
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Encoder-Decoder Neural Architectures for Fast Amortized Inference of CognitiveProcess
Models

Permalink
https://escholarship.org/uc/item/0kz3f94z

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 42(0)

Authors
Fengler, Alexander
Govindarajan, Lakshmi Narasimhan
Frank, Michael J.

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0kz3f94z
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Encoder-Decoder Neural Architectures for Fast Amortized Inference of Cognitive
Process Models

Alexander Fengler (alexander fengler@brown.edu)
Department of Cognitive, Linguistic and Psychological Sciences, 190 Thayer St

Providence, RI 02912 USA

Lakshmi Narasimhan Govindarajan (lakshmi govindarajan@brown.edu)
Department of Cognitive, Linguistic and Psychological Sciences, 190 Thayer St

Providence, RI 02912 USA

Michael J. Frank (michael frank@brown.edu)
Department of Cognitive, Linguistic and Psychological Sciences

Carney Institute for Brain Science
190 Thayer St

Providence, RI 02912 USA

Abstract

Computational cognitive modeling offers a principled inter-
pretation of the functional demands of cognitive systems and
affords quantitative fits to behavioral/brain data. Typically,
cognitive modelers are interested in the fit of a model with
parameters estimated using maximum likelihood or Bayesian
methods. However, the set of models with known likeli-
hoods is dramatically smaller than the set of plausible gen-
erative models. For all but some standard models (e.g., the
drift-diffusion model), lack of closed-form likelihoods typi-
cally prevents using traditional Bayesian inference methods.
Employing likelihood-free methods is a workaround in prac-
tice. However, the computational complexity of these methods
is a bottleneck, since it requires many simulations for each pro-
posed parameter set in posterior sampling schemes. Here, we
propose a method that learns an approximate likelihood over
the parameter space of interest by encapsulation into a convo-
lutional neural network, affording fast parallel posterior sam-
pling downstream after a one-off simulation cost is incurred
for training.

Keywords: Likelihood-free inference; Approximate Bayesian
Computation; ABC; Importance Sampling; Bayesian Infer-
ence; Neural Networks; GPU; Parallel Computing; Cognitive
Process Models.

Introduction
Computational modeling has gained traction in cognitive neu-
roscience in part because it can guide principled interpre-
tations of functional demands of cognitive systems and of-
fers tractable quantitative fits of brain-behavior relationships.
Bayesian parameter estimation allows one to infer posterior
distributions over likely parameters (instead of just point esti-
mates), including their uncertainty, while also assessing how
variations in one parameter alter inference over another.

Traditionally, posterior sampling for such models has de-
manded analytical likelihood functions: given a model and
a set of parameters, the likelihood of any data point needs
to be analytically solvable. This constraint limits the ap-
plication of Bayesian analysis to a relatively small subset
of cognitive models chosen for so-defined convenience in-
stead of theoretical interest. Consequently, model compari-
son exercises are hampered, as many plausible likelihood-free

models were effectively untestable. During the last decade
and a half, however, algorithms have prominently developed
which allow posterior sampling over parameters of models
that are defined only as simulators (Sisson, Fan, & Beaumont,
2018). Early applications of these methods can be found in
Biology and Ecology, notably as an approach towards pos-
terior inference, for the famous Lotka-Volterra predator-prey
model (Beaumont, 2010). These approximate Bayesian com-
putation (ABC) methods now enjoy successful application
across the sciences, for example, in physics (Akeret, Re-
fregier, Amara, Seehars, & Hasner, 2015), and have cru-
cially found their way into cognitive science (B. Turner &
Van Zandt, 2018).

Traditional ABC approaches rely on summary statistics of
the data produced by simulations. The distance between these
summary statistics and summary statistics computed from
empirical observations are then compared with help of a dis-
tance function d(Sobs,Ssim). Two shortcomings result from
such a starting point. First, ABC approaches generally re-
quire many simulations and hence can be computationally ex-
pensive (in some cases prohibitive). Second, aside from the
fact that the right low dimensional summary is usually un-
known, using low dimensional summaries of simulated data
as approximate sufficient statistics restricts expressiveness
and usually entails information loss with respect to model pa-
rameters. Worse, the appropriate multi-dimensional distance
function d(x,y) is a hyperparameter of choice, which is a pri-
ori unknown. In choosing this hyperparameter, a failure to
take into account potential non-linear relationships between
the summary statistics can lead to geometric distortion of the
posterior distribution.

