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ARTICLE

Young SINEs in pig genomes impact gene
regulation, genetic diversity, and complex traits
Pengju Zhao1,2, Lihong Gu3, Yahui Gao4, Zhangyuan Pan5, Lei Liu6, Xingzheng Li6, Huaijun Zhou5,

Dongyou Yu1,2, Xinyan Han1,2, Lichun Qian1,2, George E. Liu 4✉, Lingzhao Fang 7✉ &

Zhengguang Wang 1,2✉

Transposable elements (TEs) are a major source of genetic polymorphisms and play a role in

chromatin architecture, gene regulatory networks, and genomic evolution. However, their

functional role in pigs and contributions to complex traits are largely unknown. We created a

catalog of TEs (n= 3,087,929) in pigs and found that young SINEs were predominantly

silenced by histone modifications, DNA methylation, and decreased accessibility. However,

some transcripts from active young SINEs showed high tissue-specificity, as confirmed by

analyzing 3570 RNA-seq samples. We also detected 211,067 dimorphic SINEs in 374 indi-

viduals, including 340 population-specific ones associated with local adaptation. Mapping

these dimorphic SINEs to genome-wide associations of 97 complex traits in pigs, we found

54 candidate genes (e.g., ANK2 and VRTN) that might be mediated by TEs. Our findings

highlight the important roles of young SINEs and provide a supplement for genotype-to-

phenotype associations and modern breeding in pigs.
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TEs and common repeats are ubiquitous sequences that can
copy and insert themselves throughout the eukaryotic and
prokaryotic genomes1–7. The movement of TEs is often

accompanied by an increase in their abundance, comprising a
large fraction of genomic sequences8,9. According to the
mechanism of transposition, TEs can be generally classified into
(1) RNA-mediated class I elements (retrotransposons), including
long terminal repeats (LTRs), long interspersed nuclear elements
(LINEs), and short interspersed nuclear elements (SINEs); and
(2) RNA-independent class II elements (DNA transposons)10. TE
classes could be further divided into distinct families or sub-
families based on their age (active period) and DNA sequence
characteristics.

At the predominant view of the 1960s–1990s, TEs were
described as selfish or junk DNA11. Thanks to the availability of
whole-genome sequence of various species and the ongoing
development of bioinformatics tools12–15, our knowledge of TEs
has progressed at a fast pace. TEs are known to play an essential
role in shaping genomic sequences and contributing to the
diversity in genome size and chromosome structure1,16,17. Most
TEs, in fact, are fixed, inactive, and not randomly distributed in
the genome18,19. However, several TE families are still actively
transposing and serving as a major source of genetic poly-
morphisms between individuals, such as the Alu, L1, and SVA TE
families in the human genome20.

It is evident in many species (e.g., humans and rice) that the
impacts of active TEs on genome evolution are wide-ranging,
including admixture, adaptation, footprints of selection, and
population structure21–24. For example, the polymorphic TEs
detected in the 1000 Genomes Project, consisting of 16,192 loci in
2504 individuals across 26 human populations, successfully
recapitulated human evolution and captured the signal for posi-
tive selection on recent human TE insertions20,25,26.

In addition to their direct influence on DNA sequence, there is
also emerging evidence that TEs have important functional
contributions to gene regulatory networks and epigenome var-
iation. For instance, TEs can directly affect gene transcriptional
structure by provoking various forms of alternative splicing,
including exonization, exon skipping, and intron retention (3′
and 5′), to generate novel protein-coding sequences or premature
ends27–30. TEs can disrupt the existing cis-regulatory elements,
such as promoters, enhancers, and insulators, or provide novel
ones31–34. They can also serve as a rich source of non-coding
RNAs, including lncRNAs, circRNA, small RNAs, and microRNA
targets35–38. Moreover, the silencing of TEs has a close connec-
tion with epigenetic regulatory mechanisms, such as DNA
methylation, piRNA, histone modifications, and RNA
interference18,39–42. Importantly, it has been reported that the
complex interactions between TEs and epigenetic elements could
allow for rapid phenotypic adaptation to environmental
changes40,42,43.

Pig (Sus scrofa), one of the earliest domesticated animals, is
estimated to have been domesticated approximately 10,000 years
ago in Asia and Europe independently44. It serves as an indis-
pensable source of animal protein and an important biomedical
model for humans45,46. Currently, a total of 22 pig assemblies are
publicly available on NCBI47–51, accompanied by the availability
of massive high-throughput whole-genome sequences. These
provide researchers with ideal materials to advance the current
development of genomic research in pigs. However, the study of
TEs in the pig genome is still in its infancy. A few previous studies
have mainly focused on their diversity and distribution47–51, yet
the functional and evolutionary importance of TEs in pigs has
largely been overlooked. In our recent study52, we identified novel
introgressions in Eurasian boars from Asian and European pig
populations using SINE (PRE-1 subfamily) polymorphisms,

suggesting that a portion of TEs are still active in the current pig
genome. However, these studies are far from sufficient to com-
prehensively understand the important roles of TEs in pigs.

In this study, we created a comprehensive and high-quality
atlas of TEs so far in pigs and classified SINE families into four
categories based on their ages using the newly built pipelines. We
then systematically explored the genomic bias of these SINE
categories by combining large-scale multi-omics data from 21
tissues, including three-dimensional chromatin architecture,
chromatin accessibility, histone modifications, transcription fac-
tor binding sites (TFBS), and DNA methylation. We estimated
the contribution of active SINEs to tissue-specific gene expression
by cross-examining 3570 published RNA-seq samples from 52
tissues and 27 cell types. Furthermore, we created an atlas of
SINEs using 374 whole-genome sequence data to study the roles
of young SINEs in pig population admixture and local adaptation.
The TE-mediated adaptation has been found in functional
regions, such as the almost fixed dimorphic SINEs observed in
laboratory-inbred Bama Xiang pigs at the upstream region of the
LEP gene. Finally, by mapping these dimorphic SINEs to 4072
loci associated with 97 complex traits in pigs, we propose 54
candidate genes that might regulate complex traits through TEs.

Results
Composition of young SINE families in the pig genome. To
thoroughly detect TEs, we developed the Pig TE Detection and
Classification (PigTEDC) pipeline (Fig. 1a) and applied it to the
pig genome (Sus scrofa 11.1). This pipeline used a combination of
similarity-, structure-, and de novo-based methods. We also
classified all potential pig TEs into classes/superfamilies and
families and derived their consensus sequences based on existing
TE repositories (RepBase update and Dfam 2.0 databases).

Excluding nested TEs, we found 3,087,929 TEs occupying
37.9% (947 MB) of the pig genome. Two-thirds of TE copies
(insert in the genome) were assigned to a specific family, with
retrotransposons being the most common type (~90%). Similar to
previous studies47–51, LTR (9.25%), LINE (27.57%), and SINE
(54.95%) were the most common retrotransposons, whereas
DNA transposons only accounted for 8.12% of TEs (Fig. 1b).
SINE being the most abundant in count but covering less genome
size than LINE (Fig. 1c).

Out of 532 TE families, 65 (with over 3000 TE copies each)
make up 84.6% of all classified TEs (Fig. 1d). These include PRE1f
in SINE/tRNA (170,511 copies), MIR in SINE/MIR (45,927
copies), L1B-SSc in LINE/L1 (35,819 copies), and MLT1D in
LTR/ERVL-MaLR (7866 copies). The stacking plots in Fig. 1e
show the divergence distribution for superfamilies or families.
Our analysis of pig TEs revealed two bursts at 10% and 30%,
estimated to have occurred 20 and 60 million years ago, which is
similar to the divergence distribution of TEs in the human
genome53. Obviously, most TE families amplified around 70–50
Mya (divergence at 30 ± 5%). This was during the Paleocene
Epoch (65–54 Mya) which created new ecological niches for
surviving mammals, birds, reptiles, and marine animals54. The
most recent burst of TEs was mainly related to the SINE/tRNA,
LINE/L1, and LTR/ERV1 families. Among these, SINE/tRNA
remains the most active in the modern pig genome55–57. Further
exploring the ages of highly homologous subfamilies in SINE
classes (Fig. 1f with an average divergence of 4%, labeled in
purple), we found that 3 out of 26 SINE families (PRE1-SS, PRE0-
SS, and PRE1a) were recently most prolific and shown to be
polymorphic within pig breeds in a previous study52, and thus
considered as young SINE families.

