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ABSTRACT OF THE THESIS

Shell-element mesh generation of unconventional aircraft
configurations for multidisciplinary structural analysis

by

Xiangbei Liu

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2022

Professor John Tae Hyeon Hwang, Chair

Unconventional aircraft configurations are of substantial interest in aircraft design re-

search. A challenge is that the design of unconventional aircraft is often a multidisciplinary

and high-dimensional problem. Therefore, traditional empirical models are often inadequate.

Large-scale multidisciplinary design, analysis, and optimization (MDAO) has evolved as a

potential solution to this problem. In this thesis, I present a novel mesh generation method

that is compatible with a large-scale MDAO framework, which means the generated structural

meshes can be easily updated in response to changes in shape design variables. The mesh

generation algorithm starts with a B-spline based geometry that defines the aircraft’s structural

viii



components, such as the outer skin and the internal members. Initial triangular meshes are

generated under the constraint of the intersection connectivity between different components.

Next, all the meshes of the components are subjected to a series of mesh quality improvement

procedures that involve splitting, merging, and smoothing optimizations. Lastly, the resulting

quad-dominant meshes are transformed into fully quadrilateral meshes. I also validate the quality

of the generated meshes and their finite-element shell analysis results. The results show that this

algorithm is versatile, efficient, effective, and compatible with large-scale MDAO processes.
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Chapter 1

Introduction

There is a growing interest in unconventional aircraft configurations in aircraft design [3],

e.g., for: hybrid electric aircraft with improved energy efficiency [4]; electric vertical takeoff and

landing (eVTOL) in the expanding field of urban air mobility (UAM) [5]; and supersonic airliners

[6]. However, the evaluation of unconventional aircraft with a specific set of requirements

is often limited by the lack of experience and data, while traditional empirical models are

inadequate to apply. Therefore, large-scale multidisciplinary design, analysis, and optimization

(MDAO) has evolved as a strategy to address the complicated design trade-offs in unconventional

configurations [3]. Large-scale MDAO is an approach that applies optimization to engineering

design problems by employing models that span multiple disciplines. Regarding the typical

multidisciplinary and high-dimensional engineering design problems for the aforementioned

unconventional aircraft, as well as other complex engineering systems (e.g., design of satellites,

wind turbines, robotics [7]), large-scale MDAO is significant, because it can represent a single

monolithic, multidisciplinary optimization objective of the system’s performance with a large

number of design variables and constraints (see schematic example in Figure 1.1).

Due to the thin-walled structure of aircraft, finite shell-element analysis can accurately

simulate their structural performance. One of the bottlenecks in structural shell-element analysis

is the construction of the structural mesh, which normally demands a high level of expertise

and extensive manual work. We come up with four requirements for an appropriate shell-
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x∗i Optimizer x0, x1 x0, x2 x0, x2 x0, x3

Discipline 1 y1 y1 y1

Discipline 2 y2 y2

y3 Discipline 3 y3

f ∗ f Objective

Figure 1.1. Schematic example of an large-scale MDAO process.

element mesh generation algorithm. Firstly, it must result in meshes with global high quality

for the overall geometry. This will ensure the simulation’s accuracy. First of all, as part of the

engineering design process, it should be efficient with a quick turnaround time, and when the user

describes the appropriate structural components, the mesh should be generated automatically

without the need for additional manual effort. Secondly, it must result in meshes with global

high quality for the overall geometry. This will ensure the simulation’s accuracy. In addition, the

mesh generation tool must be versatile, meaning that it can be used for various design models

and can generate the full aircraft configuration, including the fuselage, wings, and tails. Most

importantly, there is a priority requirement for the generated mesh to work and interface with

a large-scale MDAO framework for the further design and optimization process. The gradient

information of the generated mesh nodes is significantly required. Considering the enormous

computational cost of gradient-free methods when it comes to optimization problems involving a

large number of design variables, gradient-based optimization is the only feasible approach for

large-scale MDAO [7]. Therefore, derivatives of the mesh node coordinates with respect to the
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shape design variables (in our case, the B-spline control points of the geometry) are required [8].

