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Inorganic arsenic (InAs) occurs naturally in the
groundwater of many parts of the world, and
millions of people worldwide are exposed to
drinking water containing this known carcino-
gen (Nordstrom 2002). Ingested arsenic causes
cancers of the skin, bladder, and lung and has
been associated with cancers of other organs
[National Research Council (NRC) 1999,
2001]. The estimated risks associated with
these exposures may be quite high. According
to a subcommittee of the NRC, the cancer
risks associated with lifetime exposures at the
new U.S. standard of 10 µg/L may be as high
as 1 in 300 (NRC 1999, 2001). The U.S.
drinking water standards for other carcinogens
have been set at levels associated with cancer
risks that are about 30–3,000 times lower
(Smith et al. 2002). Importantly, the new U.S.
standard for arsenic applies only to public
water systems. Approximately 15% of the
U.S.population obtain their water from private
wells (U.S. Geological Survey 2004), and
arsenic concentrations > 10 µg/L have been
documented in private wells throughout the
United States (Ayotte et al. 2003; Steinmaus
et al. 2003; Welch et al. 1999).

The primary metabolic pathway of ingested
InAs in humans is methylation (Gebel 2002;
Styblo et al. 2002; Vahter 2002). Ingested InAs
is first methylated to monomethylarsonic acid
(MMA5), which is reduced to monomethyl-
arsonous acid (MMA3). MMA3 is then methy-
lated to dimethylarsinic acid (DMA5), which is
reduced to dimethylarsinous acid (DMA3).

In humans, this process is not complete, and
some arsenic remains as either InAs or MMA.
Typically, ingested InAs is excreted as 10–20%
InAs, 10–15% monomethyl arsenic (MMA),
and 60–75% dimethyl arsenic (DMA)
(Hopenhayn-Rich et al. 1993). However, large
interindividual variations exist.

Until recently, methylation was thought
to be primarily a detoxification pathway. This
was based on the finding that MMA5 and
DMA5—the most common forms of MMA
and DMA found in exposed humans—are
more readily excreted and less toxic than is InAs
(Buchet et al. 1981; Gebel 2002; Hughes and
Kenyon 1998; Moore et al. 1997). The trivalent
forms of MMA and DMA are rapidly oxidized
in urine and therefore are difficult to measure
in human epidemiologic studies. Recently,
however, methods have been developed to
stabilize and measure MMA3 and DMA3 in
urine, and these metabolites have been identi-
fied in urine samples from arsenic-exposed
humans (Aposhian et al. 2000; Del Razo et al.
2001; Le et al. 2000; Mandal et al. 2001;
Wang et al. 2004). Laboratory studies have
shown that the trivalent forms of MMA and
DMA are much more toxic than the pentava-
lent forms, and in vitro evidence suggests that
MMA3 in particular may be more toxic than
trivalent inorganic arsenic (InAs3) (Cullen et al.
1989; Lin et al. 1999, 2001; Mass et al. 2001;
Petrick et al. 2000; Styblo et al. 1997, 1999,
2000). These findings suggest that methylation
may not be strictly a detoxification pathway.

In fact, several epidemiologic studies have
reported associations between elevated urinary
proportions of MMA and increased risks of
arsenic-associated health effects. In four stud-
ies from arsenic-exposed regions in Taiwan,
subjects who excreted high proportions of uri-
nary arsenic as MMA (percent MMA) or had
high urinary MMA:DMA ratios had skin and
bladder cancer odds ratios (OR) that were two
to five times higher than did subjects who
excreted low proportions of urinary MMA
or had low MMA:DMA ratios (Chen et al.
2003a, 2003b; Hsueh et al. 1997; Yu et al.
2000). Associations between high levels of
urinary percent MMA and increased bladder
cancer risks were also found in studies on
arsenic-exposed populations in the United
States and Argentina (Steinmaus et al. 2004).
Other studies have reported links between
elevated urinary percent MMA or an elevated
MMA:DMA ratio and increased risks of
arsenic-caused skin lesions and increased rates
of chromosomal aberrations (Del Razo et al.
1997; Maki-Paakkanen et al. 1998). The con-
sistency of these associations, across different
studies and different study populations, pro-
vides fairly strong evidence that individual
differences in arsenic methylation patterns,
and the environmental or genetic factors that
cause these differences, play an important role
in susceptibility to arsenic-caused disease.