We next analyzed young SINE families (PRE1-SS, PRE0-SS,
and PRE1a) to classify them into subfamilies with high resolution.
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We examined all the full-length young SINEs from 14 publicly
available pig genomes, identified 978,506 non-redundant young
SINEs, and created their consensus sequence through multiple
sequence alignment (Supplementary Figs. 1, 2). Subsequently,
using a minimum spanning tree analysis, we recategorized the 90
subfamilies of SINE into 17 large (size >10,000), 12 medium (size
≥3000 and ≤10,000), and 61 small (size <3000) subfamilies
(Supplementary Figs. 3, 4, Supplementary Data 1).

When comparing the locations of young SINEs with medium-
length (range from 200 to 300 bp) structure variations (SVs) in 14
assemblies to the pig reference, we found that most polymorphic
SINEs belonged to the PRE1-SS, PRE1a, and PRE0-SS families,
accounting for an average of 90.75% of the medium-length SVs
(Fig. 1g). Especially for the L13 subfamily accounted for an
average of 36.15% of the medium-length SVs (Fig. 1h). Our
findings indicate that only a certain group of recently active SINE
subfamilies played a major role in causing SVs (about 250 bp
long) in various pig breeds during recent evolution. To simplify
our analysis, we classified all SINEs into four categories: youngest
(L13 subfamilies), younger (SINE families other than
L13 subfamilies and non-L13), older (non-young PRE families),
and oldest (non-PRE families; ancient families) (Fig. 1i, Supple-
mentary Fig. 5).

Widespread roles of young SINEs in gene regulatory networks.
Previous studies have proposed that TEs may be co-opted into
regulatory sequences of genes through diverse epigenetic
mechanisms58–61. To test this, we examined how SINE sub-
families affect genome features such as 3D chromatin
architecture62, chromatin accessibility, histone modifications,

TFBS, and DNA methylation after only mapping unique reads
(Fig. 2a).

We observed a highly enrichment of all SINEs in the A
compartments (active), while there was a depletion in the B
compartments (inactive) (Wilcoxon test, P-values < 10−16, Fig. 2b,
Supplementary Fig. 6). After dividing A/B compartments into
topologically associating domains, it was observed that CTCF
binding sites were enriched in the boundary regions of these
domains. SINEs also exhibited a similar but slightly weaker trend
of enrichment, while young SINEs showed higher but more
variable enrichment compared to old SINEs (Fig. 2b, Supple-
mentary Fig. 7). We next explored the distribution of SINE
families on the chromatin accessibility and nucleosome position-
ing near transcripts using the published chip-seq (14 tissues) and
MNase-seq (five tissues) datasets, respectively63,64. TE enrich-
ment in chromatin showed age-specific patterns, with youngest
and younger SINE families depleted from open chromatin but
enriched near the nucleosome (Fig. 2c). Older SINE families were
relatively highly enriched for open chromatin, especially in the
stomach, adipose, and cerebellum. We further studied the
relationship of SINE families with four active epigenetic marks
(H3K4me1—primed enhancers, H3K4me3—enriched in tran-
scriptionally active promoters, H3K27ac—which distinguishes
active enhancers from poised enhancers, and H3K36me3—
actively transcribed gene bodies) and two repressive marks
(H3K9me3—constitutively repressed genes and H3K27me3—
facultatively repressed genes). In Fig. 2c, we observed that most
SINE families were underrepresented in all four active marks,
consistent across tissues. However, young SINEs were highly
enriched for H3K9me3, which indicates permanent repression,

Fig. 1 TE annotation and SINE classification in the pig genome. a A schematic of the Pig Transposable Element Detection and Classification (PigTEDC)
pipeline. It is composed of three TE detection approaches, which use similarity-, structure-, and de novo-based algorithms. b The proportion of TEs from
different superfamilies in the count. c The proportion of TEs from different superfamilies in length. d Classification of pig TE superfamilies and families
(≥3000 copies in each family). e Sequence divergence distribution for TE superfamilies (upper panel) and families (bottom panel) in the pig genome.
Sequence divergence distributions are plotted in bins of 0.01 increments. f Phylogenetic tree and sequence divergence distribution for SINE families in the
pig genome. On the right panel, the x-axis represents the divergence, and the y-axis represents the counts of the SINE families. g Boxplots display the
proportion of genomic SVs formed by different SINE families. h Boxplots display the proportion of genomic SVs formed by different SINE subfamilies. See
Supplementary Data 1 for their definitions. i Classification of pig SINE families based on their ages. The line inside each boxplot represents the median.
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but not for H3K27me3, which has development-dependent
repressed characteristics65. In general, compared to old SINE
groups, young SINE groups had a higher over-/under-representa-
tion for all histone modification types, especially the
youngest group.

In addition, we investigated the enrichment of SINE families in
15 chromatin states across 14 tissues66. We observed that young
SINE groups had lower enrichment in most chromatin states
compared to old SINE groups. The degree of SINE enrichment in
chromatin states was similar across all 14 tissues (Fig. 2d,
Supplementary Data 2). The enrichment characteristics of
different SINE groups can be divided into four distinct patterns
based on their degree of enrichment (Fig. 3a). The oldest SINE
group was highly enriched in most cases (80%, 168 out of 210
combinations of 14 tissues and 15 states), while the young SINE
group showed three enrichment patterns in the remaining
combinations (enlarged inset). In two of these patterns, only
the youngest SINE group was highly enriched in TssAHet
(flanking active TSS without ATAC) and EnhAWk (weakly active
enhancer). Overall, SINE groups were depleted from active
promoters and enhancers, except for weak TSS and enhancers.
Young SINE groups were more depleted than old ones. This
suggests that new SINEs may be silenced by histone modifications
and DNA methylation, while older ones may be tolerated by the
pig genome.

TEs carrying TFBS may contribute to the regulation of
genes67,68. We performed motif enrichment analysis of SINEs
to explore their possible contributions (Fig. 3b). In total, 31 TFBS
were predicted to have binding motifs in at least one SINE family,
mostly in old ones (96.8%). 83.9% of the TFBS related to open
chromatin, indicating that young SINEs were rarely exapted into
regulatory regions69 and were repressed by less chromatin
accessibility. The youngest SINE-specific TFBS related to the
ZNF148 gene has been shown to promote the development of a
muscle phenotype70. Besides, three members of the RFX
transcription factor family were amplified in both young and

older SINEs and involved in immune, reproductive, and nervous
pathways71. For instance, RFX1 and RFX3 were found to be major
histocompatibility complex (MHC) class II promoter binding
proteins that functioned as trans-activators of the hepatitis B
virus enhancer72,73.

Given that TEs play major roles in gene expression regulation
by shaping the epigenetic modifications74, we analyzed the
epigenetic states of SINE families by examining DNA methylation
(MeDIP), density of CG (CpG) sequence contexts, and AT:GC
content (CpG islands) (Fig. 3c). The results showed that almost
all SINE families exhibited a depletion in genomic regions with
CpG islands, and the young SINE families were more highly
methylated than the old ones. Similarly, we found that CG
methylation levels in SINE bodies, particularly in young SINEs,
were higher than in their flanking regions across 10 different
tissues. This corresponds to the enrichment of SINE families in
H3K9me3 (Fig. 3d).

A previous study revealed that piRNAs play a major role in TE
silencing via the ping-pong cycle in pig germline75. We further
distinguished small non-coding RNAs into three classes to
investigate the relationship between piRNA density and SINE
families (Supplementary Fig. 8). Unlike siRNA and miRNA,
piRNA was highly enriched for SINE-related sequences or
sequence flanks, and there was a negative correlation between
piRNA density and the age of the SINE subfamily. Our result
agrees with findings in humans that young SINE families are
more prone to piRNA targeting76, which may be the main reason
for their high methylation levels, as we observed above.

Young SINE-associated transcriptome profiling in pigs. TEs
can modify host gene transcription directly by remodeling
alternative splice events or providing cis-regulatory
sequences77–79. To test this, we analyzed PacBio long-read iso-
form sequences from 38 pig tissues to detect transcripts of SINE-
associated exonization and alternative splice sites80,81. We

Fig. 2 Distribution of SINE on pig genome and functional regions. a The five types of genomic features used in this study included 3D chromatin
architecture, chromatin accessibility, histone modifications, DNA methylation, and TFBS. b The distribution of SINE families between 3D chromatin
architectures (Compartments A vs. B) and near topologically associating domains is examined. c The read density distributions of chromatin accessibility
and histone modifications near transcripts were analyzed across four different SINE groups. d Boxplots display the enrichment of four SINE groups in 15
distinct chromatin states across 14 tissues. The line inside each boxplot represents the median.
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estimated the contribution of TEs to gene expression across 52
tissues and 27 cell types by analyzing 3570 published RNA-seq
samples from the EBI database (Fig. 4a, Supplementary Data 3).

