
UC Berkeley
UC Berkeley Previously Published Works

Title
Efficient optimal reconstruction of linear fields and band-powers from cosmological data

Permalink
https://escholarship.org/uc/item/0kz1w5nt

Journal
Journal of Cosmology and Astroparticle Physics, 2019(10)

ISSN
1475-7516

Authors
Horowitz, B
Seljak, U
Aslanyan, G

Publication Date
2019-10-01

DOI
10.1088/1475-7516/2019/10/035
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0kz1w5nt
https://escholarship.org
http://www.cdlib.org/


Prepared for submission to JCAP

Efficient Optimal Reconstruction of
Linear Fields and Band-powers
from Cosmological Data

B. Horowitza,b U. Seljaka,b G. Aslanyana

aBerkeley Center for Cosmological Physics and Department of Physics, University of Cali-
fornia, Berkeley, CA 94720
bLawrence Berkeley National Laboratory, Berkeley, CA 94720

E-mail: bhorowitz@berkeley.edu, useljak@berkeley.edu

Abstract. We present an efficient implementation of Wiener filtering of real-space linear field
and optimal quadratic estimator of its power spectrum Band-powers. We first recast the field
reconstruction into an optimization problem, which we solve using quasi-Newton optimiza-
tion. We then recast the power spectrum estimation into the field marginalization problem,
from which we obtain an expression that depends on the field reconstruction solution and a
determinant term. We develop a novel simulation based method for the latter. We extend the
simulations formalism to provide the covariance matrix for the power spectrum. We develop a
flexible framework that can be used on a variety of cosmological fields and present results for
a variety of test cases, using simulated examples of projected density fields, projected shear
maps from galaxy lensing, and observed Cosmic Microwave Background (CMB) temperature
anisotropies, with a wide range of map incompleteness and variable noise. For smaller cases
where direct numerical inversion is possible, we show that our solution matches that created
by direct Wiener Filtering at a fraction of the overall computation cost. Even more significant
reduction of computational is achieved by this implementation of optimal quadratic estimator
due to the fast evaluation of the Hessian matrix. This technique allows for accurate map and
power spectrum reconstruction with complex masks and nontrivial noise properties.

Keywords: large scale structure – power spectrum, large scale structure – gravitational
lensing, large scale structure – galaxy clusters
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1 Introduction

A ubiquitous problem of modern astrophysics is the reconstruction of the underlying signal
from observed, noisy, and incomplete data. For linear fields the Wiener filter [1, 2] is the
gold standard for reconstructing the underlying signal, as it is “optimal” in the sense that it
minimizes the variance. It has been used as the basis of cosmological analysis for both large
scale structure [3, 4] and CMB [5, 6].

However, the Wiener filter requires one to take the inverse of the overall covariance
matrix, which has a noise and a signal based components. Noise is typically diagonal in
observed space, while signal is diagonal in harmonic (or Fourier) space. In general, the
covariance matrix will not be diagonalizable in either basis and it will be computationally
difficult to invert the matrix numerically for a realistic sized survey map. While it is possible
to make simplifying assumptions, like homogeneous and isotropic noise (as in, for example
[7]), it is possible to efficiently implement Wiener filter by using the well studied property
that the Wiener filter is mathematically equivalent to maximum a posteriori (MAP), which
in turn can be solved with fast linear algebra methods or optimization [8].

This optimization can be performed using a variety of numerical techniques. Recent work
used a messenger [9, 10] (or dual messenger [11]) field which can be diagonalized in either basis
in which to run an approximation scheme. These methods have been argued to perform well
versus other approximation schemes, but there are situations where the messenger field is zero
(such as zero noise field with mask) and the method fails. In addition, it has been argued that a
suitably chosen preconditioned conjugate gradient technique might be faster in some instances
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[12]. Preconditioned conjugate gradient techniques have performed well in the context of
CMB map reconstruction [13, 14], but require careful selection of the preconditioning scheme
to achieve fast convergence. We therefore want to explore implementations that are both
general and computationally efficient.

For cosmological analysis, it is not only the field that is of interest but also the band-
powers (such as power spectrum amplitudes) and their covariance matrix. Work towards
estimating these quantities jointly with the underlying field has been done in the cosmic
shear context [10, 15], but it required sampling from the joint probability distribution which
is computationally involved. In this work we assume flat prior on band-powers and hence
examine maximum likelihood estimation (MLE) method, after marginalization over the field,
to quickly compute these quantities for observations with complex noise and mask properties
as well.

In particular, we examine three cases of cosmological interest: linear density recon-
struction, cosmic shear (E mode estimation alone as well as joint E/B), and primary CMB
temperature anisotropy reconstruction. The outline of the paper is as follows: we discuss
our MAP/MLE for field and power spectrum estimation in §2. In §3, we use these tools in
a number of contexts, and compare the optimization approach with a numerically exact case
in Subsection 3.2. In §4 we discuss our results and possible extensions of the work to analyze
real data.

In Appendix A we review the exact Weiner Filter approach with relies on inversion of
the full covariance matrix. In Appendix B we discuss the convergence criteria in the case
of primary CMB reconstruction. In Appendix C we discuss the joint estimation of E and B
fields in the context of cosmic shear (although the technique transfers directly to CMB E and
B polarization reconstruction as well).

