
UCLA
UCLA Electronic Theses and Dissertations

Title
Energy Minimization under Uncertainty using Coordinated Multi-phase Synthesis
Techniques

Permalink
https://escholarship.org/uc/item/0m13d0wq

Author
Conos, Nathaniel Alcala

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0m13d0wq
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Energy Minimization under Uncertainty using

Coordinated Multi-phase Synthesis Techniques

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Nathaniel Alcala Conos

2014

c© Copyright by

Nathaniel Alcala Conos

2014

Abstract of the Dissertation

Energy Minimization under Uncertainty using

Coordinated Multi-phase Synthesis Techniques

by

Nathaniel Alcala Conos

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Miodrag Potkonjak, Chair

Energy minimization is one of the premiere design objectives in modern integrated

circuits (ICs). Currently, there is a pressing need to reduce energy consumption in

systems that span a wide array of form factors, ranging from small sensor networks,

mobile phones, and tablets [30][31][182]-[189], where simultaneously maximizing

battery lifetime and satisfying user experience is of paramount importance, to data

centers/super-computers, where even a small reduction in energy can translate

to billions of dollars saved in operating costs. However, as transistors continue

to scale deeper into the sub-micron regime, producing energy efficient designs

has become more challenging. Leakage power has increased significantly with

respect to its total power contribution, which in turn is exponentially dependent on

operating temperature; moreover, this is further exacerbated by increased device

densities. Furthermore, the impact of process variation in the design flow under

these scenarios requires increased attention, as small random alterations on a

device (e.g., threshold-voltage variations) can greatly impact overall energy and

delay yields. Thus, as we continue to delve into the billion transistor era and

beyond, new techniques are needed to adapt to the continuously evolving physical

landscape of IC technology.

This thesis presents several systematic and coordinated methods that simul-

ii

taneously address energy and performance objectives for nano-scale technologies.

We introduce a multi-phase IC synthesis framework with an emphasis on opti-

mization parameters that, in recent years, have become more pronounced in near-

and super-threshold technology regimes; these parameters include gate switching

activity, input vector control, load capacitance, and operating temperature. We

present new gate-level and structural transformation techniques that, when per-

formed in a coordinated fashion, enable more energy efficient designs later in the

design flow. These techniques include gate sizing and threshold-voltage selection,

circuit unfolding, and retiming. Each technique accounts for the aforementioned

parameters in generating ultra-low energy designs that satisfy the specified perfor-

mance target. We also present a scenario-based approach for optimization under

uncertainty in order to address the impact of process variation.

iii

The dissertation of Nathaniel Alcala Conos is approved.

Glenn Reinman

Dejan Markovic

Milos Ercegovac

Miodrag Potkonjak, Committee Chair

University of California, Los Angeles

2014

iv

To my parents – for providing the environment

that enabled me to dream big.

v

Table of Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Contributions and Organization 4

2 Preliminaries . 6

2.1 Power and Delay . 6

2.2 Standard Cell Library Modeling 7

2.3 Process Variation . 9

3 Gate Sizing in the Presence of Switching Activity and Input Vec-

tor Control . 10

3.1 Introduction . 10

3.2 Motivation . 13

3.3 Related Work . 16

3.4 Technical Approach . 17

3.5 Experimental Results . 20

3.6 Summary . 24

4 A Temperature-aware Approach for Simultaneous Delay and Leak-

age Optimization . 28

4.1 Introduction . 28

4.2 Motivation . 31

4.3 Related Work . 33

4.4 Power and Delay Model . 35

vi

4.5 Technical Approach . 36

4.5.1 Thermal Map . 36

4.5.2 Input Vector Control and Pin Reordering 37

4.5.3 Gate Configuration Selection 37

4.6 Simulation Framework . 43

4.7 Experimental Results . 44

4.8 Summary . 48

5 Maximizing Yield in the Near-Threshold Regime in the Presence

of Process Variation . 52

5.1 Introduction . 52

5.2 Motivation . 54

5.3 Related Work . 56

5.3.1 Process Variation . 56

5.3.2 Scenario-based Analysis 57

5.3.3 Gate Sizing . 58

5.4 Technical Approach . 59

5.4.1 Cell Switching Activity . 59

5.4.2 Logic-depth Indexing . 60

5.4.3 Circuit Partitioning . 62

5.4.4 Cell Configuration Selection 64

5.5 Simulation Setup . 67

5.6 Experimental Results . 68

5.6.1 NTC-enabled PV-aware Optimization 72

5.7 Summary . 73

vii

6 Sequential Circuit Unfolding for Energy and Yield Optimization 76

6.1 Introduction . 77

6.2 Motivation . 79

6.3 Related Work . 82

6.4 Preliminaries . 83

6.4.1 Circuit Unfolding . 83

6.5 Technical Approach . 84

6.5.1 Gate Sizing and VTH Selection 84

6.5.2 Optimizing for Yield . 85

6.6 Simulation Setup . 86

6.7 Experimental Results . 89

6.8 Summary . 93

7 Retiming for Dual-Supply Voltages 95

7.1 Introduction . 95

7.2 Related Work . 98

7.3 Retiming and Minimum Register 101

7.4 Work Flow . 102

7.5 Technical Approach . 102

7.5.1 RTMF . 102

7.5.2 Dual-vdd Optimization . 106

7.6 Experiment Setup . 107

7.7 Results . 108

7.8 Summary . 114

viii

8 Provably Minimal Energy using Coarse-grained Hardware Adap-

tation . 115

8.1 Introduction . 115

8.2 Related Work . 119

8.3 Preliminaries . 120

8.3.1 Energy and Delay Model 120

8.3.2 Multi-Allocation Architecture 121

8.3.3 Configurations . 122

8.4 Problem Formulation . 124

8.4.1 Optimization Objective . 124

8.4.2 Configuration Switching Overhead 124

8.5 Optimal-Energy Scheduling . 126

8.5.1 Convex Energy-Speed Curve 128

8.5.2 N-Configuration Scheduling Algorithm 128

8.6 Experimental Results . 131

8.7 Summary . 132

9 System Customization and Fine-grained Hardware Adaptation 136

9.1 Introduction . 137

9.1.1 Problem Formulation . 139

9.1.2 Objectives and Techniques: Summary 139

9.2 Related Work . 142

9.3 Preliminaries . 145

9.3.1 Multi-Allocation Architecture 146

9.3.2 Application Profiling . 147

ix

9.3.3 Single Task Allocation . 149

9.3.4 Simulation Environment and Models 151

9.3.5 Configuration Switching Overhead 152

9.4 Customization: Hardware Configuration Selection 153

9.5 Adaptation: Time Allocation . 158

9.5.1 Coarse-Grained Profiling 158

9.5.2 Fine-Grained Profiling . 162

9.6 Experimental Results . 166

9.6.1 Hardware Configuration Selection 166

9.6.2 Time Allocation . 167

9.7 Summary . 172

10 Concluding Remarks . 173

References . 178

x

List of Figures

3.1 Carry propagation for 3-bit carry-ripple adder. 13

3.2 Gate sizing optimization flow. 17

3.3 Gate switching activity for a 32-bit CLA circuit when using real mpeg2enc/dec

application input stimulus. Shown are varying distribution of gate ac-

tivity within a circuit and across two applications. 18

3.4 (a) An example of ε critical path (εpath); the critical path in red; tran-

sitive fan-out output nodes in bold outlines; and εi corresponds to the

absolute delay difference w.r.t to the target delay used for estimating

delay cost of a move. (b) The linear run-time of the new gate sizing

approach. 21

3.5 Energy vs delay plot of c2670. The SA+IV C approach consistently

outperforms the Base method. 22

3.6 Cumulative distribution of leakage and switching energy after sizing for

gates in c2670. The accurate SA+IV C approach results in a higher

percentage of gates at lower energy. 22

4.1 Pin reordering vs gate replacement (a); input vector control under

two temperature settings (b); pre-slack (c) and post-slack (d) re-

allocation via input pin reordering. For (c-d), the critical path is

represented as bold-red with arrival time (left) and slack (right)

terms provided. 50

4.2 Temperature-aware synthesis flow 51

xi

5.1 Example circuit (a) with inverters (INV1 to INV6) and nand gates

(N1 and N2); (b, c) distribution of 1000 circuit instances and

achieved delay when decreasing Vt starting from Nvt → {Svt, Mvt,

Fvt}, selectively for gate N1 (b) and gate INV5 (c); (d, e) circuit

instance distribution vs circuit delays when performing VTH adjust-

ments on gates N1 (d) and INV5 (e). 55

5.2 Process variation-aware NTC-enabled design flow. 60

5.3 As soon as possible (ASAP) and as late as possible (ALAP) gate

logic mapping. 61

5.4 ASAP and ALAP circuit partitioning : (a) 7 enabled micro-partitions;

(b) 5 example macro-partitions using micro-partitions; c) ε-set of

macro-partitions satisfying ε-delta slack. 63

5.5 Max (top-tier), mean (mid-tier), and min (bottom-tier) target delay

ratios among 1000 generated instances with respect to NTC (left)

and !NTC (right) [60]. 73

5.6 Timing yield optimization for circuit pci bridge32: (a) frequency

distribution graph compares 3 iterations using our NTC approach

against a !NTC ; (b) cumulative dist. graph. 74

6.1 A circuit unfolding example showing original circuit (a); 2X unfolded

circuit with replicated elements represented with dashed-borders (b);

and timing diagram comparing the time required for up to 4 results of

a non-unfolded circuit (left) and up to 4X unfolded circuit on the right

(c). Sequential elements (flip-flops) are shaded green, primary input

(output) elements are non-shaded I1 and I2 (shaded O1 and O2) buffers. 80

xii

6.2 Cell count distributions with respect to each respective unfolding (1,

2, 4, 8X) for (a) s1423 and (b) s38417. Unfolding sequential circuits

reduces the ratio of the number of critical cells with respect to total cell

count. 82

6.3 Gate sizing optimization flow. 84

6.4 ISCAS-89 benchmark characteristics (cell count, logic depth) across 1,

2, 4, and 8X unfolds (u1, u2, u4, and u8). Also shown are the represen-

tative reference delay, energy, and area for each considered performance

points: 1) minimum delay point (mdp); 2) minimum energy-delay prod-

uct (medp); 3) minimum energy point (mep); and 4) maximum energy

saving (mes). 88

6.5 Experimental results showing: (a) achieved energy and (b) delay im-

provements achieved per unfolding with respect to performance targets

(mdp, medp, mep, and mes). 90

6.6 Experimental results showing: a) normalized area with respect to non-

unfolded reference (u1); b) delay variation reduction factors achieved by

unfolding for medp delay reference point. 91

6.7 Experimental results showing: a) quartile graph showing increased re-

siliency against process variation (PV) for mep delay reference; and b)

s5378 delay distribution from 1000 PV-impacted using mep delay refer-

ence point. 92

7.1 The orginal post-retimed for delay circuit is shown at the upper

left. The red lines represents the critical path in the original circuit.

The blue line represents the gate to put in high supply voltage. . 99

7.2 Overall work flow of our simulation. 104

xiii

7.3 An example of the performance of the dual-voltage optimization

algorithm on the DMA circuit. 107

7.4 Circuit layout after applying the dual-voltage (RTMF+DV). The

red cells are the gates/flip-flops in high supply voltage and the ble

cells are the ones in low supply voltage for benchmarks s5378 (a)

and s35932 (b) . 110

8.1 Motivating example with 8 hardware allocations at 3 voltages: (a)

no DVS or power gating; (b) DVS but no power gating; (c) DVS

and power gating; and (d) our approach, coordinated DVS and

power gating. 117

8.2 Energy-delay points for different configurations (8 allocations and

3 voltages) for the jpegdec benchmark. 121

8.3 Energy-speed points for different configurations for the jpegdec

benchmark. Note that the speed is normalized as described in

Equation 8.3. 127

8.4 Energy savings of our coordinated DVS and power gating approach

vs. (a) DVS and (b) DVS and power gating. Note that for a subset

of applications, hardware allocation C5 is not fast enough to meet

the required deadline. Furthermore, allocations C1-C4 are omitted

from the results because they could not meet the deadline for any

application. 134

8.5 Normalized energy consumption for a given delay constraint for the

epicenc benchmark using our coordinated DVS and power gating

approach. 135

xiv

9.1 Hardware allocation example showing three hardware allocations:

1) light shading – smallest allocation; intermediate shading – inter-

mediate allocation; dark shading – largest allocation. 147

9.2 Convex enclosure comprising configurations A, B, C, and D over

all configurations. The virtual speed s∗ can be achieved by utilizing

speeds s1 and s2 under configurations B and C, respectively. . . . 150

9.3 Example speed-energy trade-offs for two tasks ti = 1 (a) and ti = 2

(b) with 4 configurations A, B, C, and D. Shown are each task’s

distinct convex enclosures and expected virtual speed requirements

of s∗i,1, s∗i,2, and s∗i,3. 154

9.4 Non-uniform task power consumption (solid lines) and average power

consumption (dashed lines) for jpegdec application under two sub-

task block sizes: b=15 (a) and b=3 (b). Displayed percentages de-

note the error from assuming a uniform power consumption within

a block. Subdividing a task into smaller subtasks enables greater

accuracy as shown by reduced error achieved by block size b = 3

(18.6% overall error) vs. the error achieved with b = 15 (82.8%

overall error). 161

9.5 Directed acyclic graph (DAG) for obtaining the shortest path when

considering switching overheads, as formulated by our dynamic pro-

gramming approach. Each node (c1, c2, ..., cm) per block column

represents a given configuration setting (m possible configurations).

Energy and delay overheads are modeled with Oi,j where i, where

i 6= j. 164

xv

9.6 Energy consumption for each task and task set *{enc, dec, all} un-

der various energy reduction methods: 1) best single configuration

(1 conf.); 2) best two configurations employing DVS and power gat-

ing (2 conf.); 3) convex optimization with coarse-grained profiling

(cv); and 4) dynamic programming with fine-grained profiling (dp). 171

xvi

List of Tables

3.1 NAND gate leakage values (nW) for two sizes (X1, X2) based on input

vector control (IVC) from a single threshold 45 nm cell library [118],

where min and max leakage states are represented by bold and italicized

fonts, respectively. 15

3.2 Energy improvements when considering gate SA and IV C during the

gate sizing procedure over the Base method. The obtained switching

and leakage energies are presented for the SA+IV C. The maximum

energy deltas (∆ %), corresponds to the max difference in energy profile

“perceived” by the Base method during optimization. 25

3.3 Energy improvement of (SA + IV C) over Base using extracted gate

switching activity and input vector control from mpeg2enc/dec appli-

cations assuming a (D2) “33%” duty cycle. The units represent an

single-adder (32b) and multiplier (8b) configuration of an ARM7TDMI

core [124]. 26

3.4 Overall energy savings with respect to benchmark suite. 27

4.1 Input vector state (m) dependent leakage power (nW) and average

delay propagation (tp) for high (HVt) and low (LVt) of 2-and 3-input

nand gates at minimum size operating at room and hot temperature. 33

4.2 Leakage power improvement factors for ISCAS-85 circuits when opti-

mized under actual (Act.) and predicted (Pred.) temperatures with re-

spect (row-wise) to the addition of each enabled technique and (column-

wise): (O1) IVC+GS; (O2) IVC+GS+PR; and (O3) IVC+GS+PR+GR. 44

xvii

4.3 Leakage power and improvement factors for ISCAS-89 circuits (row-

wise) shows results when optimizing under actual (Act.) and predicted

(Pred.) temperatures with respect to the addition of each enabled tech-

nique (column-wise). 45

4.4 Leakage power and improvement factors for ITC-99 circuits (row-wise)

shows results when optimizing under actual (Act.) and predicted (Pred.)

temperatures with respect to the addition of each enabled technique

(column-wise). 46

4.5 Overall leakage power savings for each enabled optimization (O1, O2,

and O3) for each benchmark suite under nominal and hot operating

conditions. 47

5.1 Target clock (delay) for each benchmark (col. 2); the achieved delays

(1000 instances) when considering PV (col. 3); and adjusted target clock

with PV for using [60] (col. 4). 68

5.2 Average (avg.), max (+), min(-) delays when optimizing under NTC-

enabled (NTC) non-NTC-enabled (!NTC) [60]. 70

5.3 Total power results when optimizing under NTC-enabled (NTC) and

non-NTC (!NTC) [60]: Shown are the average (avg.), max (+), and

min(-), results corresponding to total, leakage, and switching power val-

ues. The ratio !NTC
NTC represents the total power reduction factor. . . . 71

xviii

7.1 Energy savings when using standard retiming (RT), minimum flip-flop (MF), and dual-VDD (DV). Energy

consumption is relative to each method satisfying a target delay achieved by the original configuration

operating at the nominal supply voltage VDD (0.7V). Also presented are the scaled supply voltages using

RTMF in column 6 and the best dual-VDD pair (RTMF+DV) in columns 7 and 8. The bottom table

provides a max, avg, and min summary of the energy savings when applying RTMF (column 1) and

RTMF+DV (column 2). Column 3 summarizes the additional savings achieved our dual-VDD approach

over RTMF. 109

7.2 Impact of retiming on circuit Delay and flip-flop count. The bottom ta-

ble includes a summary of the savings in delay (max, avg, min) achieved

through RT only (column 1) and savings in the number of flip-flops

through RTMF over RT (column 2). 111

8.1 Hardware allocation parameters. 129

8.2 Hardware allocation power dissipation (W) at max VDD. 129

9.1 Hardware allocation parameters. 151

9.2 Expected norm-energy of supporting only K out of N configurations,

where N = 26 (5 allocations at 5 voltages, plus the configuration where

all components are powered off). Values are normalized between 0 and

100, where 0 is the optimum case (K = N) and 100 is the base case

(K = 1). Results for K > 17 are optimal for all benchmarks and are

therefore not shown. 165

xix

Acknowledgments

First and foremost, I would like to thank my research advisor, Prof. Miodrag

Potkonjak, for the guidance and the patience that he has provided to me during

my Ph.D. studies at UCLA. I appreciate the life stories and endless advices that

he has given.

I am grateful to my dissertation committee members Prof. Milos Ercegovac,

Prof. Dejan Markovic, and Prof. Glenn Reinman, for their insightful comments

and advices towards completion of my dissertation. I would also like to thank the

computer science graduate staff, Steve Arbuckle and Craig Jessen, and the math

department staff, Leticia Dominguez, for their administrative support. Addition-

ally, I would like to acknowledge the Eugene V. Cota-Robles fellowship support

in my first four years of graduate study at UCLA.

I would like to extend my deep gratitude to each of my supervisors, Man-

ish Pagey (Space Micro Inc.), Boyd Carter (Aerospace Corp.), Robert Rush Jr.

(SPAWAR SSC-PAC), Micah Barany and Sundaram Chinthamani (Intel Corp.)

for allowing me to gain valuable industrial experience. I would also like to thank

the UC LEADS program at UC Riverside and Prof. Walid Najjar for exposing

me to research early in my undergraduate studies.

To my colleagues, Eun-Sook Sung, Vishwa Goudar, Jong Ahnn, Foad Dabiri

and Sheng Wei, I would like thank them for their valuable technical advice. I

would also like to acknowledge their respective contributions that helped make

this thesis possible. Chapters 3, 5, 8, and 9 were done collaboration with Saro

Meguerdichian and are based on publications P1, P2, P7 and P9. Chapter 5

includes contribution from Sheng Wei. Chapter 8 includes contribution from Foad

Dabiri. All work presented in this thesis was done in close supervision by my

research advisor, Prof. Miodrag Potkonjak.

Lastly, I would like to thank my close family and friends and for their limitless

xx

love and support. To my best friends, Julian Cabais, Jaypee Punzal, Anthony

Scarlett, Chad Catbagan, Brian Guzman, and Henry Flores – I would like to

especially thank them for their moral support during my Ph.D. studies. To my

parents, Resurreccion and Joseph Cregg, I would like to thank them for the many

sacrifices they made in order to provide better opportunities for my brothers, Ryan

and Rio Vir Conos, and me – this work would not have been possible without them.

xxi

Vita

2003–2007 B.S. (Computer Science), UCR.

2007–2010 M.S. (Computer Science), UCLA.

2012–2013 Teaching Assistant, Math Department, UCLA.

2010–2014 Teaching Assistant, Computer Science Department, UCLA.

2007–2014 Graduate Student, Computer Science Department, UCLA.

Publications

P1. N. A. Conos, S. Meguerdichian, and M. Potkonjak, “Coordinated and Adap-

tive Power Gating and Dynamic Voltage Scaling for Energy Minimization,” ac-

cepted for publication Application-specific Systems, Architectures and Processors

(ASAP), 2014

P2. N. A. Conos, S. Meguerdichian, F. Dabiri, and M. Potkonjak, “Provably

Minimal Energy using Coordinated Power Gating and DVS,,” Design Automation

Test Europe (DATE), pp. 1–6 2014

P3. N. A. Conos, T. Xu and M. Potkonjak, “Retiming for Dual Supply Voltages,”

under review, 2014

xxii

P4. N. A. Conos and M. Potkonjak, “Sequential Circuit Unfolding for Simul-

taneous Energy and Delay Optimization in Near-Threshold Computing,” under

review

P5. J. B. Wendt, N. A. Conos and M. Potkonjak, “Multiple Constant Multipli-

cation Implementations in Near-Threshold Computing Systems,” under review,

2014

P6. N. A. Conos and M. Potkonkak, “Coordinated Synthesis Techniques for

Power, Delay, and Yield Optimization in the Near-Threshold Regime,” under

review, 2014

P7. N. A. Conos, S. Meguerdichian, S. Wei, and M. Potkonjak, “Maximizing

Yield in Near-Threshold Computing under the Presence of Process Variation,”

Power and Timing Modeling, Optimization and Simulation (PATMOS), pp 1–8,

2013

P8. N. A. Conos and M. Potkonjak, “A Temperature-aware Synthesis Technique

for Simultaneous Delay and Leakage Optimization,” pp 361-321, International

Conference in Computer Design (ICCD), pp. 316–321, 2013

P9. N. A. Conos, S. Meguerdichian, and M. Potkonjak, “Gate Sizing in the Pres-

ence of Switching-activity and Input Vector Control,” pp 138–143, International

Conference on Very Large Scale Integration (VLSI-SoC), pp. 138–143, 2013

P10. N. A. Conos, “An energy optimization methodology using a

switching capacitance-based DVFS on bitwidth customized execution units,” Mas-

ter’s Thesis, UCLA library, 2010

xxiii

CHAPTER 1

Introduction

1.1 Motivation

Energy minimization is an important objective in the modern integrated circuit

(IC) synthesis flow and can serve as a focal point for coordinating several opti-

mization phases. First, the amount of energy that can be stored in a battery is

limited. Therefore, minimizing energy consumption in both pre- and post-silicon

phases is critical for extending the battery life for energy constrained systems.

Starting with the pre-silicon phases, the most common objective is to identify

an energy efficient design to meet a specified performance target. Once the sys-

tem architecture has been signed off for tape-out, the post-silicon phases focus on

power management strategies to minimize energy consumption and is achieved by

coordinating and adapting resources through dynamic voltage scaling (DVS), and

clock and/or power-gating. Synergistic approaches that coordinate the interme-

diate steps between these phases are becoming increasingly important in order to

maximize energy efficiency, since battery technology advancements have histori-

cally lagged behind in IC improvements. Therefore, energy-centric methodologies

are becoming the major focus as advancements in process technology continue to

trend in accordance to Moore’s Law.

Energy-centric approaches have also taken center stage for non-energy con-

strained systems, such as PCs and server-class systems, since they are plugged

into a power source. However, these systems account for power, the instantaneous

1

representation of energy with respect to time. Several design challenges that arise

in order manage power. For instance, identifying the optimal power configuration

that achieve minimum energy for a given speed is non-trivial, due to the increased

relative contribution of leakage power and its non-linear/non-convex relationship

in deep submicron technology [18][181]. The problems in these domains are gen-

erally NP-Hard and require the deployment of complex and intricate heuristics

that are technology-process dependent for obtaining solutions at the gate-level

and behavioral-level [97][127]. At the gate or cell-level, standard cell libraries are

the de facto standard for design for very-large-scale-integration (VLSI) systems

and are combinatorial, since cells are available at discrete sizes and/or threshold-

voltage (VDD) configurations [58][59][60][115]. Additionally, another major chal-

lenge to address scalability, since the sheer size of modern circuits, now in the

billions, is expected to grow. Advancements in transistor density have enabled

the realization of complex system-on-chips (SoC). However, power budgets have

remained relatively constant and have not kept in pace with circuit transistor

density. Therefore, without proper consideration of power, achieved yields may

worsen due to low fidelity present in the pre-silicon phases. Additionally, in the

post-silicon phase, manufactured designs may have increased power delivery and

circuit reliability issues, and are further impacted by environmental effects such

as temperature.

The second term that impacts energy, time, can be tied to the clock rate

or throughput (e.g., operations/cycle) to represent a performance metric. The

performance target is driven by the market in order to meet consumer needs (e.g.,

high-performance computing, high-definition graphics, etc.). Thus, all phases

of the synthesis flow are required to address energy minimization such that the

performance or timing target is satisfied. In this thesis, we present novel pre-and

-post-silicon energy minimization strategies, where energy is minimized to meet a

specified performance (e.g., delay) constraint.

2

In recent years, optimization under uncertainty has become a major paradigm

shift in IC design in the deep submicron regime. In this thesis, we classify uncer-

tainty into three major groups:

• Technological uncertainty - dependent on the process technology generation

and is directly impacted by process variation (PV) factors. The sensitivity

of parameters that impact the power and delay of a device have varied across

each technology generation. Therefore, academic and commercial tools are

required to be continuously refreshed and new coordinated techniques are

needed to adapt to fully leverage physical device-level properties.

• Application uncertainty - the behavior of an application on a given microar-

chitectural design. The behavior of an application, which is often catego-

rized by its duty-cycle, active and idle periods, has a direct impact on how

energy is consumed in the gate-level (e.g., switching, leakage vector state),

which further impacts and is impacted by environmental factors, such as

temperature hotspot generations on a chip [113].

• Optimization uncertainty - the numerous phases of optimization conducted

in the overall chip design flow. The design flow is divided into several phases

in order to address the design complexity of modern billion-transistor de-

signs; thus, although one phase may yield positive benefits, it may negatively

impact another.

Therefore, severe ramifications can result in generated solutions that impact power,

energy, performance, and obtain yields of a design, if the aforementioned uncer-

tainty factors in the design flow are not properly addressed, which in turn increase

design costs.

In this thesis, we address energy minimization under uncertainty, where energy

is minimized to satisfy a target performance constraint. Energy minimization is

3

conducted in such a way where specified uncertainty factors are also accounted

for. The next subsection highlights our contributions and thesis organization.

1.2 Contributions and Organization

We develop a coordinated multi-phase integrated circuit synthesis for conducting

energy minimization under uncertainty at both low (gate-level) and high-level

(behavioral) synthesis domains. Chapters 1 to 7 present gate-level pre-silicon

techniques for energy minimization. Chapters 8 and 9, present behavioral-level

in both pre- and -post-silicon phases. The following detailed contributions listed

below:

• A gate-sizing method is presented that utilizes accurate gate-switching, in-

put vector control (IVC), and duty-cycle (active and idle) knowledge to

enable more efficient power and speed trade-offs (Chapter 3).

• Standby Leakage energy and circuit delay are simultaneously optimized

using a temperature-aware gate-sizing and threshold-voltage (VTH) tech-

nique. The presented approach coordinates several leakage minimization

techniques, such as IVC, gate-replacement, and pin-reordering in optimiz-

ing leakage and delay (Chapter 4). The incremental improvement of each

applied step is presented and showing benefits when utilizing accurate tem-

perature knowledge.

• Process variation is addressed using a gate-sizing and VTH technique in

(Chapter 5); the objective is to simultaneously maximize the circuit yield

(e.g., maximize number of circuit instances that meet timing requirements)

and minimize energy consumption. The technique is applied on near-threshold

regime and improvements are shown when using our PV-aware approach

over a state-of-the-art gate sizing method that does not.

4

• Chapter 6 presents a coordinated circuit unfolding and gate-sizing/VTH se-

lection technique to improve delay and energy yield targets. The yield target

is improved by: 1) increasing the performance per iteration; 2) minimizing

the impact of PV by increasing the logic depth; and 3) enabling additional

optimization opportunity through gate-sizing/VTH selection techniques in

deep-logic design.

• Retiming is combined with dual supply-voltage (dual-VDD) techniques for

enabling additional energy reductions (Chapter 7). The circuit is trans-

formed using retiming and min-cut techniques to enable additional improve-

ments when applying dual-VDD application. Additionally, an efficient heuris-

tic is presented, which finds the best high and low VDD pair that achieves

minimal energy under a delay constraint.

• Hardware adaptation is investigated in (Chapter 8) and a convex program-

ming formulation is presented that utilizes at most two hardware allocations

to achieve minimum energy under a specified timing constraint. Hardware

allocations are realized using a combination of power gating and dynamic

voltage scaling (DVS) techniques and is proven to be minimal under specified

coarse-grained hardware adaptation assumptions.

• System customization and two fine-grained hardware adaptation (post-silicon)

techniques are presented in Chapter 9. The first step presents a dynamic

programming solution which identifies the best set of hardware allocations

(e.g., caches, ALUs, etc.) given a set of predicted tasks or applications to

run. Then, given the actual set of tasks to run, the next step statically

assigns static hardware allocation at fine task granularity, each tailored to

solve optimization scenarios: 1) where it is assumed that hardware adapta-

tion transition overheads negligible; and 2) non-negligible.

5

CHAPTER 2

Preliminaries

In this chapter, we introduce basic power and delay, and process variation models

that we use throughout the body of work in this thesis. Additional preliminaries

material may be presented in their respective chapters.

2.1 Power and Delay

We use the delay and power models proposed in [154] in our design process.

These models connect gate-level delay and power properties with the physical level

properties such as gate width (W), gate length (L), and threshold voltage (VTH).

Equation (2.1) shows the gate-level delay model, with supply voltage VDD, sub-

threshold slope n, mobility µ, oxide capacitance Cox, gate width W , gate length

L, thermal voltage φt = (kT/q), drain-induced barrier lowering (DIBL) factor σ,

threshold voltage VTH , and delay and model fitting parameters ktp and kfit. Load

capacitance CL is proportional to the sum of the interconnect and driving pin

capacitance’s of its fan-out gates. Thus, assuming the interconnect to be fixed,

the gate propagation delay (tp) is affected by the sizing of its immediate fan-out

cell(s), requiring careful sizing options to be selected during the sizing procedure.

tp =
ktp · CL · Vdd

2 · n · µ · Cox · WL · (
kT
q

)2
· kfit

(ln(e
(1+σ)VddVth

2·n·(kT/q) + 1))2

(2.1)

Note that the parameters other than W , L, and VTH are transistor level prop-

erties that can be derived using transistor-level simulation. Since they are not

affected by PV and therefore do not impact the design process, we assume they

6

are constant values in the model. Equation (2.2) describes the leakage power

model that depends on the value of W/L.

Pleakage = 2 · n · µ · Cox ·
W

L
· (kT

q
)2 · Vdd · e

σ·VddVth
n·(kT/q) (2.2)

The gate-level switching power model [154] is described by Equation (2.3),

where α is the activity factor and f is the frequency.

Pswitching = α · CL · V 2
dd · f (2.3)

The delay and power models indicate the trade-off between delay and power

in terms of gate sizing. For example, increasing W of a gate typically reduces its

propagation delay but increases its leakage and switching powers. Simultaneously,

the decision increases the delays and switching powers of the transitive-input gates

of the directly affected gate due to the increase in their capacitive loads. In

works that conduct gate sizing (chapters 3, 4, 5, and 6), the goal is to determine

an optimized set of gate widths and VTH ’s to meet specified delay and power

requirements.

2.2 Standard Cell Library Modeling

The previous section presented detailed formulations for modeling delay and power.

In this sub-section, we present higher-level models and algorithms for adapting

formulations into a standard-cell library.

The total energy of a CMOS integrated circuit can be characterized into

two main components: 1) dynamic (switching) energy due to charging of input

pin/output load capacitance’s; and 2) static (leakage) energy, which we model

from the dominant sub-threshold leakage and gate leakage currents. Thus, the

7

total energy consumed can be computed as:

Etotal = Eswitch + Eleak (2.4)

Eswitch =
N∑
i

es(gi), Eleak =
N∑
i

el(gi) (2.5)

es and el represent the switching and leakage energies, respectively, for gate gi.

es is the product between probability that a gate’s input pin j will switch, α, and

the estimated full-cycle power consumed from propagating a signal from input pin

j to output pin k. el is the sum of leakage energies consumed at each possible

leakage state of a gate, which is also dependent the ratio of the total time spent

at each leakage state for both active and standby (idle) periods. The total time

(T) is directly proportional to product of the circuit delay (D) and total cycles,

where D represents the critical output-pin arrival time (rise or fall) of a primary

output gate otr,f (gi):

D = max(otr,f (gi)) s.t. gi ∈ Gout (2.6)

Gout represents a circuit’s set of primary output gates. Therefore, the delay of a

circuit can be determined by solving:

otr,f (gi) = dlr,f (gi) +max(ot(finf,rj)) (2.7)

s.t. fini ∈ FIi

finf,rj is the fall, rise arrival time of a fan-in gate j in the set FIi of gate gi.

Note that the propagation of delay depends on the unateness assumption. For

simplicity, we assume all cells are negative unate, thus, rise (r) and fall (f) gate

delays are propagated as assumed to the next stage.

We use a standard cell table library look-up, as presented in [96], to model

gate rise and fall delay (dlr,f) as a function of its input slew (transition time),

and driving load. However, we use the relative weights from an alternate 45 nm

cell library (Nandgate) [118] to account for switching and input vector dependent

8

leakage power (transistor stacking effect), which are obtained in a similar look-

up table fashion, provided per-input pin accurate switching, and input vector

state probabilities and can be obtained using gate-level simulation. The obtained

weights were re-mapped to its technology generation in generating respective fit-

ting parameters for consistency.

2.3 Process Variation

We capture the impact of PV using a quad-tree model proposed by Cline et

al. [64], which considers the spatial correlations among gates. Effective channel

length L is modeled after a random distribution or a combination of multiple

distributions to reflect both spatial and inter-chip correlation and variations. In

the quad-tree model, the effective channel length subject to PV is distributed into

multiple levels, with a different number of grids allocated on each level. In our

approach, we classify a cell’s grid location (i, j) as a combination of its longest

logic depth stemming from its primary input (i) and primary output (j). The

grids on each level are assigned variation values that follow a normal distribution.

The effective channel length for a particular gate is computed by the sum of the

variations on each level of the grids to which the pertinent gate belongs. The total

value of the target gate-level property as the sum of the variations on each level

of the grids to which the corresponding gate belongs.

We show the quad-tree model for L in Equation (2.8), where ∆Lij is the

quantitative variation of the i-th level and j-th grid to which the gate belongs,

and µi and σi are parameters of the normal distribution at level i.

∆L =
∑
i

∆Lij, where ∆Lij ∼ N(µi, σi) (2.8)

We adopt the Gaussian distribution proposed by Asenov et al. [65] for VTH and is

based on the physical simulation of random dopant distributions. Note that gates

are not correlated in terms of VTH .

9

CHAPTER 3

Gate Sizing in the Presence of Switching

Activity and Input Vector Control

In this chapter, we introduce a novel gate sizing approach that considers both

the gate switching activity (SA) and gate input vector control leakage (IVC). We

first extract SA using simulation and find promising input vectors. Next, in an

iterative framework, we interchangeably conduct gate sizing and refining the IVC.

As dictated by the new objective function, our algorithm conducts iterative gate

freezing and unlocking with cut-based search for the most beneficial gate sizes

under delay constraints. We evaluate our approach on standard benchmarks in 45

nm technology, showing promising improvement, achieving up to 62% (29% avg.)

energy savings compared to the traditional objective function.

3.1 Introduction

Gate sizing is a powerful optimization technique used to minimize power and/or

area under strict timing constraints by altering the widths of transistors in gates.

Gate sizing has been extensively studied over the past three decades [114][115][96]

and several approaches have been proposed. Previous approaches, however, do not

consider switching activity (SA) and the impact of input vector control leakage

(IVC), which greatly impact the overall optimization strategy. Furthermore, gate

sizing is often combined with dual or multi-threshold techniques which further

increases the importance of accurate power and delay modeling. As a result, the

10

modern design flow imposes a number of modeling and optimization challenges

A major challenge is the simplification of timing and power models, which

may lead to suboptimal solutions when mapping out to real designs. Accounting

for accurate gate and interconnect delay and its dependencies on capacitive load

slew are often ignored [96]. Additionally, nominal gate switching activity and/or

average gate leakage are generally assumed in previous works limiting the potential

improvements by accounting for realistic operating conditions. Moreover, previous

approaches are either dynamic or leakage power-centric in their optimization flows,

which do not address the varying application usage characteristics present in high-

performance systems (e.g., data-centers, super-computing) to energy constrained

mobile devices (e.g., sensors tablets, smart-phones).

Cell library-based optimization has emerged as the de facto standard for mod-

eling power and delay of a circuit design [115]. Many previous approaches, how-

ever, utilize simplified timing models by assuming convex and/or linear delay and

power models [116]. Empirical analysis has shown that accurate timing models

are non-linear/non-convex. Furthermore, optimizing circuit designs using a dis-

crete cell library, however, leads to solving an NP-Hard problem [97]. As a result,

many heuristics have been developed in order to address the huge problem search

space. A major drawback of these methods is that they require heavy parameter

tuning and are difficult reproduce, since they are technology dependent, and are

rooted to a set of sensitivity functions. These methods often perform iterative

per-gate or per-group improvement are too compute intensive and are impractical

to be applied on modern IC sizes, even with incremental updates. Furthermore,

these approaches mainly perform local optimization (i.e., local-moves) and are

susceptible to be trapped in local minimas [117].