After processing the raw data using LoRDEC82, we obtained
30,331,870 error-corrected Iso-seq reads with an average length of
2797 bp. Of these, 7.48% (2,267,973) were TE-related transcripts
(the transcripts containing TE sequences)83. Notably, 68.81%
(1,560,568) of the TE-derived transcripts were recognized as
SINE-associated transcripts inserted by nearly full-length SINE
(average coverage of 87.76%). This suggests that TE-derived
transcripts, particularly SINEs, are abundant in the pig tran-
scriptome. We next classified 337,746 young (younger and
youngest) SINE-associated transcripts into four categories based
on their genomic location compared to known transcripts in the
pig genome annotations81 (Supplementary Fig. 9). Out of these,
1028 perfectly matched with 517 genes and 47 lncRNAs
(Supplementary Data 4), while 62,304 potentially offered novel
alternative splice events for 8103 genes and 405 lncRNAs
(overlapping with at least one splice junction of a known
transcript). The remaining young SINE-associated transcripts
were classified as either 150,469 exon-covered transcripts (Over-
lapping exons without splice junction on same or opposite
strands) or 130,180 intronic transcripts (Located in an intron),
which had no complete structural similarity with the available
transcript annotation.

When comparing the locations of young SINEs in their derived
transcripts, we noticed a higher proportion of them in UTRs

(Fig. 4b and Supplementary Data 5). Especially, for SINE-
associated annotated transcripts that perfectly matched, 81.52%
were found to have SINE in their 3′-UTRs. This may affect gene
expression by increasing the length of the UTRs84 or by directly
inserting into the regulatory region via a mechanism similar to
Staufen-mediated decay (SMD)85. For example, we found a full-
length PRE0-SS was inserted in the 3′-UTR of the pig PDK1 gene,
which is consistent with a previous report that Alu and B1
regulate both human and mouse orthologs of PDK1 by SMD86.
Besides, we found that young SINEs that produced transcripts
(Young-T) had lower average CG methylation levels than all
young SINEs in most tissues (Fig. 4c). Similarly, these young
SINEs were more enriched in open chromatin and histone
modifications, particularly H3K4me3, suggesting that they were
more likely active across multiple tissues (Fig. 4d).

To study young SINE-associated transcripts, we analyzed
transcriptome data from 52 tissues and 27 cell types using Salmon
tools87 to measure gene and SINE-associated transcript abun-
dance (RNA-seq counts). Normalized gene expression by
DESeq288 allowed us to create t-SNE plots that is mostly
consistent with tissue types (Fig. 5a). We also conducted a co-
expression network analysis of 14,403 genes using the WGCNA R
package89 to investigate the expression characteristics of young
SINE-associated transcripts across a wide range of tissues and cell
types (Supplementary Fig. 10).

As a result, 13,872 genes were grouped into 40 modules
(number of genes >30), with most modules showing high tissue

Fig. 3 Enrichment of SINE in functional elements and methylation modification. a Hierarchical clustering of enrichment patterns in 15 chromatin states
for four SINE groups across 14 tissues (left panel). The heatmap shows three distinct enrichment patterns for high enrichment in the young SINE group
(right panel). b A heatmap for the enrichment of transcription factor binding motifs in SINE families, chromatin accessibility, and histone modifications.
c The signal density of MeDIP-seq and CpG islands within different SINE families. The shading represents the 95% confidence intervals, shown as error
bars above and below the mean column. d Boxplots display the DNA methylation levels on different SINE families. “L” and “R” represent the upstream and
downstream directions of the SINE body. For example, “L250” represents the 0 to 250 bp window upstream of SINE, and “L500” represents the 250 to
500 bp window upstream of SINE. The line inside each boxplot represents the median.
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specificity and playing key roles in particular organ systems in
pigs (Supplementary Figs. 11, 13, Supplementary Data 6). The
results were supported by gene-to-gene networks of topological
clustering using the Markov clustering (MCL) algorithm90

(Supplementary Fig. 14). Importantly, 17.9% of co-expressed
genes (2744) were related to young SINE-associated transcripts
and were mainly found in specific tissue modules (trachea,
adipose, fetal thymus, and alveolar macrophages) (Supplementary
Fig. 15).

Young SINE-related genes, as shown in Fig. 5b, were found to
be highly enriched in neural development, cellular metabolism,
muscle development, and immune response, which may have
played a role in natural selection and domestication of modern
pigs91–93. For instance, 186 genes in module ME2 had high
expression in brain tissues and were significantly enriched in

chemical synaptic transmission (GO:0007268), brain develop-
ment (GO:0007420), and neuron projection morphogenesis
(GO:0048812) (Supplementary Fig. 16). Correspondingly, there
were 248 young SINEs that were associated with these 186 genes.
These SINEs were more enriched in active epigenetic marks
(H3K4me1, H3K4me3, and H3K27ac) and depleted from the
repressive mark (H3K27me3) at the nervous system (cerebellum,
cortex, and hypothalamus) than other tissues, indicating that
young SINEs exhibited strong and concordant tissue specificity in
both transcript expression and epigenetic regulation (Fig. 5c).

The roles of young SINEs in population admixture and local
adaptation in pigs. Since the majority of TE polymorphisms in
the pig genome are young SINEs47,55,57,94, we created a thorough
map of dimorphic SINEs using whole-genome sequencing data

Fig. 4 Young SINE-associated transcriptome landscape. a Overview of RNA-seq libraries in 3570 samples across 52 tissues and 27 types of cells. b The
bar plot indicates the proportion of functional regions affected by SINE across four different categories of SINE-associated transcripts. The x-axis groups
indicate the relationship between the SINE-associated transcript and annotated genes, while the colors represent the position of the SINE within the SINE-
associated transcript. c Boxplots display the CG methylation levels on young SINE families. Young-T group represents the SINE families that derived the
young SINE-associated transcripts. The Younger and Youngest groups represent all the younger and youngest SINEs in the entire genome, respectively.
d The boxplots display the read density of chromatin accessibility and histone modifications in the Young-T, Younger, and Youngest groups. The line inside
each boxplot represents the median.
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from over 300 pigs, which represent most Eurasian pig breeds.
This map allows us to investigate the roles of young SINEs and
their associated genes in pig population admixture and local
adaptation.

To investigate the effect of sequencing depth and dimorphic
SINE detection tools on the detection of dimorphic SINEs, we
benchmarked polymorphic TE detection tools that previously
performed well in human projects under different sequencing
depths13,95 (Supplementary Figs. 17–25, Supplementary methods)
and customized the Pig TE Polymorphism (PigTEP) pipeline to
improve its performance in pig whole-genome sequence datasets
(Fig. 6a, Supplementary methods). We then used this pipeline to
identify dimorphic SINEs in 374 individuals from 25 diverse
populations (N ≥ 5) using a uniform sequencing depth of 10×
(Supplementary Fig. 26, Supplementary Data 7, average mapped
bases: 27.18 GB and average mapping rates: 99.44%). These
individuals were assigned to 10 major groups: PYGMY, ISEA,
CHD, KOD, AWB, TWB, EUD, EWB, MINI, and COM (Fig. 6b).

We identified a total of 211,067 dimorphic SINEs in the pig
genome, with almost half located in non-intergenic regions. Out
of these, 189,966 Ref+ refer to the insertion of a TE into the
reference genome, while 21,101 Ref- refer to the deletion of a TE
from the reference genome. Most of these SINEs (64.89%) were
rare, with minor allele frequencies of less than 5% in the entire pig
population (Supplementary Fig. 27), and they showed variable
frequency distribution among groups (Supplementary Fig. 28).
While over 85% of the dimorphic SINEs were shared among
groups, there were still 30,441 dimorphic SINEs (PYGMY and
ISEA accounted for 60.83% and 26.01%, respectively) that were
unique to a single group (Fig. 6c).

Principal component analysis (PCA) analysis of dimorphic
SINE genotypes distinguished four species of the Suidae (Fig. 6d).
PC1 separated Porcula slavania from Sus species, while PC2 and
PC3 (19.41% and 13.67%, respectively) showed genetic separation
between Asian and Western breeds (Fig. 6e). Korean domestic

pigs (KOD) showed closer genetic similarity to Western breeds
than to Chinese breeds, likely due to gene flow and introgression
mediated by humans. Our results were confirmed by the TE-
based phylogenetic tree and genetic admixture (Fig. 6f, g;
Supplementary Fig. 29), consistent with previous studies on
SNP-based genotypes44,96. The comparison of Chinese and
European domestic pigs confirmed our previous findings on
TE-based introgression between Northern Chinese domestic pigs
and European domestic pigs55. Korean wild boars clustered with
other Asian wild boars instead of European pigs, unlike Korean
domestic pigs.