Based on the above expectations, particularly the high-quality and the differentiability, a

structural shell-element mesh generation algorithm has been developed. The thesis is organized

as follows: In Chapter 1, I review the existing relevant work in unconventional aircraft mesh

generation and mesh smoothing algorithms. Then, in Chapter 2, I present the specifics of the

mesh generation algorithm. In Chapter 3, I validate the versatility of this mesh generation

algorithm and the quality of the generated mesh. I also compare its analysis performance with

commercial ICEMCFD mesh. In Chapter 4, I summarize the accomplishments of this thesis and

the future plan.

3



Chapter 2

Literature Review

Many methods and techniques have been presented over the span of time for the purpose

of generating shell-element meshes for aircraft. Fuhrer [9] presented a structural finite-element

generator in a lightweight structure design environment, but the location of the internal members

can only be added according to the parametric domain instead of the precise global Cartesian

coordinate system of the aircraft. They did not compute the mesh nodes as a differentiable

function of shape changes. In [8], the authors came up with several requirements for generated

meshes in order to be used in an MDAO framework. The structural mesh should be global, with

no disconnected meshes for individual aircraft components, and also versatile for the full aircraft

configuration. The mesh should be computed based on shape design variables and should be

differentiable, which means derivatives of the structural mesh coordinates with respect to the

shape design variables should be computed efficiently. They created the GeoMACH tool suite to

create geometry and meshes with the architecture of internal structures while enabling users to

maintain the coincidence of junction nodes between members and skin. However, the generated

mesh is only smooth locally in the parametric domain without globally smoothing. The mesh

generation algorithm in GeoMACH is also time-consuming and requires the geometry to be

developed within GeoMACH; it cannot work with externally created geometries such as CAD

files [10]. Moreover, some algorithms lack automation because they use an external tool to

generate an unstructured quad mesh [11]. Besides, NASA’s Open Vehicle Sketch Pad (OpenVSP)
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[12] is a parametrically driven, open-source airplane geometry design tool developed by NASA.

However, OpenVSP can only build triangular meshes of aircraft structures with thin walls, and

its capacity to generate quadrilateral meshes is restricted to organized wireframes instead of the

full configuration. To sum up, existing previous research cannot simultaneously satisfy all four

of the aforementioned requirements. Therefore, we desire a simple and robust method capable of

automatically generating unstructured quadrilateral shell-element meshes for the entire aircraft

configuration, including the skin, the internal members of wings, and other aircraft components.

When it comes to the specific problem of generating meshes of high quality, several

different approaches that minimize smoothness energy have been developed in order to increase

the mesh quality. This idea resulted in the high-quality quadrilateral mesh in [13], [14], and

[15]. In addition, Knoppel [16] presents a method for calculating the stripe patterns on a surface,

which can also be used to generate a mesh on the surface. In Huang’s paper [17], they improve

the idea of smooth orientation and position fields in [13] and eliminate the singularity mostly

by solving a minimum-cost network flow problem. Unfortunately, all of these methods are

fairly difficult to imply caused by incorporating nonlinear programming, which does not ensure

convergence or a global minimum of the objective function. Therefore, more robust methods

are required. [18], [19], and [20] adapt the advancing front techniques to generate quadrilateral

meshes. However, the advanced front methods generally require more time than other global

mesh generation algorithms.

In addition to the previously stated methods that rely on generating smoothing meshes

directly, alternative approaches to smoothing an existing mesh have been developed. For

example, in [21] a local optimization approach is applied to improve the topology of unstructured

quadrilateral finite element meshes, and in [22] a constrained optimization is employed to

generate a smooth mesh. Additionally, quadrilateral mesh quality has been increased based on

the parametrization of the surfaces. The mesh is initialized in the two-dimensional parametric

domain, and then smoothed and projected to the three-dimensional physical domain [23] [24]

[25]. Furthermore, a post-processing step could be performed to improve the quality of the mesh.
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As the smoothing of the mesh is performed in the parametric domain, it is possible that the

mesh created after projection will be deformed in the physical domain. To prevent this issue

and preserve mesh quality, it may be desirable to optimize the mesh directly in the physical

domain. Some meshing approaches capable of generating meshes from geometries with gaps and

overlaps [26][27], or able to produce inter-domain boundaries having good geometric properties

[28] have also been proposed.
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Chapter 3