The usage of modern cell libraries, however, have enabled the support various

supply/threshold voltages, and drive strengths, enabling a rich performance and

energy trade-off to address the potentially vastly differing device usage charac-

11

teristics. However, current tools do not account for realistic conditions into their

objective functions (e.g., gate activity, duty cycle, input vector control), with

respect to their applications, potentially impacting obtained results.

We improve state-of-the-art sizing methodologies by simultaneously consider-

ing gate switching activity (SA) and gate input vector control (IV C). One of our

key contributions is that we demonstrate significant benefits of incorporating ac-

tual gate SA and gate IVC in the objective function over the equivalent approach

that only uses nominal and average values for switching and leakage weights, and

show how the obtained solution varies when accounting varying duty cycles.

The focal point of our approach is a scalable gate sizing algorithm that con-

siders gate SA and IV C leakage. The steps are to: 1) extract the SA of gates

based on simulation of real workloads; and 2) conduct IVC to obtain the input

vector that induces the lowest total leakage energy across all gates, and 3) an

iterative gate sizing approach freezes maximally-constrained gates (ones that are

at high-power states as determined by SA and IVC) while searching for a sizing

option that best improves the current picture. The objective function in step 3

to be considered at the iteration depends on the types of options available and

their impacts on both delay and energy. The algorithm prevents the algorithm

from reaching a local minima by freezing gates as they are sized until all gates

have been frozen, then unfreezes all gates, re-conducts IVC (since new gates may

be energy-dominant), and reiterates steps 2 and 3 until the solution converges or

the delay constraint cannot be met.

We evaluate our approach on benchmarks included in ISCAS-85/89, ITC99 and

arithmetic units. Our results indicate over 62% (29% avg.) energy improvement

over a method that assumes nominal SA and IV C, demonstrating that gate SA

and IV C play an major role in the guiding sizing decisions.

12

B[1] A[1] Cin[1]

Carry[1]

B[0] A[0] Cin[0]

Carry[0]

G6 G5 G4

G7

G2 G1 G0

G3

1

00 11 1

0 0 0

1

1 1 1

1

B[2] A[2] Cin[2]

Carry[2]

G10 G9 G8

G11

11 00

1 0 1

1 1 10 01 1

01

α=0.6α=0.5 α=0.6 α=0.2α=0.2 α=0.2α=0.1α=0.1 α=0.05

α=0.6 α=0.1 α=0.3

Figure 3.1: Carry propagation for 3-bit carry-ripple adder.

3.2 Motivation

We begin by providing a small realistic example demonstrating the importance of

considering both SA and IVC in the gate sizing optimization process. Consider the

carry propagation of a 3-bit carry-ripple adder, shown in Figure 3.1. Assume that

2- and 3-input NAND gates have input-dependent leakage power consumption

values for two possible sizes, small (X1) and large (X2), shown in Table 3.1. Also

assume that the given input vectors (A = 101, B = 101, and Cin = 1) are realized

throughout the entire duration of the application. Figure 3.1 shows the input

vectors to each gate. Therefore, the overall leakage power of the circuit is 288 nW.

For simplicity of the example, ignoring load and slew dependencies, assume that

all gates have delay of 10 ps at size X1 and 5 ps at size X2. Finally, assume that

at the beginning of the optimization process, all gates are nominally sized to size

X1. Therefore, there are eight nominal critical paths (colored), {G0, G2} → G3→

{G4, G6} → G7 → {G8, G10} → G11, with nominal delay 60 ps. Consequently,

total leakage energy of the circuit is 1.73× 10−17 J.

As an example, consider a delay constraint of 55 ps, it is clear that one of

gates G3, G7, or G11 should be sized up to X2, as all critical paths pass through

these bottleneck gates and decrease the delay of each of these gates will decrease

13

the overall delay. A traditional approach to gate sizing would consider these gates

equally. In other words, increasing the size of either would decrease delay and

increase switching and leakage power by the same amounts. However, from Table

3.1, we see that the leakage power of a gate, due to transistor stacking, strongly

depends on its applied inputs, with up to a 43X difference between the lowest-

leakage state (input vector “100”: 1.29 nW) and highest-leakage state (input

vector “111”: 55.8 nW) of a 3-input NAND gate. Furthermore, switching energy

of a gate is directly proportional to its activity factor, or the likelihood that the

gate will switch. Therefore, because the gates have both different applied input

vectors and different activity factors, sizing up each one will have a different effect

on overall power and energy consumption, so they should not be weighted equally

in the optimization process.

First, consider the case where the duty cycle of the adder is low and therefore

leakage energy dominates. We can determine from Table 3.1 that increasing the

size of gates G3, G7, or G11 will increase leakage power by 9.96 nW, 167.42 nW,

or 56.35 nW, respectively, while decreasing the overall delay by 5 ps. Therefore,

the optimal decision is to increase the size of gate G3, which will have minimal

impact on leakage energy, increasing leakage power to 298 nW and decreasing

leakage energy to 1.64× 10−17 J. Increasing the size of G7 would instead increase

leakage power to 455 nW, increasing leakage energy to 2.50 × 10−17 J. Thus,

considering IVC in this example in the optimization algorithm can improve the

energy by roughly 60%.

Now, consider the high duty cycle scenario, where switching energy is the

dominant factor. Again, for simplicity, assume that all gates consume 10 nJ and

20 nJ of switching energy at nominal activity factor 1.0 for a given application at

sizes X1 and X2, respectively. Figure 3.1 shows the activity factors (α) for each

gate. Therefore, overall switching energy consumption at the nominal size is 35.5

nJ. In this case, increasing the size of gate G7 is the optimal decision, since it has

14

Table 3.1: NAND gate leakage values (nW) for two sizes (X1, X2) based on input

vector control (IVC) from a single threshold 45 nm cell library [118], where min and

max leakage states are represented by bold and italicized fonts, respectively.

NAND-3

IVC X1 X2

000 3.32 13.28

001 18.18 72.73

010 4.21 16.84

011 39.49 157.97

100 1.29 5.15

101 18.78 75.13

110 3.76 15.04

111 55.8 223.22

NAND-2

IVC X1 X2

00 3.48 13.93

01 24.8 99.2

10 4.09 16.34

11 37.21 148.83

the lowest activity factor and consumes less switching energy than when up-sizing

either G3 or G11. In fact, this decision results in a switching energy of 36.5 nJ,

whereas increasing the size of G11 would result in a switching energy of 41.5 nJ.

Therefore, the decision that considers SA performs roughly 14% better.

To present these motivations, we have made a number of assumptions that

when relaxed make the optimization much more complex in practice. It is reason-

able to assume that additional information (gate switching, input vector state) can

be readily obtained by modern CAD tools and/or by implementing a simple gate-

level simulator. Such information is beneficial since it enables the simultaneous

consideration of low duty cycle and high duty cycle scenarios, as in real use cases

at current and pending deep submicron feature sizes, leakage and switching may

both have significant impacts on overall energy. For example, sizing up G7 in the

high duty cycle scenario may in reality not be optimal, since its input gates have

15

higher values for α than, the input gates of G3, and thus their switching energies

would increase by larger factors. Thus, this IVC depends on how the circuit is

sized and its duty-cycle. Therefore, a feedback loop exists between gate sizing and

IVC that must be addressed simultaneously during the optimization. The simple

example here demonstrates that both IVC and SA are crucial considerations in

gate sizing for energy optimization in the presence of delay deadlines.

3.3 Related Work

We now cover a set of related gate sizing approaches that have considered a

variant of SA or IV C. Several approaches exist that address continuous and

discrete gate sizing. Common methods to solve the gate sizing problem have been

convex optimization [116], Lagrangian Relaxation [114][115][60], and gradient and

sensitivity-based optimization [58][59].

Gate sizing methods have also been combined with Vdd and VTH assignment to

minimize power under various gate SA ratios [119][120]. These works, however,

have only considered average leakage values when accounting for leakage and have

not explored real application activity factors when considering gate switching

activity. Leakage minimization using IV C is a popular technique for due to its

strong dependency on the input vector state [99]. IV C and gate replacement

techniques have also been combined [121] by replacing gates at their worse-case

leakage state with equivalent gates with lower leakage power. The technique is

further combined with circuit aging in pre- and-post silicon phases. [122][126].

IVC has also been explored in the presence of uncertainty [73].

To the best of our knowledge, we are the first to consider gate sizing in the pres-

ence of both SA, IV C, and duty cycle. Prior approaches have at most considered

one or two terms accurately [125], and/or do not differentiate between the duty cy-

cle with respect to switching and leakage energy weights, leaving many approaches

16

Switching Activity Extraction

Input Vector Control

Gate Sizing Optimization

Result

Performance

Target

Figure 3.2: Gate sizing optimization flow.

to be either dynamic or leakage power-centric. For example, the state-of-the-art

gate sizing contest considers only nominal leakage power [96]. Our technique min-

imizes total energy, such that both the switching and leakage energy components

are accurately accounted for in accordance to their usage or duty cycle.

3.4 Technical Approach

Our gate sizing procedure is composed of three major phases (Figure 3.2). The

first phase extracts gate switching activity factors (SA) for a given circuit by

performing event-driven gate simulation from a set of input bit vectors. Figure

3.3 illustrates an example SA extraction for a carry-look-ahead unit (cla4) from

two applications (mpeg2enc/dec). The second step identifies a primary input bit

vector that places gates in low leakage states in order to minimize the total energy

of the circuit, which accounts for leakage consumption for both active (obtained

from SA) and idle periods. IVC techniques range from random simulation to sat-

isfiability (SAT) and model counting-based formulations. The final component is

the gate sizing algorithm, where the goal is to minimize total energy consumption

under a delay constraint. The approach is iterative; at each iteration, gates are

either frozen or unlocked based on their leakage (IVC) and switching (SA) impact,

17

Figure 3.3: Gate switching activity for a 32-bit CLA circuit when using real

mpeg2enc/dec application input stimulus. Shown are varying distribution of gate ac-

tivity within a circuit and across two applications.

while a search is conducted for the most beneficial current move.

Our algorithm is sensitivity-based in nature in terms of determining which

move or set of moves to perform. A gate sizing move can have 1 of 3 effects

(increase, decrease, have no effect) on 2 parameters (energy and delay), leading

to a total of 9 separate possible classes for a move. The algorithm classifies each

move to a class and enforces a priority in terms of selecting a move that has

higher precedence. There are three precedence levels, where level 1 is the highest

priority. Moves that improve both parameters are at precedence 1, moves that

improve just one parameter and do not affect the other are at precedence 2, and

moves that improve one parameter at the expense of degrading another are of

precedence 3. Note that moves that degrade both parameters are never selected.

Each precedence level has its own objective function for selecting the best move:

1) the product of the respective improvements; 2) the single improvement; and 3)

the normalized ratio of improvement and degradation.

The algorithm considers a cut of M gates at a time and restricts one gate to

18

be sized per group visit. Once a size move is committed, the gate is locked and is

no longer considered within that phase. The completion of a phase is defined as

having locked all gates, or having no more acceptable moves among sizable gates

that improve the objective function. The algorithm terminates after the solution

converges or if a target delay (Dtarget) can not be met after a number of phases.

All gates are unlocked before the start of each new sizing phase.

The algorithm initially freezes the top K energy-critical gates by setting them

to their minimal sizes at the beginning of the phase. We note that this initial

set potentially restricts some delay critical gates, as improving the delay of these

gates may be required in meeting a deadline. To relax this constraint (i.e., if a

solution cannot be obtained), K is relaxed through a locking threshold ratio γ,

where a new K is computed (e.g., K = K
′ ·γ), thereby, enabling potentially more

delay critical gates to be reduced. It is crucial to identify the top K energy-critical

gate, which in turn depends on both SA and IVC; this maximally-constrained gate

locking is one of the key innovations of the approach, and prevents being trapped

at a local minima by encouraging global circuit optimization.

We utilize an epsilon tree to minimize circuit delay updates (εpath), which

consists of gates that were on the critical path during the last accurate delay com-

putation (Figure 3.4a). Since the critical path may change during optimization,

we also include the immediate fan-out gates of each critical gate (e.g., nodes 1

and 3), fan-in nodes may be added for greater accuracy as their slews may also

impact timing propagation. The figure shows bold-outlined nodes (e.g., 7, 8, 9, 5

and 6) are the primary outputs (Gout), and are transitively connected to at least

one node belonging to the critical path (e.g., 0, 2, 4, 8). Thus, the delay cost of

sizing a gate on the εpath can be estimated by the sum of its δi respect to the target

delay (Dtarget) is used to estimate the delay impact of each move via a delay cost

formula, as shown below:

Dcost =
∑|Gout|

i (δi −Dtarget)
2 (3.1)

19

This formulation enables very efficient delay estimation by only considering the

delay impact of a small subset of gates at a time. A drawback of this approach,

however, is that a potentially new critical path may emerge. This remains to be a

major challenge for existing gate sizing techniques that attempt to maintain delay

accuracy during optimization [58][60][59]. To address this issue, the frequency of

delay updates can be increased by adjusting M and γ to be larger values, as we

have done. These parameters can be adjusted, to trade-off accuracy vs run-time.

Our used values of M and γ achieved a delay accuracy to be within 5%, while

achieving linear run-time scaling with respect to circuit size (Figure 3.4b).

3.5 Experimental Results

We evaluated our gate sizing approach on a set of benchmarks in ISCAS-85/89,

ITC-99 suites, as well as integer arithmetic units consisting of adders (carry ripple,

carry-look-ahead, Kogge-Stone) and multipliers (array, Dadda). All units were

synthesized using a single threshold (HVt) 45 nm open cell library from [118] under

the typical cell configuration. An in-house timing/power engine was implemented

in C++ and was correlated to an industrial tool, Synopsys PrimeTime, to be

within 10−3ps. All results were optimized using identical rules such as ensuring

no slew or load violations exists in the final design, as presented in [96]. The only

differences in our framework is the choice in cell library, which was done in order

to enable accurate IVC computations, as well as the choice of circuit benchmarks.

In handling slew and load violations, we adopt an iterative approach as proposed

in [59].

The SA of gates and IVC for each circuit were obtained from simulation of

random input vectors. However, real application switching activity factors were

obtained from mpeg2enc/dec benchmarks from recorded operand values from each

unit type, running ARM7TDMI mpeg2-enc/dec traces [123][124]. The initial sim-

20

7

8

9

5

6

0

2

31

4

Delay Target

(a)

(b)

Figure 3.4: (a) An example of ε critical path (εpath); the critical path in red; transitive

fan-out output nodes in bold outlines; and εi corresponds to the absolute delay difference

w.r.t to the target delay used for estimating delay cost of a move. (b) The linear run-time

of the new gate sizing approach.

ulation parameters set were, K = 25%, M = twice the length of average critical

path, γ = 0.2, and were fixed across all benchmarks. The delay target for each

circuit was set as the median between the achieved delay when all gates were set

to their maximal size, and the achieved delay when all gates are at their mini-

mal size. Five duty cycle scenarios (D0=10%, D1=20%, D2=33%, D3=50%, and

21

Figure 3.5: Energy vs delay plot of c2670. The SA+IV C approach consistently out-

performs the Base method.

0

0.2

0.4

0.6

0.8

1

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

R
at

io
 o

f
G

at
e

s

Normalized Switching Energy

SA+IVC (sw)

SA+IVC (lk)

Base (sw)

Base (lk)

Figure 3.6: Cumulative distribution of leakage and switching energy after sizing for

gates in c2670. The accurate SA+IV C approach results in a higher percentage of gates

at lower energy.

D4=100%) were considered.

We evaluate our sizing algorithm under two gate sizing assumptions: 1) SA+IVC,

which considers gate switching activity factors and input vector control in the ob-

22

jective function; and 2) Base, where the objective function uses only nominal

gate switching (50%) and average gate leakage values for total energy computa-

tion. Table 3.2 compares the two methods, where Max (%) savings corresponds

to the maximum energy improvement achieved over the Base method across the

five duty cycle cases (D0 to D4) for each circuit under the same timing constraint.

As expected, the maximum improvement observed varies across duty cycles and

circuits, motivating the advantage of utilizing accurate power and delay knowl-

edge.

Table 3.4 provides overall energy improvements across the benchmarks suite.

The results generated by the new approach achieved a max energy improvement

of 62% for circuit c2670 and 29% average overall for the same delay. Figure

3.5 provides a normalized energy and delay plot for c2670, which illustrates the

advantage of using more accurate power and delay information. A delay of 0.87

shows that the Perceived (green) energy deviates from the trend of the Actual

(red) energy plot. In performing move-trace analysis, we noted that Base method

caused the algorithm to over-size a few selected critical paths and encountered a

timing wall much earlier, where as SA+IV C was able to efficiently trade-off delay

for an additional 0.05 delay units, as shown.

Figure 3.6 shows a cumulative distribution of gate switching and leakage ener-

gies of the max improved result for SA + IV C over Base for circuit c2670. Our

approach shows that accurate knowledge enabled the algorithm to efficiently guide

the circuit to a lower energy state, as shown with higher percentage of gates falling

under lower energy profiles for both leakage and switching energy. This is impor-

tant to note since due to the difficulty of comparing gate sizing algorithms, many

existing algorithms are sensitivity-based in nature, thus, the ability to guide an

algorithm to determine more promising “moves” greatly impacts the optimization

procedure.

Table 3.3 presents results comparing the minimal configuration found by SA +

23

IV C and the perceived minimal configuration obtained by Base. The minimum

energy configuration determined was cla432 and dad8, optimized under the same

timing constraints determined by the the multiplier. For these configurations, our

approach shows additional savings in both leakage and switching categories where

the majority of the savings for both cases (15% mpeg2enc, 25% mpeg2dec) were

achieved by the multiplier circuit.

3.6 Summary

We present a new gate sizing approach that includes the switching activity (SA)

and input vector control (IVC) to minimize overall energy. The new objective

function has several ramifications on the optimization procedure, including the

need for reiteration between gate sizing and input vector selection and freezing

and unlocking of high-power gates. On a comprehensive set of benchmarks, from

ISCAS-85/89, ITC-99, and arithmetic units, synthesized using 45 nm technology,

we reduce average actual energy consumption by 30%. The approach is generic in

the sense that thermal impacts and multi-VTH can be easily addressed using the

new optimization procedure.

24

Table 3.2: Energy improvements when considering gate SA and IV C during the gate

sizing procedure over the Base method. The obtained switching and leakage energies

are presented for the SA+IV C. The maximum energy deltas (∆ %), corresponds to the

max difference in energy profile “perceived” by the Base method during optimization.

Max Energy Improvement SA + IV C

Circuit No. Gates Total Sw Lk Sw Max. Lk Max. Duty Delay

(%) (%) (%) (µJ) (∆%) (µJ) (∆%) Cycle (ns)

c880 383 8.14 8.16 8.05 125.11 31.22 15.75 3.01 D2 0.73

c1355 554 14.35 15.01 13.26 264.13 31.12 164.79 15.19 D1 0.74

c1908 932 13.41 13.72 9.41 405.7 29.57 32.06 6.75 D4 1.14

c7552 3568 43.65 44.02 41.32 1685 30.27 284.6 3.21 D2 1.20

c5315 2330 58.72 59.1 54.57 855.6 32.93 87.58 3.19 D4 1.34

c432 168 30.15 35.24 22.35 68.54 33.15 53.55 23.67 D1 0.62

c2670 1202 62.64 62.74 60.78 407.6 31.91 24.62 1.39 D4 0.85

c3540 1703 28.84 29.66 24.14 799.1 31.09 152.2 2.47 D2 0.79

s1488 698 46.38 46.49 44.81 182.6 35.54 14.09 12.05 D2 0.42

s1494 692 35.5 36.08 33.84 283.9 36.36 103.3 12.55 D1 0.42

s15850 10547 31.34 30.76 34.48 3803 33.69 662.1 4.98 D3 2.22

s838 473 32.49 38.89 27.17 139.3 31.76 199.8 10.84 D1 1.64

s5378 3054 16.76 30.08 15.06 826.6 36.2 7876 26.34 D0 0.68

s641 470 26.56 26.14 29.17 112.2 34.26 17.46 10.02 D3 1.90

s713 483 12.83 13.92 6.15 91.37 34.22 16.29 6.07 D3 1.98

s820 345 24.49 24.3 27.25 93.71 36.47 6.29 4.11 D2 0.29

s832 343 1.35 0.55 3.09 81.64 35.58 33.66 3.39 D1 0.29

s9234 5897 50.19 50.52 47.23 2041 32.51 242.5 4.43 D3 1.50

s953 477 14.26 14.38 13.02 144.6 34.45 14.84 12.34 D2 0.45

s38417 23963 53.2 53.85 46.17 6661 30.65 714.2 8.58 D3 1.29

s35932 21035 22.27 22.31 21.25 8317 29.28 332.1 37.26 D3 0.80

s38584 18161 29.01 31.52 28.75 5820 32.24 59720 4.77 D0 1.52

b01 54 55.43 55.41 55.84 13.57 30.68 0.83 61.96 D1 0.18

b02 33 14.23 14.07 17.23 10.54 30.17 0.53 54.57 D1 0.14

b03 190 58.83 58.94 44.38 36.46 30.99 0.38 66.37 D3 0.32

b04 738 47.38 47.65 38.1 174.9 31.43 6.01 65.87 D3 0.97

b05 631 22.52 22.64 20.38 122.2 32.54 6.72 55.68 D3 1.06

b06 57 23.32 27.23 13.48 13.28 31.19 6.29 55.03 D0 0.14

b07 493 18.28 26.9 15.23 89.02 33.71 291.5 62.41 D0 0.94

b08 203 35.99 33.73 37.66 38.07 32.01 48.38 63.25 D0 0.35

b09 198 33.72 41.65 23.39 54.04 32.56 54.41 61.36 D0 0.30

b10 204 44.69 45.06 32.43 40.56 34.45 1.55 54.83 D2 0.36

b11 633 35.53 35.79 31.74 250.9 32.37 18.77 61.52 D2 1.10

b12 1183 22.91 27.89 3.31 314.0 37.03 107.3 60.54 D1 0.61

b13 375 22.05 22.78 15.01 161.23 31.85 18.4 55.33 D1 0.33

b14 6498 28.42 28.65 26.21 3024 33.22 320.7 54.94 D2 1.31

b15 8920 27.62 27.7 26.75 1666 38.99 166.1 54.24 D3 1.58

b17 28911 21.25 25.29 20.79 8.53 38.76 80.58 55.99 D3 1.68

b18 85188 7.02 8.67 5.96 44.54 37.84 71.4 54.72 D1 2.10

b20 14322 27.85 28.57 24.07 3.66 33.2 0.74 55.8 D2 2.08

b21 20640 8.36 8.52 6.95 10.21 33.51 1.24 60.27 D2 2.02

cra32 225 38.32 45.14 37.76 6.72 44.90 92.22 32.09 D0 2.08

cla432 305 22.25 25.02 12.18 10.18 42.87 3.28 13.62 D2 0.35

ks32 611 24.2 23.18 24.63 17.64 44.76 40.83 14.6 D0 0.30

arr8 512 35.96 36.3 23.18 178.5 34.69 22.84 21.29 D1 0.81

dad8 542 30.35 30.99 36.33 101.3 35.83 9.12 11.98 D2 0.62

25

Table 3.3: Energy improvement of (SA + IV C) over Base using extracted gate switching activity and input vector control from

mpeg2enc/dec applications assuming a (D2) “33%” duty cycle. The units represent an single-adder (32b) and multiplier (8b)

configuration of an ARM7TDMI core [124].

Energy Improvement cla432 dad8

Total Sw Lk Sw Sw Imp. Lk Lk Imp. Sw Sw Imp. Lk Lk Imp.

Application (%) (%) (%) (µJ) (%) (µJ) (%) (µJ) (%) (µJ) (%)

mpeg2enc 15.31 17.15 8.55 742.7 4.73 628.7 1.09 2267 20.61 498.6 13.92

mpeg2dec 25.10 29.89 6.21 11.02 6.42 24.30 1.20 101.4 30.99 9.24 21.58

262626

Table 3.4: Overall energy savings with respect to benchmark suite.

Benchmark Max Tot Avg. Tot Avg. Sw Avg. Lk

Suite (%) (%) (%) (%)

ISCAS-85 62.64 29.70 30.58 26.74

ISCAS-89 53.20 28.33 29.99 26.96

ITC-99 58.83 29.23 30.90 24.15

Arith 57.19 30.48 33.23 33.15

27

CHAPTER 4

A Temperature-aware Approach for

Simultaneous Delay and Leakage Optimization

Accurate thermal knowledge is essential for achieving ultra low power in deep

submicron CMOS technology, as it affects gate speed linearly and leakage expo-

nentially. In this chapter, we propose a temperature-aware leakage minimization

technique that efficiently utilizes input vector control (IVC), dual-threshold volt-

age gate sizing (GS), pin reordering (PR), and gate replacement (GR). To the

best of our knowledge, we are the first to consider these techniques simultaneously

in a synergistic fashion with thermal knowledge. We evaluate our approach by

showing improvements over each method when considered in isolation and in con-

junction. Additionally, we study the impact of employing considered techniques

with/without accurate thermal knowledge. We ran simulations on synthesized

ISCAS-85/89, and ITC-99 circuits on a 45 nm cell library while conforming to

industrial design flow. Overall results show leakage power improvements of up to

5.62X (2.26X avg.) when applying thermal knowledge over equivalent methods

that do not.

4.1 Introduction

Power minimization continues to be one of the top design metrics in modern

VLSI design [33][157][158]. For modern CMOS transistors, power has been pri-

marily characterized into three main sources: 1) switching, due to the charg-

28

ing/discharging of load capacitance’s; 2) short circuit, due to the momentary

short circuit state between the pull-up/down of devices; and 3) leakage, which is

further broken down into gate tunneling and sub-threshold leakage currents.

Sub-threshold leakage has been shown to be the dominant leakage portion for

modern CMOS devices; it is strong function of input vector state and is exponen-

tially affected by operating temperature. Gate delay is also thermally affected as

rising temperatures contribute to decreased carrier mobility affecting propagation

delays. However, current tools lack early and thermal analysis to better address

modern and pending design issues affecting total power and energy consumption,

circuit performance, and reliability. Conventional design tools utilize nominal gate

switching activity, average gate leakage, and uniform operating temperatures. Op-

timization under these assumptions not only limits the effectiveness of proposed

techniques, but also increases the likelihood of producing designs that violate in-

tended design targets, such as power, area, and delay, due to the lack of thermal

knowledge. Yang et al., reports around 70◦C in operating processor temperature

variation for different workloads [112]. Furthermore, it has been shown by Kumar

et al., that temperature can degrade circuit delay by 57% [111]. To account for

large differences, designers rely on to enforcing higher guard bands to account for

corner cases.

We propose a temperature-aware synthesis methodology combining and im-

proving gate-level pre-silicon synthesis techniques that utilize thermal knowledge

during the optimization. A summary of the considered techniques are listed below.

• Dual-Vt gate sizing (GS) – utilize thermal knowledge to efficiently size and

assign Vt to thermally impacting gates to minimize leakage power

• Input vector control (IVC) – find promising input vectors for a given thermal

map by placing temperature critical gates to their minimal leakage states

• Pin reordering (PR) – improve the effectiveness of IVC by placing each gate

29

to its optimal leakage state, relaxing IVC-imposed constraints.

• Gate replacement (GR) – replace leakage critical gates with an equivalent

lower leakage gates in the library and enhanced when combined PR.

The main contribution of our work is to the demonstrate the vital role tem-

perature knowledge has on modern CAD optimization techniques using industrial

imposed constraints. Until now, previous approaches have considered at most

two of the mentioned techniques simultaneously with temperature (e.g., GS+PR,

IVC+GR). Furthermore, these techniques often assume simplistic delay/power

models that operate under nominal conditions (e.g., operating temperature, av-

erage leakage). Our goal is to show that a strong interdependence exists when

considering all of the enabled techniques in light of utilizing the correct tem-

perature knowledge during the optimization process. We demonstrate that the

success of considered techniques heavily depend on each other due to interact-

ing metrics we consider such as leakage and delay. Other contributions include

further enhancements to input vector control and gate replacement by simultane-

ously employing pin reordering using thermal profile knowledge, while adhering

to industrial imposed design constraints, such as load capacitance and slew lim-

its [96]. The complete flow can be performed in an iterative fashion to obtain

better solutions and can be easily integrated into modern CAD flow. We also

show that input vector control optimization should be considered across diverse

temperature profile scenarios requiring different input vectors per temperature as-

sumption. Section 4.5 provides a more complete description of our contributions.

We evaluate our approach on a comprehensive set of combinational and sequen-

tial benchmarks included in ISCAS-85, ISCAS-89, and ITC-99. We also provide

improvement with respect to each technique in isolation, in conjunction with oth-

ers, and with/without thermal knowledge. Our results show dramatic leakage

improvements over state of the art techniques using our novel enhancements to

30

GS, PR, GR, and IVC, with/without temperature knowledge, demonstrating the

additional benefits of incorporating a coordinated thermal-aware optimization.

4.2 Motivation

This section highlights the advantages and limitations of several well-known high-

level synthesis techniques that we consider in our work for minimizing leakage

power.

Table 4.1 provides average gate propagation delay (tp) and leakage profiles for

each input vector state m for both 2-and 3-input nand gate under two operating

temperatures (room temp. 25◦C and hot 125◦C), and at high (HVt) and low (LVt)

threshold voltage, Vt, settings on a 45 nm cell library. The large differences in

leakage power are clearly evident between the minimum leakage state (mls) and

respective worst leakage state (wls), a factor of 10.4X at 25◦C under HVt. The

differences are even greater when considering a dual-Vt design and temperature

(e.g., 338X at 25◦ at HVt vs 125◦C at LVt).

The significant leakage range between mls to wls, motivates the use input

vector control techniques for minimizing a the leakage profile during idle periods.

However, its improvements are limited due to difficulty of controlling internal

nodes for circuits with long circuit depths and the requirement of potentially

considering exponential number of input vector combinations. Gate replacement

techniques and other internal control mechanisms have been explored to address

this issue at the cost of area and delay. Figure 4.1 (a), shows an example nand2

gate with an input vector ~x = “01” (24.8 nW). A standard gate replacement would

use a nand3 by adding a sleep signal s̄ to place the gate in “001” (18.2 nW) state,

improving standby leakage by 1.36X. Additionally, the overhead of using a larger

gate and additional wires alters the circuit’s structure (e.g.. interconnect capac-

itance’s), impacting circuit delay and switching power as well. A less intrusive

31

approach is to optimally order the input pins to achieve its minimal leakage state.

In the previous example, the pins can be reordered to achieve “10” (4.09 nW),

achieving 6X leakage savings without applying gate replacement.

The addition of temperature drastically changes the optimization search space.

Figure 4.1 (b) illustrates how temperature impacts IVC decisions under a hot

circuit condition. Under the nominal temperature condition (left), the optimal

configuration places the top two nand gates to their mls, while trading off the

wls for the remaining output gate. However, making a decision to the right figure

would result in a significant leakage penalty of over 6.8X. Thus, under a typical

system that exhibits temperature fluctuations, it is key that the correct IVC is

used as well as account for the delay alterations. The same idea can be readily

applied early in the synthesis phase during gate sizing and Vt assignment. Under

the scenario where standby leakage is dominant, the correct input vector plays a

vital role in selecting optimal sizes and threshold voltages.

Pin reordering may also be leveraged to reallocate slack (Ttarget-Tmax) to achieve

delay targets, without incurring the potential overhead area from gate sizing and

gate replacement, essential for performing simultaneous delay and power opti-

mization when using accurate timing models. For example, replacing a 2-input

nand gate with a 3-input incurs an area overhead from 0.80µm2 to 1.01µm2. Fig-

ure 4.1 (c-d) illustrates an example of maximizing slack by reordering the input

pins. Four terms are shown for each net. The top two represent (rise arrival, rise

slack), the bottom corresponds to (fall arrival, fall slack) in ps. For the sake of

simplicity, ignore the effects of slew on input pins a and b for gate N2. Also as-

sume that all gates are operating under nominal temperatures, are negative unate,

and that a Ttarget=200 ps is set. Gate N2 has cell rise and fall delays of (25, 33)

from a→o and (66, 84) from b→o. Although, path a→o is shorter than b→o, the

rise and fall arrival times and slack of input b are (79, 46) and (163, -46), which

leads to a timing violation (Tmax=229 ps) (Figure 4.1 (d)). To maximize slack,

32

Table 4.1: Input vector state (m) dependent leakage power (nW) and average

delay propagation (tp) for high (HVt) and low (LVt) of 2-and 3-input nand gates

at minimum size operating at room and hot temperature.

NAND2 NAND3

25 ◦C 125 ◦C 25 ◦C 125 ◦C

m HVt LVt HVt LVt HVt LVt HVt LVt

00 3.57 6.22 58.2 176 3.32 5.93 55.9 169

01 24.8 44.8 285 867 18.2 32.8 222 673

10 4.09 7.32 66.3 201 4.21 7.54 67.8 205

11 37.2 67.5 397 1205 39.49 71.6 415 1260

100 - - - - 1.29 2.29 26.0 79.0

101 - - - - 18.8 33.9 228 692

110 - - - - 3.76 6.73 61.9 187

111 - - - - 55.8 101 550 1670

tp 0.33 0.29 0.38 0.33 0.35 0.31 0.39 0.33

the input pins of N2 can be reordered such that the path with minimum slack is

connected to the path with the smallest arrival time. Thus, after slack realloca-

tion, Tmax=194 ps without violations (Figure 4.1 (c)). However, it is important to

note that due to the temperature dependence on gate delay, the delay of certain

paths may be totally different 4.1, thus, accurate temperature knowledge should

be applied during synthesis flows.

4.3 Related Work

Leakage power has become increasingly important for modern CMOS devices.

Input vector control (IVC), proposed in [102][103], has been applied to minimize

leakage by applying minimum leakage input vectors to leakage critical gates. Find-

ing the minimum input vector is also NP-Hard [121]. Leakage power is reduced

33

due to the strong dependence of sub-threshold currents (transistor stacking) with

respect to a gates applied. The use of MUXes was explored in [99] to drive com-

binational circuit sections to their minimally achievable leakage states during idle

periods. However, IVC improvements are limited for circuits with large depths

due to the lack of internal node controllability. Several works cover gate replace-

ment, which replaces gates with worst-case leakage (wls) states with an equivalent

lower leakage gate [105][121]. Gate replacement has also been combined with Vt

assignment in [110][107]. First proposed in [108], input pin reordering has also

been applied in the context of FPGAs [109]. None of these works consider all IVC,

GR, and PR together. In addition, temperature dependencies are also ignored.

Gate sizing have become effective techniques for addressing energy and per-

formance metrics [58][115]. The gate width is scaled up/down achieving various

drive strengths to enable circuit power and timing optimization. In the discrete

domain, gate sizing is known as an NP-Hard problem [97] and several well known

solutions have been proposed, such as Lagrangian relaxation [60], dynamic pro-

gramming [115], combinatorial relaxation [98], and sensitivity-based optimizations

[58][59]. Gate sizing under continuous sizing assumptions has also been proposed,

and convex programming has been used [116]. Dual threshold voltage (Vt) com-

bined with gate sizing has also been proposed [106][110][119][120]. Low Vt gates

achieve greater speed, but at the expense of higher leakage and vice-versa for high

Vt gates. Typically, low Vt cells are placed on critical paths to achieve performance

and high Vt gates on non critical paths to minimize leakage power. Temperature-

aware dual Vt and gate sizing was explored [104] and uses heuristics to place high

Vt in hot regions; however, they do not consider the impact of IVC in their leakage

models nor accurate cell timing (rise/fall) and load constraints.

More recently, the problem of gate sizing combined with multi-threshold op-

timization has spurred the interest of Intel researchers to hold a yearly design

contest at ISPD on the topic [96]. One motivation was to introduce realistic

34

optimization design constraints such as gate load, and slew dependencies to the

public. The contest objective function was to minimize leakage under specified

timing constraints. A limitation of the contest, however, is that only average

leakage values were used for each cell. In our work, we consider a gates input vec-

tor state to reference its leakage power consumption with respect to its operating

temperature. As done in the ISPD-2012 design contest, we conform to identical

industrial design constraints (capacitive load and slew limits).

4.4 Power and Delay Model

We employ a table lookup-based power and delay model from an open source 45

nm gate library [118]. In lieu of addressing realistic design challenges faced in

industry [96], our model accounts for a gates load capacitance limits, and the rise

and fall propagation and slew delays, modeled as function of a gate’s driving load

capacitance, and the input pin slew. The worst-case gate delay/slew propagation

are propagated to the next stage and a negative unateness is assumed throughout

the entire cell library. Leakage power is retrieved in a similar table-lookup fashion

where its respective gate type/size and its corresponding input vector control

state are used as its index. Since our library of choice is assumed to be operate

at a single nominal room temperature with all cells at LVt configuration, we

utilize Markovic’s model [154] to modify the lookup-procedure to account for both

operating temperature and threshold-voltage setting (Section 4.5). We direct the

reader to [96] for further information on table-lookup cell-based power and delay

modeling.

35

4.5 Technical Approach

Our leakage minimization framework consists of three major steps, as shown in

Figure 4.2, which include: 1) initialization of cell library and circuit thermal maps;

2) leakage minimization through finding minimal input vectors combined with pin

ordering (IV C+PR); 3) leakage minimization through simultaneous dual-Vt gate

sizing (GS), input pin reordering (PR), and gate replacement (GR). Steps 2-3 can

be repeated to obtain additional savings. The following subsections cover each

enabled technique in greater detail.

