sectional

studies on sanitation and STH infection showed the availability and use of improved sanitation

facilities was associated with reduced odds of STH infection compared to lack of availability or

disuse of sanitation facilities[20]. Another meta-analysis indicated that access to any sanitation

facility, improved or unimproved, was associated with reduced odds of STH infection[21].

Few studies have examined the causal pathways by which improved sanitation could reduce

STH infection in rural low-income countries. Our hypothesized theory of change is that

improved sanitation reduces STH in soil, which then reduces the risk of STH exposure and

infection to household members. Our study focused on elucidating the importance of this

intermediate step in the potential causal pathway. In this study, we evaluate whether an

improved household sanitation intervention—incorporating a pit latrine with plastic slab and

drophole cover, a plastic child potty, and a metal scoop to safely dispose of feces in the environ-

ment—reduced STH eggs in soil outside of rural houses in western Kenya. We also explore

household, latrine, and environmental characteristics that were associated with STH eggs in

soil among households in the control arm of our study.

Methods

Ethics statement

The study procedures were approved by the Stanford Institutional Review Board (Protocol

Number 23310) and the Kenya Medical Research Institute (KEMRI) Ethical Review Commit-

tee (SSC Number 2271). All respondents gave written, informed consent prior to participating

in the survey and gave oral consent collected electronically prior to soil collection. All respon-

dents were adults.

Study design and enrollment

We enrolled a subset of households in the WASH Benefits study in Kakamega, Bungoma, and

Vihiga counties in western Kenya. The WASH Benefits study was a cluster-randomized con-

trolled trial that assessed the impact of individual and combined water, sanitation, handwash-

ing, and nutrition interventions on child health; the main trial outcomes included diarrhea,

growth, parasite infections, and cognitive development[22–25]. We describe the effect of the

interventions on child STH infections in the discussion section. We collected soil samples

from within the double-sized active control arm (non-WASH related household visits), as well

as the single sized sanitation arm, and the single sized combined water, sanitation, and hygiene

(WSH) arm in the WASH Benefits randomized controlled trial[22]. The trial enrolled 892

households in the sanitation arm, 912 in the WSH arm, and 1919 in the active control arm

[26]. Our study focuses on an intermediate outcome not pre-specified in the original trial pro-

tocol. Villages were chosen in rural areas that did not have any ongoing WSH or nutrition

interventions. Additionally, >80% households had to lack access to piped drinking water.

Households with pregnant women were selected within enrolled villages. At the time of data

collection, these households had a young child between 21 and 27 months and many had an

older child between the age of 3 and 15. Households were assigned to a cluster of households,

Effect of sanitation on soil-transmitted helminths in household soil
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and randomization of the intervention was performed by cluster[22]. Each cluster included

one or two adjoining villages. Children in our study area may have received deworming medi-

cine as part of the national school-based deworming program[27]. Kenya’s national school-

based deworming program included annual deworming of the study area that began in 2012

[15,27]. We collected data on consumption of deworming medicine within the past 6 months

in each household during data collection.

Interventions

Households enrolled in the sanitation arm received an improved pit latrine with a plastic slab

with raised footings and a drop hole cover, a portable child potty made of plastic, and a metal

scoop for removing animal and child feces from the compound and placing it in the latrine.

The child potty was designed for use by children under 3 years of age, many of whom practice

open defecation daily[22,23]. Households enrolled in the combined WSH arm received the

sanitation intervention, as well hardware for facilitating treating drinking water with chlorine

and handwashing with soap. The water intervention was designed to improve microbial qual-

ity and not water quantity. Chlorine dispensers were installed at community water sources and

bottles of chlorine were delivered to homes for treating stored drinking water. Dual tippy taps

with soapy water and rinse water were installed at the latrine and food preparation areas, and

soap was delivered regularly to promote handwashing. Further details of the interventions and

WASH Benefits primary results can be found in Null et al (2018)[26]. All households, includ-

ing the active control arm, received monthly visits from community promoters who measured

the mid-upper arm circumference of children enrolled in the trial; in the sanitation and WSH

arms they also delivered behavior change messaging related to the interventions. Promotion

materials are published at https://osf.io/26r59/. Follow up survey data, including soil samples,

were collected approximately two years after the interventions were delivered.