2 Background

Here we summarize the optimization technique and standardize the notation. For a more
through description, see [8, 16–18]. We measure quantities d(ri) at select positions, such as
a reconstructed projected density, forming a full data vector, d. In general, this data vector
will depend on a combination of underlying information about the field ( “field coefficients")
we wish to estimate, s, and that which is pure noise, n, i.e.

d = Rs + n, (2.1)

where the R is the response matrix expressing how our measurement changes with the un-
derlying information. We express the underlying two point function information in terms of
covariance matrices, S = 〈ss†〉, and N = 〈nn†〉, for the estimated signal and noise compo-
nents, respectively. We assume that these are uncorrelated with each other, i.e. 〈ns†〉 = 0;
changes to this assumption are tractable but would require a redefinition of our underlying
likelihood function and complicate the analysis since the noise would carry signal information.
The correlation matrix of the data is therefore,

〈dd†〉 ≡ C = 〈(Rs + n)(Rs + n)†〉
= 〈(Rs(Rs)† + nn† + Cross Terms〉
= RSR† + N . (2.2)

Our signal covariance, S, takes a diagonal form in Fourier space. The noise covariance, N , is
often approximately diagonal in data space, as there usually are no noise correlations between
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elements of the data vector. We can convert the covariance matrix into Fourier basis where
signal covariance is diagonal, but this will lead to very strong off-diagonal terms of the noise
matrix, in the presence of masked sky regions and/or variable noise properties. Therefore,
our overall data correlation matrix cannot be diagonalized easily in either basis.

We can re-express our covariance in terms of underlying band-powers, Θ, labeling each
modes of interest to estimate as {1, · · · , l, · · · , lmax}, and the rest as {lmax+1, · · · ,∞}, and
then expressing our correlation matrix as

C =
∑
l

ΘlQl + N . (2.3)

This new Ql = ΠlRR†Πl basis is the projection (with projection operators Πl) of the
response matrix R for each mode. The band-power can correspond to averaging over spherical
harmonic basis coefficients at a constant l, adding up 2l+1 m modes, but we can also average
over more than one l.

2.1 Bandpowers posterior

We now want to find the most probable set of bandpowers for a given set of measurements d,
assuming flat prior on band-powers. We thus parametrize the power spectrum as a function of
these bandpowers S(Θ). If we assume our modes are Gaussian we can express the likelihood
function in the familiar form, i.e.

L(d|Θ) = (2π)−N/2 det(C)−1/2 exp

(
−1

2
d†C−1d

)
. (2.4)

Associated with the likelihood function and a parameter set Θ̂ which maximizes it, is the
Hessian matrix [19],

Fll′ = − ∂2lnL
∂Θl∂Θl′

. (2.5)

The inverse of the Hessian matrix can be interpreted as a local estimate of the covariance
matrix of the parameters, i.e.

F−1 = 〈ΘΘ†〉 − 〈Θ〉〈Θ〉†. (2.6)

We now have the bandpower posterior in the Gaussian form, given by the mean Θ̂ and the
covariance matrix F−1. To obtain the solution for the mean it is easiest to use Newton’s
second order method, which gives a quadratic estimator of the form [20]

Θl =
1

2

∑
l′

F−1
ll′ (d†C−1Ql′C

−1d− bl′), (2.7)

where bl is a noise bias term that can be found by computing the ensemble average of the
first term assuming θl = 0 for all modes probed (i.e. l < lmax),

bl = tr

N +
∞∑

lmax+1

(ΘlQl)C
−1QlC

−1

 . (2.8)

This is an implicit equation since C depends on Θl, and needs iterations, as discussed further
below. We refer below the power spectrum inside C as Sfid.
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2.2 MAP Field Reconstruction

In practice this analytical calculation requires the inversion of a large matrix, C, which does
not necessarily have properties that make inversion efficient (i.e. block diagonal or sparse) and
will in general require O(n3) time for an n× n matrix. In the case of reconstructing the un-
derlying density field for astronomical large surveys with n pixels, this would be prohibitively
computationally expensive for the foreseeable future. Instead, we will approach this as an
optimization problem [18]. We will not use 2.4, and instead of expressing the likelihood of
data given bandpowers we will work in terms of latent variables, writing the joint distribution
of s and d,

p(s,d|S) = (2π)−(N+M)/2det(SN)−1/2 exp

(
−1

2
s†S−1s + (d−Rs)†N−1(d−Rs)

)
, (2.9)

and note that the minimum variance solution for the modes can be found by minimizing the
loss function χ2,

χ2 = −2 ln p(s,d|S) + c = s†S−1s + (d−Rs)†N−1(d−Rs), (2.10)

with respect to s. Taylor expanding around sm to second order, we have

χ2 = χ2(sm) + 2g(s− sm) + (s− sm)†D(s− sm), (2.11)

with gradient function in terms of the derivative of the response function, R, given as

g =
1

2

∂χ2

∂s
= S−1sm −R†N−1(d−Rsm). (2.12)

For the linear problems studied in this work, this derivative can be calculated analytically, but
in other more involved cases (such as nonlinear structure formation) might be computationally
involved as it would require intensive back-propagation. The solution where g = 0, and
therefore a local extremum is found, will be denoted ŝ, and is the maximum a posteriori
solution (MAP). For linear problems it is the best possible solution in the sense to minimizing
the variance.

The curvature matrix D has the form

D =
1

2

∂2χ2

∂s∂s
= S−1 + R†N−1R. (2.13)

However, in this work we will not explicitly evaluate it, as it is too large. Instead, we will use
low rank approximation as performed by L-BFGS quasi-Newton optimization method. We
will use L-BFGS as the optimization method in this paper.