To date, the environmental or genetic
factors that control arsenic methylation are
largely unknown. This is the first study to
report on the impact of dietary protein, zinc,
iron, thiamine, and several other potentially
important macro- and micronutrients on
arsenic methylation in humans.

Materials and Methods

Subjects were recruited from among residents
of six counties in western Nevada and Kings
County in California. These areas contain the
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Millions of people worldwide are exposed to arsenic-contaminated drinking water, and ingestion
of inorganic arsenic (InAs) has been associated with increased risks of cancer. The primary meta-
bolic pathway of ingested InAs is methylation to monomethyl arsenic (MMA) and dimethyl
arsenic (DMA). However, people vary greatly in the degree to which they methylate InAs, and
recent evidence suggests that those who excrete high proportions of ingested arsenic as MMA are
more susceptible than others to arsenic-caused cancer. To date, little is known about the factors
that determine interindividual differences in arsenic methylation. In this study, we assessed the
effect of diet on arsenic metabolism by measuring dietary intakes and urinary arsenic methylation
patterns in 87 subjects from two arsenic-exposed regions in the western United States. Subjects in
the lower quartile of protein intake excreted a higher proportion of ingested InAs as MMA (14.6 vs.
11.6%; p = 0.01) and a lower proportion as DMA (72.3 vs. 77.0%; p = 0.01) than did subjects in
the upper quartile of protein intake. Subjects in the lower quartile of iron, zinc, and niacin intake
also had higher urinary percent MMA and lower percent DMA levels than did subjects with higher
intakes of these nutrients. These associations were also seen in multivariate regression analyses
adjusted for age, sex, smoking, and total urinary arsenic. Given the previously reported links
between high percent MMA and increased cancer risks, these findings are consistent with the the-
ory that people with diets deficient in protein and other nutrients are more susceptible than others
to arsenic-caused cancer. Key words: arsenic, drinking water, environmental health, metabolism,
nutritional susceptibility. Environ Health Perspect 113:1153–1159 (2005). doi:10.1289/ehp.7907
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cities of Hanford, California, and Fallon,
Nevada, the largest populations in the United
States with historically high water arsenic
levels (Steinmaus et al. 2003). Historically,
arsenic levels in the drinking water supplies in
these cities had been near 100 µg/L, although
levels in Hanford have dropped to < 50 µg/L
over the past 15 years because of the develop-
ment of new wells. In Fallon, an arsenic treat-
ment plant has recently been installed to meet
the new U.S. arsenic standard of 10 µg/L.
Most other cities in the study area have public
water supplies with arsenic levels < 20 µg/L.
Approximately 20% of the study area resi-
dents obtain water from private wells where
arsenic levels range from below detection to
> 1,000 µg/L.

Most of the study subjects were recruited
from the participants of a case–control study of
bladder cancer and arsenic exposure (Steinmaus
et al. 2003). Subjects with bladder cancer were
obtained from state cancer registries and from
local hospitals and physicians. Control sub-
jects were selected through random digit
dialing (RDD) and from randomly selected
lists provided by the Health Care Financing
Administration. Further details on the selec-
tion of subjects for the case–control study are
described elsewhere (Steinmaus et al. 2003).
All participants who had lived in the cities of
Fallon or Hanford or the nearby surrounding
areas for at least the 1 year preceding recruit-
ment were invited to participate in the methy-
lation study. Because the bladder cancer case–
control study included mostly men > 60 years
of age, 15 additional subjects, mostly females
and subjects < 60 years of age (average age =
48, 53% female), were recruited for this study
using RDD. These 15 subjects were recruited
during the same time period as the controls in
the larger case–control study, and the same
methods were used to assess their diets and
urine metabolites. Removing these subjects
had little impact on our results.

Most arsenic ingested by humans is
excreted in urine, and the relative distribution
of arsenic metabolites in urine is commonly
used as a biomarker of arsenic methylation pat-
terns (NRC 1999). Two to three urine samples
were collected from each participant over a
1-year period. Subjects were given screw-top
polypropylene containers and asked to give a
midstream sample of the first morning void. A
previous study has shown strong correlations in
arsenic excretion between single first-morning
samples and samples collected over 24 hr
(Calderon et al. 1999). Samples were then
transported on ice to the field laboratory each
day where they were kept frozen at –20°C.
Urine samples were transported overnight on
dry ice to the University of Washington,
Seattle, for analysis. This study was approved
by the University of California, Berkeley,
Committee for Protection of Human Subjects.