Field data collection

We collected 2107 soil samples from February 2015 to July 2016; 898 from the active control

arm, 613 from the sanitation arm, and 596 from the combined WSH arm of the WASH Bene-

fits trial (Fig 1). We collected samples from households in 113 control clusters, 77 sanitation

clusters, and 76 WSH clusters. All clusters enrolled in the sanitation and WSH arms of the

main trial were enrolled into this study, while a subset (approximately 75%) of clusters was

enrolled from the two control groups (grouped together in the trial analyses to form a double-

sized control group). Households were enrolled in the WASH Benefits control groups ran-

domly, and our sub-study was only able to visit one control group out of the two control

groups within some blocks due to logistical constraints. For each sample, we collected approxi-

mately 50 grams of soil within a 900 cm2 area that was exposed in front of the primary entrance

to the house. Samples were collected by scraping the top layer of soil with a clean metal spade

into a sterile Whirlpak bag (118 mL capacity, Nasco, Fort Atkinson, WI). Most (94%) samples

were collected within 2 meters of the house entrance. In a few instances (124 out of 2107), we

collected a sample over 2 meters away from the house entrance because there was no soil pres-

ent directly in front of the house entrance. We chose to collect samples at the house entrance

because previous work suggested that STH egg presence and concentration was similar at the

latrine entrance and house entrance, and we wanted to collect samples from a location that

could be standardized across households. The location was also consistent with our theory of

change that improved sanitation reduces STH infection through reduced environmental STH

contamination in the house environment. Samples were collected throughout the day and the
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time of collection was noted. A household survey was performed at the same time that the soil

samples were collected.

We performed an electronic survey using SurveyCTO, which is a mobile data collection

platform based on Open Data Kit (ODK), on Samsung Galaxy tablets. We collected informa-

tion about soil sampling and the physical conditions around the sampling site, including

Fig 1. Study flow diagram.

https://doi.org/10.1371/journal.pntd.0007180.g001
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presence of trash, presence of animal or human feces, presence of visible soil moisture, pres-

ence of a roof extending over the sampling location, the presence of sun on the sampling loca-

tion at the sampling time, and the characteristics of the soil (hard or soft packed, presence of

vegetation, and presence of brick or concrete under the soil). We also collected information

about the type and number of animals that households kept.

Laboratory analysis

We analyzed soil samples for the presence of STH eggs following the protocol outlined in

Steinbaum et al. (2017)[28]. The protocol has an Ascaris recovery efficiency of 73% and has

been used to detect Ascaris and Trichuris in field studies in Kenya and Bangladesh, but its abil-

ity to detect hookworm eggs and larvae is unknown. We selected this standardized protocol

because Ascaris was the most prevalent soil-transmitted helminth in our study area[15]. Sam-

ples were transported from the field to the laboratory at room temperature. They were placed

in a 4˚C refrigerator immediately upon arrival to the laboratory and remained there until pro-

cessing. We microscopically examined and enumerated the number of fertilized and larvated

Ascaris, Trichuris, and hookworm eggs in each sample, and we incubated all positive samples

to determine egg viability. We classified an egg a fertilized egg if it was fertilized, including sin-

gle-celled and multiple-celled eggs, and it did not contain a larvae. We classified an egg a lar-

vated egg if it contained a larvae before incubation. We classified an egg a viable egg if it

contained a larvae after incubation. We also determined the moisture content and soil texture

of each sample following the protocol in Steinbaum et al. (2017)[28]. Separate aliquots of each

soil sample were used for measuring moisture content through oven drying and for STH egg

enumeration.

We incorporated several levels of quality assurance and quality control (QAQC) into the

microscopy portion of the laboratory analysis. Soil laboratory technicians counted the number

of STH eggs in each sample before and after incubation. A microscopy expert reviewed a sub-

set (14%, 295 out of 2107) of the microscopy slides. Additionally, we took a photo of the first

non-larvated and larvated egg of every STH species that we found in every sample prior to

incubation. A microscopy expert reviewed every photo and provided feedback to the labora-

tory technicians. We also included QAQC measures into our laboratory process. Each labora-

tory technician processed a technical replicate of the soil sample in every other day and a

laboratory blank on the alternate days. We defined a technical replicate as an additional 15g

aliquot of homogenized soil that was processed using the same laboratory procedure as the

original sample aliquot. Our laboratory blank was 5 mL distilled water that was processed

using the same procedure as the original sample aliquot. We did not detect contamination in

any of our laboratory blanks. The technicians and microscopy expert were blinded to the treat-

ment assignments. The detection limit of the method is 1 egg per 15g wet weight of soil

sample.

Data analysis

We calculated the prevalence of eggs as the binary presence or absence of any eggs in a sample

and the concentration of eggs as the number of eggs per gram of dry soil that was processed.