In the context of computational cognitive model-
ing, B. Turner and Sederberg (2014) developed an ABC
(ABC-KDE in the following) method that is independent of
summary statistics and instead relies on kernel density ap-
proximations of likelihood functions produced from model
simulations. The benefit of this approach is that, while ap-
proximate with respect to the likelihood function, it does not

1859
©2020 The Author(s). This work is licensed under a Creative
Commons Attribution 4.0 International License (CC BY).

Figure 1: Illustration of a use case of our Encoder-Decoder based Importance sampling algorithm for estimating posteriors on
the generative parameters of a stochastic model. Both the Encoder and Decoder are instantiated as CNNs. conv x, up x, FC x
refer to convolutional, upsampling and fully-connected layers. Symbol notations adhere to definitions in the main text.

make any obvious compromise on the posterior geometry
concerning parameter trade-offs. What this approach does not
overcome, however, is the reliance on an excessive amount of
model simulations at inference, exacerbated by the sequen-
tial nature of the Markov chain Monte Carlo (MCMC) meth-
ods applied for posterior inference. Even recent refinements
(Holmes, 2015) do not overcome this issue.

The basic idea of the ABC-KDE method has opened doors
(N. J. Evans, Trueblood, & Holmes, 2019), but the excessive
computational burden has hampered widespread application.
For example, typically tens of thousands of simulations are
needed to generate a realistic empirical likelihood for a single
set of parameters (B. Turner & Sederberg, 2014). These em-
pirical likelihood functions are then used in a Markov Chain
(DE-MCMC is popular, (Ter Braak, 2006)) which itself needs
to be run for tens of thousands of steps. The simulation runs
are then simply discarded. Here we propose the use of neural
networks for amortized inference, which aims at progressive
reuse of previously incurred computations.

Similar ideas have directly inspired two recent propos-
als. Mestdagh, Verdonck, Meers, and Tuerlinckx (2019) pro-
pose an infrastructure for databases of pre-computed sum-
mary statistics. While such an initiative could substantially
facilitate inference for popular models, any ABC method op-
erating over such a database will suffer from the shortcomings
concerning operation on summary statistics. Radev, Mertens,
Voss, and Koethe (2019) offers an ambitious end-to-end ap-
proach to inference. The essence of their approach lies in the
utilization of fully convolutional neural networks to learn ap-
proximate multivariate normal posterior distributions directly
from data. Specifically, Radev et al. (2019) adopt a het-
eroscedastic loss function to estimate anisotropic variances
in their parameter estimates. This approach is rapid for ob-
taining approximate maximum likelihood estimates and im-
pressive due to its aspiration towards full encapsulation of
posterior inference problems in a simple computational step.
While this is a laudable goal, it suffers from two main short-
comings. First, the primary purpose of full posterior infer-
ence is to become aware of parameter relationships, for which

posterior covariances are indispensable. Radev et al. (2019)
however only consider (an estimate of) marginal posterior
variances; independence between parameters is implicitly as-
sumed. Because covariances are not estimated, the resulting
marginal variances are potentially distorted when parameters
are not independent (which is nearly always the case for cog-
nitive models). A second limitation is that the posterior vari-
ances are only strictly interpretable as such if the network has
been trained on the same dataset sizes which is used during
inference. Third, the learned posterior inference is specific to
a single inference scenario. Consequently, the method cannot
easily be extended to critical application scenarios like hier-
archical estimation, or scenarios in which a subset of param-
eters is assumed fixed while others vary across experimental
conditions (or continuously as a function of neural regres-
sors).

Here, we propose an end-to-end algorithm that combines
the primary use of empirical likelihood distributions with
the idea of amortized inference using neural networks and
fast but honest posterior sampling, without reliance on sum-
mary statistics. Our approach achieves approximately a 100-
1000 fold speed increase when compared to the application
of ABC-KDE methods for equivalent problems.

Section 2 introduces the components of our analysis
pipeline with an emphasis on the generality of the approach.
In section 3, we provide details on data generation and net-
work training. Section 4 presents the results of our compu-
tational experiments. In section 5, we end with a discussion
of our approach, possible extensions, and options for deploy-
ment to the community.