The starting point for the optimization algorithm does not play a significant role for
linear problems as the posterior surface is convex and the true global minimum can always
be found. In practice, for the examples in this work, we found no noticeable effects of the
starting point in terms of convergence properties, i.e. required number of iterations.

2.3 Minimum Variance Estimation of the Power Spectrum

The result of the above optimization procedure is ŝ, and is useful for creating maps, but has
more information than needed for cosmological analysis. If our goal is to determine a set
of summary statistics/band-power measurement, Θ, such as a power spectrum bandpowers,
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we need to marginalize over the latent variables, the modes s. To do so we need to define
a projection matrix Πl around a fiducial power-spectrum Sfid with associated band-powers
Θfid, defined as [

∂S

∂Θl

]
Sfid

= Πl. (2.14)

This fiducial power spectrum is a regularized version of the measured power spectrum, and
is thus iterated upon: we start with some fiducial prior, which we then update if the data
require us to do so. This process is regularized, i.e. we use a smooth version of the measured
power spectrum, for example a power spectrum predicted by the cosmological parameters we
are determining from these data.

The true covariance can be written in terms of the projection operators:

S =
∑
l

ΘlΠl, (2.15)

where ∆Θl is the difference of the band-powers to those of the fiducial model. For the cases
studied in this work, the dependence of S on Θ is linear so we can take

Πl =
Sfid

Θl
, (2.16)

i.e. the projection matrix takes the power spectrum per bin, Θl, to the full power spectrum,
S. Note that the choice of the fiducial model is important in that if it is sufficiently far
away from the true model the result could be biased, but iteratively recalculating Sfid with
the solved new band-powers Θ will provide an asymptotically more accurate reconstruction.
In the cases of interest in this work, a single iteration was sufficient to provide an accurate
reconstruction. In practice for examples in this work, we used the true power-spectrum with
each power re-scaled by a random value between 0.01 and 1.0; however we tested various
other schemes which all provide accurate reconstructions as long as no band-power was set
identically to zero.

We are assuming flat prior for the bandpowers, so to compute the posterior distribution
of band-powers we can write their (marginalized over s) likelihood function to maximize as a
second order expansion around the fiducial model

lnL(Θfid +∆Θ) = lnL(Θfid)+
∑
l

[
∂ lnL(Θ)

∂Θl

]
Θfid

∆Θl+
1

2

∑
ll′

[
∂2 lnL(Θ)

∂Θl∂Θl′

]
Θfid

∆Θl∆Θl′ ;

(2.17)
where we assume a flat prior on the band-powers.

We define

El(Sfid, ŝ) =
1

2
ŝ†S−1

fid ΠlS
−1
fid ŝ =

1

2

∑
kl

ŝ2
kl

Θfid,lSfid,kl

, (2.18)

where in the last expression we define the sum over kl as the sum over all modes which
contribute to band-power, Θl, and in the last equality we made use of the diagonal property
of the projection operators and fiducial power spectrum. Putting this together we find that
the derivative of the likelihood can be expressed as [18]

∂ lnL(Θ)

∂Θl
= El − bl, (2.19)
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where we defined
bl =

1

2
tr

[
∂ det ln(SN)

∂Θl

]
Sfid

. (2.20)

For the linear cases studied in this work, this term is often called the noise bias term. However,
it is worth remembering that this term’s origin is the derivative of the log determinant of
the product of the Hessian and the signal covariance matrices in equation 2.20 (since noise
covariance derivative is zero). To find MLE we need to find the zero of Eq. 2.19, which we
solve using Newton’s method. To do this we define the Hessian matrix,

Fll′ = −∂
2 lnL(Θ)

∂Θl∂Θl′
, (2.21)

which for linear models defines the Gaussian posterior assuming sufficient modes have been
averaged over so that by central limit theorem we can describe the posterior as a multi-
variate gaussian. The peak of the likelihood function can be found by setting the derivative
of equation 2.17 with respect to ∆Θ to zero, which upon inserting equation 2.19 yields

(F∆Θ̂)l = El − bl. (2.22)

2.4 Estimation of the Noise Bias and the Hessian

While the noise bias, bl, and the Hessian matrix, F , from Equation 2.22 could be calculated
exactly, this will involve inversion of large matrices, which is what we are trying to avoid by
deriving the MAP via optimization techniques. Instead, we will perform a simulation based
analysis motivated by the underlying definition of each of these terms.

In general, the maximum likelihood field, ŝ, attained with the procedure described in
Sec 2.2, will have bias due to the presence of noise: when the noise is high the minimum
variance estimator drives s to zero. In the case of cosmological density fields which have red
power spectra (less power on small scales compared to white noise), this will result in washing
out the small scale power. See the figures in Sec 3 for explicit examples.

To correct for this bias we need to understand how our reconstruction responds to the
presence of noise. For this we perform a simulation analysis wherein we generate a data
realization generated from a fiducial power spectrum, inject the noise and mask, perform
the optimization and see how the presence of noise affects the reconstruction. Let us call the
new data and noise realization data ds+n, with associated maximum likelihood reconstruction
ŝs+n. The gradient of equation 2.19 has to vanish if evaluated at the fiducial model. The
noise bias in this case can be found directly as

bl = El(Θfid, ŝs+n). (2.23)

This quantity should be averaged over many realizations, but for the linear signal-dominated
cases studied in this work we found even one realization was sufficient for an accurate recon-
struction.