We measured viable eggs because they are infectious, and we considered eggs to be viable if

they contained a larvae after incubation. Percent viability was calculated as the percent of eggs

in each sample that were viable out of the total number of eggs.

Our pre-specified primary analysis (S1 Appendix) compares the presence of eggs in soil

between households that received the sanitation intervention (combining WSH and sanitation

arms) compared to the control group. The control group had varying levels of sanitation
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coverage (SI). A subgroup analysis was performed to understand if the combined WSH inter-

vention had a greater reduction in eggs in soil compared to the sanitation intervention. We

performed this analysis for the following outcomes: binary presence of all STH eggs, all Ascaris
eggs, all Trichuris eggs, viable STH eggs, viable Ascaris eggs, and viable Trichuris eggs. We

planned to also perform the analysis with the outcome of hookworm eggs or larvae in soil, but

we did not perform this analysis because we did not find any hookworm eggs or larvae in our

samples. The prevalence of hookworm infection in study children in the control group was

low at 2.2% [25]. We used a generalized linear model with a Poisson distribution and log link

with the presence of eggs as the dependent variable and the intervention as the independent

variable. The model included fixed effects for randomization block and accounted for cluster-

ing using Hubert Sandwich Estimator robust standard errors. We ran this model for all out-

comes. We modified our model specification from logistic regression, which was indicated in

the pre-specified plan, to Poisson regression because of convergence issues.

Our pre-specified secondary analysis (S1 Appendix) compares the concentration of STH in

soil between households that received the interventions compared to the control group. We

also compared the concentration of STH eggs in soil in the WSH and sanitation interventions.

We used a targeted maximum likelihood estimation model with Gaussian distribution and log

link to estimate the soil egg count reduction in intervention arms compared to the control

arm. We performed this analysis using a continuous outcome of the concentration of all STH

eggs, all Ascaris eggs, all Trichuris eggs, viable STH eggs, viable Ascaris eggs, and viable Tri-
churis eggs. We calculated the reduction in the concentration of STH eggs in soil using the geo-

metric mean. To perform this analysis, we log10-transformed the concentration of STH eggs

in soil. For non-detect samples, we substituted the concentration of 0 eggs/g dry soil with half

of the detection limit (0.5 egg/sample) divided by the grams of dry soil processed per sample,

then took the log10 to get a concentration in log10-units of eggs/g dry soil.

We analyzed adjusted models for the primary and secondary analysis. We prescreened

covariates and only included those that had an association (p<0.2) with the outcome. We

assessed the association of the following covariates: past deworming of a young child (under 3

years), soil texture (sandy loam or clay loam), sunlight exposure on sampling location, a roof

over the sampling location, soil moisture content, month of sampling, house materials (con-

crete floor and iron roof), and household assets (electricity, radio, television, mobile phone,

clock, bicycle, motorcycle, stove, number of cows, number of goats, number of dogs, and num-

ber of chickens). Month was included as a categorical (factor) variable. Wealth indicator data

(house materials and household assets) were collected during baseline data collection for the

WASH Benefits study. Minor deviations from our pre-specified analysis plan included

removal of several covariates in the adjusted analysis due to a large number of missing values,

including past deworming of an older child, rain within the past week, temperature, and

humidity. We also included a covariate for the laboratory technician who processed the sample

in the adjusted models. We used robust standard errors clustered by randomization block for

all of our analysis. Since randomization was performed with pair-matched clusters, 101 obser-

vations were dropped that did not have a corresponding pair match. There were also 48 obser-

vations dropped from the adjusted analysis due to missing covariate data. We performed the

primary and secondary analysis using R version 3.4.2.

Additionally, we followed a pre-specified analysis plan (S1 Appendix) to assess the extent to

which household, latrine, and environmental characteristics were associated with the preva-

lence of STH eggs in household soil in all households that had access to an observable latrine,

including factors not expected to be affected by the sanitation intervention. We chose our

independent variables based on a few hypotheses. Household factors—number of household

members, past deworming of household members, safe child feces management (child feces

Effect of sanitation on soil-transmitted helminths in household soil
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collected in potty or diaper and thrown in latrine)—may influence initial egg deposition in the

household environment. Latrine factors—observed presence of a latrine, self-reported age of

latrine, observed presence of concrete or plastic latrine slab, observed presence of drop hole

cover, and observed cleanliness of the latrine—may prevent STH egg deposition and transfer

in the house environment. Additionally, environmental factors—soil moisture content, soil

texture, presence of sun[12] or a roof over the sampling area, past rain, temperature, humidity,

and month[1]—may affect the persistence and viability of STH eggs in the environment.