4.5.1 Thermal Map

Our work addresses circuit optimization during the pre-silicon phase. Thus, our

method relies on circuit thermal simulations to generate thermal maps. Thermal

maps can be generated using models found in HotSpot [113] where the functional-

unit level temperature modeling can be extrapolated to support gate-level temper-

ature modeling. Thus, actual gate-level activity switching factors (obtained either

through gate-level or probabilistic simulations), and its cell physical placement in-

formation can be used to generate power densities. The resultant power densities

can then be used to generate a circuit-wide thermal model. However, such a pro-

cess would require actual correlations to actual hardware measurements in order

to generate a reliable temperature profile for use [113]. Due to this limitation in

our optimization search space, we assume a static chip-wide temperature profile

for each netlist as a starting point. As temperature modeling in CAD tools ma-

ture, further improvements in designs may be possible, since input vector control,

pin-reordering, gate replacement, and gate-sizing all impact power dissipation of

the circuit (Sections 4.2 and 4.4). For our experiments, we generate temperature

scenarios under two circuit-wide operating temperature assumptions (55◦C as cool

and 125◦C as hot).

36

4.5.2 Input Vector Control and Pin Reordering

IVC is an essential technique for leakage reduction in idle modes since temperature

critical (e.g., hot) gates may be placed in lower leakage states and traded-off

with less critical (e.g., cool) gates be be placed in higher leakage states. We

improve the conventional IV C by combining it with input pin reordering (PR).

PR provides additional opportunity for leakage savings for each gate, since it

relaxes the constraint imposed by the IV C setting of its transitive fan-in gates.

Thus, a higher percentage of gates may be placed at or closer to their respective

mls, making IV C+PR an effective technique for addressing circuits that exhibit

large temperature variations.

Finding the optimal IV C is NP-Hard [100]. In our work, we utilize a statistical

random-walk procedure of 10K randomly generated input vectors for obtaining a

promising IV C to be used in later phases. This procedure is simple in nature and

note that more sophisticated techniques can be used. However, our experience

has shown this technique achieves relatively fast convergence with most designs

converging before completion. To further reduce the number of computations in

this phase, we modify the lookup-table entry for each gate to only consider the

minimum leakage values for respective input vector permutations. For example,

the minimum IVC for a 3-input nandgate “100” can represent its respective leakage

profiles of “100” and “010” (Table 4.1).

4.5.3 Gate Configuration Selection

The next step in our flow is to perform iterative gate-level modifications for min-

imizing leakage power with respect to a given delay target. This phase combines

gate replacement (GR), dual-Vt gate sizing (GS), and pin reordering (PR) tech-

niques.

We introduce GR during this optimization phase, to maximize leakage savings

37

Algorithm 1 Gate Configuration Selection Algorithm

1: Initialize library, delay target Dtarget, and netlist

2: Obtain minimum input vector and pin reordering (mIV C)

3: Compute difficulty metric for each gate (power, delay)

4: Initially set all gates to High-Vt and minimal size

5: Compute difficulty and lock top K critical gates

6: Lock K maximally constrained gates Glock

7: repeat

8: For each gate, find least constraining move m

9: Perform move m and lock chosen gate

10: If all gates are locked, unlock all gates ∈ Glock

11: If no solutions found after L iterations then relax K

12: Recompute circuit difficulties

13: until Converge

of a given circuit configuration. Our gate replacement policy is similar in nature

to [121], but is enhanced such that we combine it with input pin reordering. Our

GR procedure replaces a gate’s G and its input vector ~x, with an available lower

leakage gate G̃, with reordered pins ~̃x and sleep signal s̄. Additionally, s̄ ∈ ~̃x

and can be set to a value ∈ {0,1}. The resultant circuit after performing GR

is still functionally equivalent. However, alterations of a gate type may result

with very different power and timing characteristics of the entire circuit, poten-

tially constraining or relaxing the optimization search space. Thus, we repeat the

IV C+PR procedure in order to obtain more promising input vectors in future

iterations.

With the addition of GR+PR during this phase, The number of available

moves for each gate can be quite large. Thus, we restrict GR to be enabled only

for nand gates. PR is performed simultaneously when deciding a gates size and

threshold voltage and is enabled only for epsilon critical gates (ε-gates). Only

38

delay critical gates are enabled as PR candidates since this phase emphasis is on

delay optimization, as most gates should have been placed in their minimal mls

during the IV C+PR phase. Thus, a gate configuration is comprised of its size, Vt,

GR, and PR. Gate configuration selection is also permed while while conforming

to the special restrictions mentioned above.

4.5.3.1 Selection Heuristic

Our gate configuration selection approach is based on maximally constrained,

minimally constraining optimization paradigm. The procedure is constructive at

each its step such that the most benefiting move in terms optimization criteria

is performed. The maximally constrained principle attempts to assign the gate

configurations to difficult gates early while there is still flexibility or slack in the

design. In addition, the early assignment of the difficult or constraining gates early

provide an accurate picture of actual consequent difficulties for future moves and

is recognized as early as possible [86]. In a circuit where leakage power is localized

to few hot spots, determining the optimal configuration of these gates early in the

optimization phase is critical. The minimally constraining principle states that

at each step we should determine a gates move (GS, GR, and PR) in such a way

that the remaining gates are as least constrained as possible.

We first define the sources of difficulty or constraining metric in determining

the best configuration for a particular gate. Gates are sorted in descending order

during “difficulty computation” step (Algorithm 1) in decreasing precedence listed

below:

1. Leakage power - temperature leakage impact factor

2. Slack - gate participation on the critical paths

3. Logic Depth - gate participation on longest paths

39

4. Fan-out - affect on its transitive fan-out gates

5. Fan-in - affect on its transitive fan-in gates

As shown above, the leakage profile of a gate is considered as the main source of

difficulty, followed by its ability to potentially impact the circuit delay. Our main

objective is to minimize leakage consumption, thus, we first identify the top K

leakage critical gates and lock them to their minimally impacting configuration.

Algorithm 1 highlights our gate configuration selection procedure. Line 1 and 2

performs all required pre-processing steps including thermal simulation to identify

critically temperature impacting gates and IVC to obtain the minimum leakage

input vector combined with its corresponding optimal pin-reordering structure.

The key idea in this step is to maximize achievable savings by IV C + PR before

performing gate-level adjustments. In other words, an accurate picture of the

circuits leakage profile is determined early, such that any subsequent optimization

(e.g., iterative refinement) lead to a better solution. Line 3 initializes the gate

sizing framework such that the most constrained or high leakage impacting gates

are locked in initial minimal leakage configuration in order to minimize overall

leakage power. For our purposes, we set K to be equal to the number of gates

predicted to be temperature critical. Lines 7-13 performs iterative gate-level ad-

justments based on its move classification (next subsection). This procedure is

repeated until all gates configuration have been set. Note that once a configu-

ration is determined for a gate, the gate is locked (frozen) (excluding gates in

initially the locked gate set Glock) until the start of the next iteration have been

determined. The locking principle prevents the algorithm from getting stuck into

a local minima by requiring all gates configurations to be determined before a

subsequent phase is performed.

40

4.5.3.2 Move Classification

Gate moves (GS, GR, and PR) are classified into three groups with respect to

our delay-constrained objective. For each gate potential gate move, three ideal

scenarios are considered:

1. Leakage power and delay reduction

2. Leakage power reduction, constant delay

3. Leakage power reduction and delay increase

It is important to account for valid moves (no load or slew violation). These

valid moves are assigned priorities in the precedence class order of i, ii, and iii.

Moves that benefit both leakage and delay (class i) are always selected over moves

belonging in classes ii and iii, and are compared against other moves within its

own class as the product of leakage and delay savings. If no class i moves exists,

then class ii moves are selected by the maximum leakage energy improvement. If

only class iii moves are found, the move that produced the maximum benefit
cost

is

selected. Note that the above objective concepts may be applied inversely when

the objective is set (e.g., power-constrained delay minimization).

One challenge during our gate-level configuration selection approach is that

the initial step requires the locking of K top critical gates (line 5). Note that

a condition may exist where the target delay was not achievable due to locking

constraints placed on sizable gates. Under these cases, where after a specified

number iterations have passed where no valid solution has been found, a gate is

chosen in the locked set (Glock) to be unlocked using the maximally constrained

and minimally constraining principle. The most constrained locked gate is de-

fined using: 1) maximum frequency being on the critical path, and 2) leakage

power. These frequency statistics may be recorded when performing accurate

delay computation.

41

4.5.3.3 Epsilon Critical Tree Extraction

Another major difficulty encountered in modern gate sizing flows is the ability

to scale to larger circuits. To address this issue, we employ an epsilon critical

tree structure to enable our algorithm to scale linearly with respect to circuit

size. The requirement of comparing and determining gate configurations while

maintaining accurate delay pictures, is the major challenge faced in sensitivity-

based algorithms. A single move may require delay re-computation of the entire

circuit. Thus, performing per-gate-wise delay update results in quadratic run

time. We develop an efficient epsilon tree structure that performs delay updates

when it is detected that gates along the critical path (or within some tolerance)

are updated. The cost for acquiring accurate delay values of the entire circuit

is significantly reduced, while minimally impacting accuracy. To further improve

run-times, groups of gates may be sized at a time as done in [58].

An epsilon tree (εpath) provided in Figure 3.4a and consists of gates that were

within ε − delay of the critical path during the last accurate delay computation

(shaded nodes in Figure 3.4a). The bold-outlined nodes are primary outputs

(Pout) transitively connected to at least one node belonging to the critical path.

The delay impact of a gate is accounted by its transitive relation to the εpath. For

example, a gate that is either on the critical path or an output gate of a critical

path gate would cause a δ delay with respect to all the primary output nodes in the

transitive fan-out of the critical gate. The δ is used to estimate the delay impact

of each move via a delay cost formula, defined as the sum of the squared difference

with respect to each transitively related primary output’s output time, εi, with

respect to the delay target (Figure 3.4a). Using an εpath enables the following very

efficient delay estimation:

Dcost =
∑|Pout|

i (εi −Dtarget)
2 (4.1)

Significant reduction in run time can be achieved since the percentage of gates

42

that make up the critical path is relatively small compared to the total gate count

(≤ 5%). However, there can be an exponential number of paths that need to be

taken into account. Thus, in order to maintain reasonable accuracy, we update

the propagation and slew delays (rise/fall) after assigning a gates configuration of

the current gate under inspection, as well as its immediate fan-in/out connections.

We also note that circuit violations (load and slew) are also fixed during accurate

delay computations. We employ a similar technique as in [59] for fixing violations.

Figure 3.4b provides the run-times achieved of our method with respect to circuit

size.

4.6 Simulation Framework

We evaluate all considered leakage minimization synthesis techniques on 14 indus-

trial benchmarks included in ISCAS-85/89, and ITC-99, and were synthesized us-

ing Cadence Encounter in order to retrieve net/wire capacitances. The Nandgate

45 nm cell library [118] is set as our base library and 3 gate sizes are assumed

(1X, 2X, and 4X). We extend the cell library to support dual-Vt optimization by

using EKV formulas in [154] to fit against the base library and set (LVt=0.55V,

HVt=0.6V). For generate power and time results, we implement an in-house power

and delay timer C++ correlate within 1E-3 within the Synopsys PrimeTime indus-

trial tool. We extend our lookup table model to support continuous temperature

indexing so that both leakage power and delay can be obtained using the gates

driving load capacitance, size/type, and rise/fall input slews, and temperature.

Leakage power is indexed using its input vector state, which is dependent on its

applied IV C. The minimum leakage IV C is obtained through simulation (Sec-

tion 4.5). We assume two chip-wide thermal operating settings: 1) 55◦C as cool

and 2) 125◦C as hot. We limit the gate configuration selection procedure up to 3

iterative refinement phases and report their results in the next section; additional

43

Table 4.2: Leakage power improvement factors for ISCAS-85 circuits when optimized

under actual (Act.) and predicted (Pred.) temperatures with respect (row-wise)

to the addition of each enabled technique and (column-wise): (O1) IVC+GS; (O2)

IVC+GS+PR; and (O3) IVC+GS+PR+GR.

Circ.
Act. Pred. Lk. Pwr. (uW) Lk. Imprv. (X) % of gates. (mls, wls) Clk

(◦C) (◦C) O1 O2 O3 O1 O2 O3 O1 O2 O3 (ns)

c1355

Nm.
Nm. 43.4 28.3 9.79 1.10 1.28 1.42 - - -

17.0
Hot 47.8 36.2 13.9 - - - - - -

Hot
Nm. 69.6 45.0 28.6 1.45 1.70 1.66 17, 17 17, 17 67, 0

19.4
Hot 48.1 26.4 17.3 - - - 11, 8 11, 8 75, 5

c2670

Nm.
Nm. 95.1 88.8 72.5 1.23 1.15 1.01 - - -

15.7
Hot 117 102 73.6 - - - - - -

Hot
Nm. 522 499 412 3.70 3.99 4.08 24, 25 26, 21 41, 15

17.1
Hot 141 125 101 - - - 37, 17 41, 11 59, 11

c3540

Nm.
Nm. 135 124 99.8 1.20 1.18 1.08 - - -

28.2
Hot 162 146 108 - - - - - -

Hot
Nm. 556 532 492 2.91 3.10 3.58 40, 31 47, 27 66, 17

28.3
Hot 191 172 138 - - - 41, 23 50, 17 71, 14

c7552

Nm.
Nm. 155 152 136 2.03 1.85 1.58 - - -

24.8
Hot 315 281 216 - - - - - -

Hot
Nm. 734 722 644 1.92 2.13 2.35 33, 27 39, 25 58, 18

25.3
Hot 382 339 274 - - - 38, 23 41, 17 68, 15

phases resulted with marginal improvements with respect to simulation runtime.

4.7 Experimental Results

We evaluate the effect of utilizing temperature knowledge during the optimiza-

tion process when considering input vector control (IV C), dual-Vt gate sizing

(GS), input pin reordering (PR), and gate replacement (GR). We report the

leakage improvements across three enabled optimization modes corresponding to

their enabled techniques: 1) O1 (IVC+GS), 2) O2 (IVC+GS+PR); and 3) O3

(IVC+GS+PR+GR). The optimization objective is to minimize leakage consump-

tion (stand-by mode), while meeting delay targets.

Table 4.2-?? shows the impact of using temperature knowledge under all con-

sidered leakage optimization techniques. Results are grouped (row-wise) with

respect to the circuit, and further sub-grouped (row-wise) with respect to the

44

Table 4.3: Leakage power and improvement factors for ISCAS-89 circuits (row-wise)

shows results when optimizing under actual (Act.) and predicted (Pred.) temperatures

with respect to the addition of each enabled technique (column-wise).

Circ.
Act. Pred. Lk. Pwr. (uW) Lk. Imprv. (X) % of gates. (mls, wls) Clk

(◦C) (◦C) O1 O2 O3 O1 O2 O3 O1 O2 O3 (ns)

s820

Nm.
Nm. 8.82 7.78 7.75 1.30 1.33 1.24 - - -

9.91
Hot 11.4 10.3 9.91 - - - - - -

Hot
Nm. 57.3 53.3 53.2 2.33 2.37 2.39 23, 11 35, 11 56, 3

9.91
Hot 24.6 22.5 22.2 - - - 23, 6 41, 3 56, 3

s838

Nm.
Nm. 11.2 10.9 9.93 1.58 1.59 1.62 - - -

47.1
Hot 17.8 17.4 16.1 - - - - - -

Hot
Nm. 86.6 81.3 75.8 2.70 2.62 2.69 36, 24 38, 18 48, 8

47.1
Hot 32.0 31.0 28.2 - - - 42, 6 50, 6 64, 4

s953

Nm.
Nm. 8.55 8.10 7.43 2.09 2.06 2.14 - - -

19.5
Hot 17.9 16.7 15.9 - - - - - -

Hot
Nm. 50.5 48.4 43.5 1.68 1.71 1.66 24, 30 32, 26 60, 6

20.4
Hot 30.1 28.2 26.2 - - - 38, 10 46, 10 64, 4

s1488

Nm.
Nm. 45.6 43.2 39.4 1.04 1.02 1.01 - - -

7.44
Hot 47.3 43.9 40.0 - - - - - -

Hot
Nm. 209 194 184 2.81 2.79 2.87 28, 13 40, 9 78, 4

7.44
Hot 74.3 69.5 64.2 - - - 34, 11 45, 2 84, 1

s15850

Nm.
Nm. 604 584 531 1.12 1.07 1.01 - - -

44.5
Hot 674 627 539 - - - - - -

Hot
Nm. 3680 3570 3330 4.05 4.14 4.26 40, 30 41, 30 53, 25

45.1
Hot 908 863 780 - - - 61, 23 63, 22 80, 18

correct and wrong temperature assumption (columns 4 and 5), respectively. The

correct temperature knowledge is used when the actual temperature under “Act.”

matches the predicted temperature “Pred.” For example, consider benchmark

c2670 where a hot temperature scenario is considered. The leakage power achieved

when making the correct “Hot” temperature knowledge is 141 uW in contrast to

using the wrong temperature knowledge that resulted with a leakage power of 522

uW. Subsequent leakage improvements are provided for the remaining techniques

enabled under O2 and O3. For benchmark c2670, using temperature knowledge

achieved leakage improvements (leakage reduction factor) 3.70X (O1), 3.99X (O2),

and 4.08X (O3). As expected, additional leakage reductions were achieved as more

techniques were enabled.

The impact of temperature knowledge in placing gates in their minimal leakage

45

Table 4.4: Leakage power and improvement factors for ITC-99 circuits (row-wise) shows

results when optimizing under actual (Act.) and predicted (Pred.) temperatures with

respect to the addition of each enabled technique (column-wise).

Circ.
Act. Pred. Lk. Pwr. (uW) Lk. Imprv. (X) % of gates. (mls, wls) Clk

(◦C) (◦C) O1 O2 O3 O1 O2 O3 O1 O2 O3 (ns)

b11

Nm.
Nm. 15.7 13.9 9.16 2.18 2.01 1.55 - - -

22.3
Hot 34.2 27.9 14.2 - - - - - -

Hot
Nm. 114 96.6 60.8 2.08 2.20 2.78 15, 25 17, 23 56, 6

22.3
Hot 54.6 43.9 21.9 - - - 18, 14 20, 14 60, 2

b12

Nm.
Nm. 19.7 17.3 11.6 2.01 1.86 1.71 - - -

17.5
Hot 39.6 32.2 19.7 - - - - - -

Hot
Nm. 129 115 77.9 2.13 2.37 2.30 30, 22 30, 22 51, 11

17.5
Hot 60.5 48.3 33.9 - - - 30, 8 32, 7 64, 4

b13

Nm.
Nm. 2.00 1.78 0.977 4.05 4.54 5.62 - - -

6.82
Hot 9.10 7.22 5.49 - - - - - -

Hot
Nm. 17.2 15.0 10.9 1.08 1.11 1.10 13, 31 18, 31 36, 13

6.82
Hot 15.9 13.5 9.90 - - - 26, 8 34, 8 60, 5

b17

Nm.
Nm. 191 171 139 1.41 1.16 1.13 - - -

40.6
Hot 269 198 157 - - - - - -

Hot
Nm. 1230 1110 864 2.43 2.84 3.20 25, 27 27, 26 55, 9

40.7
Hot 506 390 270 - - - 28, 21 32, 20 62, 8

b18

Nm.
Nm. 235 213 158 1.72 1.61 1.57 - - -

43.6
Hot 404 343 249 - - - - - -

Hot
Nm. 1350 1260 917 2.54 2.79 2.67 35, 22 39, 21 60, 8

49.9
Hot 530 449 343 - - - 38, 13 41, 12 65, 5

state can be clearly observed by determining the % of gates (post optimization) in

their minimum leakage state (mls) and worst leakage state (wls), listed under the

“% Gates.” columns. Due to their exponential dependency on temperature, only

hot operating conditions are listed (col. 12-14). It is important to note that wls

and mls are only two of the 2fi leakage states considered, where fi corresponds

to gates fan-in size.

Using accurate temperature knowledge enables superior solutions over an equiv-

alent methods using the incorrect temperature assumption (Table 4.2-4.4). For

example, the result for “c2670” shows that the correct temperature knowledge

enabled 37% gates to be placed in mls in contrast to 24% when the wrong temper-

ature knowledge is used. Additionally, using the correct temperature knowledge

placed a lower percentages of gates in their wls (17% vs 25%). As the number

46

Table 4.5: Overall leakage power savings for each enabled optimization (O1, O2, and

O3) for each benchmark suite under nominal and hot operating conditions.

Circ. Suite. Temp. O1 O2 O3

ISCAS-85
Nm. 1.65X 1.63X 1.56X

Hot 2.28X 2.47X 2.62X

ISCAS-89
Nm. 1.43X 1.41X 1.41X

Hot 2.71X 2.73X 2.80X

ITC-99
Nm. 2.37X 2.14X 2.31X

Hot 2.05X 2.27X 2.41X

Avg. Nm. 1.82X 1.73X 1.76X

Avg. Hot 2.35X 2.49X 2.61X

Max Nm. 4.54X 4.05X 5.62X

Max Hot 4.05X 4.14X 4.26X

of available gate configurations increases (from O1 to O3), more gates were able

to be placed in their mls, and less in their wls. Improvements using the correct

temperature knowledge are greater since they enable more gate selection candi-

dates to be selected among temperature-leakage critical gates, thus, more gates

are able to be placed in their mls, and less in wls. For instance, circuit the op-

timization of “c2670” under the correct temperature prediction (59% mls, 14%

wls) outperformed the wrong temperature prediction (41% mls, 15% wls).

Table 4.5 shows overall leakage improvements when using the correct temper-

ature knowledge during optimization with respect to the considered benchmark

suites and correct temperature setting. On average, leakage improvements are

greater under the hot circuit condition achieving 2.35X, 2.49X, and 2.61X leakage

improvement factor over when using the wrong temperature assumption. This

is expected since under the actual nominal temperature case, all gates are as-

sumed to be operating at cooler temperature. Therefore, the impact of making a

47

wrong optimization decision (e.g., input vector, gate size, Vt setting) is lower, since

all gates operate at nominal operating temperature (55◦C). However, under the

hot (125◦) operating scenario, the impact of making the wrong decision is much

greater since magnitude between the gate leakage state across available gate con-

figurations, is increased when temperature is accounted. Therefore, knowing the

best decisions with considering the gate size, minimum input vector, and thresh-

old voltage assignment, becomes more crucial during optimization, especially in

light of constrained optimization when a number of ideal moves are limited, and

knowing trade-off between slack and leakage power is critical. Additional reduc-

tions should be expected under more realistic operating conditions where accurate

temperature variations are available.

4.8 Summary

We have developed a synergistic temperature-aware delay and leakage optimiza-

tion approach using enhanced synthesis techniques including: input vector control

(IVC), pin reordering (PR), dual-threshold voltage Vt gate sizing (GS), and gate

replacement (GR). We study the impact of temperature knowledge using these

techniques under two assumed operating temperatures (cool and hot) and report

significant leakage improvements averaging 2.61X (4.26X max) when utilizing the

correct temperature knowledge. We evaluate our approach on a comprehensive

set of benchmarks included in ISCAS-85/89, and ITC-99 on a 45 nm dual-VTH

cell library while conforming to industrial imposed constraints.

As future work, we aim to study the impact of using accurate thermal knowl-

edge under more accurate operating conditions. We believe additional improve-

ments can be achieved due to ability to leverage our considered techniques to

specific hot and cool regions on a chip. The consideration of duty cycle also plays

an important role, since total power and energy is both a function of switching

48

and leakage power and energy components. Therefore, identifying promising in-

put vectors to minimize stand-by leakage, while also minimizing switching and

leakage during active move, is required.

49

18.2 nW

p1p2sleep

24.8 nW

p1 p2

10

100

4.1 nW

p2 p1

01

Gate Replacement

Pin reordering

(a)

25°C

0 0

25°C

0 0

25°C

1 1

0

25°C

1 1

25°C

1 1

125°C

0 0

1

176 nW
Vs.

1205 nW

(b)

79, (46)
163, (-29)

 25 (187)
 25 (107)

229, (-29)
154, (46)

a b

N1INV1

N2

o

(c)

79, (99)
163, (4)

25, (91)
25, (109)a b

N1

196, (4)
109, (99)o

N2

INV1

(d)

Figure 4.1: Pin reordering vs gate replacement (a); input vector control under two

temperature settings (b); pre-slack (c) and post-slack (d) re-allocation via input

pin reordering. For (c-d), the critical path is represented as bold-red with arrival

time (left) and slack (right) terms provided.

50

Figure 4.2: Temperature-aware synthesis flow

51

CHAPTER 5

Maximizing Yield in the Near-Threshold

Regime in the Presence of Process Variation

Near-Threshold Computing (NTC) shows potential to provide significant energy

efficiency improvements as it alleviates the impact of leakage in modern deep

submicron CMOS technology. As the gap between supply and threshold voltage

shrink, however, the energy efficiency gains come at the cost of device performance

variability. Thus, adopting near-threshold in modern CAD flows requires careful

consideration when addressing commonly targeted objectives. In this chapter,

we propose a process variation-aware near-threshold voltage (PV -Nvt) gate sizing

framework for minimizing power subject to performance yield constraints. We

evaluate our approach using an industrial-flow on a set of modern benchmarks.

Our results show our method achieves significant improvement in leakage power,

while meeting performance yield targets, over a state-of-the-art method that does

not consider near-threshold computing.

5.1 Introduction

Power and performance continue to be the top design metrics for optimization

in modern and pending IC technologies. The near-threshold computing (NTC)

paradigm has been shown to provide significant energy efficiency improvements of

10X by scaling supply voltage (VDD) to comparable levels to the nominal threshold

voltage (VTH). However, several challenges must be addressed when incorporating

52

NTC in modern CAD flows, such as their significant performance cost and high

susceptibility to performance variations due to the lessening gap between supply

and threshold voltages [61]. As devices continue to scale into the deep submicron

regime, these issues will be further compounded by process variation.

Process variation (PV) is an unavoidable side product of modern and pending

silicon implementation technologies. As a ramification of PV, each transistor,

gate, and wire on each integrated circuit that realizes a particular design has

unique physical (e.g. channel length) and manifestational (e.g. power and delay)

properties [66][67][68]. When considering such implications in variations for a

near-threshold voltage (Nvt) design where the gap between VDD is reduced, the

effects on respective leakage and delay components are magnified.

PV may eliminate most of the potential gains from one technology generation

or design optimization [67]. For example, due to the impact of PV, the classic

design approaches that aim to optimize delay and power, such as [69], would not

produce optimal solutions. Therefore, there is an increasingly pressing need for

the design practice to switch from a fixed deterministic domain to a usually infinite

probabilistic and statistical domain, in order to reflect the changes brought about

by the existence of PV [70].

In this paper, we consider an IC design optimization problem of performing

a process variation-aware near-threshold voltage (PV -Nvt) gate sizing method.

Our goal is to optimize the yield of a given IC design (i.e., to maximize the total

number of ICs that meet a certain set of power and delay specifications). We

achieve this goal by gate sizing and selecting threshold voltage settings for the

gates on the circuit in such a way that the maximum number of ICs can meet

the power and delay requirements. In order to reflect the impact of PV, we use

a scenario-based approach by creating a set of scenarios (IC samples) that are

representative of the PV model.

First, we perform simultaneous delay and power optimization of a circuit to

53

meet a target performance and power budget. Once a specified threshold is satis-

fied, the next step is to optimize the yield of the set of scenarios. For this step, we

have developed an iterative heuristic algorithm that efficiently identifies the most

problematic sections of the circuit (through our partitioning scheme) in terms of

the objective function target (e.g., delay and leakage power). The critically de-

termined sections are then made more resilient to PV in order to maximize yield.

Each partition is optimized such that the observed maximally benefiting config-

uration (e.g., size and VTH) is selected, such that the overall yield is improved,

while taking into account of the global circuit optimization search space. We val-

idate our approach using statistical re-sampling techniques on various generated

scenarios. The procedure is constructive in nature and can be repeated to improve

the design at the expense of additional run-time.

5.2 Motivation

We begin by providing a small realistic example demonstrating the advantages

and challenges encountered when considering an NTC-enabled design. Consider

Figure 5.1a, which shows a small representative circuit composed of eight cells

(six inverters, one 2-input nand gate, and one 4-input nand gate). Special con-

siderations must be made when enabling NTC for optimizing the circuit under

conflicting objectives, such as delay and power. Figure 5.1b and 5.1c presents

delay vs. leakage power (log scale), when performing four separate of individual

cell VTH modifications on N1 and INV5, independently. A plot of 1000 generated

circuit instances is provided against each VTH circuit configuration with delay

variations following a normal PV model.

As shown in Figure 5.1b, the performance (delay) variability is significant when

all cells are at a NTC setting, ˜200 ps vs ˜50 ps for non-NTC. However, the gains

in leakage power reductions are significant (exponential). Thus, selecting cells

54

N1

N2

INV1 INV2 INV3 INV4

INV5 INV6

(a)

 1

 10

 100

 1000

 10000

 300 350 400 450 500 550 600 650

P
ow

er
 (
µ

W
)

Lo
gs

ca
le

Delay (ps)

All Nvt
N1→Svt
N1→Mvt
N1→Fvt

(b)

 1

 10

 100

 1000

 10000

 300 350 400 450 500 550 600 650

P
ow

er
 (
µ

W
)

Lo
gs

ca
le

Delay (ps)

All Nvt
INV2→Svt
INV2→Mvt
INV2→Fvt

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 300 350 400 450 500 550 600 650

of

 In
st

an
ce

s

Delay (ps)

All Nvt
N1 to Svt
N1 to Mvt
N1 to Fvt

(d)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 300 350 400 450 500 550 600 650

of

 In
st

an
ce

s

Delay (ps)

All Nvt
N1 to Svt
N1 to Mvt
N1 to Fvt

(e)

Figure 5.1: Example circuit (a) with inverters (INV1 to INV6) and nand gates

(N1 and N2); (b, c) distribution of 1000 circuit instances and achieved delay

when decreasing Vt starting from Nvt → {Svt, Mvt, Fvt}, selectively for gate N1

(b) and gate INV5 (c); (d, e) circuit instance distribution vs circuit delays when

performing VTH adjustments on gates N1 (d) and INV5 (e).

55

with lower VTH addresses performance variation in a design, at the cost of expo-

nential leakage power overhead. Selecting the proper cell to be altered, however,

requires identifying cells which maximally reduces variation. For instance, altering

INV5 provides no additional benefit in addressing the performance variability, as

paths that pass through INV6 are still affected by PV (Figure 5.1c). In contrast,

altering N1 minimizes the delay variations from the four inputs (INV1 to INV4),

and outputs to INV5 and INV6, simultaneously. Therefore, when attempting to

maximize yield, it is key to identify cells that participate on many paths in order

to suppress performance variation in a design, as shown in Figures 5.1d over 5.1e.

The significant variations that are more susceptible in an NTC-enabled design

motivate the requirement of handling other uncertainty factors, such as dealing

with spatial correlations. For example, due to an arbitrary model with complex

correlations, identifying the cells that maximally suppress variation cannot be

modeled through standard statistical approaches. In order to address the issue, a

scenario-based approach is utilized to generate instances to optimize based on a

given PV model.

5.3 Related Work

5.3.1 Process Variation

Worst case analysis (WCA) is widely used in industry to deal with the impact of

PV [71]. WCA considers the worst-case parameter values due to PV, environmen-

tal, and aging effects [89][90]. WCA is used in both verification and design pro-

cesses. In the verification process, WCA is used to verify the target IC against the

specification in the worst case, which is helpful in reducing technical risk and im-

proving system reliability. However, in the design process, WCA produces overly

conservative designs that over-estimate the impact of PV. Such over-estimation

may complicate the design process and, more importantly, result in unnecessary

56

performance degradation.

In order to solve the WCA issues, researchers have been promoting statistical

circuit modeling in IC design and analysis [70]. The goal of statistical modeling

is to search for alternatives to WCA that provide more accurate representations

of PV. As the demand on performance, power, and density continues to increase

in modern IC design, statistical modeling plays an increasingly important role in

achieving greater gains compared to worst-case design.

Recent work has focused on the manifestation properties of an IC under the

impact of PV. Sarangi et al. propose a timing error model resulting from sys-

tematic and random PV effects [67]. In [72], an analysis of the leakage power

distribution due to PV is given and used to predict the CDF/PDF of the total

chip leakage. Alkabani et al. propose an approach for post-silicon leakage power

reduction through input vector control (IVC) that takes into account PV [73].

Wei et al. have developed gate-level characterization techniques for quantifying

PV effects in addressing hardware security [91]-[95].

5.3.2 Scenario-based Analysis

Scenario-based approaches [74][75][76] have been used to solve design optimization

problems with uncertain constraints, referred to as chance-constrained problems.

The main idea is to use a sampling of the constraints to approximate the infinite

space of variable constraints caused by the variations. Calafiore et al. prove

that the solution of the scenario problem maps approximately to the original

problem with uncertain constraints; this work also provides an explicit bound on

the number of samples that are needed to obtain a specified levels of robustness

[74]. [75] obtains a convex approximation to the chance-constrained problem and

extends it to an ambiguous set of constraints, where the random distribution of

the variations belongs to a convex compact set instead of a fixed distribution.

57

5.3.3 Gate Sizing

Gate sizing has been a crucial task for accomplishing simultaneous optimization

of delay, power, and area since the very early beginnings of CAD [77]. In the mid-

80s, Fishburn and Dunlop proposed a provably optimal approach to transistor

sizing [69]. It proposes an optimal gate sizing scheme to meet the delay constraint

by using convex programming, but it does not consider the impact of process

variation. More recently, there have been several efforts to optimize manifesta-

tional characteristics of ICs for a design of interest in the presence of PV using

gate sizing. Zhu et al. proposes a gate sizing and clustering approach to optimize

leakage energy adaptive body bias, which takes into consideration the process

variations in different instances of ICs [78]. [79] discusses a gate-sizing algorithm

to minimize the number of failing chips considering process variation. It compares

the variation-aware design with the worst-case approaches and confirms the gain

obtained from the former. [80] proposes a geometric programming-based heuristic

approach to gate sizing. More recently, researchers from Intel have held yearly

discrete cell sizing contests to expose the challenges encountered in an industrial

flow [96]. However, only leakage power is accounted with no PV model assumed.

Additional improvements when accurate operating conditions such as tempera-

ture, gate switching, and input vector state leakage computations are accounted

for[87][88], however, PV is not considered in their models as well.

Other works use statistics-based approaches to capture the uncertainty stem-

ming from PV [81][82][83]. The spatial correlations in Leff inherent in the PV

model, however, are too complex to be captured by simple statistical models. Our

scenario-based approach is simple, generic, and flexible; it can be applied to any

number of optimization tasks because it does not rely on assumptions about the

uncertainty model. Instead, the uncertainty model is used to generate scenarios

to be used as a training set for optimization, with the idea that if the train-

ing scenarios are representative, then the optimization will work well for any set

58

of instances. Calafiore and Campi prove that for convex programs the scenario

approach provides a solution that satisfies most constraints with high probabil-

ity given enough samples, establishing a theoretical bound [74]. Therefore, the

scenario approach has the same theoretical underpinnings as traditional convex

optimization methods. However, our main contribution is to extend the scenario

approach to essentially optimize known NP-hard problems (e.g. discrete gate siz-

ing [97]) well, by combining it with generic optimization techniques (e.g. iterative

improvement) and statistical analysis. Although a mathematical result can no

longer be theoretically proven in this case, a statistical interval of confidence for

various sample set sizes can be established.

5.4 Technical Approach

Figure 5.2 highlights the several steps in our NTC-enabled PV-aware yield opti-

mization framework. Each step is discussed in the next following subsections.

5.4.1 Cell Switching Activity

As the gap between VTH and VDD is reduced in NTC (Eq. 2.2), switching power

starts to become the dominant power (Eq. 2.3). Therefore, accurate knowledge in

determining which cells have high switching activity (SA), is crucial for maximiz-

ing energy efficiency for a given design, especially for NTC-enabled designs. As a

pre-processing step, we perform gate-level event simulation by applying a set of

100K randomly generated input vectors to the primary inputs of a given circuit

and record the SA for each respective net (wire) of the design. Accurate input

stimulus from actual applications may be used instead to improve accuracy. Only

the SA of nets are recorded for computing switching activity since each gate in

our studied benchmarks is driven by only one net. Therefore, the total switching

power for a given design can be computed as the sum of all net switching power

59

Simulation Initialization
· Multi-Vth + NTC Cell Library
· Netlist
· Yield Targets {timing, power}
· Macro Partitioning Size
· Process Variation (PV) Model

Switching Activity Simulation

Update Netlist
Timing and Power

Cell Configuration Selection
· Select top-K (constrained cells)
· For each cell[i] in top-K set:

 cell[i] = least constraining cell configuration
 to achieve target yield objective

For each P[i] in ϵ-set

Identify ϵ-set

ASAP and ALAP Partitioning

Generate N scenarios with PV

1 2 N. . .

Timing and power variations

For each P[i] in ϵ-set

Yield
Satisfied?

End

Start

NoYes

Figure 5.2: Process variation-aware NTC-enabled design flow.

using Eq. 2.3, where the CL = Cnet+Cpin. Here, Cnet is the interconnect and Cpin

is the sum of driven outgoing pin capacitance’s.

5.4.2 Logic-depth Indexing

We employ an as-soon-as-possible (ASAP) and as-late-as-possible (ALAP) cell

indexing principle for partitioning a circuit into distinct groups. The ASAP index

represents the maximum number of logic stages an input signal is required to

propagate (primary input source) before it is considered valid at its output pin.

The ASAP index for a particular cell is the max ASAP value among its inputs.