To identify dimorphic SINEs linked to local adaptation, we
chose the 10 ancestral components with the lowest coefficient of
variation (CV= 0.229; Fig. 6g). For each dimorphic SINE
between cluster i and the other clusters, we computed pairwise
Fsti values and alpha coefficients (using Bayescan)97 to measure
their divergence in allele frequencies at specific loci. Loci with
higher Fst values and positive alpha values indicate positive
selection. We found 337 dimorphic SINEs with high Fsti and
positive alpha coefficient in the gene functional regions, including
exon, splice, UTR5, UTR3, and upstream regions, of 330 genes
(Supplementary Data 8). 77.94% of the genes were found in both
PYGMY (n= 223) and ISEA (n= 42), while the remaining 75
were linked to breed-specific traits of domestic pigs (Fig. 7a). For
example, the PRE1 insertion in the promoter of the IGFBP7 gene,
which is associated with tumor suppression98, was more common
in Chinese indigenous breeds than in commercial breeds99.
Furthermore, the upstream of FRZB (high signals in H3K4me1
and H3K27ac, Fig. 7b), which is associated with pig growth
traits100, was inserted by a population-specific dimorphic SINE
from Southern Chinese domestic pigs.

A fixed dimorphic SINE was found in the first exon of the
RUNX3 gene of Goettingen miniature pigs, MiniLEWE, and
Southern Chinese domestic pigs, particularly Luchuan pigs
(Fig. 7c). RUNX3 gene is known as a tumor suppressor gene in

Fig. 5 Functional enrichment of young SINE-associated transcripts. a The t-SNE plots display the expression differentiation among different tissues and
cells. b Top 20 results of functional enrichment analysis for young SINE-associated genes. c The bar plot indicates the enrichment of 248 young-T SINEs in
chromatin states and histone modifications across different tissues.
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human T-cell malignancy101 and plays a key role in the TGF-β
induced signaling pathway102. In addition, 30 genes in long-term
laboratory-inbred Bama Xiang pigs103 showed extreme Fst and
were significantly enriched in the AMPK signaling pathway
(Corrected P-values= 0.00295, Supplementary Data 9), with
SLC3A2 (upstream) and SIRT1 (UTR3) genes having the
dimorphic SINEs with a perfectly fixed frequency.

Out of 75 candidate genes, nine were mapped to swine
quantitative trait-associated (QTX) data associated with pheno-
typic traits104 (Fig. 7d). Four of these genes, related to laboratory-
inbred Bama Xiang pigs, were associated with fat content and
body weight, consistent with selective breeding103. The LEP gene,
highly expressed in adipose tissue, produces leptin, a hormone
regulating appetite, fat storage, and body weight105. These
findings demonstrate that dimorphic SINEs are a valuable source
for studying genomic ancestry and local adaptive evolution in
pigs.

Mapping young SINEs to the genetic associations of complex
traits. To investigate the relationship between dimorphic SINEs
and complex traits, we collected 4072 trait-associated SNPs (T-
SNPs) from 79 published GWAS studies of 97 complex traits in
pigs, including reproduction, production, meat and carcass,
health, and exterior traits (Supplementary Fig. 30). As shown in
Fig. 7e, 127 dimorphic SINEs associated with traits and in linkage
disequilibrium (LD, r2 > 0.3) with T-SNPs were identified using
296 domestic pigs (109 Asian and 187 European). Specially, it was
found that these dimorphic SINEs were more prevalent in the
TxFlnkWk (Weak transcribed at gene), indicating their potential
for gene regulation (Fig. 8a).

54 genes influenced by dimorphic SINEs were linked to
intramuscular fat composition and teat number. Many of these
genes were specifically expressed in certain tissues (Z-score >2),
such as the nervous system (plasmacytoid dendritic cells, choroid

plexus, hypothalamus, and brain), reproductive system (testis,
oviduct, and oocyte), and muscle satellite cells (Supplementary
Fig. 31, Supplementary Data 10). Importantly, most of the
intronic T-dimorphic SINEs exhibited breed-specific MAF
between Chinese and Western pigs, which is consistent with
their differences in fatty acid content and teat number (Fig. 8b).

We found a 320 kb dimorphic SINE hotspot
(chr14:112,965,840–113,285,513; r2 > 0.3) linked to intramuscular
fat composition, containing six dimorphic SINEs and eight genes.
Two genes, C14H10orf76 (ARMH3, r2= 0.89) and GBF1
(r2= 0.86), are essential for Golgi maintenance and secretion106.
The ELOVL3 gene is a strong candidate gene for fatty acid
composition107,108. A low-frequency dimorphic SINE was found
in its intron region, while multiple T-dimorphic SINEs were
found within its upstream region of 15 to 50 kb. The dimorphic
SINE (chr14:113,199,425) near 27 kb upstream was found at high
frequency in Chinese domestic pigs, especially Southern Chinese
domestic pigs (Fig. 8c).

Furthermore, pairwise LD (r2= 0.88) was observed between
the dimorphic SINE (chr8:109,447,835) located in the ANK2
intron and the T-SNP linked to C14:0, C16:0, and C16:1n7 fatty
acid content in backfat109. Ankyrin-B (AnkB), an alternatively
spliced variant of ANK2, is linked to obesity susceptibility in
humans110. We found that the insertion of the T-dimorphic SINE
was almost fixed in Western domestic pig populations (Fig. 8d)
and located in an LD block of 15 kb (r2 > 0.5,
chr8:109,439,023–109,454,866, Supplementary Fig. 32). We
observed that ANK2 is a gene that is ubiquitously expressed in
pigs and highly enriched in the nervous system (Fig. 8e). Two
SINE-associated transcripts overlapped with ANK2 exons and
were significantly correlated with ANK2 expression (Supplemen-
tary Data 11). ANK2 expression was significantly upregulated in
cultivars with high-fat deposition such as Songliao black pigs
compared with those with low-fat deposition like Landrace

Fig. 6 Young SINE-associated genetic diversity of pigs. a The Pig TE polymorphism pipeline. The pipeline was constructed to identify both dimorphic
SINEs and SNPs for each individual simultaneously. Ref+ refers to the insertion of a TE into the reference genome, whereas Ref- refers to the deletion of a
TE from the reference genome. b Overviews of whole-genome re-sequencings in 374 individuals. c Venn diagram represents the distribution of dimorphic
SINEs among different populations. d PCA plot displays the genetic relationship based on dimorphic SINEs among 374 individuals. e PCA plot displays the
genetic relationship based on dimorphic SINEs among 364 individuals from modern pigs. f Phylogenetic tree based on dimorphic SINEs for 374 individuals.
g Population structure based on dimorphic SINEs for 374 individuals when K was 3 and 10.
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pigs111 and fast-growing chickens compared with slow-growing
chickens112.

In addition, we found a high LD (r² = 0.75) between a T-SNP
(chr7:97,606,621) and a T-dimorphic SINE (chr7:97,615,896) in
the first intron of the VRTN gene—the gene suggested to be
associated with teat number and the most promising candidate
gene to increase the number of thoracic vertebrae (ribs) in
pigs113. We observed a clear difference in frequency of the
dimorphic SINE between Chinese indigenous breeds and
commercial breeds (Fig. 8f). In addition, VRTN gene is highly
expressed in embryonic stem cells, embryos, and ovaries,
suggesting its role in early pig development (Fig. 8g). Especially,
a novel transcript (2191 bp in length) derived from the bimorphic
SINE covers the first exon of VRTN and is significantly associated
with VRTN expression (Fig. 8h, P-values= 3.03 × 10−201, Sup-
plementary Data 11). This transcript was supported by the RNA-
seq exon coverage in NCBI annotation (Supplementary Fig. 33).
This region exhibited the open chromatin and enhancer signals
(H3K4me1) while was facultatively repressed in most tissues
(H3K27me3) (Fig. 8i). An obvious decline was observed in the
repressed states of stem cells and embryo-related tissues,
corresponding to the tissue-specific expression in VRTN,

suggesting that this region was crucial for VRTN, and this
dimorphic SINE was more likely to affect its expression.