Finally, individual wealth indicators—iron roof, concrete floor, electricity, radio, TV, mobile

phone, clock, bicycle, radio, stove, number of cows, number of goats, number of dogs, number

of poultry—could confound the association between the explanatory variables, i.e. household

and latrine factors, and the outcome.

We assessed bivariate associations between these variables and the presence of any STH

eggs in soil. Then, we included any variables that had a significant association (p<0.2) with the

outcome in a multivariable Poisson regression model with Hubert Sandwich Estimator robust

standard errors. We assessed variance inflation factors and excluded correlated variables. Our

final model includes use of a shared latrine, presence of a roof over the sample site, presence of

a latrine slab, presence of a fully covered drophole, visible stool on the latrine floor, a young

child (under 3 years) dewormed within the past 6 months, presence of a latrine that is at least

two years old, soil moisture content, and the number of dogs owned at baseline as independent

variables. Independent variables in the multivariable model were considered significantly asso-

ciated with the presence of STH eggs in soil at α = 0.05 (p-value<0.05). We used Stata version

13 to perform this analysis.

Finally, we used logistic regression to assess the association between sample storage time

and the presence of STH eggs in soil samples, and to assess the association between individual

lab technician and the presence of STH eggs in soil samples.

Results

Baseline sanitation coverage

At baseline, 3.3% (30/896) of control households did not have access to a toilet, 77.2% (692/

896) had a toilet without a slab (i.e. unimproved latrine), and 15.1% (135/896) had a toilet with

a slab (i.e. improved sanitation facilities) that was observed by an enumerator. In control

households, respondents reported that 3.3% of young children under 3 years, 46.3% of young

children age 3 to 7 years, 83.9% of men, and 85.9% of women in the household always use the

latrine. Additional information about baseline characteristics of WASH Benefits households

can be found in the primary results manuscript from the WASH Benefits trial.[23]

Endline household characteristics

Few control households owned pigs (5.7%) and some households owned dogs (18.9%)

(Table 1). Overall, we found 77 households in the study kept pigs. Most control households

had earth floors (94.4%) defined as mud covering 80–100% of the floor inside the house.

Respondents reported that 40.0% of young children under the age of 3 and 41.2% of older chil-

dren between 3 and 15 years were dewormed within the past month.

Endline WSH coverage in intervention and control groups

Two years after the start of intervention activities, 20.2% of WSH households had detectable

free chlorine in stored water at the time of sampling and 20.3% had soap and water available

for handwashing (S5 Table). Free chlorine was detected in stored water in 2.0% of control
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households and 2.0% of sanitation households. Soap and water were present in handwashing

areas in 9.1% of control households and 9.0% of sanitation households. In sanitation and WSH

households, 79.6% and 83.7% had access to an improved latrine compared to 17.9% of control

households. Stool was present on the floor of the latrine in 30.3% of control households, 23.3%

of sanitation households, and 23.3% of WSH households. Reported adult open defecation was

low with 0.1% of respondents reporting it in the active control arm, 0.2% in the sanitation

arm, and 0.2% in the WSH arm. The intervention’s metal scoops were observed in 4.1% of

control households, 71.0% of sanitation households, and 60.7% of WSH households, and were

reported as the primary tool for child feces removal in 0.1% of control households, 72.9% of

sanitation households, and 61.8% of WSH households. Child potties were observed in 3.0% of

control households, 84.5% of sanitation households, and 82.7% of WSH households. Young

children were reported to have used a potty for more than half of defecation events in the past

week in 1.6% of control households, 33.8% of sanitation households, and 28.9% of WSH

households. In sanitation and WSH study arms, 35.7% and 34.1% of households reported dis-

posing of child feces in the latrine compared to 9.7% of control households.

STH egg prevalence and concentration in soil

We found STH eggs in 17.8% of all soil samples (Table 2). Ascaris was the most prevalent STH

egg (13.0%), followed by Trichuris (6.9%). We did not find any hookworm eggs or larvae in

any of our samples. The geometric mean concentration of total STH eggs in all samples was

0.05 egg/g dry soil (Table 3). We found the mean of the percent of viable Ascaris eggs at each

Table 1. Endline household characteristics in control, sanitation, and WSH households.