To calculate the Hessian matrix, we evaluate the gradient of equation 2.19 at two different
fiducial model values, and use finite differentiation [18],

Fll′∆Θl′ = El(Θfid + ∆Θl′)− El(Θfid). (2.24)

Its inverse is the covariance matrix for the band-powers. This is in contrast to directly using
linear algebra techniques to calculate the Hessian matrix (see Equation A.5) which would be
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numerically intractable for a realistic survey size. Using Equation 2.24 in the linear case, one
can calculate it at the cost of additional optimization step. Since this is a linear problem
Hessian matrix equals Fisher information matrix and thus gives the smallest attainable errors
on the parameters (Cramér-Rao theorem).[21]

2.5 Procedure Summary

1. Initialize a Gaussian random field (the true signal field) with some underlying power-
spectrum.

2. Apply the response operator to this field, and additional noise and masking terms. The
output of this is the input data vector, d.

3. An estimate of the underlying signal field is created through optimization as described
in Subsection 2.2 to yield ŝ.

4. An initial estimate of the band-powers is generated by taking the power spectra of the
reconstructed map and binning.

5. To this band-power estimate, we apply the noise bias correction (estimated using Eq
2.23) and Hessian matrix (estimated using Eq 2.24) to provide an optimal reconstructed
value of the band-powers given in Eq 2.22.

3 Example Cases

Here we implement the above scheme in a number of simulated cosmological contexts to
demonstrate its versatility and efficiency. For these cases, we set our convergence criteria to
be ε ≡ δχ2 = 10−1; i.e. the optimization ends when the difference of the absolute chi-square
values between iterations is 10−1 (typical value of χ2 is of order 2×105 for the dimensionality
used here). We note that this is the largest which would be recommended to use to be
suitably similar to the exact solution. In Appendix B we discuss the choice of this criteria in
the context of CMB reconstruction, but we have found it to be sufficient for all the example
cases.

3.1 Projected Density Field

As our first case, we will look at reconstructing the density field from a noisy measurement of
the density field. The starting measurement could come from a variety of observations such
as galaxy clustering or Lyman alpha forest tomography. For a complete analysis one would
specify the response matrix R to go from the density to the observables which would include
a model for the various biases present in the observations. In this case we assume the bias
model is known and deal directly with the matter density field.

We generate a Gaussian random field with a power-spectrum given by

P (k) ∝ k

1 + k3
(3.1)

over a 2D, L = 1380 Mpc/h side-length box. This formula is chosen to provide a blue spectrum
(significant small scale power) in order to compare later with the red Cosmic Microwave
Background spectra. We introduce an anisotropic white noise over the field to simulate either
irregularities in depth of a given survey or theoretical uncertainties in the underlying bias
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(a) Original Density Field (b) Mask and Anisotropic Noise (c) Observed Density Field

(d) Reconstructed Field

3

2

1

0

1

2

3

s

(e) True Field - Reconstructed

Figure 1: MAP density reconstruction for the 512x512 pixel case. Note that images (a),
(c), (d),and (e) have same absolute color scale, while (b) shows the spatial variance of the
noise properties. Color scale is normalized to show standard deviations away from mean.

model. In Appendix A we demonstrate the validity of the L-BFGS optimization method in a
small test case (64 × 64 pixel) where it is also tractable to exactly invert the full covariance
matrix numerically thereby providing validation of our maximum likelihood technique, while
here we examine a more realistic 512 × 512 pixel map. We also use a realistic mask which
includes foreground stars and other potential image defects.

Using the input power spectrum of Eq. 3.1, we generate a density field shown in Fig 1(a),
apply a mask and anisotropic noise shown in Fig 1(b), which results in a mock observation
in Fig 1(c). We perform the minimization routine outlined in Sec. 2.2, with the optimized
map shown in Fig. 1(d) with residuals shown in Fig 1(e). Qualitatively the field is accurately
reconstructed within the mask in the low-noise regions and is even able to reconstruct the
larger scale modes right on the border within the masked region. However, as expected, the
small scale modes within the high noise regions within the mask are poorly reconstructed
since it is impossible to differentiate those modes in real space with the noise. In addition,
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10 3

10 2

10 1

100

P(
k)

Realization
Optimization Power
MAP Power

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
k (h/Mpc)

0.2

0.1

0.0

0.1

0.2

P(
k)

/P
tr

ut
h

Figure 2: Comparison of the maximum likelihood power spectrum attained from optimiza-
tion versus the true power-spectrum of the region for the density field. Also shown is the
importance of the noise bias correction (or, equivalently, the importance of the Hessian de-
terminant).

Figure 3: Convergence properties of the L-BFGS estimator as a function of the box-side
dimension n.

small masked regions have very low residual error as there are sufficient, well sampled, nearby
large scale modes to infer the regions value.

In Fig 2 we show the comparison of the optimized result with the true power-spectra
of the entire field. We also show the effect of the noise bias correction, which in this case is
substantial as small scale power is washed out in the high noise regions as well as due to the
masked regions. However, this power is recoverable using the analysis described in Section 2.
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(a) Original Density Field (b) Mask and Anisotropic Noise (c) Observed Density Field

(d) Reconstructed Field
3

2

1

0

1

2

3

s

(e) True Field - Reconstructed

Figure 4: MAP density reconstruction for the 64x64 case.