Discussion
In this study, we built a pig genome atlas of TEs using the Pig-
TEDC pipeline, combining the similarity-, structure-, and de
novo-based methods. Our findings show that almost a third (947
MB) of the pig genome is made up of TEs, mainly non-LTR
retrotransposons (SINE and LINE). SINE is shorter and more
complete than LINE. Similar to our previous findings52, the
PRE1-SS, PRE0-SS, and PRE1a families in SINE/tRNA are the
most recent and have the most polymorphic insertions. These
polymorphic SINEs contribute nearly 90% of medium-length SVs
across different assemblies, especially the L13 subfamily, with
36.15% of the youngest SINEs in the pig genome.

Gene regulatory network is influenced by genomic compo-
nents, chromatin accessibility, histone modifications, DNA
methylation, and cis-regulatory elements such as TFBS, pro-
moters, and enhancers. TEs linked to specific chromosome fea-
tures can impact gene regulatory networks in multiple ways as
listed above. To our knowledge, this is the first time that large-
scale multi-omics data were used to fully explore the relationships

Fig. 7 Potential candidate genes for young SINE-associated local adaptation. a The scatter diagram displays the 75 genes that may be associated with
local adaptation. The x-axis represents the Fst, and the y-axis represents population frequency. b Chromatin accessibility and histone modifications for
FRZB (chr15:88332856–88377275) and its dimorphic SINE (chr15:88377793). c Bar plot displays the population frequency of the dimorphic SINEs in the
first exon of RUNX3. d Overviews of nine candidate genes under local adaptation. Bar charts indicate the population frequency of candidate dimorphic
SINEs and the average TPM values of their corresponding candidate genes across tissues. e The scatter diagram displays the linkage disequilibrium
between T-SNPs and dimorphic SINEs. The x-axis represents the chromosome, and the y-axis represents the r2 values.
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between TEs and chromosome features in the pig genome. Our
findings showed that SINEs were highly enriched in the A
compartment, and that the enrichment of SINEs in chromatin
was associated with their ages. For instance, young SINE families
were frequently enriched in close chromatin-like nucleosomes but
highly depleted from open chromatin.

As expected, SINEs were highly depleted from all active
chromatin tags, and more signals of constitutive heterochromatin
tags (H3K9me3 peaks) were observed on SINEs. The exception
was H3K27me3, which was associated with facultative suppressor
genes and cannot permanently silence SINEs. Most histone
modifications in SINE decreased as the TE’s age increased, which
was in line with the distribution of DNA methylation on SINE
and its contribution to TFBS. However, young SINEs, especially
the youngest SINE family, were highly enriched in weakly active
enhancer regions of hypothalamus tissue (Fold >1.5). We

speculate that the relationship between SINE and its host genome
is a combination of both arms race and co-evolution, depending
on how the symbiosis turned out.

In the former case of parasitism, the young SINEs were more
likely to be treated as new invaders that were constitutively
silenced by histone modifications and DNA methylation of the
host genome (e.g., PIWI-piRNA pathway during the TE in testis),
while the old SINEs mutated and gained new regulatory potential,
and thus were tolerated or even co-opted by the pig genome. In
the latter case of mutualism, there might be rare cases where the
SINEs were positively selected by nature, thereby helping the host
genome better adapt to the local environment in the long run.

The use of long-read isoform sequencing provided us a more
complete characterization of full-length transcripts, which made
it possible to identify the young SINE-associated transcripts.
Meanwhile, the Iso-seq reads we used here were collected from

Fig. 8 Mapping young SINEs to the complex traits. a Bar plot displays the enrichment of dimorphic SINEs in different chromatin states. b Heatmap
displays the frequency of T-dimorphic SINEs among different pig populations. The darker red color represents a higher population frequency for dimorphic
SINEs. c The population frequency of dimorphic SINEs in ELOVL3 gene among different pig populations. d The population frequency of dimorphic SINEs in
ANK2 gene among different pig populations. e The expression of the ANK2 gene in the top 10 tissues sorted by gene expression. f The population frequency
of dimorphic SINEs in VRTN gene among different pig populations. g The expression of the VRTN gene at the top 10 tissues sorted by gene expression.
h The VRTN gene (chr7:97614707–97624273) structure and the neighboring SINE-associated transcript (chr7:97613985–97615896). i Chromatin
accessibility and histone modifications for the upstream of VRTN gene. H3K27me3 signals for the upstream of VRTN gene.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05234-x

10 COMMUNICATIONS BIOLOGY |           (2023) 6:894 | https://doi.org/10.1038/s42003-023-05234-x | www.nature.com/commsbio

www.nature.com/commsbio


~40 pig tissues, which ensured the investigation of the abundance
and tissue specificity of young SINE-associated transcripts.

Our findings showed that the vast majority of young SINE-
associated transcripts were non-coding RNAs that covered exons
or fell within introns. A total of 3112 genes were found to be
associated with young SINE-associated transcripts, and nearly
88% of them were enriched in co-expressed modules with high
tissue specificity. The transcripts derived from young SINEs
exhibited lower levels of CG methylation and were more enriched
in open chromatin and histone modifications than whole young
SINEs. Specifically, some young SINEs exhibited strong and
consistent tissue specificity in both transcript expression and
epigenetic regulation. This is consistent with previous findings in
other species114–116, suggesting that SINE insertions may be a
crucial component of genes and regulate tissue-specific expres-
sion of their target genes.

Dimorphic SINEs belong to SVs that are more sensitive to
sequencing depth than SNPs. In this study, we benchmarked four
dimorphic SINE detection tools under different sequencing depths to
ensure the unbiased detection of dimorphic SINEs. Our findings
showed thatMELT (version 2.2.2) had robust performance in bothRef
+ and Ref- detection (Supplementary Figs. 17–18). As expected, we
found that the number of detected dimorphic SINEs increased with
sequencing depth, especially from 5× to 10×, which nearly doubled the
average number of dimorphic SINEs (Supplementary Fig. 19). Con-
sidering the sequencing depth in the current 838 publicly available
whole-genome sequence datasets in pigs, we retained 374 individuals
whose sequencing depth was greater than 10× and down-sampled
their sequencing depth to ~10× through a strategy of randomly
removing reads (average mapped bases: 27.17 GB and average map-
ping rates: 99.43%). Finally, the PigTEP pipeline was developed to
identify both dimorphic SINEs and SNPs in individuals simulta-
neously. This pipeline will help other researchers explore the role of
dimorphic SINEs in pig genomic study and breeding.

The contribution of TEs was underestimated in pig genomic
research, despite the active role of SINEs under selective pressure.
However, our understanding of SINEs in pig population genetics
is limited without a comprehensive map of dimorphic SINEs
based on large-scale re-sequencing data.

We genotyped and analyzed 211,067 dimorphic SINE loci in 374
individuals from 25 pig populations. These loci showed high varia-
bility in allele frequencies among populations. Based on these SINEs,
we identified ten major clusters that corresponded to geographic
differentiation. These SINEs with high pairwise Fst value can help us
understand local adaptation in domestic pigs and identify candidate
genes for economically important traits. Our findings confirm pre-
vious studies (e.g., IGFBP7) and identify new candidate genes.

GWAS studies have discovered thousands of QTLs for
important pig traits based on SNPs, but most of these loci remain
functionally uncharacterized. One possible reason is that phe-
notypic changes may be affected by SVs (TEs) in linkage dis-
equilibrium with SNPs. In this study, 127 dimorphic SINEs were
found to be in linkage disequilibrium with significant GWAS
SNPs of complex traits, and nearly a third of them showed high
tissue specificity in expression. Some of these dimorphic SINEs
can generate novel transcripts (in H3K4me1 and H3K27me3), as
exon-covered transcripts were found upstream of the VRTN gene.
Future research is needed to validate how these dimorphic SINEs
regulate target genes in specific tissues (e.g., VRTN gene in
embryonic stem cells) and affect complex traits.

Methods
Overview of the PigTEDC pipeline. The PigTEDC pipeline was
composed of three TE detection approaches using different
algorithms to achieve its overall efficiency:

The similarity-based method was represented by the widely
known RepeatMasker (V4.0.6) (http://www.repeatmasker.org),
which search sequence using the TE consensus sequence from
RepBase Update (https://www.girinst.org/repbase/) and Dfam 2.0
databases117 against homologous regions of the pig genome. The
method was used to detect all known TEs, including DNA
transposons, LTR, SINE, and LINE.