Methodology

3.1 Overview of the algorithm

The algorithm begins with the geometry consisting of a set of B-spline surfaces that

represent different components of the aircraft, including the aircraft outer mold line (OML) and

the internal structural members of the aircraft. The geometry can either be provided directly by

an external database such as the VSP Hanger from NASA’s Open Vehicle Sketch Pad (OpenVSP)

[12] or obtained via an auxiliary geometry tool. Then, the B-spline surfaces are discretized and

the intersection curves between different components of the aircraft are identified. Next, initial

triangular meshes are generated by constrained Delaunay Triangulation (CDT) [29] with the

constraint that the connectivity of the intersection curves is maintained. Afterwards, the mesh

quality optimization algorithms are applied to the meshes of the OML and internal members

separately. These optimization steps generate the quad-dominant meshes, which are transformed

into a fully quadrilateral mesh with the final step of the Catmull–Clark subdivision [30].

3.2 Initial triangle mesh generation

Our mesh generation algorithm starts with a series of B-spline surfaces consisting of

the aircraft outer mold line (OML) and the internal members, which can either come from an

external database or from an affiliated geometry parametrization tool in a large-scale MDAO

framework.
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(a) Discretization of surfaces (b) Projection of points

(c) Replacement of projecting points (d) Construction of initial triangle meshes

Figure 3.1. Workflow of the initial triangle mesh generation.

For B-spline surfaces directly from the outer database, there would be the situation that

one member is divided into several B-spline surfaces. Then, we implement a preprocessing step

of merging these surfaces by deleting the repeated points and refitting a new B-spline surface

based on the remaining unique discretized points.

To maintain the connectivity of the edge-surface intersection between different surfaces,

the nodes on the intersection curves are projected on their intersecting surface as shown in

Fig.3.7b. The two-dimensional parameterization of these projected points can also be achieved

in the projection process. Then, these projected points will respectively replace the closest

original nodes near them (Fig.3.1c). Lastly, two-dimensional constrained Delaunay triangulation

is implemented [31] to build the initial triangle meshes (Fig.3.1d) with the constraint of the

sequential connectivity of the nodes on the intersection curve.
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(a) Delaunay triangulation

(b) constrained Delaunay triangulation

Figure 3.2. Comparison between Delaunay triangulation and constrained Delaunay triangulation.

Delaunay triangulations are widely utilized in mathematics and computational geom-

etry because of their advantageous geometric characteristics. The essential property in two-

dimensional triangulation is the empty circumcircle condition. A Delaunay triangulation of a set

of two-dimensional points assures that the circumcircle associated with each triangle contains

no additional points. It also maximizes the minimum angle of all the angles of the triangles in

the triangulation in order to avoid triangles with one or two exceptionally acute angles, thus

enhancing the quality of the resulting triangular mesh. Since our surface is in three-dimensional

space and is not sufficiently flat to be considered a plane, we employ constrained Delaunay

triangulation in the parametric domain. There is also a need to perform constrained Delaunay

9



triangulation (CDT) to ensure the proper connection of the boundary curves and the intersecting

curves between different members. A constrained Delaunay triangulation is a generalization of

the Delaunay triangulation that forces certain required segments into the triangulation as edges

[29]. The input to the constrained Delaunay triangulation problem is a planar straight-line graph

consisting of a set of points and line segments in the plane that do not intersect. For each extra

edge added to this input to form a triangle, there should be a circle through the endpoints such

that any vertex within the circle is obscured from at least one endpoint. And there is always a

triangulation satisfying these conditions. After CDT, the basic mesh is the result of mapping the

vertices back onto the physical domain.

By now, the initial triangulation is completed, but a few following optimization steps are

still required to achieve the quadrilateral-dominant mesh and the fully quadrilateral mesh.

3.3 Mesh quality optimization and fully quadrilateral
transformation

In this part, the described methods are from another publication material as it may

appear in Automatic generation of global shell-element meshes for large-scale structural design

optimization in AIAA AVIATION 2020 FORUM 2020 . Li, Ning; John T. Hwang, 2020. The

thesis author was not the primary investigator and author of this paper.

Three optimization problems are formulated to improve mesh quality and generate

quadrilateral-dominant meshes before the final process of fully quadrilateral transformation.