Control Sanitation WSH

Pig ownership 5.7% (44/767) 4.5% (21/468) 2.5% (12/476)

Dog ownership 18.9% (145/767) 19.8% (93/468) 19.0% (91/478)

Earth floor (80–100% of floor inside house) 94.4% (846/896) 94.1% (577/613) 94.3% (561/595)

Young child under 3 years dewormed within past 6

months

40.0% (359/898) 36.7% (225/613) 37.9% (226/596)

Older child between 3 and 15 years dewormed within

past 6 months

51.8% (370/714) 52.6% (252/479) 48.5% (227/468)

https://doi.org/10.1371/journal.pntd.0007180.t001

Table 2. Prevalence of at least one STH egg detected in the soil sample by intervention arm.

All (N = 2107) Control (N = 898) Sanitation (N = 613) WSH (N = 596)

All STH 17.8% 18.9% 17.5% 16.6%

Ascaris 13.0% 13.8% 12.9% 11.7%

Trichuris 6.9% 7.6% 6.5% 6.4%

Hookworm spp. 0% 0% 0% 0%

https://doi.org/10.1371/journal.pntd.0007180.t002

Table 3. Geometric mean concentration of all STH eggs and viable STH eggs. Non-detect samples were replaced by half the detection limit for each sample.

All (N = 2096) Control (N = 894) Sanitation (N = 610) WSH (N = 592)

All STH (eggs per dry g) 0.052 0.053 0.051 0.050

All Viable STH (eggs per dry g) 0.048 0.049 0.047 0.046

Ascaris (eggs per dry g) 0.048 0.049 0.048 0.046

Trichuris (eggs per dry g) 0.040 0.041 0.039 0.040

https://doi.org/10.1371/journal.pntd.0007180.t003

Effect of sanitation on soil-transmitted helminths in household soil

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007180 February 11, 2019 9 / 17

https://doi.org/10.1371/journal.pntd.0007180.t001
https://doi.org/10.1371/journal.pntd.0007180.t002
https://doi.org/10.1371/journal.pntd.0007180.t003
https://doi.org/10.1371/journal.pntd.0007180


household was 83.5% and the mean of the percent of viable Trichuris eggs at each household

was 73.2%. The intraclass correlation for the presence of STH eggs by cluster was 0.07 for any

STH, 0.05 for Ascaris, and 0.04 for Trichuris. The presence of any STH eggs before and after

incubation was consistent in 76.1% of samples. The presence of eggs in technical replicates was

consistent in 88.7% of samples for Ascaris and 94.4% for Trichuris. We did not find a signifi-

cant effect of sample storage time on the presence of STH eggs in soil (odds ratio [OR] = 0.97,

95% CI = 0.92–1.02, p = 0.26). We did find a difference in the proportion of eggs positive for

any STH by which of our two main laboratory technicians counted the sample (OR = 2.95,

95% CI = 2.33–3.74, p<0.01). None of our blanks were contaminated with STH eggs.

The mean moisture content of soil samples was 11.0% (SD = 9.8%). The dry weight of pro-

cessed soil samples ranged from 6.1 g to 15.6 g, with a mean of 13.4 g. The mean temperature

in the middle of the compound at the time of sample collection was 27.3˚C (SD = 3.3˚C) and

the mean relative humidity at the time of sample collection was 56.6% (SD = 12.7%). The most

common soil textures were sandy loam and clay loam. We found 37.3% (785 out of 2105) of

samples were sandy loam and 41.5% (873 out of 2105) were clay loam. Silty loam accounted

for 0.9% of samples (18 out of 2105), silty clay loam for 2% (42 out of 2105), silty clay for 3.7%

(77 out of 2105), loam for 7.8% (163 out of 2105), clay for 3.1% (65 out of 2105), sandy clay

loam for 3.1% (65 out of 2105), and sandy clay for 0.8% (17 out of 2105). Two samples were

not tested for soil texture. At the time of collection, 40.7% (860 out of 2017) of samples were

collected from areas with hard packed soil and 57.9% (1219 out of 2107) of samples were col-

lected from areas with soft packed soil.