Methods
Two main desiderata guided our algorithm development.
First, we wanted to maximally reuse computation incurred by
model simulations by learning a transformation that can com-
pute a joint likelihood from large data-sets quickly. Second,
we strive to exploit parallel computing infrastructure to en-
able fast posterior sampling across the parameter space. To-
gether these guiding principles should produce a procedure

1860

that massively speeds up posterior sampling while only pay-
ing an initial simulation cost once.

Concerning principle one, in brief, we will use convolu-
tional neural networks (CNNs) to approximate discretized
global likelihood functions (called Decoder or Reverse Net-
works below). Evaluation of the likelihood of a dataset D
under a parameter set θ can be computed as the sum of el-
ementwise multiplication of the log probability of each dis-
crete outcome with the number of observed cases. We note
that the cost of computing the likelihood is now independent
of the size of the dataset.

Generally, one can then perform posterior inference via
MCMC, replacing the (analytical or KDE) likelihood func-
tion by evaluating a CNN for parameter inputs. While some
preliminary success with this approach (Fengler & Frank,
2019) has been shown previously, because MCMC is inher-
ently sequential, it misses out on the potential to exploit the
power of parallel computing infrastructure. Thus as per our
second desiderata, we aim for a parallel sampling scheme,
for which we chose a minimally revised version of iterated
importance sampling based on adaptable Gaussian mixture
proposals (Cappé, Douc, Guillin, Marin, & Robert, 2007;
Wraith et al., 2009). Such a scheme affords the potential
to leverage parallel batch processing in neural networks, as
explained later. Importance sampling relies on the idea that
for any probability distribution of interest f , we may produce
samples from f by using an importance weighted resampling
of samples from another (the proposal) distribution g. The
method is driven by the basic equality,∫

Ω

f (x)dx =
∫

Ω

f (x)
g(x)

g(x)dx

A sample x = {x0, ...,xn} ∼ g, gets assigned weights w =

{wo =
f (x0)
g(x0)

, ...wn =
f (xn)
g(xn)
}. Multinomial resampling from x,

according to w, produces an approximation to sampling from
f directly. Importance sampling is exact in the limit, how-
ever finite sample approximation error is strongly dependent
on how closely g matches f to begin with. Iterative impor-
tance sampling adds the idea of improving the distribution g
over time to reduce approximation error introduced by having
finite samples (consistency of importance sampling relies on
infinite samples).

However, an important issue for importance sampling is
that the initial proposal distribution must be reasonable to
kick-start the iterative update process successfully. That is,
the sequence of proposal distributions {gi}N

i=0 is crucially de-
pendent on getting the very first proposal g0 roughly correct.
Precisely, g0 needs to cover regions of high likelihood con-
cerning the target of interest, and should do so in a way that
is somewhat, but not excessively, overdispersed as compared
to the target, where the target in our case is a posterior distri-
bution.

For this purpose, we obtain an initial estimate of the pos-
terior distribution by slightly modifying and re-purposing re-
cent neural network approaches to end-to-end approximate

posterior inference (Radev et al., 2019; Kendall & Gal, 2017;
Jiang, Wu, Zheng, & Wong, 2017). Convenient for us, the ap-
proach of Radev et al. (2019) produces overdispersed approx-
imate posteriors (in part because of an embedded assumption
of the posterior being isotropic Gaussian), which enables us
to utilize it as an “Encoder network” to initialize our impor-
tance sampling scheme. The complete processing pipeline
and algorithm is pictorially illustrated in Fig. 1, leaving us
with the three main components: the Encoder Network, the
Decoder Network and the Importance sampler, each of which
is elaborated below.

Test-bed
Our method applies to models that have a reasonably con-
strained output (data) space Dout , such that binning the out-
put space down to approximately 500×dim(Dout) maintains
a manageable discretization-error.

As an initial test-bed, we choose some variations of a
prominent class of cognitive process models known as se-
quential sampling models (SSMs) or evidence accumulation
models (EAMs): The most widely known example being the
ratcliff drift-diffusion model (DDM). This class of models is
frequently used across domains in the experimental cognitive
and neuroscience literature, to jointly model choice and re-
sponse time distribution data. The underlying parameters are,
in turn, linked to neural processes (Ratcliff, Smith, Brown, &
McKoon, 2016; N. Evans & Wagenmakers, 2019; Frank et
al., 2015; B. M. Turner, van Maanen, & Forstmann, 2015).
The links can be explored via hierarchical models parame-
ter in which neural processes connect to parameters in cog-
nitive models via e.g., a regression function. To illustrate the
potential of our method, we choose four specific variants of
such EAMs that are frequently used in research but for which
analytic likelihood functions are not available: (1) A simple
DDM model in which the decision bound collapses according
to the CDF of a Weibull distribution, (2) the Full-DDM model
(with inter-trial variability in 3 parameters) (Ratcliff & McK-
oon, 2008), (3) the Ornstein-Uhlenbeck model (as in the leaky
competing accumulator or LCA) and (4) a Four Choice Race
Model.