The urinary concentrations of arsenic were
measured using hydride generation atomic
absorption spectroscopy (Crecelius 1978).
Briefly, inorganic arsenic (InAs3 and InAs5),
MMA, and DMA were reduced to the cor-
responding arsine in a batch reactor using
sodium borohydride in 5-mL samples. The
volatile reduction products (arsine, methyl
arsine, and dimethylarsine) were removed by
sparging with helium. Entrained arsines were
concentrated in a chromosorb-filled cryogenic
trap in liquid nitrogen temperatures until all
arsine-forming arsenic in the sample had
reacted. The cryotrap was then allowed to
warm, and the collected arsines were separated
on the basis of differential volatilization. We
detected the separated volatile arsenic species
using atomic absorption spectroscopy with a
hydrogen microburner combustion cell to con-
vert arsines to elemental arsenic (PerkinElmer,
Inc., Wellesley, MA). To prevent interference
by certain compounds (Del Razo et al. 1999),
each urine sample was acidified with 2 M
HCl and allowed to sit for at least 4 hr. Total
arsenic was determined by flow injection
analysis/atomic fluorescence spectrometry (PS
Analytical, Inc., Orpington, Kent, UK), and
this result was compared with the sum of the
species detected. If a significant amount of
arsenic remained undetected, additional diges-
tion or assay for arsenobetaine was performed.
Detection limits for InAs, MMA, and DMA
were 0.5, 1.0, and 2.0 µg/L, respectively.
Concentrations below the detection limit were
set at one half the detection limit. The MMA
and DMA measured in this study were in
the pentavalent forms. The trivalent forms,
MMA3 and DMA3, are rapidly oxidized to
MMA5 and DMA5 during storage (Del Razo
et al. 2001). Most samples in this study were
frozen for 2–6 weeks before analysis. We ana-
lyzed a subsample of urine specimens for
MMA3 and DMA3 but found no MMA3 and
only trace amounts of DMA3.

We used the National Cancer Institute
(NCI)’s Health Habits and History Ques-
tionnaire (HHHQ) (Block et al. 1986) to col-
lect dietary information from each subject.
The full HHHQ was administered over
the telephone by trained study personnel.
Subjects were asked about their typical fre-
quency and portion sizes for each food item
over the preceding year because our a priori
hypothesis was that relatively long-term
dietary patterns influence arsenic methylation.
We assessed nutrient intake by multiplying
the frequency of food consumption and the
typical portion size by the nutrient content
of each food using the HHHQ-Dietary
Analysis Personal Computer System (DIET-
SYS; version 4.01) and its accompanying
dietary composition database (NCI 1997).
Nutrient levels obtained using the HHHQ
have been shown to correlate reasonably well

with data obtained using 24-hr recall food
records and serum nutrient levels (Block et al.
1990; Coates et al. 1991; Hartman et al.
1996). Our a priori hypotheses involved pro-
tein, folate, zinc, vitamin B12, and several of
the other nutritional variables that have been
linked to arsenic methylation and toxicity in
laboratory studies (NRC 1999). However,
results for all of the nutritional variables rou-
tinely calculated by the DIETSYS program
are presented in this article. Selenium has
been linked to arsenic methylation in several
studies (Christian and Hopenhayn 2004;
Hsueh et al. 2003), but we did not assess sele-
nium in this study because of the potentially
large inaccuracies in using food frequency
questionnaire information to quantify sele-
nium intake (Zhuo et al. 2004).

We calculated the relative proportion of
each arsenic species (percent InAs, percent
MMA, and percent DMA) by dividing the
concentration of each species by the total
arsenic concentration, defined as the sum of
InAs, MMA, and DMA. Because two to three
urine samples were collected from each sub-
ject, results from each sample were averaged
to obtain a single value for each subject. The
intraclass correlation coefficients (ICCs) for
the proportions of each metabolite between
samples taken at different points in time
ranged from 0.45 to 0.68 (Steinmaus et al.
2005). The association of each arsenic species
with variables such as age, sex, and smoking
history were first assessed using univariate
analyses. We also evaluated the association
between species proportions and total urinary
arsenic. Associations between arsenic dose and
methylation patterns have been identified in
previous studies, although these generally
involve exposures that are much higher than
in our study and these associations have typi-
cally been small (NRC 1999). The Student
t-test and the Wilcoxon rank-sum test were
used to compare category means. All analyses
were initially done separately for cases and
controls. However, because we identified no
differences between these groups in the rela-
tionship between dietary factors and arsenic
species in urine, cases and controls are pooled
in the results presented here. Arsenic-caused
cancer has an estimated latency of ≥ 20 years
(NRC 1999). In many of our subjects, their
current water source was not the same as their
water source ≥ 20 years previously. Because
we measured urinary arsenic levels near the
time our cancer cases were diagnosed, we did
not expect to find a correlation between can-
cer and the urinary arsenic levels in this study.