The structure-based method was used to capture the particular
TE families based on their known sequence structure and motifs,
which further enhanced the results of the similarity-based method
to enhance the power of detecting known TEs. In our pipeline,
HelitronScanner (V1.1)118 was used to improve DNA transpo-
sons detection, both LTRharvest (V2.0)119 and LTR-Finder
(V1.07)120 were used to enrich the LTR results, and SINE-
Finder (V1.1)121 was used to increase SINE detection.

The de novo-based method was used to identify the missing pig
TEs from the known TE database, which employed the clusters of
the repetitive sequences in the genome based on various methods.
There were a total of three tools in this category. RepeatModeler
(V1.0.11) was used to automate the runs of RECON (Multiple
alignment clustering) and RepeatScout (Consensus seed cluster-
ing) for the pig genome (http://www.repeatmasker.org/
RepeatModeler/). Red122 and P-Clouds123 were used to capture
all potential repetitive sequences that included TEs and simple
repeats in the pig genome using machine learning and
oligonucleotide clustering methods, respectively.

The classification of pig TEs detected in the PigTEDC pipeline
was further performed by the RepeatMasker through the
following three parts:

Order and family classification of known TEs. The known TEs
generated from both similarity-based and structure-based meth-
ods can be directly classified into four orders by referring to the
RepBase update database, including DNA transposons, LTR,
SINE, and LINE. The results of RepeatModeler from the de novo-
based method also provided parts of known TEs as above.
Considering the complex structure of nested TEs, we removed
these TEs from RepeatMasker using parseRM_GetNesting.pl.
After merging known TEs with each order, we removed the
redundant TEs detected by different tools by using bedtools. For
example, some SINEs can be identified by both RepeatMasker
and SINE-Finder. At last, the non-redundant known TEs from
each order were aligned to the consensus sequences of various
families belonging to that order to confirm their specific families.

Match of known TEs with their family consensus sequences.
Considering the different TEs have different coverage towards
their family consensus sequences, we located the coverage area for
each TE family using cross_match software (http://www.phrap.
org/consed/). The parameters of cross_match was set as
“-gap_init −25 -gap_ext −5 -minscore 10 -minmatch 6
-alignments -bandwidth 50 -word_raw”. Parts of TEs failed to
pass the paired match with their family consensus sequences, thus
were regarded as overly fragmented TEs. The passed TEs
consisting of full-length and fragmented TEs, had clear and
specific family classifications.

Family classification of unknown or novel TEs. In the step of
classifying unknown Pig TEs, we first merged all repetitive
sequences from both Red and P-Clouds tools, and kept parts of
them with at least three copies using hs-blastn. We then filtered
these multicopy sequences to keep potential TE sequences by
aligning them with various non-TEs repetitive sequences,
including tandem repeat, gene, tRNA, and rRNA. Meanwhile,
these potential TE sequences were additionally filtered as
unknown TEs by excluding known TE sequences from the
RepBase update database. In addition, merging all unknown TEs
from RepeatMasker, RepeatModeler, and Red & P-Clouds, we
further reduced the presence of redundant sequences by CD-HIT
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(parameters: -c 0.90 and –n 8) and picked the representative one
of each cluster as the consensus sequence for each unknown TE
family. Finally, to obtain the genomic locations of unknown TEs,
we performed the genome-wide identification for each unknown
TE family using RepeatMasker with the custom-build library.

Divergence distribution of pig TEs. Divergences of TEs from
consensus sequences were obtained using the Kimura two-
parameter model from RepeatMasker124. The divergence levels
were corrected for CpG content by DCpG = D/(1+ 9FCpG)125.
Histograms with a bin size of 0.01 were plotted to show the
distribution of divergence levels. Activity periods were estimated
assuming a substitution rate of 5 × 10−9 substitutions/site per
year126,127. Distribution histograms for sequence divergence of
TE were plotted using a 0.01 bin size.

Processing of young SINEs. Annotation of young SINEs on 14
genome assemblies. For each pig genome assembly, we employed
RepeatMasker to search for young SINEs in our customized
repeat library (PRE1-SS, PRE0-SS, and PRE1a). And then “par-
seRM_GetNesting.pl” was used to remove the nesting and nested
young SINEs, followed by a length filtering to remove elements
with length <200 bp and >300 bp using a shell script.

Clustering and filtering of young SINEs. To ensure that the
young SINEs used for subfamily classification were highly
homologous, we utilized a clustering-based approach to keep all
non-nested young SINEs from 14 genomes with a sequence
identity of >90%, implemented in CD-HIT-EST128 with the
parameter that “-T 0 -c 0.9 -M 0 -n 5 -p 0”. we finally retained 52
of 17,294 SINE clusters (n > 500) involving 1,157,133
young SINEs.

Removing the duplicated sequences of young SINEs. Due to
the existence of shared SINEs from different pig genomes, we
removed the completely duplicated sequences from our young
SINE datasets using seqkit (https://github.com/shenwei356/
seqkit).

Construction of consensus sequence. Because the running time
and memory usage for multiple sequence alignment (MSA) of
large-scale genomic sequences can be enormous, we randomly
extracted 100,000 young SINEs to conduct the MSA. Using
MEME suite programs (http://web.mit.edu/meme_v4.11.4/share/
doc/motif-consensus.html), we scanned each column in a letter’s
(A, T, C, G) frequency matrix of MSA using the “50% rule” that
any letters with frequency less 50% of the maximum were
discarded. Finally, a consensus sequence with a length of 261 bp
was created for the subfamily classification.

Phylogenetic tree for SINEs. 26 SINE families were used to
construct the phylogenetic tree. Multiple sequence alignments of
their consensus sequences were performed with mafft129 (V7.407)
at the default setting. Then, IQ-TREE130 was used to create
maximum likelihood (ML) trees for SINE (with 100 fast bootstrap
replicates). Finally, EVOLVIEW131 was used to visualize the
phylogenetic tree for SINE families.

Subfamily classification of young SINEs. We conducted sub-
family classification for young SINEs using the COSEG pipeline
(http://www.repeatmasker.org/COSEGDownload.html). First,
sequence homology analysis was done using cross_match soft-
ware (https://www.phrap.com/) with the parameters (-gap_init
−25 -gap_ext −5 -minscore 100 -minmatch 6 -alignments
-bandwidth 50 -word_raw). Then, “preprocessAlignments.pl” was
used to determine the consensus range and create input files for
COSEG programs with the following parameters: the minimum
distance between sites (-maxEdgeGap) was 10; the consensus

sequence ranged from 1 to 251 bp (-minConsRange 1 -max-
ConsRange 251; refer to Supplementary Fig. 1). In the end, a
minimum spanning tree of young SINEs was constructed to
define their subfamilies using COSEG programs with the fol-
lowing parameters: the minimum subfamily size (-m) was 100;
Alkes Price’s p-value method (-k) was used132; 2 bp (-t) co-
segregating mutations were used when developing subfamilies.

Identification of dimorphic SINEs among the 14 genome
assemblies.

(1) Detection of SVs among the 14 genome assemblies. We
employed Minimap2 (V2.17)133 to identify SVs in the
assemblies compared to the pig reference assembly. First,
we performed a cross-breed full-genome alignment (PAF
file) for each genome assembly using Minimap2 with the
following parameters: “-c -x asm20 –cs”. Then, we used
paftools.js (a JavaScript script within Minimap2) to identify
the confident/callable regions and call the variants from the
asm-to-ref alignment with the following parameters: “call
-L1000”.

(2) Identification of dimorphic SINEs from SVs. We first
retained the SVs that had a similar size (>200 bp and
<300 bp) with overlapping SINE using a shell script. Then,
the inserted sequences of the resulting SVs were then
aligned against the consensus sequences of SINE families
and young SINE subfamilies using BLASTn version 2.2.31+
with default parameters. Finally, the SINE families or
subfamilies of these SVs were defined by their best high-
quality match between consensus sequences of SINE
families or subfamilies.

3D chromatin architecture and chromatin accessibility. The 3D
chromatin architecture and ATAC-seq used in this study,
including A/B compartments, Hi-C, and TADs, were downloaded
from the FRAGENCODE project62. MNase-seq reads were fil-
tered with Trim_galore tools to obtain and retain high-quality
reads with the following parameters: “-q 20 --phred 33 --strin-
gency 3 -e 0.1”. The filtered reads were then aligned to the Duroc
reference genome (Sus scrofa 11.1) using the BWA134.
DANPOS2135 (V2.26) was then used to call nucleosome binding
peaks and to generate nucleosome occupancy profiles with the
following parameters: “--span 1 --smooth_with 20 --wideth 40”,
which were further normalized with the mean score of the whole
genome.