The splitting and merging optimization problems update the meshes topologically by adding

or removing the edges of the meshes, while the smoothing optimization modifies the meshes

geometrically by changing the node location of the meshes. By applying the splitting optimization

to divide a quadrilateral or a triangle, the number of vertices in the mesh and the total number of

polygons will grow. The merging optimization will combine two nearby triangles and reduce the

total number of polygons. The smoothing optimization, on the other hand, does not change the

10



(a) Merging optimization (b) Splitting optimization

(c) Smoothing optimization (d) Fully quadrilateral transformation

Figure 3.3. The black line represents the fixed edges. In (a), the red dashed lines are removed
edges resulting in the blue mesh. In (b), the red lines are splitting lines for the blue original mesh.
In (c), the blue mesh are the original mesh, red mesh are the updated mesh after splitting. In (d),
the mesh is transformed into a fully quadrilateral mesh using Catmull–Clark subdivision [1].

number of vertices or connectivity of polygons but rather adjusts the positions of the vertices.

All three optimization methods intend to reduce the deviation of polygon edges from having

equal lengths or make polygons more regular shaped with approximately equivalent angles.

Splitting optimization

Generally, the nodes generated by discretizing a b-spline surface are uniformly distributed.

However, after projecting the points on intersection curves between different surfaces, the initial

structured nodes will be moved to the location of the projected points. Thus, the following
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constrained Delaunay triangulation may result in triangles with large aspect ratios and poor

quality at the intersection regions. To address these irregular triangles and also extend the

implementation to quadrilateral elements, the splitting optimization is devised to allow a triangle

to be divided into a triangle and a quadrilateral or two triangles, as well as a quadrilateral into

a triangle and a quadrilateral or two quadrilaterals. This will result in more regular polygons

in the mesh. Due to the robustness and efficiency of the linear programming problem [32], we

formulate the splitting optimization as follows:

minimize fs = c⊤s xs

with respect to lbs ≤ xs ≤ ubs

subject to Asxs = bs

(3.1)

The design variable xs is a vector that indicates whether each splitting option for each polygon is

chosen or not, i.e., 1 for being selected and 0 for not. Thus, its length is the number of splitting

options times the number of polygons in the mesh. As shown in Fig. 3.4, there are eleven

splitting options for a quadrilateral, including the option of not splitting. Splitting a triangle has

fewer seven options as in Fig. 3.5, but we still assign eleven options to it since we want to make

the number of splitting options the same for a triangle and a quadrilateral to make the assembling

of coefficient vector cs easier. The lower bounds lbs and the upper bounds ubs for each option

are usually 0 and 1, except for two situations. One is that the upper bounds ubs of the last four

triangle splitting options are constrained to 0 to keep the uniformity of xs between triangle and

quadrilateral. The other is that for the polygons with the edges consisting of intersection curves

between the internal members and the model outer skin, the upper bound of every option is set to

0.

To make the polygons as regular as possible after splitting, we define the indicator is to

represent the regularity for each triangle or quadrilateral based on the aspect ratio and the differ-

ence between the interior angles in each polygon and the standard angle in an equilateral triangle

12



0 1

23

Figure 3.4. The eleven options to split a quadrilateral can be divided into three types: splitting by
a line connecting the middle points of two opposite edges; splitting by a line connecting a vertex
and the middle point of one opposite edge; and not splitting at all. The number surrounding the
top left quad (option 0) is the local indexing of the quad. From the top left to the bottom right,
the options are indexed from 0 to 10 [1].

or quadrilateral, i.e., 60 degrees for triangles and 90 degrees for quadrilaterals. Specifically,

indicator is is represented as:

is = w1

n

∑
i=0

(
li

lavg

)2

+w2

n

∑
i=0

(
θi

θ

)2

(3.2)

where n is the number of edges in a polygon and equals 3 for a triangle or 4 for a quadrilateral. li

is the length of each edge in the polygon, and lavg is the average length of all the three or four

edges in this polygon. θi is the angle of each corner in a polygon, w1 and w2 are the weighting

coefficients regarding edge lengths and angles, and θ is the aforementioned standard angle. The

coefficient vector cs, with the same length as the design variable xs, informs how much we prefer

an splitting option of each polygon according to the result. So each component in cs can be

calculated as the total value of the indicator is for each polygon resulting from each splitting

option. For instance, if the option is to split a quadrilateral into two new quadrilaterals, the

component will be calculated as the sum of two indicators is, wihch is of two new quadrilaterals.