In Fig 3 we show how the number of iterations of the reconstruction algorithm scales
with the box size, holding the noise per unit angle fixed. Each iteration requires a calculation
of the loss function and the derivatives of the field which can be found analytically. Notice
that the iteration number increases with the box size, but only a factor of a few when going
from 642 to 10242. This does not include estimation of the noise bias and the Hessian matrix,
which will depend on the number of bandpowers. As each row of the Hessian matrix requires
an additional optimization, the true number of iteration will scale linearly with the number of
bandpowers. In practice, since the Hessian matrix is very smooth and nearly translationally
invariant (in this case, it is peaked on the diagonal and monotonically decreasing away from
the diagonal), one simply needs to sample the matrix along a small number of rows and
interpolate between them.

3.2 Wiener Filtering vs. MAP Projected Density Example

Direct numerical evaluation of Wiener filtering is computationally expensive as it requires the
direct inversion of a matrix with the square of the number of pixels in the survey (see App
A), so we specialize our direct comparison to a small 64× 64 pixel image.
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Figure 5: The log absolute magnitude difference of the direct matrix inversion Wiener filter
solution and that attained via a MAP method. Note that differences are extremely small
throughout the map and are particularly small in the unmasked region.
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Figure 6: Comparison of the maximum likelihood power spectrum attained from optimiza-
tion versus that for brute force matrix inversion Wiener filter. Errors are visually identical,
and all points k bins are within one standard deviation of each other.
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Using the input power spectrum of Eq. 3.1 we generate a density field shown in Fig 4(a),
apply a mask and anisotropic noise shown in Fig 4(b), which results in a mock observation
in Fig 4(c). We perform the minimization routine outlined in Sec. 2.2, with the optimized
map shown in Fig. 4(d) with residuals shown in Fig 4(e). There is qualitative agreement
between the truth and the reconstructed field within the mask in the low-noise regions and is
even able to reconstruct the larger scale modes right on the border within the masked region.
However, as expected, the small scale modes within the high noise regions within the mask
are poorly reconstructed since it is impossible to differentiate those modes in real space with
the noise.

For this small test case we can compare the optimization result directly against a nu-
merical inversion Wiener filter solution, which we show on the map level in Fig 5. The results
match outside the masked region within 10−4, while in the masked region there is a slightly
large difference due to the imposition of a convergence criteria in our L-BFGS scheme. As
we increase the required precision of the L-BFGS in terms of ε ≡ ∆χ2, we asymptotically
approach the Wiener filter solution.

Using the formulation in Sec 2.3, we can look at the performance of the technique as a
function of scale. In Fourier space we can account for the reduction of small scale power caused
by noise and also estimate the Hessian matrix (thereby giving error estimates). We show the
power spectrum and error estimates from the optimization technique versus the direct Wiener
filtering in Fig 6. Note that the full reconstruction relies on both calculation of noise bias
and Hessian matrix. We have compared each of these terms from the optimization method to
those calculated via direct matrix inversion to confirm they are equal within the error of the
required optimization precision. Also note that we only used one noise realization to estimate
the noise bias. In general, the number of noise realizations necessary to appropriately estimate
the number of underlying band-powers will depend on both the underlying noise model and
the band-powers of interest. In this particular case we found the improvements from including
multiple noise realizations minimal as the effect on the overall power-spectrum were sub 1%.
As with the map-level reconstruction, we find that decreasing the ε criteria leads to asymptotic
convergence to the Wiener filtered solution.

We also explored the noise dominated regime more explicitly in Figure 7, where we apply
a uniform high noise level over the entire field with variance 1.5 times the average variance in
density. In this regime the optimized power is significantly suppressed across all scales, but
the modes are still recoverable.

3.3 Cosmic Microwave Background Temperature

The question of optimal reconstruction of CMB maps given irregular sky coverage and variable
noise and foreground subtraction is a common issue for existing CMB surveys. So far, true
maximum likelihood power spectra estimators have only been applied to data from WMAP
[6] and for the largest angular scales in Planck data [22], but these techniques are difficult to
scale to the entire Planck dataset due to the significant increase in computational cost.

While Planck’s power spectrum measurements, and therefore cosmological parameter
constraints [23], do not rely on construction of the actual full map, other spatially dependent
signals do. Cross-correlations between the primary CMB and other cosmological probes, such
as x-ray signal or galaxy positions, require an accurate spatial reconstruction of the CMB
map. In addition, full sky CMB lensing maps are constructed by applying the quadratic
estimators to the CMB map (in either temperature, polarization, or some minimum variance
combination of the two) and will similarly suffer if the reconstructed temperature and/or

– 12 –



(a) High Noise Density Field (b) Reconstructed Bandpowers

Figure 7: Observed field and associated reconstructed bandpowers for the noise dominated
regime. Mask and color scale are the same as in Fig 5, and noise is uniform over the field.

polarization maps are suboptimal. In terms of map reconstruction, there are highly efficient
Wiener filter programs available [14] which perform a multi-scale analysis with preconditioned
optimization routines, which could replace our L-BFGS, but since the number of iterations
needed is already low we did not explore this further.

In Figure 8 we show results for temperature, without polarization. We mention that
polarization would be analogous to the example of joint optimization of E and B fields, which
we do in the case of cosmic shear in Appendix C.

