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Abstract

Social agents, both human and computational, inhabiting a
world containing multiple active agents, need to coordinate
their activities. This is because agents share resources, and
without proper coordination or “rules of the road”, everybody
will be interfening with the plans of others. As such, we need
coordination schemes that allow agents to effectively achieve
local goals without adversely affecting the problem-solving ca-
pabilities of other agents. Researchers in the field of Distributed
Artificial Intelligence (DAI) have developed a vanety of co-
ordination schemes under different assumptions about agent
capabilities and relationships. Whereas some of these research
have been motivated by human cognitive biases, others have
approached it as an engineering problem of designing the most
effective coordination architecture or protocol. We propose
reinforcement leamning as a coordination mechanism that im-
poses little cognitive burden on agents. More interestingly, we
show that a uniform leaming mechanism suffices as a coordina-
tion mechanism in both cooperative and adversanal situations.
Using an example block-pushing problem domain, we demon-
strate that agents can use reinforcement leaming algonithms,
without explicit information shanng, to develop effective poli-
cies to coordinate their actions both with agents acting in unison
and with agents acting in opposition.

Introduction

One of the primary goals of artificial intelligence researchers is
to develop autonomous agents that are knowledgable and cog-
nizant enough to carry out at least routine activities performed
by humans. To be useful in a real-world, however, agents
must also inhabit a shared environment, and hence must in-
teract with other agents in the course of their problem-solving
activities. Agent interactions may be mutually beneficial or
harmful. Beneficial interactions occur when two or more
agents can combine their resources and expertise to achieve
goals none of them was individually capable of achieving.
Harmful interactions occur when the direct or indirect side-
effect of a goal achievement or action of one agent makes
it impossible or more difficult for one more other agents to
achieve their own goals.

A number of coordination schemes have been proposed in
DAL literature, using which multiple agents can identify and
exploit opportunities for beneficial interactions, and eliminate
or restrict harmful interactions. Some of these approaches
have been motivated by the way humans argue, negotiate,
or influence others through speech and action (Malone, 1987;
Cohen & Perrault, 1979; Sycara-Cyranski, 1985). A large ma-
jority of DAI approaches to designing coordination schemes,
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however, have focussed on developing artificial structures
(protocols, architectures, conventions, etc.) for efficient prob-
lem solving without consideration of human cognitive con-
straints (Bond & Gasser, 1988). A limitation of the proposed
approaches is the fact that they depend critically on the re-
lationship between participating agents. In particular, these
coordination schemes rely heavily on information sharing or
exchange between agents, the nature of which is largely de-
pendent on whether agents are mutually cooperative or adver-
sarial.

Our proposed approach to coordination involves simulta-
neous learning by multiple agents working on mutually in-
teracting problems. The particular learning scheme that we
have used is known as reinforcement learning, where agents
are required to develop policies to map sensations to ac-
tions that optimize environmental reward. In contrast with
other work on multi-agent learning (Tan, 1993; Weiss, 1993),
we do not require that agents exchange or share information
with others. In addition to demonstrating that effective co-
ordination knowledge can be induced without explicit or im-
plicit information-sharing, our work provides a coordination
scheme that both cooperative and adversarial agents can use
without modification. The advantage of such robust coordina-
tion scheme is that agents do not have to rely on assumptions
about other agents (can I believe the other agents?) or aboul
shared information (has the information been corrupted? is it
out-of-date?).

In this paper we use a block pushing domain to illustrate
reinforcement learning in both adversary and non-adversary
problems (Nilsson, 1971). The block pushing problems are
well-defined (Reitman, 1965) in that the problem components
(starting state, goal state, available actions) are completely
specified. This domain is, however, semantically impover-
ished rather than being semantically rich (Bhaskar & Simon,
1977) (where agents possess and use deep domain knowl-
edge). This is because the focus of our research is more on
acquisition of coordination knowledge and less on effective
use of prior knowledge.

Reinforcement learning

In reinforcement learning problems (Barto, Sutton, &
Watkins, 1989; Holland, 1986; Sutton, 1984; Whitehead &
Ballard, 1990), reactive and adaptive agents are given a de-
scription of the current state and have to choose the next
action from a set of possible actions so as to maximize a
scalar reinforcement or feedback received after each action.
The learner’s environment can be modeled by a discrete time,
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Figure 1: The block pushing problem, reward function, and the X/Motif interface for experimentation.

finite state, Markov decision process that can be represented
by ad-tuple (S, A, P,r) where P : S x S x A — [0, 1] gives
the probability of moving from state s; to s; on performing
action a,and r : S x A — R isascalar reward function. Each
agent maintains a policy, r, that maps the current state into the
desirable action(s) to be performed in that state. The expected
value of a discounted sum of future rewards of a policy = at a

state z is given by V] =4 E{>—s7'rT )}, where r] , is the
random variable corresponding to the reward received by the
learning agent { time steps after if starts using the policy 7 in
state s, and v is a discount rate (0 < y < 1).