Associations between nutrient levels and
the proportions of each arsenic species were
assessed in two ways. First, the mean propor-
tions of InAs, MMA, and DMA in subjects in
the upper and lower quartile of each nutrient
variable were compared using the Student

Steinmaus et al.

1154 VOLUME 113 | NUMBER 9 | September 2005 • Environmental Health Perspectives



t-test. Because the intake of most nutrients is
strongly related to total calorie intake, we cal-
culated energy-adjusted nutrient levels using
the residual method described by Willett and
Stampfer (1998). Second, we performed lin-
ear regression using the proportion of each
arsenic species as the dependent variable and
the energy-adjusted nutrient level as the inde-
pendent variable. This was done with and
without the addition of age (continuous), sex,
smoking (current vs. noncurrent smoker),
and total urinary arsenic (the sum of InAs,
MMA, and DMA as a continuous variable) as
independent variables. Entering age or total
urinary arsenic as categorical rather than
continuous variables had no impact on the
results. Entering smoking as pack-years or
number of cigarettes smoked per day also did
not change the results. All data analyses were
carried out using the SAS statistical program
package (version 8.0e; SAS Institute Inc.,
Cary, NC).

Results

In total, 87 subjects agreed to provide urine
samples and complete the dietary question-
naire. Table 1 shows the distribution of demo-
graphic and lifestyle variables among the study
participants. Twenty-two subjects were female
(25%), 14 were current smokers (16%), 23
had a history of bladder cancer (26%), and the
average age was 68 (range, 21–98 years).

Table 1 also shows the relative propor-
tions of arsenic species and the results of the
univariate analyses comparing demographic
variables and species proportions. Females
excreted a lower percent InAs and percent
MMA and a higher percent DMA than did
men. Current smokers excreted a higher per-
cent InAs and a lower percent DMA than did
former and never-smokers, although these

differences were not statistically significant.
Increasing age was associated with decreasing
percent InAs, but no association was seen
between age and percent MMA or percent
DMA. The proportion of each arsenic species
was similar between cases and controls, and
no significant association was seen between
total urinary arsenic and the proportion of
each arsenic species. Adjusting the total uri-
nary arsenic levels for urine creatinine had no
impact on our results.

Table 2 shows the mean level of each
nutrient and the mean percent InAs, percent
MMA, and percent DMA for the lower and
upper quartile of each energy-adjusted nutri-
ent residual. Subjects in the lowest quartile of
protein, iron, thiamine, niacin, vitamin B6,
zinc, and α-carotene intake had a higher
mean percent InAs, a higher mean percent
MMA, and lower mean percent DMA than
subjects in the uppermost quartile of these
nutrients, although in some of these compar-
isons the p-value for the differences was
> 0.05. For subjects in the lower and upper
quartiles of protein intake, respectively, the
mean proportions of each arsenic species were
13.1 and 11.4% for percent InAs (p = 0.23),
14.6 and 11.6% for percent MMA (p = 0.01),
and 72.3 and 77.0% for percent DMA (p =
0.01). The difference between the median
nutrient values for subjects in the upper quar-
tile and subjects in the lower quartile was
25.7 g for protein, 5.64 mg for iron, 0.67 mg
for thiamine, 8.34 mg for niacin, 0.58mg for
vitamin B6, and 545.3 µg for α-carotene.
Similar findings were identified when the
MMA:DMA ratio was assessed. For example,
the MMA:DMA ratio in those in the lower
and upper quartiles of protein intake were
0.21 and 0.15 (p = 0.008), respectively (data
not shown). Clear and consistent threshold

patterns were not seen in our analysis. For
example, mean percent MMA and percent
DMA values for subjects in the two middle
quartiles of protein intake were 13.1 and
75.0%, respectively. These are approximately
midway between values for subjects in the
upper and lower quartiles. In analyses com-
paring the upper and lower quartiles of nutri-
ent levels that were not adjusted for energy
intake, no clear associations were seen
between any nutrient and percent InAs,
percent MMA, or percent DMA (data not
shown).