60

G2

G3

G1

G0

A
SA

P

ALAP

G4

G5

(0, 4)

(1, 3)

(2, 2)

(3, 1)

(1, 1)

(4, 0)

0

1

2

3

4

0 1 2 3 4

Primary In

Primary Out

G0

G1

G2 G5

G3

G4

Figure 5.3: As soon as possible (ASAP) and as late as possible (ALAP) gate logic

mapping.

The ALAP index represents the maximum number of stages the output signal

of a cell must propagate before reaching the inputs of all its transitive primary

outputs. As a result, cells in a given design can simply be indexed (grouped) by

its respective ASAP and ALAP index (Figure 5.3).

The ASAP and ALAP index values can be used to provide useful structural

knowledge of a given circuit, as well as properties useful for constructing circuit

partitions. Figure 5.3 illustrates a simple circuit comprised of six gates. The right

figure shows the two possible paths that the output signal from G0 is required

to propagate (P1 = {G0, G1, G2, G3, G4} and P2 = {G0, G5, G4}) before in

route to the primary output. The left figure shows a triangular-matrix with each

box containing the cell(s) with matching the ASAP and ALAP indexes. The max

depth is 5 (0 to 4) and can be represented by the P1 (or the diagonal-edge of

triangular-matrix), which is more likely to form the critical path over P2 since the

number of stages that a signal must propagate (5 vs 3) is larger. It is important

to note, however, that although P2 is less critical in terms of depth than P1, the

61

ASAP and ALAP indexing scheme cannot guarantee that P2 is less critical (e.g.,

delay) than P1. However, we foresee that under the most general case, the ASAP

and ALAP indexing can provide key insight in identifying which cells are more

likely to participate in the critical paths, thus, enabling efficient power and delay

trade-offs to be performed during optimization.

5.4.3 Circuit Partitioning

A major challenge in circuit partitioning is identifying the metrics to group cells by

as well as the group size. We define the following objectives in establishing our cir-

cuit partitioning scheme: 1) partitions are configured such that each independent

optimization captures and maintains the global optimization picture accurately;

2) partition size is kept small (e.g., hundreds of gates) to improve simulation

time, reducing the number of computations normally required when performing

sensitivity analysis (e.g., power vs delay trade-off) across the entire circuit; and

3) multi-threaded support by optimizing partitions independently across a set of

available threads. We group cells with similar delay affinities by using their re-

spective ASAP and ALAP indexes as a partitioning mechanism. Our ASAP and

ALAP grouping analysis showed that most circuits provide enough sparseness in

group sizes, with most individual ASAP and ALAP groups ranging from less than

1% to 5% for a given circuit, translating to few tens to few thousands of cells.

We define seven micro-partitions in defining the building blocks for circuit

partitions (Figure 5.4a), which can be used to form larger macro-partitions of

larger sizes (Figure 5.4b). The partition shapes are chosen carefully such that

they any circuit depth (ASAP, ALAP) can be constructed by the elementary

micro-partitions. Each micro-or macro-partition can be independently treated

as its own circuit. However, it is important to maintain coherency across its

transitively affected input and output groups; this can be achieved by preserving

the cell configurations of connecting inputs and outputs to the group. For example,

62

S1 S2 S3 S4

S5 S6 S7

(a)

P1 P2 P3

P4 P5

(b)

Non-critital partitions

ϵ-set partitioning

Min. Slack
(-200)

(-200)

(-200)

(-200)

(-200)

Min. Slack
(+125)

ASAP and ALAP indexing

Partitions to
Optimize

(c)

Figure 5.4: ASAP and ALAP circuit partitioning : (a) 7 enabled micro-partitions;

(b) 5 example macro-partitions using micro-partitions; c) ε-set of macro-partitions

satisfying ε-delta slack.

63

the cell drivers of a partition can be treated as the primary input virtual drivers

with fixed configurations, and the load capacitance driven by its primary outputs

as virtual loads. Delay and power coherency is maintained by invoking a circuit

update procedure after each global optimization phase. The update procedure

updates affected partitions during the last iteration with the latest configurations

of any fan-in/fan-out neighbors (e.g., input drivers and output loads).

ASAP and ALAP indexing also provide a useful property that can be uti-

lized for constructing circuit partitions composed of only critical partitions. A

dependency graph may be formed by connecting macro-partitions (from primary-

in to primary out) via ASAP and ALAP indexing. For example, a given partition

at ASAP stage i and ALAP stage j can only have input sources from ASAP

and ALAP indexes who’s index satisfies ≤ i− 1 and ≥ j + 1, respectively. For

instance, referring to Figure 5.3, cell G3 cannot have a source from G5 since it vi-

olates this property. This property useful for constructing ε-sets, explained later,

which are composed of macro-groups that are within an ε-delta slack (Figure 5.4c).

5.4.4 Cell Configuration Selection

We adopt a maximally constrained, minimally constraining heuristic for selecting

cell configurations. The maximally constrained principle states that the con-

figurations for the most difficult cells (or groups) are determined early in the

optimization while there is still slack in the design with respect to the desired

objectives (e.g., timing and power). The minimally constraining principle states

that the configuration is chosen such that it minimally impacts the optimization

search space (e.g., available future moves) [86].

64

5.4.4.1 Identifying Critical Partitions

We first compute the accurate delay, slack, and power of the entire circuit without

PV and identify partitions that are within a predefined ε-delta of the critical slack.

These cell ASAP and ALAP micro-partitions are used to form an ε-set of macro-

partitions with paths leading from the primary inputs to primary outputs (Figure

5.4c). The next step is to identify partitions which are more likely to be impacted

by process variation. This can be achieved by generating 100 circuit scenarios

(instances) to quantify the impacted of PV in regards delay and power yields. In

our experiments, we found that the number of iterations can be kept small if the

number of cells per group is small with high-confidence. With this method, the

variation of a macro-partition can be quantified by the following equations:

P j
var =

|P j |∑
i

Cellivar (5.1)

Cellivar =

|Fin|∑
k

Stdi · Slki (5.2)

The delay variation of a partition is the sum of the partitions primary input/output

delay cell variation (Cellvar) for each cell i = 1 to |P j|, where |P j| represents the

number of cells in partition j (Eq. 5.1). The delay variation of a cell is simply

the sum of the products between each input pin k = 1 to |Fin| and its correspond-

ing slack Slki. Note that only computing the Cellvar of a partitions primary

inputs/outputs is necessary since they connect to paths to other fan-in/fan-out

partitions, effectively preserving the variational impact on the global circuit delay

and power.

In order to reduce the number of required computations, only groups included

in ε-set are considered during an optimization phase, since the rest are considered

non-critical in terms of achieving the desired yield objective (e.g., delay and/or

power). The ε parameter may be adjusted to consider more groups, enabling more

partitions to be optimized simultaneously towards a desired objective.

65

5.4.4.2 Quantifying Group and Cell Difficulty

Given ε partitions, the next step is to identify the top K-difficult cells within a

partition. This is quantified by the formulation below:

Celldiff = |Fout| · |Fin| · (−Slk) (5.3)

|Fout| and |Fin| represents the fan-out and fan-in length of cell, and Slk the slack of

a given cell and represents the minimum Slk value across a cell’s input pins. We,

therefore, identify the most difficult gates within a particular group as the top-K

cells via max(Cell
i=1 to |Pj |
diff), where |Pj| represents the number of cells in partition

j. We use Eq. 5.3 to model an individual cell’s difficulty, since the number of

paths potentially affected by a given cell is attributed by the number of signals

that must propagate through it, accounted by the number of fan-in and fan-out

connections. Slk is used in order to identify cells within a group that are likely

to participate in the critical paths.

Given the top-K most difficult cells within a partition, the last step is to

determine the cell configuration or move (e.g., size, VTH) with an incremen-

tal/decremental offset of one that benefits the target objective. As an example,

assuming under delay-constrained optimization, we can classify the result of a

considering a valid move for each cell into three categories:

1. Power and delay reduction.

2. Power reduction and constant delay.

3. Power reduction and delay increase.

It is important to account only for valid moves; moves that lead to load or

slew violations are disregarded. Valid moves are then assigned priorities in the

precedence class order of i, ii, and iii. Moves that benefit both power and delay

(class i) are always selected over moves belonging in classes ii and iii, and are

66

compared against other moves within its own class as the product of power and

delay savings. If no class i moves exists, then class ii moves are selected by the

maximum total power improvement. If only class iii moves are found, the move

that produced the maximum benefit
cost

is selected. The above objective concepts may

be applied inversely when a power-constrained delay minimization objective is set.

To prevent the algorithm from being stuck in a local minima, only K-cells are

configured during an optimization iteration. Based from our experiments, we set

K=10% of the total group cell count, which can be adjusted to affect convergence

rate. Once a cell configuration is chosen, it is locked and cannot be altered until

the completion of an optimization iteration. An optimization iteration is complete

once partitions belonging in the ε-set have been visited. Optimization iterations

are repeated until a convergence criteria is satisfied (Figure 5.2).

5.5 Simulation Setup

We evaluate our approach using industrial benchmarks included in the ISPD De-

sign Contest 2012 suite [96]. Each design was optimized in accordance to industrial

imposed constraints, satisfying as max load capacitance and input slew limits.

Power and timing results were generated using an in-house timer implemented

in C++, which we correlated in good spirit against Synopsis PrimeTime to be

within 1e-3 error. We extend the original cell library to support near-threshold

cells (NV T), which were generated using analytical models from Markovic et al.

[154]. A variation factor (3δ/µ) of 30% was used to model the variation of a

standard inverter.

We perform Monte Carlo simulations to obtain the best fitting parameters that

minimized error against the standard cell library. We obtain fitting parameters

independently for both delay and leakage with respect to each cell table entry: 1)

delay type {rise, fall} per {delay, input transition}; and 2) capacitance and input

67

Table 5.1: Target clock (delay) for each benchmark (col. 2); the achieved delays (1000

instances) when considering PV (col. 3); and adjusted target clock with PV for using

[60] (col. 4).

Circuit Target Clock (ps) Avg. !NTC-PV Adj. !NTC-PV

dma 1800 1878 1500

pci bridge32 1400 1626 1200

vga lcd 1400 1689 1250

des perf 1600 1754 1450

b19 4300 4546 3800

{rise, fall} transition index. The fit was performed across the three VTH (Svt =

0.33V, Mvt = 0.27V, and Fvt = 0.20V), and VDD = 0.70V [96]. The final model

resulted with error less than 5% per cell delay (e.g., rise/fall input transitions),

and less than 1% in leakage. The fitting parameters were used to generate an

NTC cell library configured with Nvt = 0.68V. Note that the corresponding cell

library is no longer used when applying PV factors into the design since the

affected factors we consider in our PV-model (Section 2.3). The obtained fitting

parameters are applied directly during the delay and leakage table look-up. To

validate our approach, we simulate each design against the look-up-table model

and achieved power and timing errors within 8% to the reference industrial tool

using the original and NTC-generated cell library for the circuits we consider here.

5.6 Experimental Results

We compare our approach NTC against an Non-NTC (!NTC) multi-VTH gate-

sizing method proposed by Li et al. [60]. Their approach achieved competitive

results against solutions obtained from the ISPD 2012 design contest [96] and

[59]. Due to a NTC cell library compatibility issues with their tool, we only com-

68

pare their method using the original ISPD multi-VTH library (non-NTC library).

Additionally, circuits leon3mp and netcard are also omitted due to tool issues.

Due to performance impact that is incurred when enabling NTC, for timing

comparisons, we relax the target delay constraints (2X slower) used in the original

ISPD design contest suite (Table 5.1, col. 2). To ensure fair timing and power

analysis when considering PV, we used the our in-house timer to report timing and

power results under PV (see Section 5.5) for solutions obtained by both methods.

Due to space constraints, we omit reporting detailed simulation run-times of our

approach, but note that our approach achieved 1.2X to 3.5X run-time increase

over the compared method in [60]. This is expected since our approach requires

additional computational overhead for performing tasks described in Section 5.4.

To identify equivalent timing and power constraints for fair comparisons, we

first generate solutions using the method reported in [60] to achieve reference clock

targets shown in Table 5.1. Next, the obtained solution is fed into our PV-aware

timer to obtain the actual PV-enabled delay and power results. Timing violations

are expected, as shown by non-PV-aware result, which are on average 8% (20%

max) slower than the original intended target delay. Therefore, new target clocks

are determined that achieves 100% yield (Table 5.1, col. 4) under the non-NTC

method. We found experimentally that the original target clocks were required to

be scaled lower by 12.1% on average.

The non-NTC result for each circuit is considered as the base comparison

assuming all circuits (1000 instances) that achieve 100% yield in timing and power.

We use this as the target yield objective for our NTC approach, since setting all

cells to non-NTC configurations would naturally minimize variation in a design.

Therefore, the objective of our approach is to optimize each benchmark using our

PV-aware NTC-enabled framework to attain similar yields to that of the non-NTC

approach for the given reference clock targets.

69

Table 5.2: Average (avg.), max (+), min(-) delays when optimizing under NTC-enabled

(NTC) non-NTC-enabled (!NTC) [60].

Circuit
NTC !NTC

Avg. (+) (-) Std. Avg. (+) (-) Std.

dma 1475 1791 1403 48.07 1728 1780 1701 12.6

pci bridge 1358 1583 1307 31.0 1479 1497 1458 7.16

vga lcd 1212 1399 1150 40.8 1377 1399 1353 11.7

des perf 1449 1554 1406 23.5 1475 1504 1450 11.1

b19 4167 4273 4059 36.4 3902 3940 3865 14.7

70

Table 5.3: Total power results when optimizing under NTC-enabled (NTC) and non-NTC (!NTC) [60]: Shown are the average

(avg.), max (+), and min(-), results corresponding to total, leakage, and switching power values. The ratio !NTC
NTC represents the total

power reduction factor.

Circuit

Comb.
Total Power (mW)

Ratio
Leakage Power (mW) Switching Power (mW)

NTC !NTC NTC !NTC NTC !NTC

Cells avg. (+) (-) avg. (+) (-) avg. avg. (+) (-) avg. (+) (-) avg. (+) (-) avg. (+) (-)

dma 23109 44 46 43 138 141 135 3.13 8.2 9.5 7.3 115 118 110 35.8 36 35.7 23 23 25

pci bridge32 29844 36 38 35 113 115 110 3.13 5 6.7 4.1 87 88 84 31 31 30 26 27 26

vga lcd 147812 115 118 110 509 529 485 4.42 16.1 17.2 15.5 420 430 400 98 100 94 89 99 85

des perf 102427 175 200 164 533 554 526 3.02 10.2 12.6 8.7 381 402 330 164 187 155 152 152 196

b19 212674 260 297 251 733 762 722 2.81 21.4 23.1 20.2 546 550 542 238 273 230 187 212 180

717171

5.6.1 NTC-enabled PV-aware Optimization

Table 5.2 presents the actual timing achieved by NTC and non-NTC. As shown,

the achieved standard deviations by NTC were found to be up to 4.3X (3.2X)

larger than the achieved standard deviation from the non-NTC delay results.

Thus, in order to achieve 100% yield targets when enabling NTC-design, larger

guard bands for timing and power should be enforced. To understand how delay

is affected accross a large set of scenarios, Figure 5.5 presents the achieved max,

mean, and min delays normalized to their respective reference clocks in Table 5.3.

Clearly, non-NTC results achieves significantly lower performance variation over

NTC. However, it is important to note that the mean result for each benchmark

is closer to the minimum result. Thus, this means that the majority of circuit

instances lie closer to the minimum result.

Table 5.3 compares the total power (avg., max, min) for both methods. The

results were acquired from 1000 generated circuit instances using our PV model.

As shown, NTC achieve significant total power reduction of up to 4.42X (3.30X

avg.) over the non-NTC method. The power improvements result from the savings

in leakage power, achieving 37.4X max reduction (24.1X avg.) over non-NTC. To

achieve this under NTC, more cells have to be up-sized to larger cell configurations

in order to meet timing constraints, thus, increasing switching power up to 1.55X

(1.24X avg.). However, the total power is still reduced using the NTC approach

due to the dominant leakage power component. For example, under the non-NTC

approach, leakage power made up 77% (avg.) of the total power budget vs. 12.1%

(avg.) for the NTC.

Figures 5.6a-5.6b indicate how delay target yields are achieved through suc-

cessive iterations using our approach. Additional iterations show improvements in

both the number of circuit instances that satisfy the target clock of 1400 ps (100%

for !NTC). A 90% yield is achieved after performing 3 design iterations, achieving

72

NTC

!NTC

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

N
o

rm
. t

o
 1

0
0

%
 Y

e
ild

 D
e

la
y

Figure 5.5: Max (top-tier), mean (mid-tier), and min (bottom-tier) target delay

ratios among 1000 generated instances with respect to NTC (left) and !NTC

(right) [60].

an overal 3.13X (avg.) total power reduction for all valid circuit instances.

5.7 Summary

We have presented a framework for maximizing performance and power yield

constraints for near-threshold computing-enabled designs, under the presence of

process variation (PV). We apply an NTC-enabled paradigm using popular opti-

mization techniques, such as gate-sizing and multi-threshold cell assignment, while

strictly adhering to industrial imposed design constraints, such as load and slew

limits. The focal point of our framework is a logic-depth circuit-level partition-

ing scheme for efficiently characterizing and identifiying critical circuit sections

related to timing and power variations of a given circuit. We utilize a scenario-

based approach by generating a large set of circuit instances, which is used to

identify which cell configurations in an NTC search space maximally benefit so-

lution towards the target yield objectives.

73

 0

 100

 200

 300

 400

 500

 1300 1350 1400 1450 1500 1550 1600 1650

C

irc
ui

t I
ns

ta
nc

es

Delay (ps)

(a)

 0

 200

 400

 600

 800

 1000

 1300 1350 1400 1450 1500 1550 1600 1650

C

irc
ui

t I
ns

ta
nc

es

Delay (ps)

Iter-1 Iter-2 Iter-3 !NTC

(b)

Figure 5.6: Timing yield optimization for circuit pci bridge32: (a) frequency dis-

tribution graph compares 3 iterations using our NTC approach against a !NTC ;

(b) cumulative dist. graph.

74

We compare our approach against a state-of-the-art non-NTC approach and

show significant reductions in total power of up to 4.4X (3.3X avg) for the same

timing and power yield constraints. Consequently, the savings in power results

with signficant performance variations that should be addressed when optimiz-

ing for maximal yield. The standard deviation in performance for NTC-enabled

designs are shown to be 4.3X max (3.2X avg.) than that of non-NTC approach.

However, we show that on average, only a few circuits (less than 5%) make up

instances that violate imposed timing yield constraints for NTC-enabled designs.

75

CHAPTER 6

Sequential Circuit Unfolding for Energy and

Yield Optimization

In this chapter, we propose a novel gate-level sequential circuit unfolding ap-

proach for energy, performance, and yield optimization in near-threshold comput-

ing (NTC) systems. Our approach simultaneously addresses several major chal-

lenges in NTC systems, such as performance and process variation (PV), while

also maximizing its advantages, such as low leakage energy. Three main benefits

are enabled by our technique. First, unfolding can be leveraged to improve per-

formance, as the delay per operation is reduced. Second, energy efficiency can be

improved by placing a larger ratio of cells at lower energy configurations where

there exists unfolded slack, enabling greater savings when conducting popular

circuit optimization techniques, such as gate sizing and threshold voltage (VTH)

selection. And third, unfolding can improve circuit resiliency against the impact

of process variation. This chapter presents a synthesis methodology that coordi-

nates unfolding with gate sizing and VTH selection to maximize energy savings for

NTC systems while addressing performance and PV concerns. We evaluate our

approach on the ISCAS-89 benchmark suite using a near-threshold cell library

in accordance to an industrial flow. We show significant improvements of up to

15.4X in energy and 1.8X in throughput with respect to identical timing yield

constraints when applying our technique.

76

6.1 Introduction

As the operating gap between supply voltage (VDD) and threshold voltage (VTH)

shrink with each device technology generation, standard techniques (e.g., gate siz-

ing, supply voltage scaling) become less effective, while existing challenges (e.g.,

leakage power, performance variation) become more pronounced. Fortunately,

this area has gained increased attention and opportunities have emerged show-

ing promise in addressing energy, performance, and yield (e.g., near-threshold

computing) [61][62][63][66]. However, CAD frameworks lack the ability to fully

leverage the benefits of these opportunities, as well as address the aforementioned

challenges. Therefore, in order to properly optimize modern and pending VLSI

circuits, CAD tools must evolve to match the continuously changing physical

landscape that accurately accounts for power (e.g., switching, leakage) and per-

formance (e.g., delay, throughput), and how each of these characteristics are im-

pacted by process variation (PV) [61].

Recently, near-threshold computing (NTC) has been proposed to enable ul-

tralow energy operation of digital circuits. The benefits of NTC include up to a

10X reduction in energy as compared to super-threshold operation, but come at

cost of a 10X increase in delay along with higher susceptibility to process varia-

tion. Furthermore, in NTC operation, load imposes a much larger scalar impact

on delay.

In this chapter, we present a novel gate-level unfolding technique for NTC

sequential circuits that simultaneously reduces the impact of process variation

through deep logic reconfiguration and minimizes delay through load reduction.

We leverage our approach in concert with popular circuit optimization techniques,

including gate-sizing and VTH selection, to produce energy efficient designs that

are resilient against PV with respect to yield. We highlight our contributions in

the following areas in which our circuit unfolding technique enables modern CAD

77

flow optimizations for NTC circuits:

• Performance: Traditionally, unfolding accomplishes performance gains

through the removal of intermediate flip-flops between success results, thus

eliminating incurred register timing requirements between successive opera-

tions. Unfolding also increases the number of non-epsilon critical path gates.

We capitalize on this feature through gate sizing to redistribute load from

epsilon critical path gates to non-epsilon critical path gates, subsequently

reducing critical path delay. By relaxing constraints on the critical path in

this manner, we also simultaneously reduce their sizing requirements, thus

reducing their energy consumption rates.

• Optimization: Although unfolding incurs additional area overhead due

to cell replication, the increased logic depth provides additional optimiza-

tion opportunities when performing gate sizing and VTH selection. The

longer logic depth allows additional choices when performing delay and

power trade-offs. This can become essential when conducting optimization

across a wide-array of circuit considerations.

• Yield: Increased logic-depth is leveraged to improve resiliency against the

impact of PV on circuit delay. By increasing the logic depth using unfolding,

the likelihood that a single negatively-impacted (slow) cell severely affects

the overall delay is reduced since there is an equal likelihood that another

cell on the same path would be positively-impacted (fast). Ultimately, the

impact of individual cells is averaged out over long chains.

We evaluate our approach on a set of sequential ISCAS-89 benchmarks using an

industrial flow on a multi-VTH cell library that includes fast and high-leakage fast

threshold (FVth) cells, as well as ultra-low leakage and slow near-threshold (NVth)

cells. We incorporate our unfolding techniques with our gate sizing and threshold

78

selection algorithm and demonstrate energy reduction by up to 8X against our

benchmarks.

6.2 Motivation

We first introduce a simple circuit unfolding example as shown in Figure 6.1.

Given the original circuit, as shown in Figure 6.1a, composed of flip-flops (FF1-

FF4), combinational blocks (C1 and C2), primary inputs (I1 and I2), and primary

outputs (O1 and O2), the act of unfolding consists of replicating all combinational

elements (C1 and C2) and required flip-flops (F1 and F3), as shown in Figure 6.1b.

Conducting circuit unfolding on a circuit enables several advantages over its

non-unfolded counterpart. One major advantage is the reduction in clock period,

as shown in Figure 6.1a to 6.1b. The clock period is reduced by removing the

timing delays (e.g., setup, hold, and propagation delay) of intermediate flip-flops,

as well as the required combinational delay by connecting the more critical com-

binational block, C2, with the less critical, C1, in the subsequent stage. This

phenomena is present in many of the sequential circuits we study here. Assuming

that all flip-flops incur a delay of 1 time unit, and C1 and C2 delays of 2 and 4

units, respectively, then producing two results on the original circuit (Figure 6.1a)

requires 10 time units ((1 + 4)×2), whereas a 2X unfolding circuit requires only 7

time units (1 +4 + 2). Here, performing unfolding alone yields 30% improvements

over the original non-unfolded circuit (Figure 6.1c). Improvements in delay come

at additional cost in area due to an increased number of gates from replicating

C1 and C2 combinational blocks. However, the area overhead of flip-flops is less

since only F1 and F2 are required to be replicated and also fall under non-critical

paths, thus, minimally impacting delay.

The structural transformations from performing circuit unfoldings provide de-

signers with additional optimization freedom in conducting popular circuit opti-

79

FF1

C1

C2

FF2 FF3 FF4

A(t) B(t)

A(t-1) C(t-1)

X(t)

Y(t)

C(t) D(t)

O1
O2

I1 I2

Legend

Primary Output

FFX Flip-flopPrimary Input

CX Combinational Block

C24D FF1DC12D

(a)

FF1

C1

C2

FF2 FF3 FF4

A(t) B(t)

A(t-1) C(t-1)

X(t)

Y(t)

C(t) D(t)

FF1

C1

C2

FF3

A(t+1) B(t+1)

X(t+1)

Y(t+1)

C(t+1) D(t+1)

O1'
O2'

O1
O2

I1 I2

(b)

C1

C2

FF

C1

C2

FF

C1

C2

FF

T
im

e

C2

C1

C1

C2

C2

C1C1

C2

FF

C1

C2

FF

U
nfo

ld
 2

X

Bas
e 2

X

U
nfo

ld
 4

X

Bas
e 4

X

3D

6D

Timing

(c)

Figure 6.1: A circuit unfolding example showing original circuit (a); 2X unfolded cir-

cuit with replicated elements represented with dashed-borders (b); and timing diagram

comparing the time required for up to 4 results of a non-unfolded circuit (left) and up to

4X unfolded circuit on the right (c). Sequential elements (flip-flops) are shaded green,

primary input (output) elements are non-shaded I1 and I2 (shaded O1 and O2) buffers.

80

mizations, such as gate-sizing and VTH selection. The increased optimization op-

portunity stems from the increased delay slack from performing unfolding alone.

Therefore, the additional delay slack can be reclaimed for energy (power) savings

while still maintaining a specified target delay through gate-sizing and/or VTH

selection. Furthermore, the number of non-critical cells increases per additional

unfolding, thus, enabling them to be placed at lower power configurations. This

phenomena bodes well for unfolded circuits, since most often the critical path

consists of a small percentage (1 to 10%) of the total gate count of the original

circuit; unfolding these circuits only further compounds this effect resulting in an

even smaller percentage of cells that make up the epsilon critical paths.

Figure 6.2a-6.2b depicts the impact each additional unfolding has on a circuit

with respect to the most critical paths. Here, a less than perfect scaling is shown

per additional unfold. For example, circuit s1423 resulted with 95 logic stages for

the original circuit (1X), 155 vs 190 at 2X, 290 vs 380 at 4X, 645 vs 760 at 8X.

Simultaneously, the percentage of cells that make up the critical path is reduced

per unfold, with a 7X reduction factor (1.4% to 0.2%) for the much larger circuit

s38417.

Unfolding may also be leveraged to improve design yield, such as maximizing

the percentage of circuits that satisfy a target delay. Unfolding a circuit enables

it to become more resilient to the effects of process variation (PV). By increasing

the logic-depth through unfolding the PV impact of a single cell on the entire

design is reduced with respect to delay. Because unfolding increases the logic

depth size, the overall delay variation decreases with respect to its original non-

unfolded circuit. Furthermore, since the circuit delay is likely to be made up of

the longest paths, and the percentage of gates that participate on these critical

paths decrease per unfold, we improve yield by focusing gate-sizing and threshold

selection techniques on the gates along these epsilon critical paths.

81

(a) (b)

Figure 6.2: Cell count distributions with respect to each respective unfolding (1, 2, 4,

8X) for (a) s1423 and (b) s38417. Unfolding sequential circuits reduces the ratio of the

number of critical cells with respect to total cell count.

6.3 Related Work

First proposed by Parhi et al. [56], unfolding is a well known behaviorial transfor-

mation technique, which replicates functional blocks (e.g., adders, multipliers) in

order to increase throughput performance, while mainting functional correctness.

Behaviorial unfolding has been studied extensively and is a popular optimization

approach that uncovers hidden concurrency in DSP applications. At the bit serial-

level, Song et al. have explored for bit-serial/word-level architectures [57]. These

approaches, however, are performed at a higher abstraction level and primarily

focus on the performance benefit of unfolding. Our work explores unfolding at a

gate/logic-level and leverage its benefits when performing energy, delay, and yield

optimization.

Gate sizing and threshold-voltage (VTH) selection are popular techniques for

conducting power, area, and timing optimization. We study a discrete optimiza-

tion search space using a standard cell library. A cell library provides for each

cell type (e.g., inverter, nand, etc.) a set of sizes across multiple VTH-levels, each

with varying delay and power characteristics. Careful adjustments must be per-

82

formed and it comes to no surprise that in the discrete cell-based domain, gate

sizing and VTH selection is NP-hard when optimizing a circuit [97]. Gate sizing

methods are largely sensitivity-driven, which apply a set of sensitivity functions

for determining the most beneficial local cell configuration to choose. Approaches

include, Lagrangian relaxation-based, dynamic programming [60][115], and sensi-

tivity driven techniques [58][59].

Near-threshold computing (NTC) has shown promise in achieving significant

energy efficiency [61][62][63].However, several challenges exist that complicate an

NTC-enabled design, that includes: 1) performance degradation; 2) process vari-

ation impact; and 3) increased area cost. performance targets and restrict their

optimization methods to gate-sizing and VTH selection only. We explore multiple

delay targets and demonstrate how circuit unfolding can be leveraged in achieving

these targets while conducting circuit optimizations on NTC designs.

6.4 Preliminaries

6.4.1 Circuit Unfolding

Given a synchronous circuit (G), which is composed of a set of registers (R), com-

binational elements (C), and their respective primary inputs (PI) and outputs

(PO), we present the following algorithm for unfolding G to any arbitrary length.

The first step in unfolding a circuit requires a complete replication of all elements

(R, C, PI, and PO). Next, the output connections of the original circuit (before

unfolding) are connected as inputs to the replicated circuit. To enable two opera-

tions per cycle, the intermediate registers are removed; this breaks the sequential

dependency, as shown in Figure 6.1a with replicated registers FF2 and FF3. The

corresponding primary inputs and outputs are subsequently connected. Finally,

the corresponding outputs of the replicated circuit are connected as inputs to the

original circuit.

83

12

2 1 0

4 3

6 5

8 7

1011

9

Target Delay

Delay

P
o

w
e

r

Delay

P
o

w
e

r

Delay

P
o

w
e

r

Target Delay Target Delay

Uncertainty

Doman

Uncertainty

Doman

Start

Cell Labeling and Clustering Process Variation Impact
ALAP

A
S

A
P

ALAP

A
S

A
P

Gate Sizing and

Vth Selection
Circuit Instance

Generation
Yield Optimization

12

2 1 0

4 3

6 5

8 7

1011

9

Most Critical Paths
ALAP

A
S

A
P

I.

II.

III.

IV.

V.

VI.

Figure 6.3: Gate sizing optimization flow.

6.5 Technical Approach

This section describes the major steps we include in our approach, as depicted in

Figure 6.3. Given a pre-unfolded circuit as a starting point, the circuit undergoes

a series of phases (I. to VI.) in route to producing a final circuit that satisfies

performance and yield targets. We describe each phase in detail in the following

subsections.

6.5.1 Gate Sizing and VTH Selection

Our gate sizing and Vth selection begins with all cells initially set to their mini-

mal power configuration (Step II). To address the scalability issue, at each cell

sizing/Vth phase, only a small subset of gates (cells) that fall within ε-critical slack

are set as candidates for optimization. Usually, this subset consists of 1-10% of

total gates in the circuit. Once a configuration is determined for each cell, it is

locked and cannot be re-evaluated until all gates in a sizing phase have been sized

appropriately. Only when all ε-cells have been configured, are all modified cells

unlocked and circuit delay is re-computed.

We introduce a cell difficulty (Diff) ranking measure in order to rank which

84

cells are configured first during each sizing iteration. Cell difficulties can be quan-

tified utilizing the following properties: 1) rise/fall slack (S); 2) fan-in(out) length

(Fin, Fout); 3) ASAP , ALAP depth (i, j); 4) absolute depth (i+j); and 5) switch-

ing activity (
∑|Fin|

k=0 αk).

Diff =

|Fin|∑
k=0

αk · wa + Fin · j · wb + Fout · i · wc − S · (i+ j) · wd (6.1)

In Equation 6.1, i refers to ASAP depth and j refers to ALAP depth. Weights

wa−c are experimentally determined. The first term, wa, considers the switching

power due to the switching activity of a given cell’s input nets, wb (wc) considers

the cell’s potential impact on cells upstream (downstream), and wd quantifies the

impact on delay.

Equation 6.1 is applied to the selected ε-critical cells obtained during the last

accurate delay and timing computation. Cells are configured based on their Diff

value in descending order. For example, if we assume that the wd-term is the

largest, then the cell that has the smallest slack will be configured first. During

this configuration, only local updates of one degree are executed. Once the entire

ε − set has been configured, then an accurate circuit-wide update is performed.

By employing local updates during these individual configurations we are able to

reduce computation cost while still maintaining accuracy.

6.5.2 Optimizing for Yield

In our yield optimization steps we aim to optimize those cells that are on epsilon

critical path that also happen to be the most impacted by PV. Cells that are

most impacted by PV will be those with higher threshold voltages since they are

closer to VDD. For example, a fluctuation in threshold voltage (due to PV) for a

nominally high threshold voltage cell will have a greater impact on delay than the

same scalar fluctuation has for a nominally lower threshold voltage cell.

We define the cell delay variational factor (V arcelldelay) as the ratio between the

85

cell delay standard deviation and mean (σ
µ
) computed from a representative set of

PV-impacted circuits. A similar method can be performed to quantify the power

variation factor (V arcellpower). V arcelldelay determines which cells in the top ε-critical

paths (pink shaded boxes in Step III) are likely to impact delay yield. The ε-

critical path is defined as cells that are within a specified threshold of the critical

delay, and can be obtain by performing STA across a set of PV-impacted circuits

as well. The V arcelldelay can be expressed as follows:

V arcellidelay = max((

∑|F jin|
j σi,j

µrisei

)rise, (

∑|F jin|
j σi,j

µfalli

)fall) (6.2)

|F j
in| represents the fan-in j of cell i. Thus, the cell V aricell is the maximum

variational factor of its rise and fall delays. This pre-processing step is conducted

in Step IV before optimizing the circuit further. Once the V arcelldelay has been

obtained for the top ε-critical paths, then each ASAP logic depth is assigned

a V arASAPm difficulty value, which is the ratio of the average V arcelldelay from cells

within a ASAP stage m over the total number of cells belonging to ASAP depth

m. Similarly, corresponding variables are defined and computed for ALAP . A

larger V arASAPm value indicates that the current ASAP depth m is projected to

have a higher likelihood to impact delay (Step V), as represented by the darker

shaded boxes (Step V). Thus, improving the delay resiliency of these cells is

expected to improve yield of the final result shown in Step V I (Figure 6.3).

6.6 Simulation Setup

We utilize the ISPD design contest cell library and follow their industrial flow

[96]. The cell library (VDD=0.7V) is extended to support near-threshold NVth

cells (VTH=0.67V) by using Markovic’s EKV formulas [154]. We sweep VTH from

0.23V to 0.67V to obtain fitting parameters, which are applied against each cell

Vth type to generate the corresponding near-threshold cell (NVth). The resultant

86

near-threshold cell library is fitted on average within 5% of the original cell library

values with respect to each cell configuration (per size and VTH). An in-house

timer, implemented in C++, is used in order to account for both optimization

flexibility and performance purposes. For timing validation, we validate our timer

against the Synopsys PrimeTimeTM Design Compiler and are accurate within

0.1%.

We generate 1000 circuit instances per benchmark to account for the impact

of process variation (PV) on yield. A unique variability ratio pair (V var
th , Lvareff) is

generated for each cell using a 3σ distribution with respect to each cell’s nominal

threshold voltage (VTH) and gate effective length (Leff). Our PV-aware timing

and power computation replaces the values returned by the look up-table with

EKV formulas from [154] and returns a PV-impacted value utilizing respective

ratios.

87

� �

��������	

���
���

� ������������������� �����������������

�� �� �! �" �� �� �! �" ��� ��� ���

����� ���� ���� ���� ��		 ��
 ��� ��� 	�� ���� ���� ���	 ���� ���	� ���
 ���� ���	� ����	 ���		 ���		 ���		

����� ���� ���� 	�
� ����� �� 	� ��� ��	 ���� ���� ��	� ���� �
��� ��
� ���	� �
��� ������ ����
 ����
 ����

���
� ���� ��	� 	��� ��	�� �� 	� ��� ��� ���
 ��
� ���	 ���
 �����
��	 ����� ����� ������ ����� ����� �����

����� ���� 	�	� ����� �	
�� �� ��

 ��
 ���� ���� ���� ���� ������ ���� ���	 ������ ����	� ���	� �	��� �	���

�
��� ��	� ��
�� �
	�� �
��� �� ��� ��
 �
� ���� ���� ���� ���� ��	��� ����
�
���� ��	��� ��
�
� ������ ������ ������

���
�� ��
�� ����	 �	��� ������ �	 �� ��� ��� ���� ���� ���
 ���� �����	 ��
��� ��	��� �����	 �
����	 �
���� �	���� �	����

������ �
��� �	

� ����	� ������ �� �	 �	� ��� ���
 ���� ���� ���
 ��
��� ������ ��
��� ��
��� ������ �����	 ������ ������

������ ����� 	���� ������ ������ �� ��� ��� ��	 ���� ���� ���� ���� ����
� ������ ��
��� ����
� �	��	� �����
 �	���� �����

���������
�#���� �������$����#���%

�&� ��&� ��� �&� ��&� ��� �&� ��&� ���

Figure 6.4: ISCAS-89 benchmark characteristics (cell count, logic depth) across 1, 2, 4, and 8X unfolds (u1, u2, u4, and u8). Also

shown are the representative reference delay, energy, and area for each considered performance points: 1) minimum delay point

(mdp); 2) minimum energy-delay product (medp); 3) minimum energy point (mep); and 4) maximum energy saving (mes).