Various reinforcement learning strategies have been pro-
posed using which agents can develop a policy to maximize
rewards accumulated over time. For our experiments, we
use the Q-learning (Watkins, 1989) algorithm which is de-
signed to find a policy =* that maximizes V. (s) for all states
s € §. The decision policy is represented by a function,
Q : S x A— R, which estimates long-term discounted re-
wards for each state-action pair. The @ values are defined as
Q7 (s, a) = V5" (s), where a; 7 denotes the event sequence
of choosing action a at the current state, followed by choosing
actions based on policy . The action, a, to perform in a state
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s is chosen such that it is expected to maximize the reward,
V..r'. (s) = max Q:- (s,a) forall s € S.
a

If an action a in state s produces a reinforcement of R and
a transition to state s’, then the corresponding @ value is
modified as follows:

Q(s.a) — (1-0) Q(s,a)+ 8 (R+7 g}g}@(-?’-ﬂ'))- (D

The above update rule is similar to Holland's bucket-brigade
(Holland, 1986) and Sutton’s temporal-difference (Sutton,
1984) learning scheme.

Block pushing problem

To explore the application of reinforcement learning in multi-
agent environments, we designed a problem in which two
agents, a, and ay, are independently assigned to move a block,
b, from a starting position, S, to some goal position, (7, follow-
ing a path, P, in Euclidean space. The agents are not aware
of the capabilities of each other (actually may not even be
aware of the presence of the other agent) and yet must choose
their actions individually such that the joint task is completed.
Agents a; and a, individually exert forces ﬁl and F-g respec-
tively on the object,and the combination of these forces moves



the object. The agents are assumed to be always in contact
with the block. The agents have no knowledge of the system
physics, but can perceive their current distance from the de-
sired path to take to the goal state. Their actions are restricted

as follows; agent 7 exerts a force F‘, where 0 < |Fi| € Fruazs
on the object at an angle ¢;, where 0 < & < m. The net
resultant force on the block is found by vector addition of
individual forces: F = F-"l - F-"g. The physical world is as-
sumed to be continuous, and we calculate the new position of
the block by assuming unit displacement per unit force along
the direction of the resultant force, The new block location
is used to provide feedback to the agent. If (z,y) is the new
block location, Py (y) is the z-coordinate of the desired path
P for agent i for the same y coordinate, Az = |z — Pri(y)| is
the distance along the = dimension between the block and the
desired path for agent i, then K » a~4< is the feedback given
to agent i for its last action. In the reward function (see Fig-
ure 1) K is a multiplicative constant (we have used K = 50),
and a > 1 (we have used a = 1.15). This feedback function
was chosen to transform the actual minimization problem into
a maximization problem suitable for Q-learning.

The field of play is restricted to a rectangle with endpoints
[0,0] and [100, 100]. A trial consists of the agents starting
from the initial position .S and applying forces until either the
goal position (7 is reached or the block leaves the field of play.
The agents are required to learn, through repeated trials, to
push the block along the desired path to the goal. Although
we have used only two agents in our experiments, the solution
methodology can be applied without modification to problems
with arbitrary number of agents. The problem requires the so-
lution of multiple K-armed bandit problems (Holland, 1975),
where each of the problems correspond to choosing one of the
K possible actions at a state with maximum expected feed-
back. Actually the problem is harder because the underlying
probability distributions for action feedbacks are not known a
priori (we do not know the means and standard deviations for
the feedbacks) and are determined by the evolving policies
of both agents, and hence, are dynamically changing (rather
than being static, as usually assumed in the K-armed bandit
problem). Figure 1 presents a simple pictorial representation
of the problem we have described above.

Experimental setup

We now describe some design considerations for implement-
ing the Q-learning procedure for our experiments. To imple-
ment the policy = wechose to use an internal discrete represen-
tation for the external continuous space. The force, angle, and
the space dimensions were all uniformly discretized. When a
particular discrete force or action is selected by the agent, the
middle value of the associated continuous range is used as the
actual force or angle that is applied on the block.