The data-generating process of all four models relies on an
underlying diffusion, a Brownian Motion W with a drift term
v. All models have a parameter that expresses the starting
point bias w ∈ [0,1]; a non-decision time ndt ∈ [0,NDTmax]
capturing time taken for perception and motor output; and an
initial distance to one (or more) decision bound(s), labeled
a. Abstractly, the driving diffusion for all our models can be
described by a stochastic differential equation of the form,

dXt = A(t,Xt)dt +dWt

We make precise the specific discriminatory attributes of
the four models below.
The Ornstein-Uhlenbeck model adds a position dependency
expressed in an excitation/inhibition parameter g. The Full-
DDM instead treats the starting point w, the drift v and

1861

Figure 2: Graphic illustration of the stochastic forward mod-
els used as a test bed for posterior inference.

the non-decision time ndt as trial-by-trial random variables
emerging from a uniform, normal, and again uniform distribu-
tion respectively (adding the dw,sdv,dndt parameters). The
DDM-Weibull model, adds a parameterized boundary func-
tion to the model. The bound is defined as,

b(t|α,β,a) = a∗ exp−(t
β
)α.

Finally the Four Choice Race Model, in contrast to the three
previous models, treats each decision option as a separate par-
ticle replicating the drift and starting point parameters four
times. Decisions in this model correspond to the time-point
at which the first of the four particles hits the boundary a. Fig.
2, gives a graphic depiction of the models.

Implementation Details
Synthetic data Generation We follow a uniform approach
to universal data generation for all models presented. For
each model, we generate N = 3M sets of parameters drawn
from uniform distributions. For each set of parameters ΘM ,
we then generate 100K simulations from the stochastic model
M and bin the output into b bins for each discrete choice op-
tion c, where the bins divided the t ∈ [0,Tmax = 10s] evenly up
to the last bin which collected any observations t > Tmax. The
so-generated binned simulations were stored in a data-array
D. For all numerical experiments we choose b = 256. For
each model mentioned above, we therefore generate a data-
set DM

b = {θi,Di}3M
i=0, upon which training of the below men-

tioned networks was based.

Decoder (Reverse) Model The decoder network encapsu-
lates the essence of the relevant stochastic model under con-
sideration. It maps the vector of proposed generative param-
eters Θ to the likelihood, i.e. P(DM

b |Θ). By implementing
the decoder as a CNN we gain two crucial properties. First,
we can leverage batch processing of input and generate like-
lihoods for a large number of input parameter sets in paral-
lel. Second, the output of the CNN is a global approxima-
tion of the likelihood for a single parameter set. Evaluation

for a given data-set amounts to element-wise multiplication
of the CNN output layer with bin-wise event counts. Speed
of valuation is therefore independent of dataset-size. Paral-
lelizability is also crucial for the employment of the Iterated
importance sampler.

The network is trained by minimizing the KL-divergence
between observed and generated data histograms (defined in
Eq. 1). To create a higher dimensional embedding of the pa-
rameter θ, we employ a sequence of upsampling layers fol-
lowed by convolutions with 1×5 kernels and a final fully con-
nected layer resulting in an output of dimensionality [Nb,Nc].

D(P̂(x|Θ)‖P(x|Θ)) =

b

∑
i=0

[
P̂(xi|Θ) log

P̂(xi|Θ)

P(xi|Θ)

]
(1)

Encoder (Forward) Model The encoder network, as de-
scribed in Fig. 1, serves to provide a good initialization for
our Importance Sampling procedure. The network maps a
data set DM

b (in our case a likelihood from a stochastic model
M discretized into b number of bins) to the generative param-
eters of M, Θ = {θi : i ∈ [0,T]}. The readout node contains
the predicted means and variances of the stochastic model pa-
rameters. As per Radev et al. (2019) training is accomplished
via minimization of the heteroscedastic loss function defined
in Eq. 2.