888888

6.7 Experimental Results

We compare energy and delay results of a non-unfolded circuit (u1) against 2X,

4X, and 8X unfolds (u2, u4, and u8) with respect to four delay references: mini-

mum delay (mdp), minimum energy-delay product (medp), minimum energy point

(mep), and maximum energy savings (mes) for each respective u1 circuit. Figure

6.4 presents benchmark characteristics used when comparing each u1 reference

point, respectively. To compare results fairly, the energy and delay result of u1

is scaled to each respective ux unfolding throughput (ops/cycle). For example,

comparing the energy of a non-unfolded circuit u1(mdp), to the best satisfying

2X unfolded circuit u2(mdp), requires multiplying the energy and delay of the u1

reference point by 2 (i.e., 2 operations per cycle). Then, the minimum energy

point of a corresponding u2 circuit that satisfies the delay of u1(mdp) is used.

Figure 6.5a shows the energy reduction factor u1
ux

, achieved at 2, 4, and 8X

unfolds for each benchmark. Up to a 15.4X in energy reduction is achieved at

u2(mdp) for circuit s9234. Large savings are due to the tight delay constraints

applied on the u1 circuit, requiring a larger ratio of cells to be configured at larger

and/or lower VTH configurations for achieving high-performance delays. Through

our coordinated unfolding and gate-sizing techniques we are able to relieve the

load within this constrained circuit and obtain a substantial amount of energy

savings. Figure 6.5b provides the delay reduction factor, achieving up to 1.9X

performance improvement and 2.8X energy reduction for s1494’s u8(medp) point.

Efficient area scaling is shown across most unfolded circuits as shown in Figure

6.6a. Most benchmarks achieved better than perfect linear scaling (area(ux)
area(u1)

) with

respect to its unfolding setting. Circuit s1423 achieved less than 2X area increase

across mdp, medp, and mep delay points for unfolds u2, u4, and u8; in fact, u8

achieved the best area scaling of 1.10, 1.2X, 1.15X with respect to its u1 reference.

Efficient scaling is achieved by the large range of cell sizes to choose from (1X to

89

� �

�� ��
����� ����� ����� �	�
� ����� ��	��� �����
 ���	��

�

�

�

�

�

��

��

��

��

��

��

���

��

�����
���

�
�
�
��

�
��

�
��

�

�
�
��

�
�
�
!�

"
#

(a)

� �

�� ��
����� ����� ����� �	�
� ����� ��	��� �����
 ���	��

���

�

���

���

��

���

�

���

���

����

���

���������

�
�

��
�
��

�
�

��
�
�

�
�

 �
�!

�
�

"�
#
$

(b)

Figure 6.5: Experimental results showing: (a) achieved energy and (b) delay improve-

ments achieved per unfolding with respect to performance targets (mdp, medp, mep,

and mes).

90

� �

�� ��
����� ����� ����� �	�
� ����� ��	��� �����
 ���	��

�

�

�

�

�

	

�

�

�

��

��

���

��

�����
���

�
�
�

�
��
�
�
�
��
��
�
��
�

!�
�
"

(a)

� �

�� ��
����� ����� ����� �	�
� ����� ��	��� �����
 ���	��

�

��	

�

��	

�

��	

�

��	

�

��	

	

��������

�
�
��
�
��
�
�
��

�
�
�
�
��
�
�
��
�
�
��
��
��
�
��

!

(b)

Figure 6.6: Experimental results showing: a) normalized area with respect to non-

unfolded reference (u1); b) delay variation reduction factors achieved by unfolding for

medp delay reference point.

91

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

N
o
rm

a
liz

e
d
 D

e
la

y

Benchmark

(a)

 1

 10

 100

 0 5 10 15 20 25

O
c
c
u
ra

n
c
e
s
 -

 L
o
g
s
c
a
le

Delay (ns)

s5378

1X at 2ops
2X

1X at 4ops
4X

1X at 8ops
8X

(b)

Figure 6.7: Experimental results showing: a) quartile graph showing increased re-

siliency against process variation (PV) for mep delay reference; and b) s5378 delay

distribution from 1000 PV-impacted using mep delay reference point.

92

512X) in the cell library. Therefore, a reference u1 circuit may have a higher

ratio of cells set to larger sizes in order to achieve a high-performance delay.

In contrast for larger unfolded circuits, the relaxed timing constraints achieved

through the performance improvement of larger unfolded circuits causes the gate

sizing procedure to require less gates at larger sizes.

Figure 6.6b presents the delay variability reduction factor for respective edp

points only. The reduction factor is acquired by computing the delays of the 1000

PV-impacted circuit instances, and then computing the standard deviation and

mean (σ/µ) ratio. Delay variability is reduced across all benchmarks as unfold-

ing increases, achieving a max 4.75X reduction for s35932. Figure 6.7a shows

a quartile graph for circuit with respect to achieved delays when running each

benchmark across its respective 1000 PV-impacted circuits. As shown, the range

impacted delay range is reduced per additional unfold. Figure 6.7b presents a

histogram on the achieved u1(mep) delays for benchmark s5378 across u2 (green),

u4 (blue), and u8 (red) and compares it against its scaled u1 reference result

(black). The graph shows that the unfolded circuit consistently achieves signifi-

cant performance improvements per unfold, while also improving delay resiliency

to PV.

6.8 Summary

We have presented a novel sequential circuit transformation technique for achiev-

ing significant energy and performance improvements. We employ unfolding to

increase gate sizing opportunities for load reduction and critical path delay min-

imization. The focal point of our gate sizing approach is an efficient lock and

cut-based gate sizing and threshold-voltage VTH selection algorithm that lever-

ages structural properties (e.g., logic depth, fan-in/out, etc.) for efficiently de-

termining optimal cell configurations in a scalable fashion. Furthermore, we use

93

deep logic configuration to mitigate the effects of PV. We present an extension to

our algorithm for efficient delay yield optimization, which identifies a maximal set

of PV-impacted cells to be configured (size, VTH) accordingly, while minimizing

overall energy costs.

Experiments were performed using an industrial flow on a representative set

of ISCAS-89 benchmarks using a near-threshold standard cell library. Energy re-

ductions of up to 15.4X and 1.8X in performance are achieved across 2X, 4X, and

8X circuit unfolds. We have show that these savings can be achieved with mini-

mal area costs over a representative non-unfolded circuit, while also dramatically

improving circuit resiliency against the impact of process variation.

94

CHAPTER 7

Retiming for Dual-Supply Voltages

Energy is one of the most important design metric in the modern integrated

circuit design. We optimize the required energy using a dual-supply voltage (dual-

VDD) approach. In order to achieve improved energy efficiency, we use a new

type of retiming that reduces the requirements in assigning gates to a higher

voltage. We first apply a retiming approach for achieving minimum delay. Next,

using a maximum-flow/min-cut strategy, we simultaneously reduce the required

number of flip-flop logic and while maintaining delay in such a way that enables

efficient VDD assignment in the subsequent stage. We then conduct a new dual-

VDD cell assignment technique on the retimed circuit for efficient energy and

delay optimization. The overall approach is tested on a set of standard ISCAS89

and ISPD2012 Design Contest benchmark suite using an industerial cell library.

Significant energy savings between 8 to 57% (33% avg.) under a specified delay

is observed.

7.1 Introduction

Energy has emerged to be the most important design metric in the last 25 years.

The two most popular types of systems, mobile phones and data centers are in

particular sensitive to energy. For example, battery technology improvements have

not kept pace with the rapid device scaling that has continued to follow Moore’s

Law. For these platforms, mobile phones and tablets are limited by the amount of

the energy that can be stored in the battery and, therefore, their energy efficiency

95

is important. On the other hand, computers in data centers are limited by the

amount of energy that can be supplied and distributed for the ultra large scale

calculations with modern processors. Furthermore, energy consumption directly

impacts temperature to the creation of hotspots as well as frequent and significant

fluctuations in temperature can have direct ramification on the circuity reliability.

Logic transformations are changes in the structure of the circuit and are per-

formed in such a way that the functionality (e.g., relation between the inputs and

outputs) are not altered [56]. Logical transformations has been widely used for

power and energy minimization. For example, retiming has been used to mini-

mize the energy by minimizing the amount of glitching in the integrated circuit.

It has also been used to minimize energy by the reduction of the supply voltage

by leveraging the additional slack delay introduced by retiming under delay mini-

mization. We have proposed to use retiming with the use of an objective function

where the number of sequential elements is minimized under the constraint of

keeping the minimal possible delay using retiming [128]. The intuition behind our

objective to minimize the number of flip-flops is to enable the effective usage of

multiple supply voltages while reducing the energy and area overhead impact of

introducing additional level converters in the circuit. For example, we initially

assign all flip-flops at higher supply voltages and combinational gates are then

structured in such a way that they receive inputs from either flip-flops and/or

other gates that are in a higher or equal supply voltage. The requirement for the

voltage level converters are also significantly reduced, since fewer cells initially are

required to be set at higher supply voltages. The requirement of level converters

is at most equal to the amount neccessary to drive cells that are initially set at

higher suppy voltages. Therefore, it is important that the width of the circuit is

small at the positions immediately after the flip flops, so that fewer gates can be

place at higher supply voltages while significantly reducing energy in satisfying

the delay constraints.

96

Thus, in order to create the overall approach, in the first stage, we retime a

circuit in such a way that the minimal delay is guaranteed, while we heuristically

minimize the total number of the required flip flops. We can achieve two benefits

from our retiming: (i) the delay is minimized which can be used to reduce the

voltages used in all the gates if timing slack exists; (ii) the assignment of high

voltage gates is minimized while delay benefits are maintained. To the best of

our knowledge, this is a new formulation of retiming in enabling effective multiple

voltage technology. Our approach for assigning multiple voltages is at the gate-

level and our cell supply voltage selection strategy is such that we efficiently

identify gates to place at higher voltages and is done in such way such to reduce

optimization execution time. Therefore, a multiple voltage assignment strategy

can be conducted for even a large benchmark circuit with over 100k gates can

be completed within reasonable amount of time. The overall approach is generic

in a sense that it can be easily further improved by employing circuit unfolding

as a pre-processing step and by considering simultaneously multi-supply voltages

(muli-VDD) and multi-threshold voltages (multi-VTH) for given gates in the design.

In this paper, we focus in only a retiming and multi-VDD approach.

We have presented a motivational example in Figure 8.1. Given the original

and post-retimed circuit at the upper left corner that achieves initial delay of 400

ps and requires 20 fJ, the task is to achieve a delay target of 250 ps using dual-

VDD assignment while minimizing energy consumption. The figure at the bottom

left shows a valid circuit configuration that used a clustered dual-VDD assignment

technique and requires a total of 13 cells (4 flip-flops + 9 standard cells) to be

placed a higher VDD to achieve the target delay, while consuming 65 fJ. However,

if we first conduct a minimum flip-flop retiming strategy on the circuit, and then

apply the same clustered dual-VDD approach, as shown in the bottom right figure,

then, only 7 cells (2 flip-flops + 5 standard cells), are required to achieve the same

target delay. The new configuration consumes only 45 fJ (vs 65 fJ), achieving an

97

energy reduction of 30%. Therefore, the advantages of applying min-cut + dual-

VDD techniques is clear, as it has enabled energy reductions through reduction of

the number of flip-flops without impacting timing (as shown by the critical path

in top figures), which consequently reduced the number of cells to be placed at

higher VDD.

The rest of the paper is organized in the following way. We first cover prior

work in Section 7.2 in relation the techniques we propose in this paper. Section

7.3 provides a background on retiming and minimum register (flip-flop). Section

7.5 covers our proposed retiming formulation and is followed by our experimental

setup and results in Sections 7.6 and 7.7. Section 7.8 concludes our work.

7.2 Related Work

In this section, we briefly survey the most direct related work, we start by summa-

rizing the most important retiming efforts and logic synthesis and the gate level

use of retiming for minimize circuit delay and area. Next, we present published

effort for power minimization using retiming. Finally we conclude this section by

presenting multiple supply voltage design technology as well as pointing out the

difference between the research presented in this paper and the surveyed retiming

and dual-voltage technology.

Leiserson and Saxe [128] were first to study retiming and they present poly-

nomial time algorithm that minimize either delay or the number of use of sequen-

tial elements. Consequently, several research groups introduce technology that

combines the effectiveness of retiming and algebraic transformation technology.

Berkeley CAD group [129] introduce a technique for optimizing a sequential net-

work by moving the registers to the boundary of the network using an extension

of retiming. [130] and [131] introduce the technology that restructure the circuit

in such a way that the retiming bottleneck is removed and significant reduction

98

Figure 7.1: The orginal post-retimed for delay circuit is shown at the upper left.

The red lines represents the critical path in the original circuit. The blue line

represents the gate to put in high supply voltage.

G8

G1

G5

G6 G7

G9

G11 G12 G13G10

G4

G16

G15

G14

G4G4

FF1

FF0

G8

G1

G5

G6 G7

G9

G11 G12 G13G10

G4

G16

G15

G14

G4G4

FF1 FF2 FF3 FF4

G8

G1

G5

G6 G7

G9

G11 G12 G13G10

G4

G16

G15

G14

G4G4

FF1 FF2 FF3 FF4

G8

G1

G5

G6 G7

G9

G11 G12 G13G10

G4

G16

G15

G14

G4G4

FF1

FF0

Min-cut
Flip-flop Retiming

Dual-VDD Dual-VDD

in delay time is accomplished.

Mishchenko and his co-authors integrated not only the logic synthesis but also

technology mapping and retiming [133]. Soha and Ebeling used conceptual simi-

99

larities between the retiming and the pipeline to optimize the latency-constrained

circuit [134]. Cong and his group at UCLA design technology to combine retiming

with the physical planing [132]. [135] developed technology that employ retim-

ing to enable more efficient testability. Kuehlmann and Baumgartner proposed

transformation-based verification using generalized retiming [136]. Finally, it is

important to mention efforts to create efficient retiming implementation or efforts

that use retiming when realistic delay are employed [137][138][139].

Two types of efforts have been proposed to optimize power using retiming.

The MIT research group presents a retiming method that targets the power dissi-

pation of a sequential circuit[140]. Princeton CAD group propose the reduction of

dynamic power by employing the retiming for delay reduction and consequently

voltage scaling[141]. Sapatnekar and his group at UMN developed a series of al-

gorithms that minimize the number of used flip flips in the area of the circuit by

using retiming and the corresponding delay models. They also develop an algo-

rithm that simplify the structure of the circuit to minimize the run time of the

retiming algorithm [142][143].

Kimiyoshi Usami was the first to propose the use of multiple supply voltage

as a way to reduce energy[144][145]. Salil and Sarrafzadeh have applied multiple

supply voltages at behaviour level for energy minimization[146]. A gate level

approach was presented by Chi et al., to minimize power under timing constraints

[156]. Dynamic programming technique for solving the multiple supply voltage

scheduling problem in both non-pipelined and functionally pipelined data-paths

is proposed in [147]. [148] and [150] have developed the low power technology

on the FPGA platform using dual-Vdd/dual-Vt fabrics. [149] has proposed the

level converter required for dual-vdd systems. [151] introduce technology that

minimize both switching and static power using simultaneous supply and voltage

assignment. Chang and his group study the use of dual-vdd by consider the

requirement for power-network planning[152]. Finally, [153] has demonstrated

100

the effectiveness using dual subthreshold supply voltage for energy minimization

in CMOS circuits.

To the best of our knowledge, we report the first approach that combines

retiming and the dual-voltage assignment for the reduction of energy. The ap-

proach employs a new technology that minimize simultaneously both the delay

and the number of the flip flops used by retiming. Our dual-vdd assignment only

focus on the situation that voltage converters are not required for combinational

logic. Under such assumption, our algorithm guarantees significant energy min-

imization using dual-vdd assignment. The most important observation is that

retiming is both used for power minimization as well as to enable a sequence of

application of dual-vdd assignment. The effectiveness of our approach in this gen-

eralized technology can be further combined with unfolding and other sequential

and combinational transformation.

7.3 Retiming and Minimum Register

First proposed by Leiserson and Saxe, retiming is a powerful circuit transformation

technique that involves the restructuring of a circuits sequential elements (e.g.,

D-type flip-flops, latches) in order to minimize the delay in such a way that the

output functionality is preserve. Other problem variants have also been proposed

such as finding the minimal number of flip-flops, fan-out optimization, etc. A

given sequential circuit can be represented as a multi-graph G = (V,E, d, e),

where V and E represent the set of vertices v with weighted propagation delays

d(v), and edges e with weighted register count edges w(e). Solving retiming

requires the evaluation of two matrices D and W where Du,v ∈ D Retiming is

often used to obtain the minimal delay of a circuit and a method solvable in

O(|V ||E|+ |V |2lg(V)) is shown in [128].

Achieving the minimal number of registers was also explored in [128] which

101

have been conducted for area and energy (power) optimization. Finding the min-

imum number of flip-flops can be solved using a maximum-flow/minimum-cut

method, where the minimum weighted edge cut from node u to v is equal to the

maximum flow of the graph network.

7.4 Work Flow

We show our work flow in Figure 7.2. We start from the characterisation using

the cell library, afterwards, we use the gate-level simulation to quantify the delay,

switching power, and leakage power, etc. properties about the circuits. The next

step we do is to retime the circuit to achieve the minimal delay, based on the

retimed result, we apply our minimal-cut to minimize the number of flip flops

for further dual-vdd assignment. Finally, we use our dual-vdd algorithm on the

current circuit configuration to achieve the final results. We use the delay of the

original circuit as our target delay, hence, in each step, we compare the energy

consumption given the target delay.

7.5 Technical Approach

In this section, we summarize our contribution on two algorithms, respectively

RTMF and Dual-vdd optimization.

7.5.1 RTMF

The pseudocode for the Retiming for minimum flip flops (RTMF) is illustrated in

Algorithm 2. The core idea is to apply the minimum-cut retiming on the circuit,

meanwhile not to increase the circuit delay. Note that here the critical path delay

we want to reserve is the delay after the optimal retiming. Therefore, we only

use the minimum-cut retiming on the flip flops that will not influence the circuit

102

Algorithm 2 Retiming and Minimum flip flops Optimization (RTMF)

Input: C0 - original circuit.

Input: CP0 - critical path on C0.

Input: FF0 - flip flops on C0.

Input: FFfix - is a vector that contains all the flip flops that are fixed.

1: FFfix = ∅

2: (C1, CP1, FF1) = Retime((C0, CP0, FF0))

3: repeat

4: for all ffi in FF1 do

5: if ffi is in CP1 then

6: FFfix.append(ffi)

7: end if

8: end for

9: Cpre = C1

10: (C1, CP1, FF1) = Min− cut((C1, CP1, FF1 − FFfix))

11: until CP1! = CPpre

12: Output: C1

103

Retiming for Min Delay

Retiming for Min FFlop

Gate Level Simulation
(Switching, Leakage)

Cell Library Characterization

Netlist

Cell Library
Vdd Range

Dual-Vdd Cell Assignment
Target
Delay

End

Start

Figure 7.2: Overall work flow of our simulation.

delay. The way to find such flip flops is that after retiming, we fix the flip flops

in the critical path (fix means not to change the positions of the flip flops in the

procedure of RTMF), apply the RTMF and check whether we have a new critical

path. If yes, we go back to the original circuit design after retiming and add

the flip flops in the new critical path to our set of fixed flip flops, afterwards, we

apply the minimum-cut again. If not, we stop our algorithm and use the current

configuration. By using our algorithm, we guarantee that the circuit delay after

retiming is not influenced by the algorithm of minimum-cut. The overall approach

targets at retrieving the optimal minimum-cut on the circuit in the premise not

to change the circuit delay. Starting from this, fewer flip flops and gates need to

be put in high voltages.

104

Algorithm 3 Dual-vdd Optimization (DV)

Input: C - original circuit.

Input: V dd0 - original supply voltage on C0.

V echigh is a vector that contains the gates with high vdd.

V eclow is a vector that contains the gates with low vdd.

1: V echigh= ∅.

2: V eclow= all gates in C0.

3: V ddhigh = V ddlow = V dd0

4: repeat

5: CP0 = CriticalPath(C, V ddlow, V ddhigh, V eclow, V echigh)

6: POW0 = Power(C, V ddlow, V ddhigh, V eclow, V echigh)

7: for all Gatei in CP0 do

8: V echigh.append(Gatei with smallest ASAP)

9: V eclow.erase(Gatei with smallest ASAP)

10: end for

11: for all possible V ddnewlow ≤ V dd0 do

12: binary search V ddnewhigh

13: so that CP0 = CriticalPath(C, V ddnewlow, V ddnewhigh, V eclow, V echigh)

14: POW1 = Power(C, V ddlownew, V ddhighnew, V eclow, V echigh)

15: if POW1 < POW0 then

16: V ddlow = V ddnewlow

17: V ddhigh = V ddnewhigh

18: POW0 = POW1

19: end if

20: end for

21: until V eclow!= ∅

22: Output: C

105

7.5.2 Dual-vdd Optimization

When applying dual supply voltages to the circuit, two essential questions need

to be answered. One is what voltages should be used as the multiple voltage

combination, the other is which part of the circuit should be put in high voltage

(or low voltage). Starting from the two questions, we have proposed an algorithm

shown in Algorithm 3 to heuristically approximate the best voltage pairs and the

corresponding coverage. We assume that in our design, only the gates with high

supply voltage can drive the gates with low voltage, thus we do not need to use

the level converters in our circuit. In each iteration, we choose one gate in current

critical path with the smallest ASAP and put it in the group of gates with high

supply voltage. Afterwards, given the current circuit configuration, we use the

binary search to traverse the pairs of voltages that meet the given target delay

and find the pair that can achieve the smallest power consumption. The iteration

continues until all the gates in the circuit are in the group of high voltage. From

there, we choose the lowest point of energy consumption from all the history

iterations. In real practice, the minimal energy is normally achieved when only

a small subset of gates are put in high voltage, therefore, the algorithm can be

stopped when no more energy can be reduced within some number of iterations.

The algorithm provides a heuristic way to approximate the best pair of supply

voltages as well as the corresponding circuit configuration to achieve the minimal

energy consumption.

Figure 7.3 depicts an example on the performance of our algorithm. The tested

circuit DMA has the following initial configuration: the total number of gates is

25301, the initial supply voltage is 0.7, the critical path delay is 10737ps, and the

power is 52337µw. In each iteration, one gate is switched from low voltage to

high voltage. To read from Figure 7.3, the minimal power is achieved at the 3217

iteration, with high vdd=0.75, low vdd=0.60. A detailed data analysis indicates

that the power (or energy) by the 3217 iteration achieves 22.69% reduction. The

106

Figure 7.3: An example of the performance of the dual-voltage optimization al-

gorithm on the DMA circuit.

reason that the initial part of the iteration causes more energy reduction is that

as more gates being put on high voltage, the circuit is getting balanced, thus the

effect on the energy reduction using dual-voltage is reduced. Note that in the

whole process, the delay of the circuit is not changed, only the voltages are scaled

to meet the delay constrains.

7.6 Experiment Setup

We adopt the ISPD2012 standard cell library [155] and fit accordingly to Markovic’s

EKV formulation for enabling dual-VDD optimization [154]. The nominal VDD is

set to 0.7V and VTH 0.3V. For our dual-VDD approach, we consider VDD within

the range of 0.35V to 0.70V. For the scaled voltage approach, we enable the 1mV

precision in VDD scaling, where as 50mV precision for our dual-VDD technique.

107

We evaluate a subset of ISCAS89 benchmarks and synthesize each netlist us-

ing Cadence Encounter for generating parasitics capacitances for all considered

netlists. We developed an in-house timer in C++ for flexibilty and robustness

in computing load and slew dependent delays and correlate to an the Synopsys

PrimeTime Compiler to be within 1% in both timing and leakage computation.

Each design was optimized in accordance to the ISPD2012 design contest suite in

satisfying each slew and cell load restrictions.

7.7 Results

108

Table 7.1: Energy savings when using standard retiming (RT), minimum flip-flop (MF), and dual-VDD (DV). Energy consumption is relative to each method satisfying a target delay achieved

by the original configuration operating at the nominal supply voltage VDD (0.7V). Also presented are the scaled supply voltages using RTMF in column 6 and the best dual-VDD pair (RTMF+DV)

in columns 7 and 8. The bottom table provides a max, avg, and min summary of the energy savings when applying RTMF (column 1) and RTMF+DV (column 2). Column 3 summarizes the

additional savings achieved our dual-VDD approach over RTMF.

Circuit
Delay Energy (uJ) Supply Voltage (V) Energy Savings (%)

(ns) Original RTMF RTMF+DV Scaled (Vmin, Vmax) RTMF RTMF+DV

s27a 0.44 0.04 0.04 0.03 0.60V 0.55V 0.65V 5.30 % 19.57 %

s208a 0.86 0.52 0.33 0.27 0.48V 0.40V 0.55V 37.47 % 49.27 %

s382 0.74 1.01 0.72 0.55 0.56V 0.45V 0.60V 29.49 % 45.38 %

s386a 1.42 1.53 1.44 1.41 0.65V 0.60V 0.70V 6.06 % 8.18 %

s400 1.52 1.63 0.76 0.70 0.43V 0.35V 0.45V 53.18 % 56.72 %

s420a 1.13 1.25 0.61 0.53 0.41V 0.35V 0.55V 51.37 % 57.56 %

s510 0.82 1.12 1.02 0.93 0.61V 0.50V 0.65V 9.46 % 16.69 %

s526a 0.66 1.33 1.09 0.77 0.58V 0.45V 0.60V 18.12 % 41.96 %

s641 4.54 6.91 5.04 4.07 0.54V 0.35V 0.60V 27.08 % 41.17 %

s713 4.78 7.25 5.00 4.04 0.52V 0.35V 0.60V 31.07 % 44.34 %

s820 1.26 2.54 2.34 2.10 0.61V 0.35V 0.65V 7.72 % 17.00 %

s832 1.26 2.57 2.32 2.11 0.61V 0.35V 0.65V 9.50 % 17.90 %

s953 0.99 2.20 2.08 1.87 0.65V 0.55V 0.65V 5.07 % 14.89 %

s1423 5.69 8.45 7.15 5.26 0.56V 0.35V 0.60V 15.35 % 37.71 %

s5378 1.48 21.81 16.61 15.20 0.58V 0.55V 0.65V 23.84 % 30.31 %

s9234 3.99 13.36 9.63 8.19 0.57V 0.45V 0.60V 27.92 % 38.70 %

s35932 1.86 10.06 9.45 7.65 0.64V 0.55V 0.70V 6.06 % 23.96 %

s38417 3.04 20.40 19.20 15.17 0.64V 0.50V 0.70V 5.88 % 25.64 %

s38584 3.63 28.00 25.40 21.33 0.61V 0.50V 0.65V 9.29 % 23.82 %

RTMF % RTMF+DV % +RTMF %

Max 53.18 % 57.56 % 23.84 %

Avg 22.00 % 33.24 % 11.24 %

Min 5.07% 8.18 % 2.12 %

109109109

(a) (b)

Figure 7.4: Circuit layout after applying the dual-voltage (RTMF+DV). The red

cells are the gates/flip-flops in high supply voltage and the ble cells are the ones

in low supply voltage for benchmarks s5378 (a) and s35932 (b)

We present results comparing the energy consumption against the original cir-

cuit under identical timing constraints (Table 7.1). Energy savings are presented

in an incremental fashion with respect to the achieved energy and delay of the

original circuit operating at the nominal set supply voltage of 0.7V. The techniques

we consider independently are minimum delay optimization through retiming and

minimum flip-flop minimization with supply voltage (VDD) scaling (RTMF) such

that the final delay after voltage scaling satisfies the delay target (e.g., Dcurrent

≤ Dtarget). Finally, we evaluate our approach which combines minimum retiming

and minimal flip-flop with our dual-VDD technique (RTMF+DV).

Table 7.1 presents all results in relative terms to the original circuit’s achieved

energy and delay. The first result is achieved through first retiming the original

circuit and then conducting a maximum-flow/minimum-cut algorithm for flip-

flop minimization. Retiming involves re-arranging the sequential elements (e.g.,

fflops, latches, etc.) of the circuit to achieve the minimum delay while preserving

the functionality of the design. We observed that between 6.25% to 50% delay

reduction (32% avg.) was achieved when conducting RT alone. A major drawback

of retiming is the significant flip-flop overhead costs needed in order to achieved

110

Table 7.2: Impact of retiming on circuit Delay and flip-flop count. The bottom table

includes a summary of the savings in delay (max, avg, min) achieved through RT only

(column 1) and savings in the number of flip-flops through RTMF over RT (column 2).

Circuit
(%) Delay No. of FFlops (%) FFlop

Savings Orig. RT RTMF Savings

s27a 44.44 % 3 3 3 0.00 %

s208a 46.67 % 8 17 17 0.00 %

s382 50.00 % 21 65 54 16.92 %

s386a 12.50 % 6 8 8 0.00 %

s400 57.14 % 21 68 57 16.18 %

s420a 52.63 % 16 42 38 9.52 %

s510 7.69 % 6 8 8 0.00 %

s526a 33.33 % 21 57 51 10.53 %

s641 31.37 % 19 51 51 0.00 %

s713 31.37 % 19 52 43 17.31 %

s820 11.11 % 5 10 8 20.00 %

s832 11.11 % 5 10 8 20.00 %

s838 50.88 % 32 91 73 19.78 %

s953 18.75 % 29 46 46 0.00 %

s1423 31.19 % 74 103 95 7.77 %

s5378 36.36 % 179 435 394 9.32 %

s9234 27.3 % 228 299 253 3.05 %

s35932 5.2 % 1732 2199 2123 3.05 %

s38417 6.7 % 1636 1685 1657 1.67 %

s38584 7.1 % 1452 1486 1466 1.34 %

RT (delay) RTMF (fflop)

Max 57.14 % 26.92 %

Avg 32.43 % 9.75 %

Min 6.25 % 0.00 %

111

reduced delay, requiring up to 73% max 46% additional flip-flop logic (Table 7.2).

However, since the optimal delay may not be unique, we additionally conduct a

minimum flip-flop procedure (RTMF) to further driver energy costs lower, while

ensuring that the target delay is preserved, which saves up to 26% (9%) flip-flop

from RT. A final step in RTMF involves reducing the supply voltage of the entire

design uniformly across all cells to reclaim slack (increase delay). The minimum

energy VDD is presented under RTMF. such that the minimum energy VDD is

recorded

Significant energy reductions is achievable through RTMF alone for most

benchmarks. As shown in Table 7.1 RTMF achieves betwee 5-53% (22% avg.)

energy reduction over the original configuration. As shown, a lower uniform VDD

can be set for designs that achieved significant delay improvement from RTMF

alone. However, these results assume 1mV scaling precision in VDD. In contrast,

limited energy improvements (< 10%) via RTMF can be observed for 6 bench-

marks (s27a, s510, s713, s832, s820, and s953) due to the small differences in

VDD with respect to the nominal VDD of 0.7V. Reduced VDD indicate minimal

delay reductions through RT and potential overhead (e.g., additional flip-flops).

Furthermore, RTMF may also improperly balance the fan-out of outgoing edges

of flip-flops. Larger load capacitances can significantly impact the circuit critical

path. In order to fix load violations, cells are required to be up-sized in order

to support imposed design constraints (e.g., load and slew). For this process,

we conduct a similar violation procedure as in Li et al. [60]. Without proper

consideration of load, improvements via RTMF may be reduced.

Our solution RTMF+DV achieves between 8%-57% (33% avg.) energy reduc-

tion over the original design under the same delay target. These savings translate

to an additional 11% average (23% max) energy reduction in energy is achieved

over RTMF, which indicates the potential benefits of utilizing a dual-VDD plat-

form. Large improvements using RTMF+DV can be attributed by large differ-

112

ences (Vmaxx-Vmin) with respect to the observed singly-scaled VDD in RTMF; this

can be observed with 7 benchmarks (s27a, s208a, s382, s526a, s641, and s1423)

that achieve an additional 10% over RTMF. Furthermore, the flexibility in assign-

ment non-critical cells at lower VDD, while simultaneously maintaining the circuit

delay on critical paths achieves additional improvements; RTMF is limited in this

regard, since only a single VDD is enabled and all cells, critical or non-critical, are

set to this configuration.

Reduced energy savings are observed for RTMF+DV in some benchmarks

where a small delay improvement is achieved through RTMF alone. Additionally,

smaller improvements with RTMF+DV over RTMF indicate that a smaller ratio

of cells are placed in lower VDD configuration with respect to the scaled VDD

set for RTMF, negating potential the benefits through the use of a dual-VDD

appoach. For example, although RTMF achieves 51% energy savings, only an

additional 2% (53% overall) in energy reduction alone is achieved conducting

RTMF+DV for s420a that uses a dual-VDD platform. Furthermore, the delay

impact of a single cell increases at lower VDD along the near-threshold regime.

Therefore, the ability to apply lower VDD for cells at near-threshold voltage levels

is a challenge due it its potential to significantly impact the critical path. In

contrast, for instances where minimal slack is achieved through RTMF, our dual-

VDD achieves the greatest energy savings. Therefore, our dual-VDD approach is

ideal when higher supply voltages are required to achieve higher performance

(shorter delay), while also leveraging the available slack from non-critical cells to

be set at lower VDD. Additionally, the costs of placing a higher number of cells

at higher VDD is reduced by both the simultaneous reduction of flip-flops that

are placed at higher VDD and through efficient restructuring of logic cells during

our retiming approach, which is performed in such a way enable greater efficency

using dual-VDD technology.

Figure 7.4 presents the final standard cell layout using our RTMF+DF on

113

benchmark circuits s5378 (3523 cells) and s35932 (22977 cells). The red cells

include all flip-flops and combinational cells placed at higher VDD and blue cor-

responds to the lower VDD pair. For benchmark s35932, 39% of the cells were

placed at higher VDD and 11% of cells for s5378%. Although we do not consider

cell placement optimization in this paper, in addition to energy minimization,

applying an RTMF+DV-aware procedure can be used in generic cell placement

tool for power grid optimization for ensuring circuit reliability across the power

network of a design. Under these scenarios, the location of higher voltage cells

directly impacts the placement of high-voltage power rails of a design.

7.8 Summary

We have developed a new approach for energy minimization that employs retiming

as an essential step for the consequent application of dual supply voltages. The

new retiming approach minimizes the number of sequential elements under the

constraint that the retimed circuit has provably minimal delay achievable by any

retiming. The minimization of the number of flip-flops is a heuristic measure that

maximally reduces the number of gates that require placement on high supply

voltage to achieve further reduction of the delay of the pertinent circuits. This

delay reduction in turn reduces the energy required by the gates that use low

supply voltage. The approach is generic in a sense that can be easily used in

standard synthesis flows and can be further extended to cover transformations such

as unfolding and other degree of optimization freedom such as multiple thresholds.

We have evaluated the new approach on a wide spectrum of circuits and observed

energy reduction by 33% on average.

114

CHAPTER 8

Provably Minimal Energy using Coarse-grained

Hardware Adaptation

Both energy and execution speed can be greatly impacted by clock and power

gating, nonlinear voltage scaling, and leakage energy. In this chapter, we address

the problem of coordinated power gating and dynamic voltage scaling (DVS) to

minimize the overall energy consumption of an application under user-specified

timing constraints. We prove that a solution provided by our convex programming

formulation that uses at most two versions of hardware, where each version uses its

own constant voltages, is optimal. Comprehensive evaluation of the new approach

demonstrates energy improvements over traditional DVS and DVS and power

gating techniques by factors of 1.44X–2.97X and 1.44X–2.82X, respectively.

8.1 Introduction

There is a wide consensus that energy is a premier design and operational metric

for various computing systems ranging from data centers and desktop computers

to smart phones and sensor networks [167]. However, energy minimization in these

modern and pending systems for time sensitive tasks is an increasingly complex

and intractable problem because of several interwoven degrees of freedom, such as

supply voltage management, leakage currents, and unit clock/power gating. For

example, dynamic voltage scaling (DVS) is by itself complex because the various

components (e.g. functional units and cache memory) have highly differing energy-

115

speed of execution trade-offs. Therefore, the overall system execution speed is a

nonlinear function with discontinuities.

Additional challenges for energy minimization include the significant overhead

(ranging from hundreds to even thousands of clock cycles) induced by voltage and

frequency adjustments. Leakage energy alone depends on several factors, includ-

ing the allocated hardware, supply voltage, processs variation, and temperature

[44][88]. It is well known that clock and power gating are very effective energy

saving techniques with relatively low time and energy overheads. However, careful

power gating and DVS settings are still necessary when considering the entire task

schedule, since their aggregate overheads may greatly impact the execution time.

We address the problem of minimizing the total energy required to complete

a computational task within a specified allocated time. We have developed a

new approach that combines the effectiveness of static power gating and DVS

techniques using a convex programming-based procedure. It has been a long

standing common wisdom that a single voltage should be used for the execution

of a task. It was proven that this strategy is optimal when the energy-speed

dependency is convex. Recently, it was demonstrated that when the relationship

is non-convex, it is often more advantageous to employ multiple voltages [18].

However, unless there are drastic differences in speed and speed-energy products

for a given application, the benefits of the technique are limited. We create these

differences by realizing N versions of the pertinent hardware using static power

gating.