Effect of the interventions on STH eggs in soil

We did not find an effect of the improved household sanitation intervention on the presence

of total STH eggs, Ascaris eggs, or Trichuris eggs (Table 4). The unadjusted prevalence ratio of

total STH eggs in the intervention groups (mean 17.0%) compared to the control group (mean

18.9%) was 0.94 (95% CI: 0.78–1.13), and the unadjusted effect of the intervention on total via-

ble STH eggs was similar (PR = 0.97; 95% CI: 0.76–1.25) (Table 4). When we adjusted for

covariates, we still did not find any significant decrease in the prevalence of STH eggs

(PR = 0.94; 95% CI: 0.78–1.13) (Table 4, S2 Appendix). In our subgroup analysis, we did not

find a significant effect of the sanitation only group or WSH intervention group on the pres-

ence of STH eggs in soil (S1 and S3 Tables). When analyzing each species of STH, we found no

significant reduction in the prevalence of Ascaris eggs (PR = 0.96; 95% CI: 0.76–1.21) or Tri-
churis eggs (PR = 0.81; 95% CI: 0.51–1.16) in the intervention and control groups (Table 4).

Additionally, we saw similar results for viable eggs as we did for total STH eggs (Table 4).

Additionally, the intervention did not significantly reduce the concentration of total STH

eggs or the concentration of viable STH eggs in soil (Table 3). We did not detect an interven-

tion effect for total STH, Ascaris, or Trichuris eggs (Table 5). We saw a slight reduction in

Table 4. Effect of sanitation intervention (sanitation and WSH combined vs. control) on presence of STH eggs in soil. A prevalence ratio< 1 indicates a reduction of

STH eggs.

All Eggs Viable Eggs

Unadjusted (N = 2006) Adjusted (N = 1958) Unadjusted (N = 2006) Adjusted (N = 1958)

Prevalence ratio (95% CI) p Prevalence ratio (95% CI) p Prevalence ratio (95% CI) p Prevalence ratio (95% CI) p

Any STH 0.94 (0.78–1.13) 0.51 0.94 (0.76–1.17) 0.59 0.97 (0.76–1.25) 0.84 0.96 (0.72–1.26) 0.75

Ascaris 0.96 (0.76–1.21) 0.76 0.99 (0.76–1.28) 0.91 1.03 (0.77–1.40) 0.83 1.03 (0.74–1.44) 0.86

Trichuris 0.81 (0.57–1.16) 0.26 0.86 (0.62–1.19) 0.38 0.71 (0.45–1.13) 0.15 0.74 (0.46–1.21) 0.23

https://doi.org/10.1371/journal.pntd.0007180.t004
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viable Trichuris eggs in the unadjusted analysis, but the effect was not detected in the adjusted

analysis (Table 5, S2 Appendix). In our subgroup analysis, we did not detect a difference

between total and viable STH in the sanitation only and control arms or between the WSH

and control arm (S2 and S4 Tables). We saw a slight reduction of viable Trichuris in the unad-

justed analysis of the sanitation intervention, but the effect was not significant in the adjusted

analysis (S4 Table).

We performed the analysis excluding the 77 households that kept pigs, and the results were

consistent with the reported results.

We included use of a shared latrine, presence of a roof over the sampling site, presence of a

latrine slab, presence of a completely covered drophole, presence of stool on the latrine floor,

past deworming of a young child (under 3 years old), use of a latrine that is at least 2 years old,

percent soil moisture content, and the number of dogs owned at baseline in the multivariable

model (S6 Table, S1 Text, Table 6). Use of a shared latrine was associated with a 39% increase

in the prevalence of STH eggs in soil (Table 6, PR = 1.39, CI = (1.13, 1.72), p< 0.01) and the

presence of a roof fully covering the sample site was associated with a 27% increase in the prev-

alence of STH eggs in soil (Table 6, PR = 1.27, CI = (1.05, 1.53), p = 0.01). Increasing soil mois-

ture content was associated with an increased prevalence of STH eggs in soil. Each additional

dog owned by the household at baseline was associated with an 11% increase in the presence

of STH eggs in soil (Table 6, PR = 1.11, (1.05, 1.18), p< 0.01). Having the latrine drophole

completely covered was associated with a 34% reduction in the prevalence of STH eggs in soil

(Table 6, PR = 0.66, CI = (0.48, 0.91), p = 0.01), and having a latrine that was at least 2 years

old was associated with a 17% reduction (Table 6, PR = 0.83, CI = (0.70, 0.99), p = 0.03).

Table 5. Effect of sanitation intervention (sanitation and WSH combined vs control) on concentration of STH eggs in soil. A percent egg count difference> 0 indi-

cates an increase of STH eggs in soil and< 0 indicates a decrease of STH eggs in soil.