The case of CMB reconstruction is analogous to that of the density field, but with a
significantly redder spectrum. The condition number of the covariance matrix is thus sig-
nificantly larger, and BFGS needs more iterations to converge. While we could have used
conjugate gradient with a preconditioner (as in [14]) to improve the convergence of the opti-
mization step, we chose not to do so here since the computational cost was not significantly
higher than that for the simple density case even for this case (see Figure 11). For the imple-
mentation of our algorithm it is important to recognize that the increase in power on larger
scales in the CMB case makes the masked region the most computationally expensive region
to reconstruct, and a redder spectrum will allow more mode reconstruction within this region.
For more discussion, see Appendix B.

We generate a mock primary CMB full-sky field using HEALPIX [24] based on power
spectrum generated from CLASS using the Planck 2015 cosmological parameters [23]. We
then extract a 10 × 10 degree patch which we then mask a central region and introduce a
white noise of 6 µK-arcmin.

The reconstruction is quite good in the observed region as the presence of noise mostly
affects small scales where there is very little power. In the masked region the optimization
is able to reproduce some clear long-scale modes. In Appendix B we show that with a more
accurate convergence criteria we reproduce more of these large scale modes in the masked
region but in terms of power spectrum estimation this is unnecessary, as we are already cosmic
variance limited even with ε = 0.1.
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(a) Original Density Field (b) Mask and Noise (c) Observed CMB Field

(d) Reconstructed Field 4.0
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ŝ

(e) True Field - Reconstructed

Figure 8: MAP CMB reconstruction for 512x512 pixel map. Note that images (a), (c),
(d),and (e) have same absolute color scale, while (b) shows the spatial variance of the noise
properties. Color scale is normalized to show standard deviations away from mean.

3.4 Cosmic Shear

In this section we specialize to only fitting a curl-free E component; we discuss the more
general case including a curl component in Appendix C. For a details on the cosmic shear
formalism, see [25–27].

To apply our method, we perform optimization over the underlying density field and at
each step of the optimization compute the corresponding shear maps, γ1 and γ2, to compare
with the mock observed shear maps. In principle, instead of working with the shear maps
which require binning and/or interpolation between galaxies, one could work directly with
the catalog of galaxy shapes and compute the likelihood of the observed ellipticity instead of
the given averaged shear maps (as in [28, 29]).

This method is in contrast to the standard Kaiser-Squires (KS) [30] technique which has
proven quite successful so far in cosmic shear analysis and cluster mass estimation. However,
KS has some notable downsides in the presence of anisotropic noise or a mask as it is not able
to self consistently down-weight the high noise areas and masked regions, resulting in defects
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(a) Original Density Field

250 Mpc/h

(b) Observed Shear Field, γ1

250 Mpc/h

(c) Observed Shear Field, γ2

(d) Reconstructed Field (e) True Field - Reconstructed

Figure 9: Maximum likelihood shear reconstruction for a 512x512 pixel map. Here we use
the same mask and noise properties, as well as color scaling, as shown in Figure 1.

on boundaries. In addition, the noise inherent in these measurements propagates onto the
final mass-maps, resulting in an inaccurate small scale power measurement. This has been
shown to be particularly detrimental to peak statistics measurements [31].

The results in position space are shown in Figure 9. In Figure 9(a) we show the initial
density field and in Figure 9(b,c) we show the observed shear fields including mask and noise
properties. Our reconstructed maximum likelihood map is shown in Figure 9(d) and the
difference between the original field and reconstructed in Figure 9(e). As in the case of the
density field, the optimization technique is able to exactly reconstruct the density in the
low noise, unmasked regions, but only recovers large scale scale power in the higher noise
unmasked regions.
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Figure 10: Comparison of the maximum likelihood power spectrum attained from optimiza-
tion versus the true power-spectrum of the region for the shear-only reconstruction. Also
shown is the importance of the noise bias correction (or, equivalently, the importance of the
Hessian determinant).

4 Discussion and Conclusion

In this work we have demonstrated that is is possible to efficiently reconstruct the MAP signal
field and the maximum likelihood power spectrum for linear fields for realistic survey sizes.
This technique is equivalent to the Wiener filter solution for small enough convergence crite-
ria and has been applied to a number of cosmological fields (density, CMB, and cosmic shear
maps). We are able to reconstruct the initial density field and the overall power spectrum,
accounting for noise bias and window-function effects due to masking. We first recast the field
reconstruction into an optimization problem, which we solve using quasi-Newton optimiza-
tion. We then recast the power spectrum estimation into the field marginalization problem,
from which we obtain an expression that depends on the field reconstruction solution and a
determinant term. We develop a novel simulation based method for the latter. We extend
the simulations formalism to provide the covariance matrix for the power spectrum.

This technique outperforms the brute force Wiener filter technique in terms of compu-
tational time and memory requirements. True Wiener filter requires an inversion of the full
pixel covariance matrix, C, which for realistic surveys would be highly non trivial. Numerical
methods approximate C−1d, which allows for map-level reconstruction but by itself doesn’t
allow calculate of the Hessian matrix for band power reconstruction. This reconstruction also
requires evaluation of the determinant of the Hessian, or its derivative, trace, and where the
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Figure 11: Comparison of the convergence properties of the various cosmological density
fields studied in this work. All cases have 5122 pixels, and comparable effective volume.

techniques provided in this work allows orders of magnitude improvement in realistic cases.
We evaluate this determinant derivative using forward model realizations and additional op-
timization. This allows us to use off the shelf optimization codes such as L-BFGS, as well
as convergence criteria to find the proper trade-off point between accuracy and computation
time. We compare the two in Appendix 3.2, finding good agreement for low dimensionality
problems where brute force approach is feasible.