The essence of the approach is illustrated in Figure 8.1, which shows energy-

speed trade-offs for eight versions of hardware used to realize a synthetic applica-

tion. In Figure 8.1a, there are eight points that correspond to eight power gating

options of the available hardware, operating at a single voltage. The base hard-

ware platform corresponds to the maximal-resource hardware allocation 8 (blue

hexagram). Allocations 7 (purple pentagram) through 1 (blue square) are allo-

116

(a) (b)

(c) (d)

Figure 8.1: Motivating example with 8 hardware allocations at 3 voltages: (a) no

DVS or power gating; (b) DVS but no power gating; (c) DVS and power gating;

and (d) our approach, coordinated DVS and power gating.

cations with decreasing hardware resources. If our time constraint, for example,

requires a clock rate of 650 MHz, the best individual configuration (without uti-

lizing DVS or power gating techniques) is allocation 8 at nominal supply voltage,

requiring 4 mJ, as shown in Figure 8.1a.

In Figure 8.1b, there are eight sets of three points that correspond to three

operational voltages of each hardware allocation. In this case, for the same timing

constraint, the optimal single configuration, where a configuration is comprised of

a hardware allocation and operating voltage utilizing DVS, is allocation 6 (yellow

right-arrow) set to the highest voltage, consuming 3 mJ (25% savings). Note

that the selected configuration is the lowest energy point that exceeds the speed

117

requirement. Figure 8.1c demonstrates how power gating can be used to reduce

the energy consumption by turning off the unused hardware after the completion

of the application. This can be done because the speed of the chosen configuration

is faster than required. In this example, the energy consumption is now 2.7 mJ

(32.5% savings).

Finally, Figure 8.1d demonstrates our new approach that uses coordinated

DVS and power gating to provide provably minimal energy. The first step is to

find the convex enclosure of the energy-speed points, consisting of piecewise linear

segments such that all points are either on the enclosure or above and to the left

of it. The intuition behind computing the convex enclosure is that we can use a

combination of the two closest points on the enclosure that surround the target

speed requirement to execute the task using the minimum amount of energy. In

this example, the highest-voltage setting of allocation 6 (yellow right-arrow) can

be used for 42% of the required time (650−600
720−600

), followed by a context switch to

allocation 4 (teal down-arrow) for the remaining 58% of the execution time. This

approach requires 2.2 mJ (45% savings). Note that in this case changing the

voltage between the two optimal points was not required, but in general DVS can

be utilized, if needed, to switch to a different voltage.

It is crucial to note that switching between allocations is realized by power

gating subsets of microarchitectural units to, for example, reduce the number of

units or the cache sizes. Thus, using n sets of power gating circuitry, 2n hardware

allocations can be realized. Our coordinated DVS and power gating procedure

is surprisingly effective, since schedules utilizing only two voltages and two ver-

sions of an implementation (hardware allocation) are used and can be determined

at compile time. There is only one context switch, where either a subset of mi-

croarchitectural units are power gated to realize a different allocation, or voltage

is scaled, or both. Therefore, the additional storage overhead is small and the

overhead for task management is negligible.

118

To summarize, the overall flow of the optimization proceeds as follows: (1)

create the gating structure; (2) characterize the application of interest; (3) calcu-

late the DVS impact; (4) calculate the convex enclosure; and (5) select the two

best allocations at the two best voltages (two configurations total).

8.2 Related Work

Dynamic voltage scaling methods have been proposed since more than two decades

ago. They address energy minimization by only altering the supply voltages.

Those methods cover various sets of scenarios and system specifications ranging

from continuous to discrete supply voltages to achieve energy efficiency, but these

have mainly focused on dynamic power consumption [46][52]. Researchers have

also studied the DVS techniques in conjunction with peripheral management and

further generalized the method to multiprocessors [45][53].

Leakage energy consumption and its impact on the overall system energy dis-

sipation have significantly grown because of the continuous scaling of CMOS to

miniature feature sizes. In fact, for some 35-nm processes, leakage could poten-

tially be even larger than dynamic energy [44][48][87]. Therefore, a MIT group

has studied techniques to address leakage energy, where leakage current is mod-

eled at different levels of abstraction [47]. Furthermore, DVS has been extended

to control threshold voltages (Vt) and therefore leakage current through adaptive

body biasing [51]. Various methods for simultaneous supply voltage and threshold

voltage scaling are also covered [42][5].

Power gating at the microarchitectural level has been proposed to achieve

further reductions in leakage, by gating units when idle periods of 10 cycles or more

are detected [32]. They achieve significant leakage savings, but only consider one

or two units. Furthermore, the impact of leakage current on energy and the usage

of various hardware have led to more general and non-convex energy-speed models

119

[47][49]. Corazao et al., applied template matching to reduce power consumption

[54].

Our approach differs from all previous techniques because we assume non-

linear trade-offs between energy and speed of execution with an arbitrary number

of discontinuities. Furthermore, we show that partial power gating and DVS can

be combined in a provably optimal way to minimize energy.

8.3 Preliminaries

In contrast to the energy and delay models presented in Chapter 2, this section

presents respective models at the functional unit granularity.

8.3.1 Energy and Delay Model

We adopt the energy and delay models used by Dabiri et al. [18]. For a hard-

ware with Ms resources, switching capacitance is a function of the resources used,

C(Ms), where one iteration of the schedule takes Rs clock cycles, and the clock

period is T = 1
f
. Since energy is the integral of the instantaneous power over time

and each iteration takes RsT seconds, the total energy (Etotal(s)) of this schedule

for one iteration of the schedule is:

Etotal(s) = RsTPtotal(s)

= RsT [1
2
αCV 2

ddf + VddIsub] (8.1)

In the above equation, Ptotal(s) is the total power consumption, the sum of dy-

namic (charging the capacitive load C(Ms)) and static (leakage) power, where

Isub is the subthreshold current commonly used for approximating leakage. In the

optimizations done in this paper, for each schedule we utilize the average energy

per clock cycle
Etotal(s)
Rs

versus the schedule speed Rs/T for one iteration.

120

Figure 8.2: Energy-delay points for different configurations (8 allocations and 3

voltages) for the jpegdec benchmark.

The delay of CMOS based processing elements can be approximated as:

d = K × Vdd
(Vdd − Vt)α

(8.2)

where K and α are technology-dependent parameters. Equation 8.2 in its general

form is used to model delay and its changes with respect to operation frequency

and supply voltage.

8.3.2 Multi-Allocation Architecture

Our objective is to minimize the energy consumption per task or collection of

tasks, while satisfying the system- and application-imposed constraints, such as

latency or throughput. Equation 8.1 suggests that there are potentially two main

variables that can be controlled to alter system configurations. One is the hard-

ware capacitance (C), and the other component is the supply voltage (VDD), which

leads to DVS techniques.

For the first component, we utilize processing elements called hardware allo-

cations, where each allocation effectively has a different C(Ms) (refer to Equation

8.1). Allocations can be individual processing units or can be constructed using

121

a subset of computational components from a larger computing platform. Note

that with n power gating hardware positions, 2n different hardware allocations

can be created.

We are given (or designed) a set of hardware allocations, where each utilize

different sets of hardware components. An allocation vi is identified by a unique

tuple, vi ≡ (ei, di, si, Ri), where ei is the energy per clock cycle of an allocation

for a given schedule; di is the allocation’s delay (latency) for a scheduling cycle; si

is the allocation’s effective speed; and Ri is the number of clock cycles to process

a given schedule on the allocation.

The second effective variable is the supply voltage (VDD). Energy optimization

via dynamic or static voltage scheduling and scaling is a very well studied problem.

What distinguishes this paper from previous work in DVS is that our methodology

is a hybrid of hardware resource management and voltage scaling. The former

corresponds to the fact that we potentially utilize different hardware allocations in

the scheduling (via gating), while the latter indicates that each of these allocations

can have multiple discrete supply voltage choices.

8.3.3 Configurations

We assume to have M hardware allocations where each can operate under K

discrete supply voltages V = {Vdd1 , ..., VddK}, which then leads to N = M × K

configurations. Each configuration is represented as a hardware allocation-supply

voltage pair, mi = (vj, Vddk). To each configuration we shall assign an effective

speed (computed by Equations 8.3 and 8.2) as well as a value for energy per

clock cycle (derived from Equation 8.4), where we represent a configuration as

mi(vj, Vddk , si, ei). As can be observed, the configurations have a similar represen-

tation as the hardware allocations, which is natural since each hardware allocation

is in fact a configuration under a given supply voltage.

122

Assume a configuration mx is the fastest configuration in the sense that for a

given schedule it requires Rx clock cycles, where Rx = min(R1, R2, ..., RN) and N

is the number of configurations. This configuration is called the base configuration

and its speed sx is said to be the clock frequency fclk. We normalize other con-

figurations’ specifications to the base configuration and define the effective speed,

si, for configuration mi as follows.

The latency di of mi for a schedule which takes Ri clock cycles is di = Ri/fclk.

Consequently, if we assume that the schedule requires Rx clock cycles but the

operational frequency (speed) of the configuration is si (not fclk), the equivalent

or effective speed of configuration mi is:

si = fclk ×Rx/Ri, (8.3)

which results in the same delay, di. Under this normalization, switching across

configurations is virtually equivalent to �changing the operation frequency of the

configuration under the assumption that the required number of clock cycles (Ri)

remains the same. The energy per clock cycle of a configuration is also normalized

with Rx, yielding:

ei =
Ri

Rx

VddIsubT +
Ri

Rx

1

2
αCV 2

dd. (8.4)

Figure 8.2 shows energy consumption vs. latency for the jpeg-decoder bench-

mark. In this graph, we have used 8 hardware allocations, where for each alloca-

tion we show three supply voltages. We apply the normalization in Equation 8.3,

which leads to energy-speed points shown in Figure 8.3. Details of the configura-

tions (hardware allocation-supply voltage pairs) are described in Section 8.6.

123

8.4 Problem Formulation

8.4.1 Optimization Objective

Our key objective is to use multiple configurations to process a given task such

that the total energy consumption of the system is minimized, while the pro-

cessing is completed prior to a specified deadline. A scheduling output can be

represented as an ordered series of configurations and the length of time each con-

figuration is scheduled for operations: Ψ =< (m1, t1), (m2, t2), (mk, tk) >, where

Mr = {m1, v2, ...,mN} are the N configurations as defined in Section 8.3.3, r is

the scheduled task, and the duration for which each configuration mi is active is

ti. Therefore, the total energy consumption for this schedule and optimization

objective can be defined as:

EΨ =

∫ T

0

P (ξ(t))dt =
R∑
0

e(si)∆R (8.5)

minimize(Er), s.t.Dr =
∑
i;vi∈Vr

ti ≤ T (8.6)

where Dr is the processing delay/latency for the schedule Ψ and T is the deadline.

8.4.2 Configuration Switching Overhead

Switching configurations has potentially two sources of overhead: (1) power gating

overhead caused by switching across hardware allocations; and (2) voltage scaling

overhead. The overhead presents itself in both energy and delay.

8.4.2.1 Power-Gating Overhead

Power gating is done by placing a suitably sized header or footer transistor for a

circuit block. The amount of switching energy in the header device (Eheader) and

124

the number of cycles needed to power gate a macro before reaching the break-even

point (Nbreakeven) are computed as [32]:

Eheader = 2CheaderV
2
dd ≈ 2WH

1

2
CswitchingV

2
dd. (8.7)

Nbreakeven = 2
1

2Lα

√
mVtWH

VddDIBL
(1 + 2

Csupply
Cswitching

), (8.8)

Parameter definitions are presented by Hu et al.; Nbreakeven is shown to be about

10 clock cycles [32].

Assuming that the ratio of the header device WH is constant for all the mod-

ules, the timing overhead of power gating remains the same for the different sched-

ules. However, the energy overhead is a monotonic function of the number of

components in the schedule. Using Equations 8.7 and 8.8, this overhead can be

modeled as:

εij = f(vi, vj) ∝ |Ni −Nj|, (8.9)

δij = g(vi, vj) = δ. (8.10)

Equation 8.9 indicates that the energy overhead as a result of power gating is

a function of the difference in the resources in hardware allocations vi and vj,

whereas the delay overhead could be assumed to be a constant value.

8.4.2.2 Voltage Scaling Overhead

Switching the supply voltage from Vddi to Vddj creates overheads in energy (εij)

and delay (δij), which is represented by switching from configuration i to j for

125

each respective case. We use results from Andrei et al. [42] and Martin et al. [51]

to model these overheads as:

εij = Cr|Vddi − Vddj |2 + Cs|Vbsi − Vbsi |2 (8.11)

δij = max(pVdd|Vddi − Vddj |, pVbs|Vbsi − Vbsi |) (8.12)

where Cr and Cs are constants for power rail capacitance and substrate-well ca-

pacitance, respectively. Note that when a configuration switch occurs, potentially

both supply voltage VDD and body-bias voltage Vbs change. The delay overhead

caused by supply voltage and bias voltage changes are proportional to pVdd and

pVbs , respectively, and the larger delay of these two will be the overall delay over-

head.

8.5 Optimal-Energy Scheduling

In this section, we derive a set of properties of our formulation and an optimal N-

configuration schedule that leads us to the proposed methodology. This sections

extends the work in [18] by incorporating both hardware allocation as well as

operating supply voltage.

First, we illustrate methods for emulating any virtual operating speed using a

mixture of configurations. Consider a simple example where there are two config-

urations m1 and m2. For the sake of simplicity, we have omitted the configuration

switching overheads in this example. Recall that because the optimal solution uses

at most two configurations, requiring a maximum of one configuration switch, this

overhead is negligible. In order to run the system at speed s∗ (s1 ≤ s∗ ≤ s2) for

a given interval [a, b], we first use configuration m1 in speed s1 for t1 seconds and

m2 with s2 for t2 seconds, where t1 and t2 are:

126

Figure 8.3: Energy-speed points for different configurations for the jpegdec bench-

mark. Note that the speed is normalized as described in Equation 8.3.

t1 =
s2 − s∗

s2 − s1

× (b− a), t2 =
s∗ − s1

s2 − s1

× (b− a) (8.13)

where s∗ is the weighted average speed when the system is run at speeds s1 and

s2, indicating that in the duration of [a, b] the system was operating at the virtual

speed of s∗. In the presence of switching overheads, the target speed would be

s∗δ = b−a
b−a−δs

∗. In this scenario, if s∗δ < s2, then:

t1 =
s2 − s∗δ
s2 − s1

× (b− a), t2 =
s∗δ − s1

s2 − s1

× (b− a) (8.14)

Otherwise, s∗δ ≥ s2 indicates that in order to compensate for switching delay

overhead, effective speed should be more than s2. Therefore, there is no need to

use two configurations and the processing can happen only with configuration m2

for the duration of b− a:

t1 = 0, t2 =
s∗

s2

× (b− a)⇒ s∗ = s2, t2 = b (8.15)

127

8.5.1 Convex Energy-Speed Curve

Given two configurations mi and mj with effective speeds of si and sj, Eij is

defined to be the the minimum energy per clock cycle for a given virtual speed

s∗. Thus, when considering configuration switching overhead, E ′ij(s∗) is simply

the minimum energy consumed between its representative virtual speed or by a

single configuration, as described by:

Eij(s∗) =
ej − ei
sj − si

(s∗ − si) + ei, (8.16)

E ′ij(s∗) = min(Eij(s∗) + ∆eij, ei). (8.17)

Using this notion of a continuous energy-speed definition, we form a bound-

ing curve on the energy-speed points of the configurations. This curve is convex

when switching overhead is ignored and has a convexity property with switching

overhead under some conditions which are presented below. Figure 8.3 shows this

continuous energy-speed curve, which will be the target operation space. When

considering switching overhead, the optimal bounding curve would have vertical

shifts (proportional to its energy overhead) and horizontal segments. Horizontal

segments are cases where running at a higher speed than s* (e.g. a single config-

uration) would be more energy efficient than switching between two surrounding

configurations due to the overhead. Note that the optimality of the proposed

algorithm still holds by just adding the energy (εik) and speed (δij) overheads to

the proof of Theorem 8.5.1.

8.5.2 N-Configuration Scheduling Algorithm

Theorem 8.5.1. There is an optimal N-configuration scheduling where only two

or less configurations are used throughout the execution of a task

Proof. Assume there is an optimal configuration scheduling Ψ which uses k dif-

128

Table 8.1: Hardware allocation parameters.

Allocation IDC LSU ALU MUL L1 L2

1 2 2 2 1 16KB none

2 2 4 2 1 16KB 32KB

3 4 4 4 2 16KB 32KB

4 4 8 4 2 16KB 32KB

5 8 8 8 2 32KB 64KB

6 8 16 8 4 32KB 64KB

7 16 16 8 4 32KB 64KB

8 16 32 16 8 64KB 128KB

Table 8.2: Hardware allocation power dissipation (W) at max VDD.

Allocation IFU LSU MMU ALU MUL L2

1 0.33 0.17 0.05 0.19 0.89 none

2 0.33 0.17 0.09 0.19 0.89 0.37

3 0.38 0.22 0.10 0.25 1.19 0.37

4 0.38 0.22 0.10 0.25 1.19 0.37

5 0.63 0.37 0.37 0.82 1.19 0.64

6 0.63 0.37 0.37 0.82 3.85 0.64

7 0.88 0.55 0.91 0.82 3.85 0.64

8 1.02 0.64 0.91 1.48 6.92 1.10

ferent configurations where k > 2. Furthermore assume m1, m2, and m3 are three

consecutive configurations in terms of energy consumption in the schedule and

each runs for a duration of t1, t2, and t3 seconds respectively. We will show that

there is another schedule Ψ∗ that can be derived from Ψ which uses one less con-

figuration and EΨ∗ ≤ EΨ while DΨ∗ ≤ DΨ. We omit the details for brevity but

there are two cases to consider in the proof:

129

• E13(s2) ≤ e2: This shows that by removing m2 and only using m1 and m3,

total energy consumption will be reduced since s2 can be virtually achieved

using equation 9.1, which leads to energy consumption compared to E2;

• E13(s2) > e2: This scenario itself is divided into three cases: s∗ < s2, s∗ > s2,

or s∗ = s2, where s∗ is the effective speed of the schedule when switching

between the three configurations. If s∗ < s2, it is trivial that s∗ can be

created using only m1 and m2 with less energy consumption. Similar argu-

ments hold for s∗ > s2 and if s∗ = s2 and it is evident that only m2 should

have been used for the whole execution of the task.

Therefore, we can reduce the number of configurations in the schedule by

one and still use less or equal amount of energy. The same method is applied

recursively till at most two configurations remain in the schedule.

An immediate observation follows that for a given feasible schedule, the average

speed of the system, s∗ has a lower bound of Rx/T where T is the schedule deadline

and R is the required number of clock cycles when the fastest configuration is

used. We call this speed the critical speed. The idea behind the methodology is

to utilize the maximum slack available and run the system at the lowest speed

possible, s∗, to minimize the energy consumption. Algorithm 4 summarizes the

optimal scheduling for one task. For multiple tasks, we use the results from [3]

and apply the same scheduling with the observation that for a critical speed,

s∗, the schedule and configurations are found using Algorithm 4. Note that the

scheduling is the implicit result of Algorithm 4.

Algorithm 4 N-Configuration Scheduling: Single Task.
1: Find the critical speed: s∗ = Rx/T ;

2: Find i and j such that E ′ij(s∗) is minimized (binary search);

3: Use Equation 8.15 to find the configuration and schedule times for mi and mj ;

130

Theorem 8.5.2. Algorithm 4 results in the minimum energy consumption per

frame while meeting all hard deadlines.

Proof. From 8.5.1 we conclude that at most two configurations are needed to

find the minimum energy consumption. Also, from step 2 of the Algorithm 4, the

minimality of energy consumption for 2-configuration schedules is guaranteed.

8.6 Experimental Results

We used the SimpleScalar-ARM simulator [40] to generate single-threaded ARM7-

ISA cycle accurate traces. Resources considered are: 1) instruction fetch units

(IFU); 2) load-store units (LSU); 3) arithmetic logic units (ALU); 4) multipliers

(MUL); and 5) level 1 and 2 instruction/data caches (L1/L2) (Table 9.1). Our

power model uses 45 nm parameters included in McPAT [50]. We extract the

power values for each modeled resource for each configuration (Table 9.1). Con-

figuration energy (εij) and delay (δij) overheads are computed using representative

functional unit load, rail, and substrate capacitances using equations in Section

8.4. We cover eight hardware allocations and enable five discrete supply voltages

(0.7, 0.8, 0.9, 1.0, and 1.1V). Due to space constraints, Table 8.2 only lists the

hardware allocations’ combined dynamic and static powers at the maximum sup-

ply voltage. We update the Wattch [43] model with these values to generate total

energy and runtime values for each benchmark at each configuration.

We performed our evaluations on 13 different benchmarks, considering 40 con-

figurations comprised of 8 hardware allocations and 5 different supply voltages per

allocation. We compare our optimal coordinated DVS and power gating approach

against a) DVS alone and b) DVS and power gating. Recall that both of these

approaches use only a single allocation and voltage, while our approach uses up

to two allocations and two voltages (two configurations) that achieve the optimal

131

energy for a given delay constraint.

Figures 8.4a and 8.4b illustrate the energy savings achieved in comparison to

these scenarios. The x-axis represents the application and the y-axis is the nor-

malized energy savings. For each application, there are 8 columns corresponding

to the different allocations. For applications epicenc, g721enc, g721dec, gsmdec,

blowfenc, blowfdec, and sha, allocation C5 could not be used to execute the appli-

cation by the given deadline. In this case, a black bar is shown below the axis to

indicate that the base case (either DVS or DVS and power gating) does not have

a feasible solution and therefore no energy comparison can be made. Allocations

C1-C4 are omitted from the results because they could not be used by the DVS

and DVS and power gating approaches to execute any applications within the

allotted time. This is to be expected, since these allocations have very limited

hardware resources.

Furthermore, Figure 8.5 shows the given deadline and result for our approach

for the epicenc application. It is clear from the figure that although hardware

allocations C1-C5 cannot meet the deadline independently, the optimal result

uses a combination of allocations C6 and C3, whose highest-voltage configurations

are the surrounding points of the target speed on the convex enclosure. For each

allocation, the DVS-only approach would consume energy equivalent to the energy

consumption of the lowest-energy configuration to the right of the target speed.

In the DVS and power gating approach, the same configuration would be selected

but powered off after completing the task.

8.7 Summary

We have developed a new approach for energy minimization under timing con-

straints that combines the effectiveness of power gating and dynamic voltage scal-

ing (DVS) in a coordinated manner. We use a convex programming procedure

132

to optimally solve the problem without placing any restrictions on the energy-

speed of execution relationship or the voltage step values. The technique is highly

practical; on standard benchmarks, our method results in an average savings of

1.44X–2.97X and 1.44X–2.82X with respect to the best DVS and DVS and power

gating solutions, respectively.

133

1.50X

1.59X

1.44X

2.97X

-1X

X

1X

2X

3X

4X

5X

E
n

e
rg

y
 S

a
v

in
g

s

Application

Energy Savings vs Optimal DVS

C5

C6

C7

C8

0X

(a)

1.44X

1.53X

1.38X

2.82X

-1X

X

1X

2X

3X

4X

5X

E
n

e
rg

y
 S

a
v

in
g

s

Application

Energy Savings vs Optimal DVS and Power Gating

C5

C6

C7

C8

0X

(b)

Figure 8.4: Energy savings of our coordinated DVS and power gating approach

vs. (a) DVS and (b) DVS and power gating. Note that for a subset of applica-

tions, hardware allocation C5 is not fast enough to meet the required deadline.

Furthermore, allocations C1-C4 are omitted from the results because they could

not meet the deadline for any application.

134

Figure 8.5: Normalized energy consumption for a given delay constraint for the

epicenc benchmark using our coordinated DVS and power gating approach.

135

CHAPTER 9

System Customization and Fine-grained

Hardware Adaptation

Customization and adaptation have emerged as the most effective paradigms for

energy minimization [161][162][169][170][159][178]. In this chapter, we employ

these paradigms to address coordinated power gating and dynamic voltage scal-

ing for energy minimization of real-time tasks in both application-specific and

programmable systems and is based from work in [190]. In the customization

phase, we determine the optimal hardware configurations to minimize energy for

expected applications and workloads in the presence of power gating circuitry

overheads using dynamic programming. The first task in adaptation is to deter-

mine which hardware allocations and supply voltages should be used to execute a

given set of tasks. In the case where tasks induce constant capacitance and are of

sufficient length to render power gating and voltage scaling overheads negligible,

we obtain the provably optimal solution using a combination of convex enclosure

and convex optimization. Our next goal is to relax these two assumptions to

consider overheads and non-uniformity in capacitance by subdividing each task

into multiple subtasks at a fine granularity. In this case, we use another dynamic

programming formulation to find a solution which is optimal in most practical

cases. We have also developed a dynamic programming-based approach to mini-

mize overheads of configuration switching.

136

9.1 Introduction

There is a wide consensus that energy efficiency is a design metric of paramount

importance [171][25][26][29][180]. It is, for instance, important for computers in

data centers in order to minimize cooling cost that is measured to be in the tens of

millions of dollars. It is crucial for mobile wireless devices such as sensor networks,

phones, and tablets in particular with a pending transition from voice to data

traffic (e.g. IPTV and complex video games) [182][185]. Energy minimization is

rarely an easy task but it is even more demanding in systems that are subject to

real-time constraints [163][164][179][181].

Therefore, it is not surprising that a tremendous amount of industrial and

academic effort has been dedicated to energy minimization, most often under the

umbrella of low power research [164][165][172][176][177]. The initial energy models

were simple from the optimization point of view and included only switching

energy as impacted by supply voltage, frequency, and switching activity. The

dependency between the speed of execution and the energy was convex and hence

simple for optimization. Finally, initially only strict real-time constraints were

considered.

Today, in addition to switching energy, several types of leakage energy are

increasingly important. Systems are complex in the sense that the energy of

different components scales differently with the supply voltage. Also, the most

effective techniques such as power or clock gating result in highly non-linear speed

of execution to energy trade-offs. Dynamic voltage scaling techniques for energy

minimization now provide rather limited improvements. From one side currently

used supply voltages are already greatly reduced as dictated by finer feature sizes.

From another side process variation results in some gates having rather high volt-

age thresholds. Therefore, the gap between the maximal and minimal feasible

voltage is small and continues to shrink. As a ramification, the need for emphasis

137

on different energy minimization mechanisms is well established.

The new most popular applications such as mobile phone calls, WWW surfing,

and movie watching on smart phones are subject to new types of real-time con-

straints. They also have segments with sharply different amounts of parallelism

and requirements for different types of resources. Therefore, the important prob-

lem of determining ideal hardware configurations and runtime allocations must be

addressed in a synergistic fashion across several levels of system abstraction and

design phases. For example, identifying and choosing hardware allocations that

maximize energy efficiency on given a set of functional units with very different

energy-speed trade-offs across a set of expected applications early in design is of

crucial importance, since the choices made have significant impact on available

runtime configurations later [159][160]. Furthermore, once a set of available sys-

tem configurations is defined, it is important in the later design stages to identify

the suitable time allocations for applications, since they can be fine-tuned to their

respective runtime configurations [166][175]. The decisions made in these steps

can have dramatic effect on power management schemes in achieving and main-

taining quality of service levels [28][173], which are often managed at the operating

system level, such as through the widely accepted Advanced Configuration and

Power Interface (ACPI) utilizing dynamic voltage scaling and clock and/or power

gating schemes [1].

In summary, for modern wireless mobile applications the standard energy min-

imization techniques have limited effectiveness, and conceptually new energy min-

imization techniques are required at both the architectural and operating system

levels. These techniques are associated with much more complex optimization

strategies that are highly non-linear, non-convex, and with a large number of

discontinuities [18][181].

138

9.1.1 Problem Formulation

We focus on one real-time synthesis and one energy management problem that

can be informally stated in the following highly simplified way. We start with

the low energy synthesis problem. A task and a computational platform are

given. The computational platform can be configured in a large number of ways

and profiling of the task is conducted for each platform. The goal is to select a

user-specified number of configurations such that the task (application) consumes

minimal energy while being completed within a user-specified total execution time.

No restriction on the speed-energy curve are imposed. Our basic operating system-

level problem is to find the allocation of an available time for execution of a given

task on each of the allocated hardware configurations, so that the total used energy

is minimized.

These two generic problem formulations are the starting point for several more

complex and practically important versions. For example, we can address formu-

lations where multiple applications that may be subject to uncertainty are consid-

ered. Or we may consider the situation where each task is composed of a number

of subtasks with unique speed-energy curves on different hardware configurations.

9.1.2 Objectives and Techniques: Summary

In summary, our goal is to create a hardware platform and accompanying energy

minimization techniques that are:

1. Flexible. The approach should be such that it can be used for a large number

of applications under a wide spectrum of real-time constraints. Hence, we

require a very large number of highly diverse and energy efficient hardware

configurations. We address this requirement by using two paradigms. The

first is power gating of overlapping partitions of a single large hardware

platform. The second is creation of virtual configurations by combining two

139

hardware platforms and assigning the pertinent application to each of them

for x and 100− x percent of the available time.

2. Practical. Overlapped power gating or other strategies may provide numer-

ous and diverse configurations to the extent that there are too many of them.

Hence, often there is a need to drastically reduce their number while preserv-

ing their capabilities to realize any of the targeted applications in an energy

efficient way. For example, power and/or hardware gating overheads may

be very large if there are too many hardware options. More importantly,

profiling of a large (e.g. exponential) number of hardware configurations is

not practically feasible. We solve this problem by identifying a user-specified

number of configurations in such a way that for a specified frequency of a

specified set of applications under a specified system of timing constraints

we use provably minimum average energy. The technique employs dynamic

programming in the speed of execution vs. energy space.

3. Adaptive. As we already stated, the effective capacitance and types of re-

quired resources in modern application often rapidly change. For example,

in many wireless mobile video and audio applications we have periods of

high parallelism, where multiplications are often used, interleaved with es-

sentially sequential decision procedures. Hence, it is essential for low energy

implementations that hardware allocation and supply voltage are well cor-

related with the needs of the pertinent application in a particular period of

time; this has the potential to impact energy consumption when addressing

security primitives [186][187]. Again, we solve this problem using a dynamic

programming formulation.

4. Generic. It is important that the approach allows easy integration with

other techniques for energy reduction. We demonstrate that the new ap-

proach satisfies this desideratum by combining optimization using power

140

gating with dynamic voltage scaling using a simple preprocessing step. It is

also important that the approach can be applied at several levels of abstrac-

tion. We show this property by using the same dynamic programming-based

optimization framework for addressing variable effective capacitance within

a single application and for minimization of energy of a set of independent

tasks.

5. Robust. In some scenarios the same application will be executed multiple

times using identical inputs (e.g. a popular movie, song, or WWW page on

a popular smart phone). In this situation the effort to profile the scenario

accurately is easily amortized over a short period of time. However, in many

other scenarios one must use statistical knowledge about the application

and inputs (e.g. a sport event on TV or dynamic WWW page with stock

information). Now, the detailed and accurate analysis is not an alternative

due to high cost and latency constraints. Therefore, robust operation in the

presence of uncertainty is very important. We use for this purpose convex

programming, which provides the optimal solution to our piecewise linear

programming formulation under the often realistic assumption of Gaussian

distribution of run-time uncertainty.

6. Scalable. All trends indicate that the size of applications and the amount

of available hardware resources will continue to increase. Hence, there is

or will be a need for the ability to solve very large instances. We address

this requirement by providing in addition to our provably optimal dynamic

programming solution also a fast convex programming-based approximate

solution that does not fully consider the power gating induced overheads.

141

9.2 Related Work

The emergence of battery-driven mobile communication systems created an im-

petus for the development of low energy techniques in the very early ’90s. Many

factors, including technological, integrated circuit, architectural, operating sys-

tem, and properties of applications impact the selection and creation of the most

effective energy optimization techniques and algorithms. Nevertheless, the central

role is most often related to the energy vs. speed of execution trade-off.

In the early ’90s the feature size of integrated circuits was 1 micron and the

supply (VDD) and threshold (VTH) voltages were 5 V and around 1 V, respectively.

The high gap between Vdd and Vth and the quadratic dependence between the

energy and the supply voltage enabled improvements of more than an order of

magnitude and suggested a paradigm where the goal is to transform the per-

tinent computation in such a way that first the maximal speed-up is created,

and consequently it is used for the reduction of the supply voltage and there-

fore energy minimization [2]. The essential background information is that the

switching power (P) is equal to Ceff · V 2
dd · s, where s is the speed of execution

and s = k · (Vdd − Vth)
2/Vdd, Ceff is effective switching capacitance, and k is a

technology and integrated circuit dependent constant. Note that only dynamic

(switching) energy was considered because at that time the static (leakage) com-

ponent was negligible. Therefore, to achieve energy efficiency for a given speed it

was found to be beneficial to utilize the lowest supply voltage in periods where

there exists high switching capacitance, and vice versa [33]. Algebriac techniques

was presented by Potkonjak et al., for minimizing power [55].

Soon it was realized that the same paradigm could be used as a basis for the

minimization of energy in a more complex computational model. Yao, Demers,

and Shenker considered a set of aperiodic jobs where any point on a continuous

convex trade-off energy-speed curve is available and where there is no overhead for

142

changing the speed [3]. Yao, Demers, and Shenker used a maximally-constrained

minimally-constraining optimization paradigm to develop an off-line approxima-

tion algorithm that was improved consequently by Bansal et al. [4].

Ishihara and Yasuura considered a more realistic energy-speed model where

only a discrete subset of trade-off points is available and under the assumption

of a negligible speed change overhead [5]. They proved that in this case the use

of two consequent options that bound the required optimal speed produces the

optimal solution. Vigorous research efforts along this line eventually resulted in

a fully polynomial approximation algorithm with arbitrarily tight approximation

[6].

Just before the Ishihara and Yasuura results were published, Hong et al. pro-

vided an answer to an important related question of how to use dynamic variable

voltage low energy techniques when there is a speed change timing overhead by

proving using variational calculus that when there is a speed change overhead it is

most beneficial to accomplish the transition between two speeds at the maximal

rate if the discrete points belong to a convex curve [7].

At the turn of the century it was realized that the energy-speed relationship is

no longer convex due to several reasons including different operational speeds of

different components (e.g. memory vs. datapath) and rapidly increasing leakage

current in deep submicron technologies. In the current 22 nm technology it forms

almost one half of the overall energy consumption. The initial observation was

that by powering down one can save a very significant amount of energy. Soon,

in addition to active mode, idle, standby, and sleep were considered as shutdown

states each with lower energy and longer activation time. Irani et al. have devel-

oped a 3-approximation off-line algorithm to minimize dynamic and static energy

using as a starting point the algorithm by Yu, Demers, and Shenker [8]. Lee,

Reddy, and Krishna introduced the procrastination concept, where the system

enters or stays in a shutdown mode even when there are pending tasks in order to

143

reduce leakage energy [9]. The procrastination algorithms have attracted signif-

icant attention [10][11]. From another perspective, Chandrakasan et al. showed

that by trading silicon area, power consumption can be reduced while maintain-

ing throughput, for example by replicating hardware and reducing the operating

voltage [12].

An in one sense similar yet in another sense opposite concept is slack recla-

mation, where slack left by completed tasks can be used either for slowdown of

other tasks or for staying longer in a shutdown state [13][14]. Furthermore, one

important class of energy minimization is one where the optimization has to be

conducted under uncertainty. The most popular model is where a probability

distribution function (PDF) of execution times is available. For example, Lorch

et al. have developed an approach where a task starts at low speed and keeps

increasing its speed of execution in accordance with the expected required time

for a specific instance [15].

Another important class of energy minimization problems is a set of dual

problems to already stated ones, where the goal is to minimize the allocation

cost of the hardware platform under energy and/or timing constraints [16][17].

They proposed heuristics and approximation algorithms for this computationally

difficult variant of our problems. Recently, Dabiri et al. presented surprising

results that in a sense ultimately addressed optimization when the energy-speed

trade-off has an arbitrary dependency [18]. Regardless of the shape and form of

the dependency, they showed one can always provably optimally minimize the

total energy of any task using at most two actual speeds by using computational

geometry concepts. The use of N-versions was explored by Alkabani et al., in

order to leverage high-level synthesis in the context of energy minimization [19]

with temperature dependencies. A low-cost temperature self-sensing system was

also presented by Vahdatpour et al. [20]. Multiple supply and/or threshold volt-

ages are another popular set of energy minimization techniques [21]-[24][27][168].

144

However, both multiple VDD/VTH and dynamic voltage scaling techniques have

decreasing efficiency as technology progresses. Two main reasons are that feature

scaling drastically reduced not just supply and threshold voltages but also their

gap. Also, process variation causes threshold voltage to become subject to a rela-

tively wide distribution, and the threshold voltage must be higher than the highest

threshold voltage of any transistor. Therefore, although dynamic voltage scaling

is still important, power gating may now enable much better improvements.

In the last decade, power gating was recognized as an effective way to reduce

leakage energy [32][34][35][36][37]. Our goal is to provide an impetus for further

development of this line of optimization by showing how a simple but rich power

gating structure can be adaptively used to facilitate energy minimization in mod-

ern and pending systems.

For the sake of brevity and due to space limitations we do not cover energy

minimization in distributed systems such as wireless phones, sensor networks,

and data centers [2][38][39] and simultaneous thermal management and energy

minimization.

9.3 Preliminaries

We begin by describing a critical set of technical preliminaries, including cre-

ation of hardware allocations via power gating; detailed profiling of applications;

a previously proposed approach for executing a single application at a specified

speed with minimal energy; and our simulation platform and energy, delay and

configuration switching overhead models. Note that the emphasis here is func-

tional unit-level power modeling and, thus, is a higher-level abstraction than the

gate-level models presented in chapters 3, 5, 6.