All eggs Viable eggs

Unadjusted (N = 1995) Adjusted (N = 1947) Unadjusted (N = 2003) Adjusted (N = 1955)

Percent egg count difference

(95% CI)

p Percent egg count difference

(95% CI)

p Percent egg count difference

(95% CI)

p Percent egg count difference

(95% CI)

p

Any STH -2.2% (-5.8%, 1.3%) 0.22 -0.1.2% (-4.6%, 2.2%) 0.49 -1.8% (-5.2%, 1.5%) 0.29 -0.5% (-3.8%, 2.8%) 0.75

Ascaris -1.8% (-5.2%, 1.7%) 0.31 -0.4% (-3.7%, 3.0%) 0.83 -1.1% (-4.3%, 2.2%) 0.53 0.2% (-3.0%, 3.4%) 0.90

Trichuris -1.4% (-3.3%, 0.5%) 0.16 -0.5% (-2.0%, 1.1%) 0.53 -1.5% (-2.6%, 0.4%) 0.01 -0.7% (-1.7%, 0.4%) 0.22

https://doi.org/10.1371/journal.pntd.0007180.t005

Table 6. Multivariable Poisson regression model of factors associated with presence of STH in soil in all households (N = 1899). Households without latrine access

are excluded from the model to allow for inclusion of variables related to latrine characteristics.

Prevalence Ratio 95% Confidence Interval p

Use of shared latrine in households with access to a latrine 1.39 (1.13, 1.72) <0.01

Presence of roof over sampling site 1.27 (1.05, 1.53) 0.01

Presence of latrine slab in households with an observable latrine 0.93 (0.77, 1.13) 0.49

Drophole fully covered in households with an observable latrine 0.66 (0.48, 0.91) 0.01

Stool present on latrine floor in households with an observable latrine 1.15 (0.92, 1.43) 0.22

Young child (under 3 years) dewormed up to 6 months before sampling 0.85 (0.68, 1.05) 0.13

Latrine at least 2 years old 0.83 (0.70, 0.99) 0.03

Percent soil moisture content 1.02 (1.01, 1.02) <0.01

Number of dogs owned at baseline 1.11 (1.05, 1.18) <0.01

https://doi.org/10.1371/journal.pntd.0007180.t006
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Discussion

Among all study households, we found 17.8% (N = 376/2107) of households had STH eggs in

soil from the house entrance. Ascaris eggs were most common, which is consistent with STH

infection prevalence in the area. The geometric mean concentration of STH in soil from all

households was 0.05 eggs/g dry soil. An average of 79.9% of these eggs were viable, indicating

that they pose a human health risk.

Our results indicate the sanitation intervention was not effective in reducing the prevalence

of STH eggs in household soil. We also did not find an added benefit of the WSH intervention

compared to the sanitation intervention delivered alone on reducing STH eggs in soil. It is use-

ful to interpret our findings together with the observed effects of the WSH and single sanita-

tion interventions on actual child STH infection prevalence levels in the same trial. Infection

prevalence with Ascaris was significantly lower among children in the WSH arm compared to

the control arm, while there was no statistically significant reduction among children in the

single sanitation arm[25]. The lack of a health impact in the single sanitation arm is consistent

with the lack of effect of the improved sanitation intervention on soil STH levels. The reduc-

tion in STH infection prevalence observed in the WSH arm could be due to the water treat-

ment or handwashing with soap components of the WSH intervention interrupting other

environmental STH transmission pathways (e.g. ingestion through drinking water or food

contaminated by hands).

Our results are consistent with a cross-sectional study in Tanzania by Exley et al. that found

no difference in STH eggs in composite soil samples in urban and rural compounds with dif-

ferent levels of sanitation on the JMP sanitation ladder[29]. Additionally, a study in Brazil

found there was no correlation between the concentration of Ascaris eggs in composite house-

hold soil samples in households with varying levels of sanitation quality[30]. However, some

households had flush toilets that emptied into the community and children practiced open

defecation, which potentially spread Ascaris eggs. In contrast to previous studies, our interven-

tion also included child feces management tools that were thought to potentially reduce STH

eggs in soil originating from child feces. However, uptake of the tools was incomplete at

endline.

A potential explanation for the null effect of our intervention is that transitioning from

access to unimproved sanitation to access to improved sanitation may not have a measurable

impact on STH eggs in household soil; transitioning a population from prevalent open defeca-

tion to using even unimproved sanitation may be more likely to affect the presence and con-

centration of STH eggs in soil. In our study, many respondents in control households reported

that their household had access to a latrine that was in use (98.1%, 881/898). According to the

JMP definition, the main difference between an unimproved and an improved latrine is the

presence of a plastic or concrete slab[16]. A benefit of a plastic or concrete slab is that it is eas-

ier to clean, and our study found that receiving our improved sanitation intervention was asso-

ciated with reduced stool on the floor of the latrine. The presence of stool on the latrine floor

makes it more likely that fecal contamination could be spread from the latrine to other areas in

the house.