In Figure 11 we show the convergence properties for the 3 cases studied in Section 3, as
well as the joint E/B cosmic shear case presented in Appendix C. While all the cases have
a comparable number of unmasked pixels, convergence properties differ due to the difference
of the underlying fields power-spectrum. More power at larger scales (i.e. a redder spectra)
requires additional iterations to reconstruct the power within the masked regions.

While we used L-BFGS due to its well established optimization properties in very high
dimensional convex optimization problems, we do not make a claim of optimality in terms
of the particular technique for performing the optimization. L-BFGS constructs low rank
Hessian approximation to the Hessian, which makes it a quasi-Newton method: the closer this
Hessian is to the true Hessian the closer we are to true second order optimization. In this limit
this method will outperform any other method, including preconditioned conjugate gradient,
which is only effective if preconditioning reduces the condition number of the problem. On
the other hand, true second order Newton works for any condition number. We also note
that since linear problems are convex, an optimizer is always guaranteed to find the global
minimum. In general, we did not find particularly large performance changes when using
other optimization techniques, such as conjugate gradient. Sampling based methods, like
Hamiltonian Monte Carlo, are unnecessary for these linear cases, as there is no need to
sample the distribution which is well approximated as a multivariate Gaussian, except for
modes on order the size of the survey volume which are poorly sampled (and therefore do
not follow the central limit theorem), in which case one can use approximations of inverse
Wishart distribution developed in appendix A of [18].

A comparison can be made in our primary CMB example in Section 3.3 to the results
of the messenger and dual messenger field found in [11] (see Figure 6 in [11]). The L-BFGS
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approach requires significantly fewer iterations than the messenger field (∼ 5x) and dual mes-
senger field (∼ 2x) for a comparable convergence criteria. It is possible that an optimized
cooling scheme for the messenger/dual messenger field would yield similar convergence prop-
erties, but this choice would likely be problem-specific and introduce an additional parameter
to tune in the optimization.

Going forward, it will be useful to extend this technique to other cosmological observables
such as cosmic shear tomography (such as in [16]), Lyman - α tomography, and CMB lensing.
Already work has been done applying this maximum likelihood approach to CMB lensing
[32, 33], and further extending this work with these methods to small scales where standard
quadratic estimators [34] are known to be suboptimal [35] would be promising future approach.
Another avenue of particular interest is the ability for this technique to be useful for combining
multiple (biased) tracers of some underlying field to create a maximum likelihood estimate of
the field. One particularly promising example is jointly maximizing the underlying density
likelihood function with respect to both the shear map as well as the projected galaxy density
map [36, 37].

These linear methods have a limitation when applied to nonlinear fields. Recent work
[31] has demonstrated that Wiener Filtering is not optimal in terms of detecting peaks in the
density field and that sparsity-based reconstruction methods can yield higher signal to noise.
More general reconstruction of density fields was explored in [38], where they created MAP
estimates of physical clusters with associated error estimates without making assumptions
about the Gaussian of the likelihood surface. However, these approaches are ad-hoc, as the
loss function they minimize cannot be theoretically justified. For the case of nonlinear large
scale structure, best analog of WF reconstructions in terms of minimizing the error are the
nonlinear density reconstruction techniques developed e.g. in [18, 39, 40], which first give
a minimal variance reconstruction of initial Gaussian density fluctuations, and then project
these into the nonlinear structures using an N-body simulation.
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A Wiener Filter Review

Wiener filtering (WF) [1, 2] is a popular way to non-parametrically reconstruct cosmological
data as, in the linear case, it should minimize variance. In the absence of non-Gaussian
sources of signal or noise, WF is optimal in the sense that it is equal to the maximum
posterior probability estimator [18]. Here we want to reconstruct the field itself, s, given
the noisy and/or poorly sampled data, d. We define our estimated field ŝ = Φd, where Φ
is a linear operator, i.e. a N x M dimensional matrix transforming from “image space” to
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“field space”. This can be found by attempting to minimize the variance of the residual, i.e.
〈(s− ŝ)(s− ŝ)†〉, with respect to Φ. The Wiener filtered estimator is

ŝ = Φd = 〈sd†〉〈dd†〉−1d = SR†C−1d, (A.1)

which will result in a variance of residuals of the form

〈(s− ŝ)(s− ŝ)†〉 = S − SR†C−1RS. (A.2)

Wiener filter only uses the mean and variance of the statistical distribution. If our
underlying field is strongly non-Gaussian the WF may no longer be optimal. However, it
will still minimize the variance, as defined in equation 2.6, just that this minimization of
variance may not correspond to the notion of the best reconstruction as it only captures the
two point statistics of the underlying field. It may be difficult to even define a measure to
use for optimally of reconstruction in these cases, although nonlinear reconstruction methods
certainly exist [18].

We now want to connect the Wiener Filter solution to the optimal power spectrum
estimator. We multiply equation 2.7 by the Hessian matrix,

(FΘ)l = F
2

∑
l′ F
−1
ll′ (d†C−1Ql′C

−1d− bl′),

=
δll′
2 (d†C−1Πl′RR†Πl′C

−1d− bl′). (A.3)

The noise b can be similarly transformed as

bl = tr(ΠlR
†C−1(N)C−1RΠl), (A.4)

and the Hessian matrix itself as

Fll′ = tr(C−1QlC
−1Ql′) =

1

2
|ΠlR

†C−1RΠl|2. (A.5)

Both the Wiener Filter and the optimal power spectrum estimator first weigh the data by
the inverse covariance matrix, essentially down weighting modes that either have high mea-
surement error or strong correlation with other measurements.