Table 3 shows the results of the linear
regression analysis, adjusted for age, sex, smok-
ing, and total urinary arsenic. Increases in pro-
tein intake were associated with decreases in
percent MMA [linear regression coefficient
(b) = –0.075; p = 0.02]. This corresponds to an
increase of 1.5% in percent MMA for every
20-g decrease in protein intake. High iron and
niacin intakes were associated with increases
in percent DMA, and increases in oleic acid
intake were associated with decreases in per-
cent InAs. Inclusion of age, sex, smoking, and
total urinary arsenic in the linear regression
model had relatively small impacts on these
results. For example, the regression coefficient
for protein and percent MMA was –0.084
(p = 0.01) in the model that did not include
age, sex, smoking, and total urinary arsenic,
and –0.075 (p = 0.02) in the model that
included these variables.

Discussion

The findings of this study suggest that
low intakes of dietary protein, iron, zinc, and
niacin lead to a decreased production of DMA
and increased levels of MMA in arsenic-
exposed individuals. Links between methyla-
tion patterns and dietary intake of thiamine,
vitamin B6, lutein, and α-carotene were also
identified in the unadjusted analysis but were
less clear after adjustment for age, sex, smok-
ing, and total urinary arsenic levels. As a whole,
the results of this study provide some evidence
that certain dietary variables can affect arsenic
methylation in humans. Although multiple
comparisons were performed in this study and
some of our findings could be due to chance,
several of our results are consistent with those
of previous investigations.

The impact of diet on arsenic metabolism
and toxicity has been controversial because the
risk assessment process used by the U.S.
Environmental Protection Agency (EPA) to
establish the U.S. drinking water standard for
arsenic is based primarily on dose–response
information from poorly fed populations in
Taiwan (Morales et al. 2000; NRC 2001; U.S.
EPA 2001). It has been hypothesized that the
Taiwanese populations were particularly sus-
ceptible to the health impacts of arsenic as a
result of their poor diets, and therefore, the
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Table 1. Demographic variables and proportions of arsenic species (mean ± SD).

Variable No. (%) Percent InAs Percent MMA Percent DMA

All 87 (100) 12.1 ± 4.9 13.1 ± 3.9 74.8 ± 7.0
Sex

Women 22 (25) 10.3 ± 2.7 10.7 ± 2.4 79.0 ± 3.6
Men 65 (75) 12.7 ± 5.3 13.9 ± 4.0 73.4 ± 7.4
p-Value 0.009 < 0.001 < 0.001

Smoking
Current 14 (16) 14.7 ± 7.5 13.0 ± 5.3 72.3 ± 11.2
Former 47 (54) 11.6 ± 4.1 13.5 ± 3.8 74.9 ± 6.0
Never 26 (30) 11.6 ± 4.0 12.4 ± 3.2 76.0 ± 5.8
p-Value 0.15 0.94 0.34

Age (years)
< 65 24 (28) 13.2 ± 4.7 11.9 ± 2.5 74.9 ± 6.4
65–75 34 (39) 13.0 ± 5.0 13.6 ± 4.5 73.3 ± 8.2
> 75 29 (33) 10.0 ± 4.3 13.4 ± 3.8 76.6 ± 5.9
R (p-value)a –0.24 (0.03) 0.15 (0.17) 0.08 (0.46)

Urinary arsenic (µg/L)b
< 9.9 29 (33) 12.9 ± 5.4 13.4 ± 4.2 73.8 ± 8.4
9.9–20.3 29 (33) 11.3 ± 3.6 12.5 ± 4.3 76.2 ± 5.8
> 20.3 29 (33) 12.0 ± 5.4 13.4 ± 3.0 74.6 ± 6.7
R (p-value)a 0.05 (0.63) –0.03 (0.76) –0.02 (0.87)

aPearson correlation coefficient and associated p-value. bTotal urinary arsenic was defined as the sum of InAs, MMA,
and DMA.



results of studies done in Taiwan may not be
relevant to better-fed populations such as those
in the United States (Carlson-Lynch et al.
1994; NRC 2001). Although several dietary
variables have been mentioned as part of this
hypothesis, much of the past debate on this
issue was based on whether or not people
with low dietary intakes of protein had suffi-
cient amounts of choline, methionine, or cys-
teine to fully metabolize InAs to DMA (Beck
et al. 1995; Brown and Beck 1996; Carlson-
Lynch et al. 1994; Engel and Receveur 1993;
Mushak and Crocetti 1995, 1996; Slayton
et al. 1996). Although the adequacy of the
Taiwanese diet is debatable, studies done in
experimental animals have shown that severe
protein deficiencies can impair arsenic methy-
lation and excretion (Tice et al. 1997; Vahter
and Marafante 1987). However, the relevance
of these studies to human arsenic exposures
was unknown because most species of experi-
mental animals metabolize and excrete arsenic
much differently than humans (NRC 1999,
2001; Vahter 1999). Our study is the first to
assess the role of dietary protein intake and
arsenic methylation in humans, and our find-
ings suggest that, despite these wide inter-
species differences, the impacts of protein on
arsenic metabolism that have been reported
in experimental animals may also occur in
human populations.