L(θ̂, σ̂2(θ̂),θ) =
1
T

T−1

∑
t=0

[
(θt − θ̂t)

2

2σ̂2
t (θ̂)

+
1
2

log(σ̂2
t (θ̂))

]
(2)

For both encoder and decoder networks, we use the adap-
tive learning rate based gradient descent algorithm Adam
(Kingma & Ba, 2015), initialized with a learning rate of
1e−4. We implemented both the encoder and decoder mod-
els in Tensorflow (Abadi et al., 2015).

Importance sampling Given a data-set of observations
Dobs, we use iterative adaptive importance sampling based
on Gaussian mixtures. Adjustments of the proposal distribu-
tion across iterations utilize the mixture update equations as
derived in (Cappé et al., 2007; Wraith et al., 2009). The basic
idea behind iterative importance sampling is to use an adap-
tive importance distribution, which upon good initialization,
will converge to the target sufficiently to allow for efficient
importance sampling at the last iteration.

As suggested by Cappé et al. (2007), to monitor conver-
gence, we use the normalized perplexity statistic, defined at
every iteration k as the exponential of the Shannon entropy
of normalized importance weights divided by the total sam-
ple size, exp(Hk,N)/N, where Hk,N = −∑

N
i=1 ω̄k,i log ω̄k,i. If

the proposal distribution converges to the target, this statistic
converges to 1. It is crucial to generate an initial proposal that
is sufficiently close to the target to allow successful adapta-
tion over time. We generate the initial mixture distribution g0
in the following way. We apply the encoder network to Dobs

1862

to get a point estimate for the generative parameters θ̂obs, as
well as parameter-wise variance terms σ̂2

θ
. The first mixture

component, g1
0, is then initialized as the isotropic multivariate

Gaussian implied by the encoder network output. To generate
the rest of the mixture components, we use the variance es-
timates σ̂2(θ̂obs) gleaned from the Encoder Model and apply
component-wise random perturbations from the centers of g1

0.
We reapply σ̂2(θ̂obs), to generate a set of dispersed isotropic
Gaussians around the g1

0 as mixture components g2
0, ...,g

M
0 .

In principle, other procedures for initialization are possible
which do not themselves involve neural networks. One al-
ternative is to replace the encoder network with another op-
timization technique such as Maximum Likelihood Estima-
tion (MLE). The flip side of using MLE however, is that it
yields point estimates. While, in principle, one can use a
numerically approximated Hessian matrix around the MLE
solution to initialize the covariance structure of our mixture
distributions, this method is potentially unstable, especially
if the MLE procedure does not, in fact, find a local minimum
(the MLE might for example not sit in a locally convex cone).

To help with convergence, we use an annealing factor
γ = 2z−t , z ∈ 1,2,4, ...,N, where z is a parameter of the sam-

pler. Hence, the first iteration operates on a target f (x)
1
γ . We

decrease from γ0 by dividing by 2 for each iteration that im-
proves the complexity measure exp(Hk,N)/N, until we reach
γi = 1. The importance sampler thus has three hyperparam-
eters. The annealing factor z, the number of mixture compo-
nents M and the number of samples we draw at each iteration
i, Ni.

Results
Parameter Recovery Study Every dataset used in our pa-
rameter recovery studies consisted of N = 1024 data points.
Model parameters that governed each dataset are chosen uni-
formly at random across the valid parameter range, albeit
slightly truncated to lie within the parameter ranges used for
network training. We note that model identifiability can dete-
riorate parameter recovery as defined here, even if sampling
from the posterior was entirely successful. For this reason, we
separately show posterior predictive distributions as well. As
can be seen in Fig 3, these posterior predictive plots produce
highly accurate results. Moreover, our covariance plots show
that we can capture such relationships between parameters in
the posterior distribution. Fig 3, summarizes the results of
the parameter recovery study.