An experimental run consists of a number of trials dur-
ing which the system parameters (3, v, and K) as well as
the learning problem (discretizations, agent choices) is held
constant. The stopping criteria for a run is that any one of
the following three conditions is satisfied: the agents succeed
in pushing the block to the goal in N consecutive trials (we
have used N = 10), difference between agent policy matrices
on successive trials is less than ¢ for N successive trials, a
maximum number of trials (we have used 1500) have been
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executed.

The normal procedure in Q-learning literature isto initialize
Q values to be zero. This is suitable for most tasks where non-
zero feedback is infrequent (often at the end of a trial) and
hence there is enough opportunity to explore all the actions.
Because a non-zero feedback is received after every action in
our problem, we found that agents would follow, for an entire
run, the path they take in the first trial. This is because they
start each trial at the same state, and the only non-zero Q-
value for that state is for the action that was chosen at the start
trial. Similar reasoning holds for all the other actions chosen
in the trial. A possible fix is to choose a fraction of the actions
by random choice, or to use a probability distribution over
the Q-values to choose actions stochastically. These options,
however, lead to very slow convergence. Instead, we chose
to initialize the Q-values to a large positive number (larger
than any Q-value that can be achieved by the regular update
procedures).

The following analysis helps in the choice of a sufficiently
large initial Q-value such that complete exploration of avail-
able action options take place. We will calculate the steady-
state Q-values for the best action choices. For this, we use
Equation 1, and the fact that if the agents learn to push the
block along the desired path, the reward that they will receive
for the best action choices at each step is equal to the maxi-
mum possible value of K (since Az is zero if the actual and
the desired paths are the same). The steady-state values for
the Q-values (Q,,)corresponding to optimal action choices
can be calculated from the equation:

QSJ = (1 = ﬁ) Qu + ,8(!{ +7Qu)-

Solving for @, in this equation yields a value of £-. In
order for the agents to explore all actions after the Q-values
are initialized at Sy, we require that any new Q value be less
than S;. From similar considerations as above we can show
that this will be the case if S} > I%r In our experiments we
fix the maximum reward K at 50, Sy at 100, and v at 0.1. For
the experiments in this paper, unless otherwise mentioned, we
have used § = 0.2, and allowed each agent to vary both the
magnitude and angle of the force they apply on the block.

The average number of trials to convergence as the primary
metric for evaluating the performance of the system. This
value does not, however, provide any information about how
agents improve their coordination knowledge over repeated
trials. The latter is obtained by plotting, for different trials, the
average distance of the actual path followed from the desired
path. Results presented in this paper have been averaged over
100 runs.

We have developed a X/Motif interface (see Figure 1)
through which we can visualize and control the experiments.
The window displays the desired path, as well as the current
path along which the block is being pushed. The interface
allows us to step through trials, run one trial at a time, pause
anywhere in the middle of a run, “play” the run at various
speeds, and monitor the development of the policy matrices
of the agents. By clicking anywhere on the field of play we
can see the current best action choice for each agent corre-
sponding to that position.
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Figure 2: Percentage of runs in which the block reaches the
goal on different trials (averaged over 100 runs).

Experiments in cooperative domain

We used a typical problem to evaluate the effects of changing
agenlt capabilities when they are working on a common goal.
This problem was chosen with starting position at (40, 0) and
goal position at (60, 100), with the straight line between the
two points being the desired path (see Figure 1),

We ran 100 runs with different random seeds and found that
agents quickly learned to coordinate their actions such that the
block is pushed along the optimal path. Figure 2 shows the
percentage of runs in which the block was pushed to the goal
location on different trial numbers. In only a small number
of runs could the agents push the block to the goal on the
first few trials. After about 150 trials, the initial exploratory
phase seems to be over, and the agents could push the block
to the goal with more consistency. By about 400 trials the
agents were successful in consistently pushing the block to
the goal on all runs. On closer investigation we found that the
two agents have learnt complimentary policies. That is, they
are not pushing at the same angle; rather, the individual force
vectors are such that the resultant force vector lies along the
optimal path.

We performed another set of experiments where one agent
was a dummy, and the other agent was the sole active agent
pushing the block. An interesting observation about this set
of experiments is the following: we found that when both
agents cooperated to push the block, they converged on the
optimal path in less number of trials than when only one agent
was pushing (the other agent was a dummy in this case). On
examining the policy matrices after convergence, we found
that when both agents were operating, less number of policy
matrix values differed from their initial setting than when
only one agent was pushing the block. This implies that joint
action is constraining the block to a region in the state space
such that less number of policy values have to be accurately
learned. For example, we found that the event of failure to
reach the goal in a trial because the block left the playing field
on crossing either the x=0 or the x=100 boundaries, was less
frequent when two agents were pushing the block compared
to when only one agent was pushing the block. Because less
number of policy matrix values are to be learned when both
agents are operating, runs converge quicker than in the case
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Table 1: Trials for agent A to reach its goal acting against
agent B trying to reach its own goal (maximum forces applied
by agents A and B are F4 and Fg respectively).