Our multivariable regression results indicated that a shared latrine was associated with an

increased prevalence of STH eggs in soil, which is consistent with previous cross-sectional

studies that have shown an association between shared latrines and increased helminth infec-

tion[31]. Mahfouz et al. (1997) indicated that increased child STH infection (OR = 1.95, 95%

CI = 1.38–2.75) was associated with living in households where latrines were shared[32]. A

potential explanation is that shared latrines are less clean and may have a greater likelihood of

containing STH eggs because they are used by a larger number of people than a private
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household latrine. People who use a shared latrine may track contaminated feces from the

latrine to their households, where the eggs incubate and become infective. Heijnen et al.

(2015) found that shared latrines in India were more likely to be dysfunctional, less clean, and

to have flies and feces. Additionally, they found that people who have access to a shared latrine

were more likely to practice open defecation,[33] which would reduce the effectiveness of the

latrine in preventing environmental contamination.

Our multivariate modeling also revealed several additional household and environmental

factors to be associated with the presence of STH eggs in soil. Presence of a roof over the sam-

pling area was also associated with increased prevalence of STH eggs in soil. Sampling soil in

sunny areas has been associated with lower egg counts in soil in previous studies[12,14].

Higher moisture content was associated with STH presence, which may be due to the persis-

tence of helminth eggs in moist soil under temperate conditions[1]. The number of dogs

owned by a household at baseline was associated with increased STH eggs in soil. Studies have

shown dogs can transmit Trichuris trichiura and Ascaris lumbricoides in their stool [34,35] and

suggest that they may also carry infectious eggs on their fur[35]. However, there was no signifi-

cant association with dog ownership at endline. Additionally, presence of a latrine that was at

least 2 years old and a latrine with a covered drophole were associated with reduced prevalence

of STH eggs in soil. Since STH eggs are persistent in the environment, a household with a new

latrine could have residual STH contamination from prior to latrine installation. Latrines with

a covered drophole may prevent flies from entering the latrine and depositing feces and STH

eggs throughout the house environment.

One limitation of our study was that we do not have precise measures of compound defeca-

tion practices. Measurement of the uptake of the sanitation intervention focused on the physi-

cal presence of an improved latrine or respondent-reported measures of usual latrine use and

defecation behaviors within the past week for some compound members. Also, an increased

sample size would have decreased the minimum detectable effect. Another limitation is that

the soil analysis method has been optimized for Ascaris recovery. The recovery efficiency of

the method using Trichuris and hookworm eggs and larvae is unknown, and field tests in

Kenya and Bangladesh did not detect any hookworm. Another potential study limitation is

that pigs can carry Ascaris with eggs that are microscopically indistinguishable from humans;

however, less than 6% of households in our study that reported animal ownership kept pigs.

Also, excluding households that kept pigs from the analysis did not change results. Addition-

ally, despite thorough training and QA/QC throughout the study, the laboratory technician

effect was a significant covariate in our adjusted analyses. However, for most of the study, the

two laboratory technicians worked in different field laboratories that received samples from

different study areas, either Kakamega and Vihiga or Bungoma. Future studies should try to

mitigate this effect through additional training and by hiring additional laboratory technicians.

Finally, our analysis of STH risk factors in the control group is cross-sectional and may be sus-

ceptible to confounding. The context of the study should be considered when generalizing the

results; our study was carried out during a national school-based deworming campaign in an

area that already had high access to sanitation facilities.

Our study indicates an improved household sanitation intervention did not reduce the

presence or concentration of STH eggs in household soil within our soil sampling area in our

study area in rural Kenya. Our study compared households with an improved sanitation inter-

vention with those in a control group who mostly had access to unimproved sanitation facili-

ties. Kenya is one of the few countries in sub-Saharan Africa where elimination of STH as a

public health problem may be possible because of the transmission intensity, capacity of

funding partners, and political and financial logistics and infrastructure[36]. As home

Effect of sanitation on soil-transmitted helminths in household soil

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007180 February 11, 2019 13 / 17

https://doi.org/10.1371/journal.pntd.0007180


environments have been identified as an important consideration for elimination of STH

infection in Kenya,[36] more work should be done to evaluate drivers of household soil STH

contamination and their potential impact on STH infection and elimination.
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