Histone modifications. The histone modifications used in this
study include four active epigenetic marks (H3K4me1, H3K4me3,
H3K27ac, and H3K36me3) and two repressive marks (H3K9me3
and H3K27me3). Histone modification data were quality-filtered
using Trim_galore tools with the following parameters: “-q 20
--phred33 --stringency 3 -e 0.1”. ChIP-seq data were aligned to
the Duroc reference genome using BWA. Peaks were called using
MACS2136 (V2.1.1) with the following parameters: “-q 0.05”. The
computeMatrix module from deepTools137 (V.3.5.0) was used to
transform and compute the corresponding data matrix from the
modification signal over a set of SINE regions. The plotProfile
module was used to turn the compressed matrix into
summary plots.

Definition of chromatin status. As described in a previous
study66, we defined 15 distinct chromatin states across 14 tissues
and grouped them into the following seven categories: (1) pro-
moters included TssA (Strongly active promoters/transcripts),
TssAHet (Flanking active TSS without ATAC), and TssBiv
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(Transcribed at gene); (2) TSS-proximal transcribed regions
included TxFlnk (Transcribed at gene), TxFlnkWk (Weak tran-
scribed at gene), and TxFlnkHet (Transcribed region without
ATAC); (3) enhancers included EnhA (Strong active enhancer),
EnhAMe (Medium enhancer with ATAC), EnhAWk (Weak
active enhancer), EnhAHet (Active enhancer no ATAC), and
EnhPois (Poised enhancer); (4) repressed regions included Repr
(Repressed polycomb) and ReprWk (Weak repressed polycomb);
(5) quiescent regions; (6) ATAC_Is (ATAC island); (7) TssBiv
(Bivalent/poised TSS).

Transcription factor binding sites. To identify TFBS genome-
wide, we used the FIMO software138 from the MEME Suite139 to
look for their occurrences in the Duroc reference genome for the
746 Transcription Factors (TFs) cataloged in the Vertebrate 2020
JASPAR database140. We set the parameters of fimo software as
“p-value= 1e-4”, “--max-stored-scores 100000000” and
“--alpha=1”. Among the predicted TFBS, those obtained from the
31 known TF motif were used to profile the resulting density of
different SINE families.

DNA methylation. MeDIP-Seq data were quality-filtered using
Fastp tools141 with the following parameters: “-q 20 -u 30 -l 30 -w
16”. MeDIP-Seq data were aligned to the Duroc reference genome
using Hisat2142. Duplicate reads were removed from the bam files
using Sambamba tools143. The filtered bam files were used to
identify the MeDIP-enriched regions based on a clustering
approach using SICER2144.

The WGBS data were aligned to the Duroc reference genome
using Bismark145 (V0.23.0) with the parameters that “--ambig-
bam”. The statistical analysis and visualization of DNA methyla-
tion levels on TEs and the whole genome were performed using
the methPlot script from BatMeth2146, and the R language
utilizing the “data.table” and ggplot2 packages.

Identification of small non-coding RNAs. To study non-coding
RNAs in young SINE families, we did the following steps: (1) We
merged all raw data and removed adapters with sRNAseqA-
dapterRemover from TBtools147. (2) We used the “collapse_r-
eads_md.pl” script of Mirdeep2148 (V0.1.2) to remove repetitive
sequences. (3) We downloaded known pig piRNAs from
piRBase149 (V3.0) (http://bigdata.ibp.ac.cn/piRBase/) and used
Bowtie to map the collapsed reads to them, saving the unaligned
reads. (4) We used Mirdeep2’s mapper and miRDeep2 to identify
candidate microRNAs and their genomic locations based on these
unaligned reads. (5) We mapped the remaining reads that did not
align to piRNAs or miRNAs to the Duroc reference genome using
Mirdeep2’s mapper, filtering for a length of 21 nt to identify
candidate siRNAs. We excluded any small non-coding RNAs that
had multiple hits in the reference genome.

Identification of SINE-associated transcripts and gene quan-
tification. Using LoRDEC82 software with parameters “-k 21 -s
3”, we processed the raw data by their corresponding RNA-seq
data. After merging the error-corrected Iso-seq reads, we aligned
the consensus sequence of young SINE families to it using BLAST
software with parameters “-evalue 1e−5 -max_target_seqs 1”. We
identified 2,267,973 candidate TE-derived transcripts containing
young TE insertions (transcripts contain more than 80% of the
sequence of SINE). As previously studied81, we categorized young
SINE-associated transcripts into four groups by comparing their
genomic location to known transcripts in the currently available
pig genome annotations. These four groups, as shown in Sup-
plementary Fig. 9, include: (1) perfect match with known anno-
tation; (2) at least one splice junction in common with a known

transcript; (3) exonic overlap without a matched splice junction
on the same or opposite strands; (4) located in a reference intron.

To study the cis-functionality of young SINE-associated
transcripts, we used Salmon tools87 to measure the abundance
(RNA-seq counts) of genes and SINE-associated transcripts. The
RNA-seq counts were transformed to log2-counts per million (log
CPM, suitable for linear modeling150).

Construction of co-expression network. We used 14,403 genes
from 3570 samples to explore young SINE-associated transcripts
across different tissues and cell types. We analyzed gene expres-
sion using DESeq288 and built a co-expression network with
WGCNA R package89. The network was constructed with the
following parameters: “corType = pearson, maxBlockSize =
20,000, power = 4, minModuleSize = 30, mergeCutHeight =
0.3”. The power was set to 4 (Supplementary Fig. 10). The
blockwiseModules function was used to create a correlation
network, a cluster tree, and modules. The modules were merged
and analyzed using the plotDendroAndColors function.

KEGG enrichment and Gene ontology analysis. We analyzed
2744 genes associated with young SINE-associated transcripts
using Metascape151. We used human gene IDs for enrichment of
KEGG pathway and Gene Ontology terms, with the entire human
gene list as the gene background after converting all pig gene IDs.

Benchmarking detection tools and sequencing depth for
dimorphic SINE detection. We benchmarked four types of
dimorphic SINEs detection tools that have been reported to have
superior performance in the previous projects13,95,152, including
STEAK153 (http://github.com/applevir/STEAK), TranSurVeyor154

(https://github.com/Mesh89/TranSurVeyor), MELT155 (https://
melt.igs.umaryland.edu/), and RetroSeq156 (https://github.com/
tk2/RetroSeq). Their performance was evaluated using Sniffles157

(https://github.com/fritzsedlazeck/Sniffles) with 20× PacBio
sequencing from the same individual. We compared the counts
and verification rates (the proportion of dimorphic SINEs sup-
ported by Sniffles) of identified dimorphic SINEs across a range of
sequencing depths (5x, 10x, 15x, 20x, 30x, and 50x) to assess their
detection powers (Supplementary Figs. 16–17). The results showed
that MELT showed the robust performance on both Ref+ and Ref-
dimorphic SINEs than the other three dimorphic SINEs detection
tools. Therefore, the MELT was selected in our PigTEP pipeline.
Using the MELT program, we further performed the dimorphic
SINEs detection using NGS data of Meishan and Duroc breeds
across a range of sequencing depths (5x, 10x, 15x, 20x, 30x, and
50x). We found that the number of dimorphic SINEs increased
with the sequencing depth, especially from 5x to 10x that
increased the average number of dimorphic SINEs by nearly one-
fold (Supplementary Fig. 18). After evaluating the sequencing
depth of current 838 publicly available pig next-generation
sequence datasets (Downloaded from the NCBI SRA database
https://www.ncbi.nlm.nih.gov/sra), we retained 374 individuals
whose sequencing depth was greater than 10x for dimorphic
SINEs identification (average mapped bases: 27.17 GB and average
mapping rates: 99.43%).

Identification of SNPs and dimorphic SINEs from re-
sequencing data. Preprocessing of next-generation sequencing.
The 374 individuals were selected to identify the SNP and dimorphic
SINEs, after their sequencing depth was standardized around 10x.
We first performed the preprocessing as following steps: Step 1:
Quality control. Quality control was conducted for each raw re-
sequencing data using the fastp (https://github.com/OpenGene/
fastp) with the following parameters: The quality value that a base
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was qualified (-q) was 20; The percent of bases were allowed to be
unqualified (-u) was 30; The required length of kept reads (-l) was
50; Step 2: Read alignment. Clean reads from all individuals were
aligned to the Duroc reference genome (Sus scrofa 11.1) using
BWA134 (https://github.com/lh3/bwa) with the BWA-MEM algo-
rithm; Step 3: Processing the alignment files. The mapped reads were
subsequently processed for format conversion (view), position
sorting (sort), merging (merge), and statistics (stats) using
Samtools152 (http://samtools.sourceforge.net/). Then, the MarkDu-
plicates method from the Picard package (https://sourceforge.net/
projects/picard/) was used to remove the PCR duplicates that were
introduced during library construction.