Speed and Efficiency of Sampling We report some statis-
tics concerning the speed and efficiency of the importance
sampler. Generally, across all models considered, the impor-
tance sampler converges within 20 iterations. At each itera-
tion, we draw 200K importance samples; hence a total of up
to 4M samples is run within approximately 300s. As a rough
estimate, this implies that we are processing one sample in
approximately 75µs. Since we intend here first and foremost
to compare to traditional ABC methods, a reasonable bench-
mark would be to consider the time it takes to produce and

Model Ne f f Run time (in mins)

Weibull 114K± 31.3K 7.7± 4.5
Full DDM 109K± 19.6K 6.5± 2.8

Ornstein–Uhlenbeck 139K± 24K 3.8± 2.2
Race Model 4 112K± 30K 9 ± 3.9

Table 1: Importance sampler statistics. Ne f f is the effective
sample size defined as 1

ΣN
i=1ω̄2

i
. Run time here refers to the

total time consumed until importance sampler convergence.

evaluate, at point of inference, the empirical likelihood that
is embedded in our decoder network. This implies drawing
on the order of at least 30K (B. Turner & Sederberg, 2014)
simulations for each proposed set of parameters in a poste-
rior sampling scheme. To get a precise estimates of the time
savings our method promises, we repeated 5000 runs of 30K
simulations each from a Full DDM model. We used highly
optimized simulators for this purpose, and ran this experi-
ment on a top of the line 2019 MacBook Pro Laptop. For
each run, the set of parameters was sampled uniformly from
the domain our CNNs were trained on. The average time for
30K simulations was estimated at 600ms. Treating computa-
tion and evaluation of the KDE for all samples as free, this
already implies a speedup of approximately 4 orders of mag-
nitude that our method promises.

Discussion and Future Work
We present an end-to-end pipeline for amortized Bayesian in-
ference. As a test bed, we consider evidence accumulation
models of varying complexity. Our method crucially relied
on two guiding principles. (1) The ability to reuse computa-
tions resulting from forward model simulations to the greatest
extent possible, in other words maximally amortize our infer-
ence cost. We do so by learning from model simulations a
global likelihood approximation encapsulated in a CNN that
allows us to go from parameters directly to first passage like-
lihood distributions in one forward pass. (2) We want to do
so in a way that allows us to to leverage advances in paral-
lel computing infrastructure for rapid inference algorithms.
For this purpose we utilize the capacity for parallel batch-
processing to power extremely fast sampling rounds in an
annealed iterated importance sampling approach to posterior
sampling.

We show parameter recovery results and posterior predic-
tive checks for four different evidence accumulation models,
all notoriously difficult to estimate with traditional methods.
Application across models shows that the algorithm is quite
robust, with fine-tuning necessary only at the stage of impor-
tance sampling, where the choice of the number of compo-
nents and an annealing factor γ can have an impact on the
performance and convergence. We emphasize that we em-
ployed only minimal to no fine-tuning overall, and impor-
tantly used consistent sampler settings for all numerical ex-
periments shown. While the number of choice options af-

1863

Figure 3: For each of the four models we show parameter recovery and an example covariance plot for a single randomly
sampled parameter set. In addition, for the Full-DDM model we also show 9 posterior predictive plots from randomly sampled
parameter sets.

fected the speed of inference (by virtue of its impact on the
network architecture, since the last layer needs to accommo-
date a larger number of (t,c) states), we remain well below

reported inference times that apply to the ABC-KDE methods
for equivalent models. For all models shown, we reliably get
good/sufficient convergence of the importance sampling dis-

1864

tribution to the target. Marginal and covariance plots (Fig. 3)
show that we can capture complex posterior shapes implied
by non-linear parameter trade-offs.

There are multiple ways in which we plan to extend and
build on the work presented. First, a major goal is to make
the discussed procedures available to other researchers as a
Python package. We aim to cover two basic use cases: On
the one hand, users will be able to use their (or a cloud-based)
GPU infrastructure. On the other hand, we will exploit the
newly emerging dedicated hardware for low-cost, fast infer-
ence with pre-trained neural networks, (e.g., neural compute
stick, Intel R©), to allow users an extremely cheap (∼ 100$)
entry point for utilizing the methods presented here, even on
a personal budget laptop machine. Moreover, users will be
able to upload their simulators, from which the encoder and
decoder networks can be automatically trained. Second, ex-
ploiting the literature on model distillation (Hinton, Vinyals,
& Dean, 2015), we aim to incorporate architecture minimiza-
tion into our training pipeline, to ensure maximal speed at
inference. Lastly, we aim to generalize the current approach
to allow for hierarchical estimation of parameters.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., . . . Zheng, X. (2015). TensorFlow: Large-
scale machine learning on heterogeneous systems. Re-
trieved from http://tensorflow.org/ (Software avail-
able from tensorflow.org)

Akeret, J., Refregier, A., Amara, A., Seehars, S., & Hasner,
C. (2015). Approximate bayesian computation for for-
ward modeling in cosmology. Journal of Cosmology and
Astroparticle Physics.