The equality constraints are based on two criteria: only one splitting option being chosen

for each polygon and consensus regarding the splitting of shared edges. For the former, since

every option contrasts with the other options and the polygon is either split (1) or not split (0),

13



2 1

0

Figure 3.5. The seven options to split a triangle can be divided into three types: splitting by a
line connecting the middle points of two opposite edges; splitting by a line connecting a vertex
and the middle point of one opposite edge; and not splitting at all. The number surrounding the
upper left triangle (option 0) is the local indexing of the triangle. The options are indexed from 0
to 6 [1].

0 1

234

Figure 3.6. An example showing the formulation of the equality constraint: The numbers are
the indices for each vertex in the mesh. The quad can be presented as (0,1,3,4) and the triangle
can be expressed as (1,2,3). They have one shared edge [1].

the sum of all option decisions for one original polygon must equal one. The latter constraint

considers the adjacency of each polygon and constructs the agreement on whether to split the

shared edges of adjacent polygons or not. Using the simple mesh in Fig.3.6 as an example,

the quadrilateral (0, 1, 3, 4) and the triangle (1, 2, 3) share one common edge (1, 3) and must

agree on whether to split this edge. For the triangle, the local indices of the shared edge are

(2, 0) according to Fig.3.5. For the quadrilateral, the local indices of the shared edge are (1, 2)

and options 0, 2, 6 tend to split the shared edge, but options 1, 3, 4, 5, 7, 8, 9, 10 do not split

the shared edge. Since the dividing decisions for the quad and triangle are the same, we may

14



formulate a linear equality constraint:


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0
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0
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0

1

0

1

0
[

xq

]
(3.3)

where xt represents the splitting decision of the triangle, while xq represents the splitting

decision of the nearby quadrangle. The first row of the first matrix indicates that the triangle and

quadrangle agree to divide the shared edge, while the second row indicates that they agree to

retain the shared edge. This matrix can be transferred to the following format for the sake of the

formulation of the equality constraint:


1

0

1

0

0

1

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

−1

−1

0

0

−1

−1

0

−1

0

−1

0

0

−1

−1

0

−1

0

−1

0

−1

0

 xt

xq

=

 0

0

 (3.4)

Merging optimization

Due to the irregular triangles distributed around the intersection curves, merging op-

timization is developed to merge two adjacent triangles into a high-quality quadrilateral that

resembles a square. Merging optimization will result in a quad-dominant mesh, and it will also

help to reduce the number of edges and polygons in the mesh. This reduction will moderate the

resolution of the final mesh and decrease the computational cost for the following optimization

or potential analysis steps. Linear programming problem is also used for merging optimization

just like splitting optimization. The detailed formulation is shown as:

minimize fm = c⊤mxm

with respect to lbm ≤ xm ≤ ubm

subject to Amxm ≤ bm

(3.5)
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The design variable xm is a vector that indicates whether each edge is merged or not, thus its

length is the number of total edges in the mesh. The binary component in vector xm would be 1

for merging the edge while 0 for not merging it. Therefore, the lower bounds lbm and the upper

bounds ubm are usually 0 and 1, except for the edges that are not shared by two triangles and

the edges consisting of intersection curves between different geometry components. Since the

former would be the edges that shared by two quadrilaterals or a quadrilateral and a triangle, and

the merging result will not be an quadrilateral and cannot happen. The latter are edges that are

supposed to be fixed to keep the internal structure. Therefore, the upper bounds of these edges

are set to 0.

We also define indicator im to describe the regularity achieved from merging result. It

has the exact same first two items as indicator is defined for the splitting algorithm, i.e. one for

aspect ratio and the other one for interior angles. But there is also a third item that comes from

the penalty of the dihedral angle of the polygon. The indicator im is shown as:

im = w1

n

∑
i=0

(
li

lavg

)2

+w2

n

∑
i=0

(
θi

θ

)2

+w3

n

∑
i=0

e⊤i nq (3.6)

w3 is the weighting coefficient for dihedral angle. ei is the unit vector pointing along each

polygon edge, and nq is the normal vector determined as the cross product of the unit vectors

pointing in the two diagonal directions. Each component in cm is calculated by subtracting the

indicator of each polygon before and after the merging. The shared edge is more likely to be

merged when the indicator after merging is lower and the energy before merging is higher.