Genome-wide SNP detection. After preprocessing of the
alignments, the DNAseq mode of Sentieon (https://github.com/
Sentieon/sentieon-dnaseq) was next used to identify genome-
wide SNP in the following steps: Step 4: Indel realignment and
Base quality score recalibration (BQSR). The processed alignment
bam files were subjected to realign and recalibration with the
parameters of “Realigner” and “QualCal”; Step 5: SNP genotype
calling. Genotype calling of SNP for each individual was
performed using the “Haplotyper” algorithm. Step 6: Merge of
VCF files. All 374 g-vcf files were joined together using the
“GVCFtyper” algorithm. Then, the newly merged VCF were
filtered to retain high-quality SNPs using the vcftools with the
following parameters: “--max-missing 0.8 --maf 0.05 --min-alleles
2 --max-alleles 2 --recode”.

Genome-wide dimorphic SINEs detection. The MELT tool
(https://melt.igs.umaryland.edu/) was used to discover the
dimorphic SINEs (Ref+ and Ref-) in the following steps: Step 7:
Discovery of deletion. With the processed bam files from Step 3,
we used the Deletion-Genotype module of MELT to identify the
“Ref-” dimorphic SINEs based on our previously identified TE
sets (bed file, n= 3,087,929); Step 8: Building retrotransposon.
Referring to the results of Step 7, we build three customized
reference files for PRE1-SS, PRE0-SS, and PRE1a families using
the “BuildTransposonZIP” module; Step 9: Discovery of inser-
tion. For each bam file, we carried out the identification of “Ref+”
dimorphic SINEs using four modules of MELT step by step,
including “IndivAnalysis”, “GroupAnalysis”, “Genotype”, and
“MakeVCF”.

All detected dimorphic SINEs and SNPs were processed using
gene-based annotations in ANNOVAR158. The pig annotation
files were downloaded from the NCBI database for the Duroc
reference genome (Sus scrofa 11.1). Dimorphic SINEs and SNPs
were classified into eight categories based on their genome
locations, including exonic regions, splicing sites, intronic
regions, 5′ and 3′ untranslated regions (UTRs), upstream and
downstream regions, and intergenic regions.

Principal component analysis. We filtered identified dimorphic
SINEs (Ref+ and Ref-) from 374 pigs using PLINK159 v1.9 with
following parameters: “--maf 0.01 --mind 0.8 --geno 0.8”. Next,
we performed principal component analysis on the filtered
dimorphic SINEs using PLINK v1.9 with the parameters: “--pca”.
We presented the eigenvectors and eigenvalues for each indivi-
dual in the PCA biplot using R packages.

TE-based phylogenetic tree. To establish evolutionary relation-
ships between individuals, we transformed the dimorphic SINEs
dataset (Ref+ and Ref-) into a pseudo-SNPs dataset (A/T/C/G) by
randomly replacing data under the condition that individual
polymorphism was not changed. The transformed dataset was
reduced to 44,192 dimorphic SINEs using PLINK v1.9 with the
following parameters: “--maf 0.1 --indep --pairwise 50 10 0.2”,
based on a linkage disequilibrium threshold of 0.2 and a minor

allele frequency threshold of 0.1. The phylogenetic tree was
constructed with 1000 bootstrap replicates using the maximum-
likelihood approach implemented in SNPhylo160 (V1.10.2).

Analysis of genetic admixture. We used the program
ADMIXTURE161 (V1.3.0) to analyze population structure in our
study. This estimated genetic admixture among different pig
breeds using all identified dimorphic SINEs. We tested 14 cases
(ranging from K= 2 to 15) to identify genetic clusters for 374
pigs, using default parameters. Results were visualized using
StructureSelector162.

Identifying the dimorphic SINEs associated with local adap-
tation. As shown in Fig. 6g, the optimal number of ancestral
components was inferred to be K= 10 with the lowest CV
(0.229), resulting in the eleven distinct genetic clusters of G01:
PYGMY, G02: ISEA, G03: Southern Chinese domestic pigs
(WUZ, LUC, and XIA), G04: laboratory-inbred Bama Xiang pigs,
G05: Eastern Chinese domestic pigs (CHDO, WANB, EHS, and
MEI), G06: Asian wild boars (KWB, CWB, and TWB) plus
Northern Chinese domestic pigs (LAI, HET, and MIN), G07:
Goettingen miniature pigs and MiniLEWE163, G08: Korean
domestic pigs (JEJ and PEN) plus European domestic pigs, G09:
European wild boars plus IBE and Yucatán miniature pigs, G10:
Landrace/Yorkshire crossbreeds (YL)164, and G11: Duroc pigs.

We calculated the pairwise Fsti value and estimated alpha
coefficient97 of dimorphic SINEs between cluster i and the
remaining clusters to measure their locus-specific divergence in
allele frequencies. Pairwise Fsti values were calculated for each
dimorphic SINEs using the vcftools165 (V0.1.16) with the default
parameters. BayeScan program97 (v2.1) was used to identify
putative adaptive dimorphic SINEs. based on different allele
frequencies among populations, and we performed it using
default settings (prior odds to 10, iterations to 5000, and burn-in
to 50,000).

Linkage disequilibrium analysis. We collected a total of 4072
trait-associated SNPs (T-SNPs) from 79 published GWAS studies
of 97 complex traits. These included 18 reproduction, 22 pro-
duction, 36 meat and carcass, six health, and two exterior traits.
We combined the dimorphic SINEs and 4072 T-SNPs into a new
variant dataset from 296 domestic pigs (109 Asian and 187 Eur-
opean domestic pigs). We analyzed the linkage disequilibrium
between T-SNPs and dimorphic SINEs using PLINK v1.9 with the
parameter “--ld”. We only considered dimorphic SINEs with a
relative T-SNP distance less than 10 kb and R2 greater than 0.3 as
candidate dimorphic SINEs. Linkage disequilibrium analysis for
ANK2 gene (chr8:109,439,023–109,454,866) was performed using
Haploview software166. LDBlockShow167 (V1.40) tool was used
for the linkage disequilibrium analysis of large regions like 320 kb
dimorphic SINEs hotspots (chr14:112,965,840–113,285,513).

Statistics and reproducibility. The Z-score of each chromatin
state for each TE group was calculated using permutation tests in
regioneR168, with the number of permutations set to 1000. For
the association analysis of young SINE-associated transcripts and
genes, we used R code and generalized linear models (GLM) to
model transcript expression levels of each gene. We considered
the expression level of young SINE-associated transcripts (within
their gene body) and the type of tissues or cells as explanatory
variables. We used a Bonferroni significance threshold of
1.42 × 10−6 (0.05/35,135) as the standard threshold.
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Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All public datasets of pigs used in our analysis had sufficient ethical approval. Five pig
MNase-seq samples were downloaded from NCBI (BioProject ID PRJNA417273)
representing brain, heart, kidney, liver, and muscle tissues. H3K4me1, H3K4me3,
H3K27ac, and H3K27me3 in 14 tissues were downloaded from NCBI under BioProject
ID PRJNA762083. In addition, we downloaded one H3K9me3 sample (BioProject ID
PRJNA152995), and four H3K36me3 (BioProject ID PRJNA529704) and H3K27me3
(BioProject ID PRJEB31243) samples each. Chromatin states of pigs were analyzed in 14
different tissues, which were downloaded from (http://genome.ucsc.edu/s/zhypan/
susScr11_15_state_14_tissues_new). This study used MeDIP-Seq data from 80 samples,
which were downloaded from NCBI under BioProject ID PRJNA143661. Whole Genome
Bisulfite Sequencing data from 246 samples across 10 tissues were downloaded from
16 studies (Supplementary Data 12). Data from 177 samples across 20 pig small non-
coding RNA studies were collected (Supplementary Data 13). Two PacBio long-read
isoform sequencing datasets were downloaded from NCBI: BioProject ID PRJCA000349
(pooled 38 samples) and PRJNA351265. Transcriptome data from 52 tissues and 27 types
of cells can be found in Supplementary Data 3. The source data for the main figures is
available in the online resource of figshare (https://doi.org/10.6084/m9.figshare.
23856213.v4)169.
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