Beaumont, M. A. (2010, December). Approximate Bayesian
Computation in Evolution and Ecology. Annual Review of
Ecology, Evolution, and Systematics, 41(1), 379–406.

Cappé, O., Douc, R., Guillin, A., Marin, J.-M., & Robert,
C. P. (2007). Adaptive importance sampling in general
mixture classes. Statistics and Computing 18, 4 (2008)
447-459. doi: 10.1007/s11222-008-9059-x

Evans, N., & Wagenmakers, E. (2019). Evidence
accumulation models: Current limitations and future
directions. In psyarxiv preprint. Retrieved from
https://doi.org/10.31234/osf.io/74df9

Evans, N. J., Trueblood, J., & Holmes, R. (2019). A parame-
ter recovery assessment of time-variant models of decision-
making. Behavior Research Methods.

Fengler, A., & Frank, M. (2019). Abc-nn: Ap-
proximate bayesian computation with neural
networks to learn likelihood functions for ef-
ficient parameter estimation.. Retrieved from
https://doi.org/10.32470/CCN.2019.1361-0

Frank, M. J., Gagne, C., Nyhus, E., Masters, S.,
Wiecki, T. V., Cavanagh, J. F., & Badre, D. (2015).
fmri and eeg predictors of dynamic decision param-
eters during human reinforcement learning. Journal

of Neuroscience, 35(2), 485–494. Retrieved from
https://www.jneurosci.org/content/35/2/485 doi:
10.1523/JNEUROSCI.2036-14.2015

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the
knowledge in a neural network. In arxiv preprint. Retrieved
from https://arxiv.org/abs/1503.02531

Holmes, R. (2015). A practical guide to the probability
density approximation (pda) with improved implementa-
tion and error characterization. Journal of Mathematical
Psychology, 68, 13-24.

Jiang, B., Wu, T., Zheng, C., & Wong, W. (2017). Learn-
ing summary statistics for approximate bayesian computa-
tion via deep neural networks. Statistica Sinica, 27, 1595 -
1618.

Kendall, A., & Gal, Y. (2017). What uncertain-
ties do we need in bayesian deep learning for com-
puter vision. In arxiv preprint. Retrieved from
https://arxiv.org/abs/1703.04977

Kingma, D., & Ba, J. (2015). Adam: A method for stochastic
optimization. In Iclr conference paper. ICLR. Retrieved
from https://arxiv.org/abs/1412.6980

Mestdagh, M., Verdonck, S., Meers, K., & Tuerlinckx, F.
(2019). Prepaid parameter estimation without likelihoods.
PLoS Computational Biology, 15(9).

Radev, S., Mertens, U., Voss, A., & Koethe, U. (2019). To-
wards end-to-end likelihood-free inference with convolu-
tional neural networks. British Journal of Mathematical
and Statistical Psychology, 23-43.

Ratcliff, R., & McKoon, G. (2008). The diffusion deci-
sion model: Theory and data for two-choice decision tasks.
Neural Computation, 20(4), 873 - 922.

Ratcliff, R., Smith, P., Brown, S., & McKoon, G. (2016). Dif-
fusion decision model: Current issue and history. Trends in
Cognitive Sciences, 20(4), 260–281.

Sisson, S., Fan, Y., & Beaumont, M. (2018). Handbook of
approximate bayesian computation. CRP Press.

Ter Braak, C. J. (2006). A markov chain monte carlo ver-
sion of the genetic algorithm differential evolution: easy
bayesian computing for real parameter spaces. Statistical
Computing, 16, 239-249.

Turner, B., & Sederberg, P. (2014). A generalized, likelihood-
free method for posterior estimation. Psychological Bul-
letin, 21(2), 227–250.

Turner, B., & Van Zandt, T. (2018). Approximating bayesian
inference through model simulation. Trends in Cognitive
Sciences, 22(9), 826–840.

Turner, B. M., van Maanen, L., & Forstmann, B. U. (2015).
Informing cognitive abstractions through neuroimaging:
the neural drift diffusion model. Psychological Review,
122(2), 312 - 336.

Wraith, D., Kilbinger, M., Benabed, K., Cappé, O., Cardoso,
J.-F., Fort, G., . . . Robert, C. P. (2009). Estimation of cos-
mological parameters using adaptive importance sampling.
Physical Review. doi: 10.1103/PhysRevD.80.023507

1865