[ Fa | Fg | Tnals taken to reach Goal of Agent A ||

10 1 81
10 | 2 111
10 ] 3 115
10 | 4 197
10 | 5 268

Experiments in adversarial domain

We designed a set of experiments in which two agents are
provided different feedback for the same block location. The
agents are assigned to push the same block to two different
goals along different paths. Hence, the action of each of them
adversely affects the goal achievement of the other agent. The
maximum force (we refer to this as strength) of one agent was
chosen as 10 units, while the maximum force of the other agent
was varied. The other variable was the number of discrete
action options available within the given force range. When
there is considerable disparity between the strengths of the
two agents, the stronger agent overpowers the weaker agent,
and succeeds in pushing the block to its goal location (see
Figure 3). The average number of trials to convergence (see
Table 1), however, indicates that as the strength of the weaker
agent is increased, the stronger agent finds it increasingly
difficult to attain its goal. For these experiments, the strong
and the weak agents had respectively 11 (between 0-10) and
2 (0 and its maximum strength) force options to choose from.

When the number of force discretizations for the weak
agent is increased from 2 to 10, we find that the stronger agent
finds it more difficult to push the block to its own goal. If we
increase the maximum force of the weak agent closer to the
maximum force of the stronger agent, we find that neither of
them is able to push the block to its desired goal. At the of
a run, we find that the final converged path lies in between
their individual desired paths. As the strength of the weaker
agent increases, this path moves away from the desired path of
the stronger agent, and ultimately lies midway between their
individual desired paths when both agents are equally strong.

Intuitively, an agent should be able to ‘overpower’ another
agent whenever it is stronger. Why is this not happening? The
answer lies in the stochastic variability of feedback received
for the same action at the same state, and the deterministic
choice of the action corresponding to the maximal policy ma-
trix entry. When an agent chooses an action at a state it can
receive one of several different feedbacks depending on the
action chosen by the other agent. We define the optimal action
choice for a state z to be the action A that has the highest
average feedback F,. Suppose the first time the agent chooses
this action at state z it receives a feedback F;, < F.. Also,
let it receive a feedback F, > F; for a non-optimal action
A, it chooses in the same state x. If these were the only
two options available in state z, the agent would choose A,
over A, next time it is in state z, because the former action
corresponds to a higher policy matrix entry. If the steady state
value of the policy matrix entry for action A, in state z is



Figure 3: Example trial when agents have conflicting goals.

greater than the policy matrix entry for action A, obtained af-
ter receiving feedback F), the latter action will be never tried
again, and hence the agent will converge on a non-optimal
policy. This is a quintessential example of the exploration-
exploitation tradeoff (Holland, 1975). Also, thisis more likely
to happen when the same action can generate more number
of distinct feedbacks (the same action for the stronger agent
can produce more distinct feedbacks when the discretizations
for weaker agent is increased). A simple remedy to this situ-
ation will be to choose a proportion of the actions randomly
or to choose actions using a probability distribution over the
policy matrix values. Each of these options, however, results
in an exponential increase of the trials to convergence. Cur-
rently we are developing a simulated annealing (Kirkpatrick,
Gelatt. & Vecchi, 1983) based procedure which results in a
decrease in the proportion of random choices as the policy
matrix converges to its steady state.

Conclusions

Using reinforcement learning schemes, we have shown that
agents can learn to achieve their goals in both cooperative
and adversarial domains. Neither prior knowledge about do-
main characteristics nor explicit models about capabilities of
other agents are required. This provides a novel paradigm
for multi-agent systems through which both friends and foes
can concurrently acquire coordination knowledge. A draw-
back of the proposed approach is that it can only be used
in domains where agents repeatedly perform similar tasks.
We also found that a deterministic choice of agent actions
can lead to sub-optimal policies. Our current research effort
involves developing stochastic action choice algorithms that
converge on better policies without significantly increasing
the time taken to converge on these policies. We are also
investigating a resource sharing problem domain, in which
agents are required to learn to operate a shared system at a
load corresponding to its peak efficiency.
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