145

9.3.1 Multi-Allocation Architecture

In this section, we describe a method of employing power gating techniques to

create processing elements called hardware allocations. A hardware allocation can

be defined as a subset of computational components (e.g. caches, ALUs, registers,

etc.) that together form a complete computing platform. Note that there are an

exponential number of unique subsets that can be created from such a set of com-

ponents, so in principle the number of hardware allocations that can be created

from a single computing platform is exponential in the number of computational

components or functional units. However, there are two repercussions. The first

is that the subsets must themselves form completely functioning computing plat-

forms in order to be candidate hardware allocations. Furthermore, the power

gating circuitry required to power on and off specific hardware allocations im-

poses area and energy overheads and therefore the number and types of hardware

allocations is limited.

Nevertheless, power gating can be used to construct M hardware allocations

{m1, ...,mM} ∈ Φ, which can in turn be operated at V discrete supply voltages

{v1, ..., vV } ∈ Ψ; each hardware allocation-supply voltage pair constitutes a single

hardware configuration ci, 1 ≤ i ≤ M · V . Consequently, each configuration will

execute a given task with a unique speed and energy.

An example power gating scheme for hardware allocation creation is shown

Figure 9.1. The figure shows a complete computing platform consisting of 3

instruction fetch units (IFU), 8 execution units (EX), 3 memory management units

(MMU), L1 and L2 caches, a phase-locked loop (PLL), voltage regulators (VREG),

and a power management unit (PMU). We use power gating to create M = 3

hardware allocations, where each shading level corresponds to a single hardware

allocation. The lightest shaded components are present in all 3 allocations (m1,

m2, and m3) the medium shaded components are present in only the two larger

146

EX EX

EX EX

L2

L2

MMUL1

IFU

L1

L1

MMU

MMU
IFU IFU

EXEX

EXEX

PMU

PLL

VREG

Hardware AllocationsCustomizable Core

Alloc. 1

Alloc. 2

Alloc. 3

Available Functional Units

IFU – Instruction Fetch Unit

EX – Execution Unit (i.e., ALU, Mult.)

MMU – Memory Management Unit

PMU – Power Management Unit

PLL – Phase Locked Loop (Clock Generator)

VREG – Voltage Regulator

In
c
re

a
s
in

g
 S

iz
e

Figure 9.1: Hardware allocation example showing three hardware allocations: 1)

light shading – smallest allocation; intermediate shading – intermediate allocation;

dark shading – largest allocation.

allocations (m2 and m3), and the darkest shaded components are present in the

largest allocation comprising the entire computing platform (m3). For example,

m1 consists of only 4 EX units, m2 consists of 6, and m3 contains all 8.

Note that the PLL and VREG are used to achieve desired clock speeds and are

managed by the PMU, which is also responsible for coordinating the power gating

circuitry; therefore, these components must be present in all allocations. Note

also that although only one L1 cache and one L2 cache are physically present,

the multiple blocks in the figure represent different sizes of the caches, where a

portion of the cache is power gated for smaller allocations.

9.3.2 Application Profiling

The goal of the application profiling step is to capture an application’s execu-

tion behavior (e.g. instructions per cycle, cache misses, macro/micro operations,

etc.) and quantify how it uses available hardware resources (e.g. ALUs, registers,

147

caches, etc.) as well as how it is affected by its data input parameters (e.g. jpeg,

mpeg, audio, etc.). Application profiling provides essential information about

an application’s achievable performance (instruction-level parallelism) and power

consumption (functional unit switching capacitance), enabling key energy and

speed trade-offs to be analyzed on both a per-application and a per-hardware

allocation basis.

We utilize the cycle-accurate SimpleScalar simulator for acquiring per applica-

tion profiling statistics for each considered hardware allocation [40]. The recorded

statistics include the number of instructions, execution cycles, and functional unit

activity. As a result, a unique profiling result is generated for each hardware al-

location and can be compared across different hardware allocations at identical

time frames by their instruction count id. Note that instruction cycles cannot be

used since cache sizes, number of functional units, and bus-width, for example,

each potentially impacts the total required execution cycles of an application if

the hardware allocation was altered during runtime. Thus, we use the instruction

id as a synchronization mechanism to compare profiling statistics across various

hardware allocations enabled by power gating.

We profile each considered benchmark for each hardware allocation. Profil-

ing at different voltages is not required since voltage scaling primarily impacts

the operational speed or clock frequency. Note that more sophisticated profiling

must be conducted for an asynchronous processor where the clock rate may vary

across functional blocks. However, for our experimental platform we consider a

synchronous in-order processor platform that operates at a single global voltage,

where all functional units operate at a unified clock rate.

Application profile results can also indicate periods of high application- and

hardware-level parallelism, further improving allocation of tasks to available con-

figurations. For example, periods of high instruction throughput can be assigned

configurations set at lower voltages, while periods of low throughput can be as-

148

signed at higher voltages in order to speed up the execution of the bottleneck while

minimally impacting energy consumption. A similar approach is found on con-

ventional modern microprocessors by transitioning to turbo-mode, which operates

by assigning periods of low thread-level parallelism to higher clock frequencies in

order to maximize energy efficiency. Our approach differs since we alter both the

hardware platform via power gating and speed via DVS techniques.

The functional unit activity for each profile can then be processed through an

event-driven power simulator such as Wattch in order to generate energy results

for each hardware allocation setting [43]. We extract the energy and timing values

at a fine subtask granularity. The minimum task size (or subtask) should be sized

in accordance to the minimum configuration switching overhead break-even point;

for our experiments, we set the minimum subtask granularity to be 10 instructions.

Profiling at smaller granularities would incur long simulation run times. However,

in many cases fine granularity profiling can be performed since it must be done

only once for each considered application, input set, and hardware allocation and

is done off-line.

9.3.3 Single Task Allocation

Dabiri et al. described a technique for using at most two configurations to achieve

any virtual operating speed [18]. Consider a simple example where there are two

configurations c1 and c2. To run the system at virtual speed s∗ (s1 ≤ s∗ ≤ s2) for

a given interval [a, b], where s1 and s2 are the speeds of configurations c1 and c2,

respectively, for the given task (obtained from profiling), we use configuration c1

for t1 seconds and c2 for t2 seconds. We calculate t1 and t2 as:

t1 =
s2 − s∗

s2 − s1

× (b− a), t2 =
s∗ − s1

s2 − s1

× (b− a) (9.1)

where s∗ is the weighted average speed when the system is run at speeds s1 and

149

Figure 9.2: Convex enclosure comprising configurations A, B, C, and D over all

configurations. The virtual speed s∗ can be achieved by utilizing speeds s1 and s2

under configurations B and C, respectively.

s2, indicating that in the duration of [a, b] the system was operating at the virtual

speed of s∗. The key result is that at most two configurations on the convex

enclosure of the speed-energy trade-off curve of available configurations can be

used to obtain any virtual speed of execution using provably minimal energy. The

convex enclosure can be defined as the convex, piecewise linear curve connecting

points such that all points are either on the enclosure or above and to the left of

it.

Figure 9.2 provides an example of a convex enclosure for an example task with

15 candidate configurations. Black diamond points (A, B, C, and D) represent

configurations comprising the convex enclosure. An optimal virtual speed s∗ can

be achieved by executing the task on at most two configurations on the convex

enclosure that bound that virtual speed. Recall that the durations of execution on

either configuration can be calculated using Equation 9.1. The convex enclosure

property ensures that no other combination of configurations can execute the task

at virtual speed s∗ with lower energy. In this example, configuration B would be

150

Table 9.1: Hardware allocation parameters.

Allocation IDC LSU ALU MUL L1 L2

1 2 2 2 1 16KB none

2 2 4 2 1 16KB 32KB

3 4 4 4 2 16KB 32KB

4 4 8 4 2 16KB 32KB

5 8 8 8 2 32KB 64KB

used for time t1 and configuration C for time t2.

Note that because the optimal solution uses at most two configurations, it

requires a maximum of only one configuration switch; therefore, the configuration

switching overhead is negligible for reasonable task lengths. However, this ap-

proach optimizes for only a single task and is optimal only under the assumption

that energy consumption is uniform within a task. However, often a computing

platform must execute a variety of expected applications, each of which has dif-

ferent degrees of instruction-level parallelism and functional unit usage through-

out execution. Our goal is to provide a technical approach to allocating both

time and hardware to execute multiple tasks and subtasks with minimal energy

while maintaining execution deadlines in the presence of both uncertainty and

configuration-switching overheads.

9.3.4 Simulation Environment and Models

The SimpleScalar -ARM cycle-accurate simulator was used to profile application

traces for up to 10 million instructions on the hardware allocations shown in Table

9.1 [40]. We used McPAT [50] to extract dynamic and leakage power values for

each allocation. We construct our power model to support five hardware alloca-

tions, with each allocation capable of operating at five discrete supply voltages

and frequencies (0.6V at 450 MHz, 0.7 at 600MHz, 0.8V at 850 MHz, 0.9V at 1.0

151

GHz, and 1.1V at 1.15 GHz). We utilize a Wattch-based power model to obtain

the total energy consumption values for each application at each configuration by

using the recorded application profiling results for each functional unit and ap-

plying its respective power cost. It is important to note that the total execution

time is required for accounting for leakage energy.

9.3.5 Configuration Switching Overhead

Switching between configurations has potentially two sources of overhead: 1)

power gating overhead caused by switching between hardware allocations (pg);

and 2) voltage scaling overhead (dvs). Therefore, the total energy overhead εi→j

is the sum of the two components εpgi→j and εdvsi→j, while the total delay overhead

is the maximum between δpgi→j and δdvsi→j.

9.3.5.1 Power gating

Power gating has been used as an effective leakage energy saving technique and

operates by disconnecting the supply voltage source to the circuit block of interest.

We adopt the formulations presented by Hu et al. in accounting for energy and

delay transition overheads [32]. We compute the total energy overhead εpgi→j for

switching from configuration ci (with operating voltage vi and switching capaci-

tance Ci defined by the hardware allocation) to configuration cj as the amount of

energy required to drive the device headers to both power off the blocks present

in ci and power on those in cj, shown below:

εpgi→j = WH · (Ci · v2
i + Cj · v2

j). (9.2)

where WH represents the ratio of the total area of the header device to the total

area of the power-gated component. As in the work by Hu et al., we use the

typically quoted ratioWH = 0.1 and assume a constant delay overhead of δpgi→j = 10

clock cycles for powering up or down functional units.

152

9.3.5.2 Dynamic voltage scaling

We adopt energy and time overheads when scaling voltages provided by Burd et

al. [41], reproduced below,

εdvsi→j = (1− η) · Creg · ‖v2
j − v2

i ‖ (9.3)

δdvsi→j =
2 · Creg
Imax

· ‖vj − vi‖ (9.4)

where η and Creg are the voltage regular efficiency and load capacitance, respec-

tively, and Imax is the circuit’s maximum drive current. We adopt the standard

values of Creg = 10 µF and Imax = 1 A to estimate delay and energy overheads

roughly on the order of tens of µs and µJ, respectively.

9.4 Customization: Hardware Configuration Selection

The goal of this step is to define a subset of candidate hardware configurations

that will be implemented in the final system architecture. Recall that a single

configuration consists of a single hardware allocation and supply voltage pair;

each hardware allocation is obtained by power gating subsets of microarchitectural

components (e.g., functional units), and we can support discrete supply voltages

at any arbitrary granularity in our optimization formulation. The key motivation

for this problem is that area and energy overheads for power gating circuitry may

be too high to support a very large number of configurations. Therefore, limiting

the total number of supported configurations while minimizing total expected

energy consumption is a crucial goal.

Assumptions. N tasks have been profiled for each of V ·M hardware configu-

rations; resulting speed-energy points for each task on each configuration have no

uncertainty; the tasks are of sufficient length that configuration switching over-

heads are negligible; a distribution of runtime deadlines and frequencies for each

task are expected; the origin (all hardware powered off) is always a supported

153

(a) Task type 1

(b) Task type 2

Figure 9.3: Example speed-energy trade-offs for two tasks ti = 1 (a) and ti = 2

(b) with 4 configurations A, B, C, and D. Shown are each task’s distinct convex

enclosures and expected virtual speed requirements of s∗i,1, s∗i,2, and s∗i,3.

154

configuration.

Problem Formulation. Our goal is to determine the best K configurations

(2 ≤ K ≤ V ·M) in terms of minimizing total expected energy consumption while

satisfying all expected task deadlines.

For example, consider the case where there is only a single task. In this

case, only the configurations that provide points on the convex enclosure should

be considered, as any other (virtual) speed can be obtained with lower energy

using a combination of at most the 2 surrounding points (actual speeds) on the

convex enclosure. For K = 2, where only a single configuration (in addition to the

origin) will be supported by the hardware, this configuration must provide a speed

that will meet any expected deadline for the task. To meet the deadlines while

consuming minimal energy, the optimal point is the lowest speed configuration

(leftmost point) on the convex enclosure that is faster than (to the right of) the

fastest (rightmost) expected required speed. This result is intuitive from the

definition of the convex enclosure; this point on the convex enclosure can produce

the fastest required speed with the lowest possible energy. The energy consumed

will be the energy value for the line connecting the selected configuration and the

origin, as the hardware can be power gated once the task is complete.

For K > 2, we develop a dynamic programming based approach to find the

K configurations that can meet expected deadlines with optimal energy. Again,

we assume that the origin and lowest speed configuration that is faster than any

expected deadline are 2 included configurations. The approach is described in

Algorithm 5. The essence of the algorithm is that if we consider points from

left to right, optimal substructure is maintained in the sense that the best K

configurations up to configuration ci will include the solution with minimum cost

among the solutions for the best K − 1 configurations up to all configurations

cj, j < i. The cost in this case is the weighted integral between the selected

points and the complete convex enclosure up to the fastest included configuration,

155

Algorithm 5 Configuration Selection

1: Inputs:

2: speed-energy points (sij, eij), 1 ≤ i ≤ M , 1 ≤ j ≤ N for running task ti at

configuration cj, sorted for each task by increasing speed

3: expected frequencies of occurrence fi for each task ti

4: expected probability distribution function Pi(s
∗) of expected speed deadlines

s∗ for each task ti

5: K, the number of configurations supported by the hardware, K > 2 (since

the origin and fastest configuration are always included)

6: Output:

7: a table O, where a cell oij represents the cost corresponding to the best j

configurations up to the ith configuration (note that the best K configurations

can be extracted by bookkeeping while building the table, which is omitted

from this description)

weighted by the expected probability of the particular speed requirements. This is

again because selecting all points on the convex enclosure represents the provably

optimal solution for all deadlines.

The problem becomes more challenging in the general case where there is more

than one expected task, but it can still be solved optimally for many practical

examples. In this case, attention cannot be restricted to the convex enclosures,

because each task may in general have different configurations on their enclosures.

Therefore, there are two required modifications to support multiple tasks: i) all

points must be considered, not just those on the convex enclosure; and ii) the

integral is calculated over all tasks, weighted both by probability of the particular

speed requirement as well as expected frequency of the particular task.

Note that configurations may produce points in different orders in terms of

speed for different tasks. In other words, if configuration ci is faster than configu-

156

ration cj for task ta, it may be slower for task tb, due for example to differences in

locality of memory accesses that cause caches of different sizes to produce different

trade-offs in speed and energy. This phenomenon results in sub-optimality of our

dynamic programming formulation when multiple tasks are considered. However,

because it occurs under relatively rare conditions, and mainly for configurations

that produce relatively similar speeds of execution, the approach is still highly

effective and indeed optimal for many practical examples.

A small example of the configuration selection problem is shown in Figures 9.3a

and 9.3b, where two tasks are shown. Each task is expected to have one of three

deadlines, resulting in three expected minimum speed requirements (s∗1,1, s∗1,2, and

s∗1,3 for task 1, and s∗2,1, s∗2,2, and s∗3,2 for task 2), with equal likelihood. Note that

the expected deadlines can follow any arbitrary distribution. Also assume that

the two tasks are expected with equal frequency, though this can also be arbitrary.

The 4 possible hardware configurations are labeled as A, B, C, and D. Recall that

configuration A is the origin and represents the state when the entire system is

completely power gated (except for any power management logic). Note that the

convex enclosure is different for each task (e.g., all 4 configurations are on the

convex enclosure for task 1, but C is not on the enclosure for task 2).

Also shown are grey and blue dashed lines that represent the cost of selecting

various subsets of configurations. For example, if only configurations A and D are

selected, then the mean average of the lengths of the six blue dashed line segments

between the convex enclosures (solid) and the grey dashed line connecting A and

D is the expected energy cost of selecting this particular subset. If each deadline

was expected with different likelihoods, or each task was expected at different

frequencies, then the weights of the corresponding line segments must be adjusted

accordingly.

157

9.5 Adaptation: Time Allocation

Once the hardware configurations have been finalized, the next phase is to de-

velop an adaptive time allocation algorithm that allocates tasks or subtasks to

particular hardware configurations for particular amounts of time. In this phase,

the goal is to minimize total energy by assigning an execution time and hardware

configuration to each task or subtask given a global execution deadline. We ad-

dress time allocation under the following two scenarios: i) detailed task analysis

is not practical, in which case tasks can only be subdivided into coarse-grained

subtasks or not at all; and ii) accurate profiling of a task is practical, and there-

fore the task can be split into multiple subtasks at a very fine granularity. In

the former case, configuration switching overheads (for power gating and voltage

scaling) are negligible in the case where task intervals are significantly longer than

the switching overheads. However, in the latter, switching overheads impact the

final result due to the finer task scheduling granularity and thus optimality can

no longer be guaranteed.

9.5.1 Coarse-Grained Profiling

Assumptions. N tasks (or subtasks) have been profiled for each supported hard-

ware configuration; resulting speed-energy points for each task on each configura-

tion have no uncertainty; each task ti can be run on Ci configurations ci,1, ci,2, ...,

ci,Ci on its convex enclosure with speeds si,1, si,2, ..., si,Ci , respectively; the tasks

are of sufficient length that configuration switching overheads are negligible; and

an overall speed requirement sglobal is expected.

Problem Formulation. Our key objective is to determine the set of config-

urations with which to process a given set of tasks such that the total energy

consumption of the system is minimized, while completing within a specified dead-

line. Recall that for a single task ti, a target speed s∗i can be achieved optimally

158

in terms of energy using the method described in Section 9.3.3. Therefore, this

problem can be reduced to finding the set of speed requirements s∗i for each task ti

such that the global speed requirement sglobal is met with minimal overall energy

consumption.

We solve this problem using convex or piecewise linear programming. Each

piecewise-linear segment corresponds to the line segment connecting two consec-

utive configurations on the convex enclosure of a task. The energy consumed by

each task can be represented by the equations below:

e∗i (s
∗
i) =



fi,1(s∗i) si,1 < s∗i ≤ si,2

fi,2(s∗i) si,2 < s∗i ≤ si,3

...

fi,Ci−1(s∗i) si,Ci−1 < s∗i ≤ si,Ci

(9.5)

The energy consumed per task e∗i (s
∗
i) is a function of the energy-speed slope

fi,j(s
∗
i) between the speed interval (si,j, si,j+1] that includes the virtual speed s∗i .

Since the energy-speed slope for each task is a linear function of speed, we can

determine the ratio of time spent, xi,j for task ti under configuration cj. The

objective is to minimize the total energy for all tasks:

min
N∑
i=1

e∗i (s
∗
i) (9.6)

subject to the constraints:

Ci∑
j=1

si,j · xi,j = s∗i ∀i (9.7)

Ci∑
j=1

xi,j = 1 ∀i (9.8)

0 ≤ xi,j ≤ 1 ∀i, j (9.9)
N∑
i=1

1

s∗i
≤ 1

s∗global
˜ (9.10)

159

Equations 9.7-9.9 specify that the achieved virtual speed s∗i for each task may

only be achieved by utilizing real speeds from actual configurations for a total of

100% of the allotted time. Equation 9.10 provides the guarantee that the time

allotted for each task must satisfy the global execution time deadline. Therefore,

the convex piecewise-linear formulation determines the optimal virtual speed for

each task (s∗i) such that the global speed deadline is met and the total energy for

all tasks is minimized. It is important to note that because the formulation is

convex, the optimal solution will include at most 2 consecutive configurations for

each task.

Furthermore, the solution is globally optimal under the following assumptions:

1. Tasks are long enough that energy and delay for switching configurations is

negligible. The formulation does not consider energy and delay overheads for

configuration switching. The key observation is that because there is only at

most one configuration switch for each task, and at most one configuration

switch between tasks, the time and energy spent in context switching is

negligible compared to the overall time and energy expenditure.

2. Energy consumption is constant throughout the execution of a task. The

formulation does not differentiate between which portions of a task are ex-

ecuted under which configuration. It simply determines the ratios of time,

xi,j1 and xi,j2, for which to execute task i under configurations ci,j1 and ci,j2,

respectively; the actual sections of the task that are run under each config-

uration are arbitrary. However, energy consumption within a task is highly

variable, as we discuss in the next subsection. Therefore, we use this formu-

lation only when application profiling is coarse-grained (i.e. tasks are split

into relatively long sub-tasks) and thus the energy consumption distribution

within a subtask is unknown.

160

(a)

(b)

Figure 9.4: Non-uniform task power consumption (solid lines) and average power

consumption (dashed lines) for jpegdec application under two subtask block sizes:

b=15 (a) and b=3 (b). Displayed percentages denote the error from assuming

a uniform power consumption within a block. Subdividing a task into smaller

subtasks enables greater accuracy as shown by reduced error achieved by block

size b = 3 (18.6% overall error) vs. the error achieved with b = 15 (82.8% overall

error).

161

9.5.2 Fine-Grained Profiling

Assumptions. N tasks (or subtasks) have been profiled for each supported hard-

ware configuration; resulting speed-energy points for each task on each configu-

ration have no uncertainty; each task ti can be run on Ci configurations ci,1, ci,2,

..., ci,Ci on its convex enclosure with speeds si,1, si,2, ..., si,Ci , respectively; con-

figuration switching delay and energy overheads are εj→k and δj→k, respectively,

for switching from configuration ci,j to ci,k for any task ti; and an overall speed

requirement sglobal is expected.

Problem Formulation. Our objective is to allocate a single configuration to

each task such that total energy consumption of the system is minimized while a

specified global execution deadline is satisfied. In this case, because configuration

switching overheads are potentially significant (i.e. tasks are of relatively small

length), each task is run on only a single configuration and thus the virtual speed

of a task is equivalent to the actual speed of the configuration.

Figures 9.4a and 9.4b show the actual non-uniform power consumption of a

task, jpegdec (solid lines). In Figure 9.4a, the task is profiled at a block size

of b = 15 instructions, with uniform power consumption assumed within the

block, leading to an average error of 82.8%. In Figure 9.4b, a much smaller

block size b = 3 is used for fine-grained profiling, leading to a much smaller

average energy of only 18.6%. This error ultimately translates to suboptimal

configuration assignment to subtasks, and therefore minimizing it should be a

crucial goal. Therefore, tasks should be profiled at as small a granularity as is

practical to minimize energy.

However, recall that at this granularity, configuration switching overheads be-

come significant. To solve the configuration allocation problem under these condi-

tions, we propose another dynamic programming approach, summarized in Figure

9.5. We construct a directed acyclic graph (DAG), where each node represents

162

the energy and time expenditure for running a block of instructions (or subtask)

bi, 1 ≤ i ≤M on configuration cj, 1 ≤ j ≤ C. A directed edge between two nodes

represents the energy and time overheads for switching from the first configuration

to the next. In the figure, each vertical stage corresponds to a single subtask or

block, and each horizontal set of nodes corresponds to a single configuration, with

edges from all configurations at one block to all configurations at the next block.

There is also a single start node and a single end node.

The minimal energy set of configurations on which to execute each subtask

with global speed requirement sglobal, then, corresponds to the shortest path from

the start node to the end node in terms of energy while not exceeding the global

time constraint. This can be solved using the standard dynamic programming

approach, with the following caveat. In order to prevent combinatorial explosion

of paths that need to be maintained (in order to meet the speed requirement), a

minimal amount of bookkeeping must be performed. This bookkeeping maintains

at each node only a maximum number of representative Pareto optimal points

in terms of speed and energy. In other words, we conduct uniform sampling of

Pareto optimal speed-energy points at each node.

163

cm

c2

c1

cm

c2

c1

cm

c2

c1

...

...

...

...

...

... ...

o m
,1

o m
,2

o m
,1

o m
,2

o m
,1

o m
,2

b1 b2 bm

o
1,2

o
1,2

o
1,2o

1
,m

o
1
,m

o
1
,m

Task Block Segments

H
ar

d
w

ar
e

 C
o

n
fi

gu
ra

ti
o

n
s

Figure 9.5: Directed acyclic graph (DAG) for obtaining the shortest path when

considering switching overheads, as formulated by our dynamic programming ap-

proach. Each node (c1, c2, ..., cm) per block column represents a given configura-

tion setting (m possible configurations). Energy and delay overheads are modeled

with Oi,j where i, where i 6= j.

164

Table 9.2: Expected norm-energy of supporting only K out of N configurations, where N = 26 (5 allocations at 5 voltages, plus

the configuration where all components are powered off). Values are normalized between 0 and 100, where 0 is the optimum case

(K = N) and 100 is the base case (K = 1). Results for K > 17 are optimal for all benchmarks and are therefore not shown.

bench 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

adpcmdec 40.8 6.7 1.3 0.3 0.1 0 0 0 0 0 0 0 0 0 0 0

adpcmenc 41.8 8.2 2.1 0.7 0.3 0.1 0 0 0 0 0 0 0 0 0 0

unepic 39.5 7.6 2.1 0.7 0.3 0.1 0 0 0 0 0 0 0 0 0 0

epic 39.4 7.6 2.2 0.8 0.3 0.1 0 0 0 0 0 0 0 0 0 0

g721dec 43.7 6.0 2.0 0.7 0.2 0.1 0 0 0 0 0 0 0 0 0 0

g721enc 40.5 8.4 2.1 0.7 0.3 0.1 0 0 0 0 0 0 0 0 0 0

gsmdec 41.8 7.5 1.9 0.9 0.3 0.1 0 0 0 0 0 0 0 0 0 0

gsmenc 24.7 4.6 1.0 0.5 0 0 0 0 0 0 0 0 0 0 0 0

jpegdec 24.8 4.6 1.0 0.5 0 0 0 0 0 0 0 0 0 0 0 0

jpegenc 42.8 7.0 1.3 0.3 0.1 0 0 0 0 0 0 0 0 0 0 0

mpeg2dec 26.2 5.4 1.8 0.7 0.4 0 0 0 0 0 0 0 0 0 0 0

mpeg2enc 41.6 7.2 2.0 0.9 0.3 0.1 0 0 0 0 0 0 0 0 0 0

*dec 35.5 14.6 8.7 4.3 3.9 3.8 3.5 3.0 2.9 2.7 2.4 2.3 1.8 1.2 1.1 0

*enc 38.3 13.3 6.7 3.2 1.7 1.5 1.2 0 0 0 0 0 0 0 0 0

all 37.3 13.7 6.0 3.4 2.5 2.3 2.0 1.9 1.6 1.5 1.4 1.4 1.3 .9 .9 0

165165165

9.6 Experimental Results

In this section, we present the experimental results for our approaches using 12

standard benchmarks and 26 hardware configurations, composed of 5 base hard-

ware allocations, 5 possible operating voltage, and one configuration representing

the situation where all hardware is power gated off.

9.6.1 Hardware Configuration Selection

Table 9.2 presents experimental results for the procedure described in Section 9.4,

where an optimal set of K out of a total N configurations is selected to support

expected tasks and their speed requirements with minimal expected energy. We

conducted configuration selection for 15 different scenarios: 12 in which only 1

task is expected (each individual benchmark) and 3 in which multiple tasks are

expected with equal frequency. The latter set of scenarios consists of all decoder

benchmarks, all encoder benchmarks, and all benchmarks. In all scenarios, we

used a uniform distribution of speed requirements ranging from no deadline to

the fastest possible execution speed.

Each row in the table represents one of these scenarios. There is one column for

each value of K, representing the number of configurations that can be supported

by the hardware. The values in the table correspond to the energy cost for picking

the best K configurations, normalized between 0 (optimal) and 100 (K = 1). Note

that the configuration in which all hardware is gated off is always supported, and

that K > 17 is optimal for every scenario, so we omit these results in the table.

We can see from the results that the cost of having a very low K is high, but

drops significantly quickly as K is increased. In fact, for the single-task scenarios,

K > 7 is always optimal. This is because there are at most 7 configurations

on the convex enclosure of each task (6 for adpcmdec and mpeg2∗, and 5 for

gsmenc and jpegdec. For the latter 3 scenarios, a much higher K is needed for

166

the optimal solution, but again the energy cost drops quickly at first as K is

increased. The ramification is that the hardware (e.g. power gating circuitry)

need only support a small number of hardware configuration to approach the

optimal energy consumption.

9.6.2 Time Allocation

In this subsection, we evaluate the approaches proposed in Section 9.5, where a

single task or set of tasks (or subtasks) are assigned hardware configurations on

which to execute to minimize energy in the presence of a global speed requirement.

Specifically, we evaluate the energy consumption using the following four methods:

a) DVS alone, using the best single configuration that satisfies the deadline; b)

DVS and power gating under the assumption of uniform energy consumption

across the entire task; c) DVS and power gating after coarse-grained task profiling

to reduce the error in energy estimation; and d) DVS and power gating after fine-

grained task profiling to further minimize energy.

We use the first approach as a baseline for comparison, where only a single

hardware allocation under multiple voltage settings is supported by the hardware

platform. The second approach is the one proposed by Dabiri et al., where at

most two configurations are used throughout the execution of the task. Finally,

the third and fourth are evaluations of our approaches presented in Sections 9.5.1

and 9.5.2, respectively. For coarse-grained and fine-grained profiling, we profiled

the benchmarks using block sizes of 100,000 and 10,000 instructions, respectively.

Note that in order to do a fair energy comparison, we evaluate all approaches

under the same hard performance constraint, which was set to mid-range achiev-

able clock frequency of 800MHz. Figure 9.6 presents the energy consumption for

each of the four considered configuration selection methods. The results are nor-

malized to the energy consumed by the best single configuration (1-conf.) that sat-

167

isfies the desired deadline or performance constraint. We compared the 1-conf. re-

sult against the best 2-configuration result (2-conf), our convex programming ap-

proach under coarse-grained profiling (cv), and our dynamic programming-based

approach under fine-grained profiling (dp). We again evaluated the approaches

were evaluated under three task set assumptions: 1) per application (single task);

2) separate encode (∗enc - 6 tasks) and decode (∗dec – 6 tasks) classes; and 3) an

aggregate task set comprised of all benchmarks (∗all - 12 tasks).

The results in Figure 9.6 demonstrate the additional benefits of assigning con-

figurations at smaller subtask granularities. Our results indicate that increasing

the number of configuration selection opportunities, achieved by decreasing the

subtask size, is shown to achieve greater savings. The number of configuration

selection opportunities is 1, 2, 10, and 100 for 1-conf, 2-conf, cv, and dp, respec-

tively. The best configuration that can be selected for the 1-conf is for the case

where the specified timing constraint falls exactly on the same energy and speed

point of a base configuration. A 1-conf. solution would yield the same result as

2-conf since the virtual speed derived using only one configuration for the entire

task would be used. As a result, the additional savings achieved by a 2-conf.

method over the 1-conf. is limited by the difference between the two surrounding

configurations on the convex enclosure. Our results show that utilizing 2-conf.

achieves a 3.39X max (1.46X avg.) savings over the best individual configuration

1-conf.

Additional energy savings is achieved by subdividing the entire task into

smaller subtask sizes, and is shown by the convex programming solution cv. For

the cv results, the entire task (10M instructions) was subdivided into equal 100K

instructions, grouped into subtasks. The convex programming solution deter-

mines the optimal time allocation for each subtask. As a result, the cv method is

guaranteed to obtain a solution that achieves greater savings than 2-conf. by lever-

aging the non-uniform energy and speed behavior across the subdivided subtasks,

168

achieving up to 4.64X max (2.44X avg.) energy savings over 1-conf. Therefore, a

convex programming solution capable of assigning configurations at smaller sub-

task granularities will always yield a superior solution. Recall that in this case,

configuration switching overheads are negligible due to long tasks size with respect

to the switching granularity (assuming the convex enclosure for each subtask is

different).

Eventually the overhead transitions incurred by configuration switching at

smaller subtasks reach a limit where the energy and speed costs become com-

parable to costs associated in running the task under a constant configuration.

Therefore, in order to maximize energy savings for these scenarios, it becomes

even more critical that configurations are selected in such a way that energy

is minimized without compromising performance targets. For our experiments,

subdividing tasks into equal 100 subtasks (e.g., 1K instructions = 1M
100

) results

in comparable consumed energy and latency requirements to the associated en-

ergy (6-20 µJ) and timing transition costs (µs or approx. 600-3000 clock cycles)

when performing DVS. Power gating overheads were negligible at these subtask

granularities. Therefore, a convex programming solution capable of assigning con-

figurations at a subtask granularity of 100 subtasks would produce a solution that

will potentially violate timing constraints. The convex programming solutions

are limited since there is no notion in the formulation of the configuration of the

previous or subsequent tasks. Although this solution is provably optimal, it is so

only in the case where overheads are negligible.

A dynamic programming dp solution becomes a natural choice for configura-

tion selection at ultra-fine subtask granularities. Our results show that it consis-

tently generated the minimal energy configuration among the considered methods,

achieving up to 8.27X max (4.11X avg.) energy savings while satisfying timing

constraints. The dynamic programming solution achieves the best solution due

to its advantage of assigning configurations at smaller granularities, effectively

169

leveraging energy and speed trade-offs across all subtasks of a given application

or application set, while accounting for transition overheads.

170

Figure 9.6: Energy consumption for each task and task set *{enc, dec, all} under various energy reduction methods: 1) best

single configuration (1 conf.); 2) best two configurations employing DVS and power gating (2 conf.); 3) convex optimization

with coarse-grained profiling (cv); and 4) dynamic programming with fine-grained profiling (dp).

171171171

9.7 Summary

We have presented a framework that addresses energy minimization while account-

ing for performance constraints in the context of determining hardware configura-

tions and task time allocation. First, we have presented a dynamic programming

formulation for determining the energy optimal hardware configurations for run-

ning a set of expected tasks or applications, while meeting target performance

requirements. Furthermore, given a set of operating configurations and a set ap-

plication behavior, we have presented algorithms for energy optimization under

the following two scenarios: 1) application profiling is done at a coarse granularity

and therefore tasks are long enough to render configuration switching overheads

negligible (convex enclosure and convex programming); and 2) application pro-

filing is done at a fine granularity, where configuration switching overheads are

significant (dynamic programming). Finally, we have evaluated our algorithms

and conducted quantitative comparison with previous approaches across 15 sets

of 12 real applications, achieving up to 4.64X (2.44X average) energy improve-

ments.

172

CHAPTER 10

Concluding Remarks

We have developed a set of multi-phase energy minimization synthesis techniques

that have addressed low to high-level synthesis objectives spanning pre- and-post-

silicon domains. Each presented technique conducts energy minimization to sat-

isfy a specified performance target, such as delay or execution time. Additional

energy reductions over conventional approaches were achieved by conducting our

coordinated multi-phase optimization techniques that address the three major un-

certainty factors: 1) technological; 2) application; and 3) optimization. We show

that accounting for uncertainty factors in new ways in deep submicron regimes

can enable significant energy reductions and yield improvements.

We began in Chapter 3 by presenting a new and efficient cut-based gate-sizing

technique to account for accurate gate switching activity, input vector leakage

state, and application duty-cycle uncertainty factors in the objective function.

Significant energy reductions between 1 to 62% (29% avg.) were achieved over

an equivalent gate sizing approach that did not. Improvements were achieved by

enabling the optimization tool to perform more efficient energy and speed trade-

offs by leveraging the variability in gate-level switching and leakage power across

a given circuit design. The impact of duty-cycle requirements were also shown

to influence the obtained minimum energy configurations, since the impact of

switching and leakage energy contributions can also vary greatly depending on

the relative weights of active and idle period requirements of a given design.

Chapter 4 builds upon the previous chapter by leveraging accurate tempera-

173

ture heat maps when conducting gate sizing/VTH techniques. Only leakage power

was addressed, however, since the objective here was to minimize leakage energy

in standby-mode and to leverage its exponential dependency on temperature in

order to achieve greater energy and speed trade-offs. The advantage of utilizing

accurate temperature knowledge over techniques that do not was shown through

the achieved incremental energy improvements when applying a set of coordinated

multi-phase leakage minimization, such as input vector control, gate replacement,

and input-pin reordering techniques. The application of these standard techniques

in new coordinated ways motivates the use of iterative refinement for achieving

additional energy reductions, as each step results with a new optimization search

space. Leakage energy reductions of up to 5.6X (2.3X avg.) were achieved by ac-

counting for temperature at the gate-level through specified temperature corners,

which enabled more efficient sizing and VTH selection trade-offs to be made when

conducting the aforementioned popular leakage minimization techniques.

Next, the impact of process variation (PV) was investigated when conducting

gate-sizing and VTH selection in the near-threshold computing (NTC) regime. An

NTC optimization design platform is selected, since delay variation is one of the

major challenges to overcome [61]. In this chapter, we presented a novel scenario-

based approach for conducting efficient yield optimization by incorporating an

efficient circuit partitioning scheme for conducting efficient gate-sizing and VTH

selecting under PV uncertainty. The objective was to simultaneously maximize

the number of circuit instances that meet specified timing requirements and min-

imize energy consumption among valid instances. Promising results in terms of

power reductions of up to 4.4X (3.3X avg.) with respect to identical timing con-

straints and delay yield targets, when comparing our PV-aware yield optimization

approach over a state-of-the-art gate-sizing and VTH technique that did not take

PV uncertainty factors into account [60].