The inequality restriction arises from the criterion that only one edge per triangle may

be merged, as allowing several edges to be merged in a triangle could result in the formation of

a polygon with more than four edges. Due to the fact that our algorithm only expects triangle,

quad-dominant, and totally quadrilateral meshes, we do not want this to occur. To construct the

matrix Am and bm in the inequality constraint, we first loop through all of the edges to obtain

the indices for each polygon’s edges. This will result in a matrix whose size is the number of
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polygons times three. The inequality constraint is formed by designating corresponding elements

in Am as one with respect to the generated matrix and setting all of the items in bm.

Smoothing optimization

Due to the element-wise computation of the regularity of the mesh elements, the splitting

and merging optimization tends to optimize the mesh quality locally by focusing on the quality

of each element. Consequently, although there exists the constraint that two adjacent polygons

must have the same splitting or merging operation on their common shared edge, the final

mesh may have different element sizes around different regions. And the global aspect ratio

could remain large after splitting and merging optimization. To address this flaw, the smoothing

optimization attempts to modify the location of each nodes in the mesh to reduce the aspect

ratio globally and enhance the overall mesh quality. All nodes are allowed to move within a

small range in their tangential plane, and the sum of all edge lengths is minimized with respect

to the displacement vector. The smoothing optimization method is formulated as a constrained

quadratic programming (QP) problem:

minimize fsm =
1
2
[(vT

0 +dT [I0])− (vT
1 +dT [I1])] · [(v0 +d[I0])− (v1 +d[I1])]

with respect to d

subject to Md ≤ r

Nd = 0,

(3.7)

where D is the vector that represents the displacement for all the nodes along three dimensional

directions, so its length is three times the number of nodes in the mesh. V 0 and V 1 are the

initial positions of starting points and end points for all edges, I0 and I1 are the indices of them,

and V 0 +D[I0] and V 1 +D[I1] are the updated positions of the starting points and end points

for all edges. The variable (V 0 +D[I0])− (V 1 +D[I1]) represents the vector along the edge by

subtracting the updated end points from the updated starting points. Then, the objective function
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is formulated to indicate the lengths of every updated edge in the mesh.

In the inequality constraint, M is the sparse matrix form of d with the shape of number of

node times triple number of nodes. The three-dimension coordinates of each point are iteratively

assigned to their corresponding positions in the column for each row, while all other positions in

the column remain zero. Multiplying M and d, we can measure the squared distance that each

vertex moves. This distance is smaller than r, the vector of maximum radius each vertex allowed

to move, which is computed by the distance between the closest neighboring vertex and itself

times a coefficient.

In the equality constraint, N represents the normal matrix produced by assigning the

normal vector of each vertex to the associated places in each row. By assigning the displacement

vector to the normal vector, which is determined as the area-weighted normal of surrounding

triangles for each vertex, the equality constraint ensures that each vertex remains in its own

tangential plane.

To simplify the QP problem, the inequality constraint is added to the objective function

as a regularization term:

minimize fsm =
1
2
[(V T

0 +DT [I0])− (V T
1 +DT [I1])] · [(V 0 +D[I0])− (V 1 +D[I1])]+

1
2

DT wD

with respect to D

subject to nD = 0

(3.8)

where w is the vector of regularization parameter decided by the local curvature for each vertex.

If some points are located in the area where the curvature is found to be very high or the

constrained area to keep the intersection connectivity, the regularization parameters are set to

an extremely large number to prevent any movement. Eqn. 3.8 can be solved by applying the

Karush–Kuhn–Tucker (KKT) conditions:

 B N⊤

N 0


 D∗

λ
∗

=

 b

c

 (3.9)
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where B is the partial derivative of the first term in the objective function with respect to D, D∗

and λ
∗ are the optimal displacements and associated Lagrange multiplier, b is the coefficient

of the linear term and all the components in c equals zero. Since we presume that vertices that

move along the tangential plane within a restricted range can still be deemed ”near” to the actual

geometry, the regularization term w is set to a large value, and the vertices are not permitted to

move very far during each position iteration. Therefore, several smoothing optimization steps are

done sequentially, which could allow the geometry to be maintained while moving the vertices a

reasonable amount.