B Convergence Criteria of CMB Reconstruction

An important question to answer is to what the required convergence criteria are for a given
algorithm/observable. In general, this will depend on what sort of scales are being probed and
what other sources of error exist in the problem. In this section we will consider how changing
the convergence criteria, ε ≡ ∆χ2, affects the net reconstructed map. We will specialize our
analysis to that of the CMB case since it has the largest condition number, and most power on
large scales, which will be particularly sensitive to reconstruction within the masked region.
A similar analysis with our cosmic shear example will lead to smaller effects.

To demonstrate the convergence properties of our technique we performed a high-
accuracy run demanding ε < 10−4 as our convergence criteria, as opposed to ε < 10−1

for the runs in the main body of the paper. We show these results, as well as the difference
with the true field, in Figure 12. Note that very quickly we find the true solution in the
unmasked region, but continue to reconstruct the large scale modes in the masked region as
the optimization rerouting continues.
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(a) i = 1 (b) i = 1000 (c) i = 5000

Figure 12: Top: Reconstructed density field at given iteration. Bottom: Difference of
true density field with reconstruction at each iteration. Note that we have used the same
mask/noise properties, as well as color scale, as in Sec 3.3.
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Figure 13: Change in convergence properties as a function of scale. We compare against the
high convergence solution (ε = 10−4) rather than the true solution as the presence of noise
will bias the end power spectra and calculating the noise bias and the Fisher information
matrix (Hessian) for each step of the iteration would be computationally expensive.
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(a) Reconstructed E Field (b) Reconstructed B Field

Figure 14: Maximum likelihood E and B potential fields for cosmic shear case. Noise
properties, mask, and color scale are the same as in Section 3.4.

We compare our convergence accuracy as a function of scale to the cosmic variance limit
in Figure 13. While in practice one wants the error on the reconstruction to be well below
this limit, it provides a useful guideline for the necessary accuracy for reconstruction. Note
that the properties of this reconstruction are a function primarily of the survey geometry;
a hypothetical full sky survey with no masked region and similar noise properties would
converge much quicker to the optimal solution. Similarly, a case with smaller masked regions
(for example only stellar masking) would find much faster convergence of the large scale
modes.

C Joint E & B Cosmic Shear Reconstruction

In the main text we only explored reconstructing the primary (i.e. curl-free) E-mode lens-
ing potential of cosmic shear. However, there are various potential sources of B-mode effects
within realistic observed lensing maps, such as instrumental effects, clustering of source galax-
ies [41], and intrinsic alignments of galaxy shapes [42, 43]. To control for these effects it is
useful to perform a joint optimization of both E and B modes from the shear maps. The
same tools could also be applied directly to the CMB polarization field from the Q and U
maps [32].

The observed shear fields γ1 and γ2 can be expressed in terms of the E and B potentials
as [

γ1

γ2

]
=

[
(∂2
x − ∂2

y) −2∂x∂y
2∂x∂y (∂2

x − ∂2
y)

] [
φE
φB

]
, (C.1)

where we assume flat sky. Our response matrix now takes two signal fields (φE and φB) to
two data fields (γ1 and γ2) and we perform the optimization over the signal fields.
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To study the joint reconstruction, we use the same starting E field as in Subsection 3.4,
but also induce a B field which has a power spectrum with the same shape as the E field but
an amplitude 10−5 times smaller. We then do a joint reconstruction of both fields, yielding
results shown in Fig 14.

The power spectrum estimation is now slightly more complicated as the Hessian matrix
now has EE, BB, as well as EB, BE components to sum over, as shown in Fig 15. The
EB/BE components represent leakage between the channels, which in this case is dominated
by E power leaking into B. We show this power spectrum reconstruction in Figure 16. This
is visually apparent in the reconstruction as we find an over-abundance of B power in the
reconstructed map, which then gets down-weighted when this leakage is accounted for. In
addition, as the B mode power is dominated by noise, it is difficult to accurately reconstruct
its power from this one mock observation.

Alternatively, rather than perform a full Fisher-like analysis for the B-mode power one
could instead perform multiple realizations of the B-mode leakage and average them together
to form a “leakage bias" in analogous way as for the noise terms. This would have the possible
advantage of requiring an additional optimization for each realization of the B-mode power,
rather than an optimization for each mode of injected power as for the full Fisher analysis. If
one is interested in studying many modes at once, treating the B-modes like noise bias would
be computationally expedient.
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Figure 15: Top: Full two dimensional Fisher matrix for the cosmic shear E/B joint recon-
struction case. The matrix can be viewed as 4 blocks, with EE and BB the response of each
type of mode to itself and the BE and EB reflecting the leakage between the modes induced
by the survey geometry. Bottom: Vertical cuts of the Fisher matrix. Note that to reduce
numerical noise in the final reconstruction we have zeroed out terms in the EE blocks far
from the diagonal. Since B modes are significantly sub-dominant in this example, a similar
truncation of BB was not necessary.
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Figure 16: Reconstruction of the E and B power spectrum from mock observations using
the maximum likelihood technique described in this work. Green lines indicate the original
E/B power of the signal maps. The dashed red and blue lines indicate the power from the
LBFGS optimized maps of E and B power respectively, while the solid lines indicate their
MAP power spectra.
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