The next two chapters focused on applying gate-level transformations for en-

174

abling additional energy reductions. Starting in Chapter 6, the impact of PV

on yield is addressed by applying a gate-level sequential circuit unfolding trans-

formation to enable additional improvements with respect to target delay and

energy yield objectives. Unfolding was shown to be effective in minimizing delay

variations, since the delay variations were cancelled or average out across a logic

depth. Furthermore, conducting unfolding as a pre-processing step enabled more

efficient gate-sizing/VTH achieved delay improvements (per result), thus, reducing

the amount of additional speed (delay reduction) to be achieved via gate-sizing.

Therefore, applying gate sizing/VTH on a post-unfolded circuit required less cells

to be placed at high power configurations, thus, minimizing the area overhead

incurred by replication and achieve greater energy efficiency. Significant improve-

ments of up to 15.4X in energy and 1.8X in throughput with respect identical

delay yield targets were achieved when applying our unfolding technique.

Chapter 7 applies a series of retiming techniques for enabling additional en-

ergy reductions using dual-VDD optimization. The first step applies minimum

delay retiming to reduce the requirement of placing cells at high VDD to achieve

a specified speed target. Next, in order to further achieve energy savings through

dual-VDD application, the number of flip-flops is reduced through a min-cut pro-

cedure, without impacting the current delay target, in order to reduce the number

of cells to be placed at high-VDD. Energy reductions between 8 to 57% (33% avg.)

were achieved by conducting these steps in concert.

We then transitioned architectural domain and presented two high-level syn-

thesis techniques for conducting energy minimization techniques at pre- and -post-

silicon domains were presented. In Chapter 8, we present a provably minimal en-

ergy offline hardware adaptation scheme, where hardware resources are adapted

by coordinated power gating and dynamic voltage scaling (DVS) procedure. To

identify the best hardware allocations to use for a given set of configurations,

a convex programming formulation was used and we proved that the minimum

175

energy point can be achieved by using at most two configurations that lie on

the convex bounding curve. Optimality, however, is only preserved under the as-

sumption that the power profile for an assigned task is uniform. Energy reductions

between 1.4 to 1.9X were achieved under the specified assumptions.

Chapter 9 presented two a fine-grained hardware adaptation techniques which

applies an identical procedure as in Chapter 8 by sub-dividing a given task into

smaller subtasks. Also presented is a path-finding procedure using dynamic pro-

gramming formulation where, the task is to construct a given hardware architec-

ture platform using a set of functional units (e.g., caches, ALUs, and etc.) and set

of predicted tasks (or subtasks) to run. It was shown that a relatively small set

of available hardware allocations (e.g., 7 out of 26) were needed to achieve mini-

mum energy. Next, once the given architecture has been specified, the next step

is similar to previous chapter. The methods we propose in this chapter, however,

differs from Chapter 9 since minimum energy is solved under two assumptions.

The first assumption assumes that the hardware transition overheads (e.g., DVS,

power gating) are considered to be negligible and is the case when tasks lengths

are long enough to mask the effects of transition overheads. A convex piecewise

linear formulation is presented for achieving minimal energy for a given timing

constraint. Additional energy reductions were achieved over the methods pre-

sented in Chapter 9, showcasing the benefits by sub-dividing long tasks blocks

into smaller segments to enable additional energy and speed trade-offs. The sec-

ond assumption assumes that the tasks lengths are such that their power, energy

and timing costs are comparable to pertaining DVS and power gating transition

costs, thus, requiring transition overheads must be taken into account. A dynamic

programming formulation was presented to address this case. The obtained sched-

ule is the minimal energy allocation for the given delay target. The drawback of

this procedure, however, is that the timing constraint relaxed to solvable. There-

fore, if a given schedule cannot satisfy a target delay, the dynamic procedure can

176

be re-applied with slight modifications in available hardware allocations until the

target delay is met. Energy reductions of up to 4.6X (2.4X avg.) were achieved

using our approach.

177

References

[1] Advanced Configuration and Power Interface (ACPI), http://www.acpi.info,
2012.

[2] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle,
“Managing energy and server resources in hosting centers,” ACM Operating
Systems Principles, pp. 103-116, 2001.

[3] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU
energy,” IEEE Foundations of Computer Science, pp. 374-382, 1995.

[4] N. Bansal, T. Kimbrel, and K. Pruhs, “Dynamic speed scaling to manage
energy and temperature,” IEEE Foundations of Computer Science, pp. 520-
529, 2004.

[5] T. Ishihara and H. Yasuura, “Voltage scheduling problems for dynamically
variable voltage processors,” Low Power Electronics and Design, pp. 197-202,
1998.

[6] J.-J. Chen, T.-W. Kuo, and C.-S. Shih, “1+ε approximation clock rate as-
signment for periodic real-time tasks on a voltage-scaling processor,” ACM
Embedded Software, pp. 247-250, 2005.

[7] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, “Power
optimization of variable voltage core-based systems,” ACM/IEEE Design Au-
tomation, pp. 176-181, 1998.

[8] S. Irani, S. Shukla and R. Gupta, “Algorithms for power savings,” ACM Dis-
crete Algorithms, pp. 37-46, 2003.

[9] Y. H. Lee, “Scheduling techniques for reducing leakage power in hard real-time
systems,” EMRTS, pp. 105–112, 2003.

[10] R. Jejurikar and R. K. Gupta, “Procrastination scheduling in fixed prior-
ity real-time systems,” ACM Languages, Compilers, and Tools for Embedded
Systems, pp. 57-66, 2004.

[11] L. Niu and G. Quan, “Reducing both dynamic and leakage energy consump-
tion for hard real-time systems,” Compilers, Architecture, and Synthesis for
Embedded Systems, pp. 140-148, 2004.

[12] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS
digital design,” IEEE Solid-State Circuits, pp. 473-484, 1992.

[13] R. Jejurikar and R. K. Gupta, “Dynamic slack reclamation with procrastina-
tion scheduling in real-time embedded systems,” ACM/IEEE Design Automa-
tion, pp. 111-116, 2005.

178

[14] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low power
embedded operating systems,” ACM Operating Systems Principles, pp. 21-24,
2001.

[15] J. R. Lorch and A. J. Smith, “Pace: a new approach to dynamic voltage
scaling,” IEEE Computers, pp. 856-869, 2004.

[16] D. Kirovski and M. Potkonjak, “System-level synthesis of low-power hard
real-time systems,” ACM/IEEE Design Automation, pp. 697-702, 1997.

[17] H.-R. Hsu, J.-J. Chen, and T.-W. Kuo, “Multiprocessor synthesis for periodic
hard real-time tasks under a given energy constraint,” ACM/IEEE Design,
Automation, and Test in Europe, 2006.

[18] F. Dabiri, A. Vahdatpour, M. Potkonjak, and M. Sarrafzadeh, “Energy mini-
mization for real-time systems with non-convex and discrete operation modes,”
ACM/IEEE Design, Automation, and Test in Europe, pp. 1416-1421, 2009.

[19] Y. Alkabani, F. Koushanfar, and M. Potkonjak, “N-version temperature-
aware scheduling and binding,” ISLPED, pp. 331-334, 2009.

[20] A. Vahdatpour, M. Potkonjak, “Leakage Minimization Using Self Sensing
and Thermal Management,” ISLPED, pp. 265-270, 2010.

[21] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki;S. Shigematsu and J. Yamada,“I-
V power supply high-speed digital circuit technology with multithreshold-
voltage CMOS,” IEEE Solid-State Circuits, pp. 847-853, 1993.

[22] M. C. Johnson and K. Roy, “Datapath scheduling with multiple supply volt-
ages and level converters,” ACM Des. Autom. Electron. Syst., pp. 227-248,
1997.

[23] J. Kao and A. Chandrakasan, “Dual-threshold voltage techniques for low-
power digital circuits,” IEEE Solid-State Circuits, pp. 1009-1018, 2000.

[24] I. Hong, M. B. Srivastava, and M. Potkonjak, “On-Line Scheduling of Hard
Real-Time Tasks on Variable Voltage Processor,” ICCAD, pp. 653-656, 1998.

[25] G. Qu and M. Potkonjak, “System Synthesis of Synchronous Multimedia
Applications,” IEEE Transactions on Embedded Computing Systems, pp. 74-
97, 2002.

[26] G. Qu, N. Kawabe, K. Usami, and M. Potkonjak, “Code Coverage-based
Power Estimation Techniques for Microprocessors,” Journal of Circuits, Sys-
tems, and Computers, pp. 1-18, 2002.

[27] G. Qu and M. Potkonjak, “Techniques for Energy-Efficient Communication
Pipeline Design,” IEEE Transactions on VLSI, pp. 542-549, 2002.

179

[28] J. L. Wong, G. Qu, M. Potkonjak, “Power minimization in QoS sensitive
systems,” IEEE Transactions on VLSI, pp. 553-561, 2004.

[29] M. Drinic, D. Kirovski, S. Megerian, and M. Potkonjak, “Latency-Guided On-
Chip Bus Network Design,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 2663-2673, 2006.

[30] V. Goudar, Z. Ren, P. Brochu, M. Potkonjak, and Q. Pei, “Optimizing the
Output of a Human-Powered Energy Harvesting System with Miniaturization
and Integrated Control,” IEEE Sensors Journal, Accepted for publication,
2014.

[31] M. Rofouei, M. Potkonjak, and M. Sarrafzadeh, “Energy Efficient Collabo-
rative Sensing-based Design: Soft Keyboard Case Study,” IEEE Transactions
on Human-Machine Systems, Accepted for publication, 2014.

[32] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P.
Bose, “Microarchitectural techniques for power gating of execution units,” Low
Power Electronics and Design, pp. 32-37, 2004.

[33] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen,
“Optimizing Power Using Transformations,” IEEE Transactions on CAD, pp.
12-31, 1995.

[34] S. Rele, S. Pande, S. nder, and R. Gupta, “Optimizing static power dissi-
pation by functional units in superscalar processors,” Compiler Construction,
pp. 261-275, 2002.

[35] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram, “Guarded power
gating in a multi-core setting” Computer Architecture, pp. 198-210, 2010.

[36] H. Xu, W.-B. Jone, and R. Vemuri, “Stretching the limit of microarchitectural
level leakage control with adaptive light-weight Vth hopping,” Computer-Aided
Design, pp. 632-636, 2010.

[37] P.-H. Wang, C.-L. Yang, Y.-M. Chen, and Y.-J. Cheng, “Power gating strate-
gies on GPUs,” ACM Architecture and Code Optimization, pp. 1-25, 2011.

[38] P. Ranganathan, P. Leech, D. Irwin, and J. Chase, “Ensemble-level power
management for dense blade servers,” Computer Architecture, pp. 66-77, 2006.

[39] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile ap-
plications,” ACM Operating System Principles, pp. 48-63, 1999.

[40] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”
SIGARCH, pp. 13–25, 1997.

180

[41] T. D. Burd and R. W. Brodersen, “Design issues for dynamic voltage scaling,”
ISLPED, pp. 9–15, 2000.

[42] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashimi, “Overhead-
conscious voltage selection for dynamic and leakage energy reduction of time-
constrained systems,” DATE, pp. 518–523, 2004.

[43] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” SIGARCH, pp. 83–94,
2000.

[44] N. A. Conos, S. Meguerdichian, S. Wei, and M. Potkonjak, “Maximizing
yield in Near-Threshold Computing under the presence of process variation,”
PATMOS, pp. 1–8, 2013.

[45] C.-M. Hung, J.-J. Chen, and T.-W Kuo, “Energy-efficient real-time task
scheduling for a DVS system with a non-DVS processing element,” RTSS, pp.
303–312, 2006.

[46] R. Jejurikar and R. Gupta, “Energy aware task scheduling with task syn-
chronization for embedded real time systems,” CASES, pp. 164–169, 2002.

[47] J. Kao, S. Narendra, and A. Chandrakasan, “Subthreshold leakage modeling
and reduction techniques,” ICCAD, pp. 141–148, 2002.

[48] H.-S. Kim, “Impact of scaling on the effectiveness of dynamic power reduction
schemes,” ICCD, pp. 382–387, 2002.

[49] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, “Heterogeneous
chip multiprocessors,” Computer, pp. 32–38, 2005.

[50] S. Li, J.-H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen and N. P.
Jouppi, “McPAT: an integrated power, area, and timing modeling framework
for multicore and manycore architectures,” MICRO, pp. 469–480, 2009.

[51] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined dynamic
voltage scaling and adaptive body biasing for lower power microprocessors
under dynamic workloads,” ICCAD, pp. 721–725, 2002.

[52] P. Rong and M. Pedram, “Power-aware scheduling and dynamic voltage set-
ting for tasks running on a hard real-time system,” ASP-DAC, pp. 473–378,
2006.

[53] T. Wei, P. Mishra, W. Kaijie, and L. Han, “Online task-scheduling for fault-
tolerant low-energy real-time systems,” ICCAD, pp. 522–527, 2006.

[54] M. R. Corazao, M. Khalaf, L. Guerra, M. Potkonjak, and J. Rabaey, “Per-
formance Optimization using Template Mapping for Datapath-Intensive High-
Level Synthesis,” IEEE Transaction on CAD, pp. 877-888, 1996.

181

[55] M. Potkonjak and M.B. Srivastava, “Behavioral Optimization Using the Ma-
nipulation of Timing Constraints,” IEEE Transaction on CAD, pp. 936-947,
1998.

[56] K. K. Parhi and D. G. Messerschmitt, “Static rate-optimal scheduling of
iterative data-flow programs via optimum unfolding,” IEEE Trans., pp. 178–
195, 1991.

[57] L. Song and K. K. Parhi “Low-Energy Digit-Serial/Parallel Finite Field Mul-
tipliers,” JVLSI, pp. 149–166, 1998.

[58] O. Coudert, “Gate sizing for constrained delay/power/area optimization,”
VLSI, pp. 465–472, 1997.

[59] J. Hu, A. B. Kahng, S. H Kang, M.-C. Kim, and I. L. Markov, “Sensitivity-
guided metaheuristics for accurate discrete gate sizing.” ICCAD, pp. 233–239,
2012.

[60] L. Li, P. Kang, Y. Lu, and H. Zhou, “An efficient algorithm for library-based
cell-type selection in high-performance low-power designs,” ICCAD, pp. 226–
232, 2012.

[61] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
“Near-threshold computing: reclaiming Moore’s Law through energy efficient
integrated circuits,” IEEE, pp. 253–266, 2010.

[62] Q. Xie, Y. Wang, and M. Pedram, “Variability-aware design of energy-delay
optimal linear pipelines operating in the near-threshold regime and above,”
GLSVLSI, pp. 61–66, 2013.

[63] S. Seo; R. G. Dreslinski, M. Woh, Y. Yongjunm C. Charkrabari, S. Mahlke,
D. Blaauw, and T. Mudge, “Process variation in near-threshold wide SIMD
architectures,,” DAC, pp. 980–987, 2012.

[64] B. Cline, K. Chopra, D. Blaauw, and Y. Cao, “Analysis and modeling of CD
variation for statistical static timing,” ICCAD, pp. 60–66, 2006.

[65] A. Asenov, “Random dopant induced threshold voltage lowering and fluctu-
ations in sub-0.1 um MOSFET’s: a 3-D atomistic simulation study,” IEEE
T-ED, pp. 2505–2513, 1998.

[66] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter variations and impact on circuits and microarchitecture,” DAC,
pp. 338-342, 2003.

[67] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J.
Torrellas, “VARIUS: a model of process variation and resulting timing errors
for microarchitects,” IEEE T-SM, pp. 3-13, 2008.

182

[68] B. E. Stine, D. S. Boning, and J. E. Chung, “Analysis and decomposition of
spatial variation in integrated circuit processes and devices,” IEEE T-SM, pp.
24-41, 1997.

[69] J. Fishburn and A. E. Dunlop, “TILOS: a posynomial approach to transistor
sizing,” ICCAD, pp. 326-328, 1985.

[70] S. Duvall, “Statistical circuit modeling and optimization,” IEEE Interna-
tional Workshop on Statistical Metrology, pp. 56-63, 2000.

[71] R. Kendall, “Worst case analysis methods for electronic circuits and systems
to reduce technical risk and improve system reliability,” Intuitive Research and
Technology Corporation, http://www.irtc-hq.com/WCA white paper gen.pdf

[72] H. Chang and S. S. Sapatnekar, “Full-chip analysis of leakage power Under
process variations, including spatial correlations,” DAC, pp. 523-528, 2005.

[73] Y. Alkabani, T. Massey, F. Koushanfar, and M. Potkonjak, “Input vector
control for post-silicon leakage current minimization in the presence of manu-
facturing variability,” DAC, pp. 606-609, 2008.

[74] G. Calafiore and M. C. Campi, “The scenario approach to robust control
design,” IEEE T-AC, pp. 742-753, 2006.

[75] A. Nemirovski and A. Shapiro, “Convex approximations of change con-
strained programs,” SIAM, pp. 969-996, 2006.

[76] J. Luedtke and S. Ahmed, “A sample approximation approach for optimiza-
tion with probabilistic constraints,” SIOPT, pp. 674-699, 2008.

[77] A. E. Ruehli P. K. Wolff Sr., G. Goertzel., “Analytical power/timing opti-
mization technique for digital system,” DAC, pp. 142-146, 1977.

[78] C. Zhuo, D, Blaauw, and D. Sylvester, “Variation-aware gate sizing and clus-
tering for post-silicon optimized circuits,” ISLPED, pp. 105-110, 2008.

[79] A. Davoodi and A. Srivastava,“Variability driven gate sizing for binning yield
optimization,” VLSI, pp. 683-692, 2008.

[80] D. Patil, S. Yun, S.-J. Kim, A. Cheung, M. Horowitz, and S. Boyd, “A new
method for design of robust digital circuits,” ISQED, pp. 676-681, 2005.

[81] M. R. Guthaus, N. Venkateswarant, C. Visweswariah, V. Zolotov, “Gate
sizing using incremental parametrized statistical timing analysis,” ICCAD,
pp. 1026-1033, 2005.

[82] E. T. A. F. Jacobs and M. R. C. M. Berkelaar, “Gate sizing using a statistical
delay model,” DATE, pp. 283-290, 2002.

183

[83] J. Cong, J. Lee, and L. Vandenberghe, “Robust gate sizing via mean excess
delay minimization,” ISPD, pp. 10-14, 2008.

[84] B. Cheng, “Evaluation of statistical technology generation LSTP MOS-
FETs,” Solid-State Electronics, pp. 767-772, 2009.

[85] S. Roy and A. Asenov, “Where do the dopants go?” Science, pp. 388–390,
2005.

[86] Z. Zhang, Y. Fan, M. Potkonjak, and J. Cong, “Gradual relaxation techniques
with applications to behavioral synthesis,” ICCAD, pp. 529-536, 2003.

[87] N. A. Conos, S. Meguerdichian, and M. Potkonjak, “Gate sizing in the pres-
ence of gate switching activity and input vector control,” VLSI-SOC, pp. 138–
143, 2013.

[88] N. A. Conos and M. Potkonjak, “A temperature-aware synthesis technique
for simultaneous delay and leakage optimization,” ICCD, pp. 316–321, 2013.

[89] J. B. Wendt and M. Potkonjak, “Improving energy efficiency in sensing sub-
systems via near-threshold computing and device aging,” IEEE Sensors, 2013.

[90] S. Wei, J. X. Zheng, and M. Potkonjak, “Low power FPGA design using
post-silicon device aging,” FPGA, 2013.

[91] S. Wei, S. Meguerdichian, and M. Potkonjak, “Gate-level characterization:
foundations and hardware security applications,” DAC, 222-227, 2010.

[92] S. Wei, F. Koushanfar, and M. Potkonjak, “Integrated circuit digital rights
management techniques using physical level characterization,” DRM, 3-14,
2011.

[93] S. Wei, S. Meguerdichian, and M. Potkonjak, “Malicious circuitry detection
using thermal conditioning,” TIFS, 1136-1145, 2011.

[94] S. Wei and M. Potkonjak,“Scalable hardware trojan diagnosis,” VLSI, pp.
1049-1057, 2012.

[95] S. Wei, A. Nahapetian, M. Nelson, F. Koushanfar, and M. Potkonjak., “Gate
characterization using singular value decomposition: foundations and applica-
tions,” TIFS, pp. 765-773, 2012.

[96] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke, and C. Zhuo, “The
ISPD -2012 Discrete Cell Sizing Contest and Benchmark Suite,” In Proceedings
of ISPD, pp. 161–164, 2012.

[97] W. N. Li, “Strongly NP-hard discrete gate-sizing problems,” ICCD, pp. 1045-
1051, 1993.

184

[98] Y. Liu, “A New Algorithm for Simultaneous Gate Sizing and Threshold Volt-
age Assignment,” TCAD, pp. 223-234, 2010.

[99] A. Abdollahi, F. Fallah, and M. Pedram, “Leakage current reduction in
CMOS VLSI circuits by input vector control,” VLSI, pp. 140-154, 2004.

[100] K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimand, “Leakage current mech-
anisms and leakage reduction techniques in deep-submicrometer CMOS cir-
cuits,” IEEE, pp. 305-327, 2003.

[101] A. Calimera, R. I. Bahar, E. Macii, and M. Poncino, “Temperature-
insensitive dual-Vth synthesis for nanometer CMOS technologies under inverse
temperature dependence,” TVLSI, 1608-1620, 2009.

[102] J. P. Halter and F. N. Najm, “A gate-level leakage power reduction method
for ultra-low-power CMOS circuits,” CICC, pp. 475-478, 1997.

[103] Y. Ye S. Borkar, and V. De, “A new technique for standby leakage reduction
in high-performance circuits,” VLSIC, pp. 40-41, 1998.

[104] J. Gu, G. Qu, and L. Yuan, “Enhancing dual-Vt design with consideration
of on-chip temperature variation,” ICCD, pp. 542-547, 2010.

[105] N. Jayakumar and S. P. Khatri“An algorithm to minimize leakage through
simultaneous input vector control and circuit modification,” DATE, pp. 1-6,
2007.

[106] L. Yuan and G. Qu, “Simultaneous input vector selection and dual threshold
voltage assignment for static leakage minimization,” ICCAD, pp. 4-8, 2007.

[107] N. Jayakumar and S. P. Khatri, “A simultaneous input vector control and
circuit modification technique to reduce leakage with zero delay penalty,” TO-
DAES, pp. 1-20, 2010.

[108] A. K. Sultania, D. Sylvester, and S. S. Sapatnekar, “Transistor and pin
reordering for gate oxide leakage reduction in dual tox circuits,” ICCD, pp.
228-233, 2004.

[109] H. Hassan M. ANis, and M. Elmasry, “Input vector reordering for leakage
power reduction in FPGAs,” TCAD, pp. 1555-1564, 2008.

[110] L. Wei, “Design and Optimization of dual-threshold circuits for low-voltage
low-power applications,” TVLSI, pp. 16-24, 1999.

[111] R. Kumar and V. Kursun“Temperature variation insensitive energy efficient
CMOS circuits in a 65nm CMOS technology,” MWSCAS, pp. 226-230, 2006.

185

[112] Y. Wang, H. Luo, K. He, R. Luo, H. Yang, and Y. Xie, “Temperature-aware
NBTI modeling and the impact of standby leakage reduction techniques on
circuit performance degradation,” TDSC, pp. 756-769, 2011.

[113] W. Huang, K. Sankaranarayanan, K. Skadron, R. J. Ribando, and M. R.
Stan, “Accurate, Pre-RTL Temperature-Aware Design Using a Parameterized,
Geometric Thermal Model,” IEEE Trans., pp. 1277-1288, 2008

[114] H. Shiyan, M. Ketkar, and J. Hu, “Gate Sizing For Cell Library-Based
Designs,” DAC pp. 847–852, 2007.

[115] M. M. Ozdal, S. Burns, and J. Hu, “Gate sizing and device technology selec-
tion algorithms for high-performance industrial designs,” ICCAD, pp. 724–731,
2011.

[116] S. Joshi, “An Efficient Method for Large-Scale Gate Sizing,” TCSI, pp.
2760–2773, 2008.

[117] A. Agarwal, K. Chopra, and D. Blaauw, “Statistical timing based optimiza-
tion using gate sizing,” DAC, pp. 400–405, 2005.

[118] Nangate FreePDK45 nm Library, http://www.si2.org/, 2011.

[119] A. Srivastava, D. Sylvester, and D. Blaauw, D. “Power minimization using
simultaneous gate sizing, dual-Vdd and dual-Vth assignment,” DAC, pp. 783–
787, 2004.

[120] Y.-H Huang, P.-Y. Chen, and T. Hwang “Switching-activity driven gate
sizing and Vth assignment for low power design,” ASPDAC, pp. 24–27, 2006.

[121] L. Yuan and G. Qu, “A combined gate replacement and input vector control
approach for leakage current reduction,” VLSI, pp. 173–182, 2006.

[122] Y. Wang, X. Chen, W. Wang, Y. Cao, Y. Xie, and H. Yang, “Leakage power
and circuit aging cooptimization by gate replacement techniques,” VLSI, pp.
615–628, 2011.

[123] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: a tool
for evaluating and synthesizing multimedia and communicatons systems,” MI-
CRO, pp. 330–335, 1997.

[124] T. Mudge, “The SimpleScalar-Arm power modeling project,”
http://eecs.umich.edu/panalyzer/.

[125] C. Tsui, R. Y. Au, and R. Y. Choi, “Minimizing the dynamic and subthresh-
old leakage power consumption using least leakage vector assisted technology
mapping,” VLSI Journal, pp. 76–86, 2008.

186

[126] S. Wei J. X. Zheng, and M. Potkonjak, “Aging-based Leakage Energy Re-
duction in FPGAs,” FPL, pp. 1–4, 2013.

[127] L. Li, J. Sun, Y. Lu, H. Zhou, and X. Zeng, “Low power discrete voltage
assignment under clock skew scheduling,” ASP-DAC, pp. 515-520, 2011.

[128] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,” Algorith-
mica, pp. 5–35, 1991.

[129] S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Retiming and resynthesis: Optimizing sequential networks with combina-
tional techniques,” Computer-Aided Design of Integrated Circuits and Systems,
pp. 74-84, 1991.

[130] Z. Iqbal, M. Potkonjak, S. Dey, and A. Parker, “Critical path minimization
using retiming and algebraic speed-up,” DAC, pp. 573-577. IEEE, 1993.

[131] S. Dey, M. Potkonjak, and S. G. Rothweiler, “Performance optimization of
sequential circuits by eliminating retiming bottlenecks,” ICCAD, pp. 504-509,
1992.

[132] J. Cong, and S. Lim, “Physical planning with retiming,” ICCAD, pp. 2-7.
IEEE Press, 2000.

[133] A. Mishchenko S. Chatterjee, and R. Brayton, “Integrating logic synthesis,
technology mapping, and retiming,” IWLS, 2005.

[134] S. Hassoun and C. Ebeling, “Architectural retiming: pipelining latency-
constrained circuits,” DAC, pp. 708-713, 1996.

[135] S. Dey and S. T. Chakradhar, “Retiming sequential circuits to enhance
testability,” In VLSI Test Symposium, pp. 28-33, 1994.

[136] A. Kuehlmann and J. Baumgartner, “Transformation-based verification us-
ing generalized retiming,” In Computer Aided Verification, pp. 104-117, 2001.

[137] N. Shenoy and R. Rudell, “Efficient implementation of retiming,” ICCAD,
pp. 226-233, 1994.

[138] S. S. Sapatnekar and R. B. Deokar, “Utilizing the retiming-skew equivalence
in a practical algorithm for retiming large circuits,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, pp. 1237-1248, 1996.

[139] K. N. Lalgudi and M. C. Papaefthymiou, “DELAY: an efficient tool for
retiming with realistic delay modeling,” In Proceedings of the 32nd annual
ACM/IEEE Design Automation Conference, pp. 304-309, 1995.

187

[140] J. Monteiro, S. Devadas and A. Ghosh, “Retiming sequential circuits for
low power,” International journal of high speed electronics and systems, pp.
323-340, 1996.

[141] N. Chabini and W. Wolf, “Reducing dynamic power consumption in syn-
chronous sequential digital designs using retiming and supply voltage scaling,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, pp. 573-
589, 2004.

[142] N. Maheshwari and S. S. Sapatnekar, “An improved algorithm for minimum-
area retiming,” DAC, pp. 2-7, 1997.

[143] V. Sundararajan, S. S. Sapatnekar, and K. K. Parhi, “Marsh: min-area
retiming with setup and hold constraints,” ICCAD, pp. 2-6, 1999.

[144] K. Usami, and M. Horowitz, “Clustered voltage scaling technique for low-
power design,” ISLPED, pp. 3-8. ACM, 1995.

[145] M. Igarashi, K. Usami, K. Nogami, F. Minami, Y. Kawasaki, T. Aoki,
M. Takano, “A low-power design method using multiple supply voltages,”
ISLPED, pp. 36-41, 1997.

[146] S. Raje, and M. Sarrafzadeh, “Variable voltage scheduling,” In Proceedings
of the 1995 international symposium on Low power design, pp. 9-14, 1995.

[147] J. Chang, and M. Pedram, “Energy minimization using multiple supply
voltages,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, pp. 436-443, 1997.

[148] F. Li, Y. Lin, L. He, and J. Cong, “Low-power FPGA using pre-defined
dual-Vdd/dual-Vt fabrics,” In Proceedings of the 2004 ACM/SIGDA 12th in-
ternational symposium on Field programmable gate arrays, pp. 42-50. ACM,
2004.

[149] F. Ishihara, F. Sheikh, and B. Nikolic, “Level conversion for dual-supply
systems,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, pp. 185-195, 2004.

[150] A. Gayasen, K. Lee, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and T.
Tuan, “A Dual-Vdd Low Power FPGA Architecture,” In Field Programmable
Logic and Application, pp. 145-157, 2004.

[151] A. Srivastava, and D. Sylvester, “Minimizing total power by simultaneous
Vdd/Vth assignment,” ASP-DAC, pp. 665-677, 2003.

[152] W. Lee, H. Liu, and Y. Chang, “An ILP algorithm for post-floorplanning
voltage-island generation considering power-network planning,” ICCAD, pp.
650-655, 2007.

188

[153] K. Kim and V. D. Agrawal, “Minimum energy cmos design with dual sub-
threshold supply and multiple logic-level gates,” ISQED, pp. 1-6, 2011.

[154] D. Markovic, C. C. Wang, L. P Alarcon, L. Tsung-Te, and J. M. Rabaey,
“Ultralow-Power Design in Near-Threshold Region,” IEEE, pp. 237-252, 2010.

[155] M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke, and C. Zhuo, “An
Improved Benchmark Suite for the ISPD-2013 Discrete Cell Sizing Contest,”
ISPD, pp. 168–170, 2013.

[156] J. C. Chi, H. Lee, S. Han, and M. C. Chi, “Gate Level Multiple Supply Volt-
age Assignment Algorithm for Power Optimization Under Timing Constraint,”
VLSI, pp. 637–648, 2007.

[157] M. Potkonjak and J. Rabaey, “Maximally Fast and Arbitrarily Fast Imple-
mentation of Linear Computations,” ICCAD, pp. 304-308, 1992.

[158] A.P. Chandrakasan, M. Potkonjak, J. Rabaey, and R. Brodersen, “Hyper-
LP: A Design System for Power Minimization using Architectural Transfor-
mations,” ICCAD, pp. 300-303, 1992.

[159] L. Guerra, M. Potkonjak, and J. Rabaey, “System-Level Design Guidance
Using Algorithm Properties,” VLSI Signal Processing Workshop, pp. 73-82,
1994.

[160] M. Potkonjak and J. Rabaey, “Algorithm Selection: A Quantitative
Computation-Intensive Optimization Approach,” ICCAD, pp. 90-95, 1994.

[161] M. B. Srivastava and M. Potkonjak, “Power Optimization in Programmable
Processors and ASIC Implementation of Linear Systems: Transformation-
based Approach,” DAC, pp. 343-348, 1996.

[162] M. Potkonjak and A.P. Chandrakasan, “Synthesis and Selection of DCT
Algorithms using Behavioral Synthesis-Based Algorithm Space Exploration,”
ICIP, pp. 65-68, October 1995.

[163] I. Hong and M. Potkonjak, “Power Optimization in Disk-Based Real-Time
Application Specific Systems,” ICCAD, pp. 634-637, 1996.

[164] D. Kirovski and M. Potkonjak, “System-Level Synthesis of Low-Power Hard
Real-Time Systems,” DAC, pp. 697-702, 1997.

[165] D. Kirovski, C. Lee, M. Potkonjak, and W. Mangione-Smith, “Synthesis of
Power-Efficient Systems-on-Silicon,” ASP-DAC, pp. 557-562, 1998.

[166] L. Guerra, M. Potkonjak, and J. Rabaey, “A Methodology for Guided
Behavioral-level Optimization,” DAC, pp. 309-314, 1998.

189

[167] G. Qu and M. Potkonjak, “Techniques for Energy Minimization of Commu-
nication Pipelines,” ICCAD, pp. 597-600, 1998.

[168] G. Qu, D. Kirovski, and M. Potkonjak, “Energy Minimization of Systems
Pipelines Using Multiple Voltages,” International Symposium on Circuits and
Systems, pp.362-365, 1999.

[169] J. Kin, C. Lee, W. Mangione-Smith, and M. Potkonjak, “Power Efficient
Media Processors: Design Space Exploration,” DAC, pp. 321-326, 1999.

[170] C. Lee, J. Kin, W. Mangione-Smith, and M. Potkonjak, “Designing Power
Efficient Hypermedia Processors,” ISLPED, pp. 276-278, 1999.

[171] M. Ercegovac, D. Kirovski, and M. Potkonjak, “Low Power Behavioral Syn-
thesis Optimization Using Multiple Precision Arithmetic,” DAC, pp. 568-573,
1999.

[172] G. Qu and M. Potkonjak, “Power Minimization using System-level Parti-
tioning of Applications with QoS,” ICCAD, pp. 343-346, 1999.

[173] G. Qu and M. Potkonjak, “Energy Minimization with Guaranteed Quality
of Service,” ISLPED, pp. 43-48, 2000.

[174] G. Qu and M. Potkonjak, “Achieving Utility Arbitrarily Close to Optimal
with Limited Energy,” ISLPED, pp. 125-130, 2000.

[175] G. Qu, N. Kawabe, K. Usami, and M. Potkonjak, “Function-level power
estimation methodology for microprocessors,” DAC, pp. 810-813, 2000.

[176] F. Koushanfar, V. Prabhu, M. Potkonjak, and J.M. Rabaey, “Processors for
mobile applications,” ICCD, pp. 603-608, 2000.

[177] J. M. Rabaey, M. Potkonjak, F. Koushanfar, S. Li, and T. Truong, “Chal-
lenges and opportunities in broadband and wireless communication designs,”
ICCAD, pp. 76-82, 2000.

[178] S. Meguerdichian, F. Koushanfar, A. Mogre, D. Petranovic, and M. Potkon-
jak, “MetaCores: Design and Optimization Techniques,” DAC, pp. 585-590,
2001.

[179] J. L. Wong, W. Liao, F. Li, L. He, and M. Potkonjak, “Scheduling of Soft
Real-Time Systems For Context-Aware Applications,” DATE, pp. 318-323,
2005.

[180] V. G. Moshnyaga, H. Vo, G. Reinman, and M. Potkonjak, “Reducing Energy
of DRAM/Flash Memory System by OS-controlled Data Refresh,” ISCAS, pp.
2108-2111, 2007.

190

[181] A. Nahapetian, F. Dabiri, M. Potkonjak, and M. Sarrafzadeh, “Optimiza-
tion for Real-Time Systems with Non-convex Power Versus Speed Models,”
PATMOS, pp. 443-452, 2007.

[182] J. B. Wendt, S. Meguerdichian, H. Noshadi, and M. Potkonjak, “Semantics-
driven sensor configuration for energy reduction in medical sensor networks,”
ISLPED, pp. 303-308, 2012.

[183] V. Goudar and M. Potkonjak, “Energy-efficient sampling schedules for body
area networks,” IEEE Sensors, pp. 1-4, 2012.

[184] V. Goudar and M. Potkonjak, “Dielectric Elastomer Generators for foot
plantar pressure based energy scavenging,” IEEE Sensors, pp. 1-4, 2012.

[185] J. B. Wendt, V. Goudar, H. Noshadi, and M. Potkonjak, “Spatiotempo-
ral assignment of energy harvesters on a self-sustaining medical shoe,” IEEE
Sensors, pp. 1-4, 2012.

[186] S. Meguerdichian and M. Potkonjak, “Low Energy Trusted Private Sensing
Using Shared Hardware Random Number Generators,” IEEE Sensors, pp. 1-4,
2012.

[187] T. Xu, J. B. Wendt, and M. Potkonjak, “Digital Bimodal Function: An
Ultra-Low Energy Security Primitive,” ISLPED, pp. 292-297, 2013.

[188] V. Goudar, Z. Ren, P. Brochu, Q. Pei, and M. Potkonjak, “Optimizing
the Configuration and Control of a Novel Human-Powered Energy Harvesting
System,” PATMOS, pp. 75-82, 2013.

[189] V. Goudar, Z. Ren, P. Brochu, M. Potkonjak, and Q. Pei, “Driving Low-
Power Wearable Systems with an Adaptively-Controlled Foot-Strike Scaveng-
ing Platform,” International Symposium on Wearable Computers, pp. 135-136,
2013.

[190] N. A. Conos, S. Meguerdichian, and M. Potkonjak, “Coordinated and Adap-
tive Power Gating and Dynamic Voltage Scaling for Energy Minimization,”
Accepted for publication, ASAP, 2014.

191