Fully quadrilateral transformation

Following the aforementioned optimization step, the initial triangular meshes have been

transformed into quadrilateral-dominant meshes. To convert them into fully quadrilateral meshes,

one step of the Catmull-Clark subdivision is needed. Firstly, an average centering node is added

to each polygon. Then, the middle points between the two endpoints of each edge are added to

each edge. Next, edges between the average nodes and all of the middle points are added for

each polygon. Thus, the meshes of structural members are subdivided into full quadrilateral

meshes (Figure 3.7).

(a) Division of quadrilateral (b) Division of triangle

Figure 3.7. The black nodes are the average nodes. The red points are the middle points of
each edge. Connecting the average points to the middle points, a polygon is divided into four
quadrilaterals. [2].
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3.4 Interface with large-scale MDAO framework

Our mesh generation algorithm is expected to interface with an under-development

large-scale MDAO framework, which will be presented in a series of papers. We use the aircraft

geometry parametrization part of this framework as an auxiliary geometry tool to generate

B-spline surfaces of the internal structure. This auxiliary tool creates components by defining the

number and location of internal members to obtain a structural model driven by the initial central

geometry parametrically. Taking the B-spline surfaces generated by this tool, the generated

structural mesh can also be easily updated as the central geometry changes.

Exportation of initial b-spline surface

The general class of non-uniform rational B-splines (NURBS) is the most widely consid-

ered spline-based mathematical function in CAD and IGA. Given a set of m+1 rows and n+1

control points pi, j, where 0 <= i <= m and 0 <= j <= n, and two knot vectors of h+1 and

k+1 knots respectively in the u-direction and v-direction, U = u0,u1, ....,uh, V = v0,v1, ....,vk.

The B-spline surface defined by these information is the following [33]:

P(u,v) =
m

∑
i=0

n

∑
j=0

Ni,p(u)N j,q(v)pi, j (3.10)

where Ni,p(u) and N j,q(v) are B-spline basis functions of degree p and q, respectively. Note that

the fundamental identities for each direction must hold: h = m+ p+1 and k = n+q+1.

Using the model of eVTOL as an example, the model from OpenVSP as Standard for

the Exchange of Product Model Data (STEP) format is exported as a bunch of b-spline surfaces

(Figure 3.8a). To establish a rib in an aircraft wing, for instance, we first identify two points

straight above the wing and two points straight below the wing, as shown in Figure 3.8b, which

are later projected to the upper and lower wing B-spline surfaces, respectively (Figure 3.8c).

Then we discretize the line segment connecting two points on the same side of the wing and

discretize the line again to project the whole curve on the wing surfaces as in Figure 3.8d. Next,
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we perform linear interpolation to create two side curves (Figure 3.8e). With four boundary

curves, the four sides of the member surface are defined. Therefore, transfinite interpolation is

applied to get a continuous parametric surface based on the four boundary curves as presented

in Figure 3.8f. Finally, in Figure 3.8g, a B-spline surface is fitted using the points generated by

transfinite interpolation.
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(a) Discretized B-spline surfaces (b) Corner points to be projected

(c) Resulted projection points (d) Resulted projection curves

(e) Interpolated side curves (f) Transfinite interpolation points

(g) Control points the created members

Figure 3.8. Workflow of the creation of internal members.
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Chapter 4

Results

4.1 Algorithm versatility and mesh quality validation

To test the versatility and robustness of our mesh generation algorithm, we perform

several tests on the Uber’s eVTOL eCRM-002 model 1, a common reference model (CRM) of

an electric air taxi, and the undeflected common research model (uCRM-9) 2.

Figure 4.1. Exploded view of the mesh for the eVTOL wing with 12 ribs and 2 spars. The total
number of nodes is 26486. The total number of elements is 26936.

For eVTOL model, the initial geometry comes from NASA’s conceptual aircraft design
1http://hangar.openvsp.org/vspfiles/524
2https://data.mendeley.com/datasets/gpk4zn73xn/1
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tool, OpenVSP. The skin part of the wing structure is kept, while landing gears, inner lift nacelles,

lift propellers, and cruise propellers are removed to make the illustration more clear. Then we

use the auxiliary geometry to create the B-spline surfaces of the 12 ribs and 2 spars on the

wing. As depicted in Fig.4.1, the junction curves between the internal members and the aircraft

wing skin appear to align properly, and all internal member intersections are identified correctly.

For the surface of the wing, the mesh quality improvement algorithms construct elements with

more regular shapes in the area between the intersection curves of the internal members. In

the area around the intersection curves, the elements are less regular with a large aspect ratio

since the boundary points are fixed throughout the optimization process, preventing them from

moving to increase the quality of the meshes. However, the overall quality is regarded to be good

considering 82% of the mesh elements have internal angles in the range of 70 degrees to 110

degrees, deviating 20 degrees from the ideal angle of 90 degrees.

Figure 4.2. An exploded view of the mesh for the uCRM-9 wingbox. The total number of nodes
is 2368. The total number of elements is 3802.

We use the structural geometry of the uCRM-9 wingbox from Brooks’s paper [34] to

produce a quadrilateral mesh as shown in Fig.4.2. Then, the B-spline surfaces are discretized and

the connectivity between different members is constructed. The optimization algorithm is also

executed after the initial triangulation of each member. In Brooks’s paper, they generated the
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Figure 4.3. The comparison histogram of the aspect ratio and the internal angle between our
meshes and ICEMCFD meshes.

meshes for the geometry of the wingbox using the commercial grid-generation tool ICEMCFD.

To verify the quality of our generated meshes, we plot the comparison histogram between

our meshes and ICEMCFD meshes with respect to the aspect ratio, which is the length of the

longest edge divided by the shortest one, and the four internal angles for every polygon in the

quadrilateral mesh. As shown in Fig.4.3, the meshes generated by our algorithm have similar

quality as the ICEMCFD mesh, with a small aspect ratio and internal angles around 90 degrees.

4.2 Mesh analysis and convergence result

We also perform a demonstrative stress shell-analysis of the uCRM-9 wingbox, specifi-

cally, the FEniCS implementation of the Reissner–Mindlin shell element presented in [35]. We

clamped the wing root as the boundary condition, and a distributed upward load of body force

equal to the weight of the wing is applied. We assume the thickness of the shell is 3mm and the

material of wingbox is the aluminum with Young’s modulus of 73.1 GPa, Poisson’s ratio of 0.3,

and density of 2780 kg/m3. The quantity of interest for this analysis is the vertical displacement

at the wingbox tip. To validate the results, we performed the same analysis on an ICEMCFD

mesh. It is clear that the displacement has converged to the maximum value of 0.1776 m (Fig.

4.4). The displacement field of the wingbox is also shown in Fig. 4.5.
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Figure 4.4. Convergence test comparing meshes generated by ShellMesh and ANSYS ICEMCFD
of an uCRM wingbox model.

Figure 4.5. Displacement field of an uCRM wingbox with upward distributed loads.
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Chapter 5

Conclusion

In this research, I significantly improved a novel approach for generating shell element

meshes for large-scale MDAO based on prior work. Starting with the geometry model consisting

of B-spline surfaces, I implement the initial constrained triangulation of the discretized nodes.

After a series of splitting, merging, and smoothing optimizations inherited from previous work,

the mesh quality of the skin and the internal members increases.

The first contribution is to make the algorithm handle a versatile input with any given

B-spline geometry model. This means the algorithm is also applicable to geometries besides

aircraft. For instance, it can be applied to the generation of shell-element meshes for other

engineering systems, such as cars, robots, medical devices, etc.

Another remarkable contribution is implementing the interface with a large-scale MDAO

framework. As a result, the mesh is able to be computed as a function of design variables

since the changes in the initial central geometry will cause the structural mesh to automatically

transform. Additionally, the physical coordinates of the mesh nodes are differentiable so that

the computation of the structural mesh coordinates’ derivatives with respect to the form design

variables will be efficient.

In conclusion, the entire algorithm is useful and efficient for generating shell-element

meshes and adding internal components to structures with complex shapes. Using structural

shell-element meshes integrated with the gradient information, exact and efficient analysis and
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design optimization could be implemented. Furthermore, a shape design optimization problem

will be performed using the aforementioned large-scale MDAO framework.
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