Protein deficiencies have been linked not
only to changes in arsenic methylation but
also to increased risks of arsenic-caused adverse
effects. In two separate studies in mice, low
dietary protein caused increases in DNA
hypomethylation and increases in develop-
mental toxicity (Lammon and Hood 2004;
Okoji et al. 2002). Several human studies have
identified associations between indicators of
general malnourishment and the development
of arsenic-caused skin lesions, skin cancer, and
cardiovascular effects (Chen et al. 1988; Chen
et al. 2003a; Guha Mazumder et al. 1998;
Hsueh et al. 1995), although the specific role
of protein was not addressed in these studies.
Only one published human study has investi-
gated the role of protein intake on arsenic-
related disease. Mitra et al. (2004) investigated
associations between arsenic-caused skin
lesions and nutrient intakes, measured using
24-hr dietary recalls, in 238 subjects from
West Bengal, India. Elevated odds ratios were
seen in subjects with low intakes of calcium
[OR = 1.89; 95% confidence interval (CI),
1.04–3.43], fiber (OR = 2.20; 95% CI,
1.015–4.21), and folate (OR = 1.67; 95% CI,
1.87–3.20). In addition, subjects in the lowest
quintile of animal protein intake had a skin
lesion odds ratio of 1.94 (95% CI, 1.05–3.59)
compared with subjects in the highest quintile
of animal protein intake. As a whole, the

results of these studies, combined with the
findings of our investigation, provide a small
but emerging body of evidence that low
intakes of dietary protein can affect arsenic
methylation and may increase in arsenic-
associated toxicity.

Although our findings regarding protein
are consistent with those of a few other studies,
the magnitude of the effect we identified is rel-
atively small compared with the wide inter-
individual variability typically seen in arsenic
methylation patterns. The differences we iden-
tified in percent InAs, percent MMA, and per-
cent DMA between subjects in the upper and
lower quartiles of protein intake were 1.7, 3.0,
and 4.7%. In comparison, the overall range
in percent InAs, percent MMA, and percent
DMA in our study population was 29, 23, and
39%, respectively. In an analysis of variance,
energy-adjusted protein intake explained only
7.3% of the total variance seen in percent
MMA in our subjects. The 3.0% difference in
percent MMA we identified between the upper
and lower quartile groups of protein intake is
of similar magnitude to the impacts identified
for some of the other variables most strongly
linked to methylation status, including sex
and certain genetic polymorphisms (Chiou
et al. 1997; Hopenhayn-Rich et al. 1996b).
However, studies linking arsenic methylation
patterns to increased cancer risks have, to date,
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Table 2. Mean daily intake of each dietary variable, and the mean proportion of arsenic species in the upper and lower quartiles of each energy-adjusted dietary
variable.

Percent InAs Percent MMA Percent DMA
Nutrient levels Lower Upper Lower Upper Lower Upper

Nutrient (mean ± SD) quartile quartile p-Value quartile quartile p-Value quartile quartile p-Value

Protein (g) 64.1 ± 28.6 13.1 11.4 0.23 14.6 11.6 0.01 72.3 77.0 0.01
Fat (g) 77.3 ± 42.2 13.2 12.5 0.65 12.4 12.4 0.98 74.4 75.1 0.72
Carbohydrates (g) 188.1 ± 81.4 13.4 12.2 0.42 12.7 13.7 0.44 73.9 74.1 0.94
Calcium (mg) 746.8 ± 425.8 11.3 12.1 0.59 13.2 13.6 0.73 75.4 74.2 0.58
Phosphorus (mg) 1107.7 ± 521.1 12.8 10.9 0.25 12.8 12.4 0.72 74.4 76.6 0.29
Iron (mg) 11.6 ± 4.7 14.1 11.1 0.05 14.8 12.5 0.06 71.0 76.4 0.02
Sodium (mg) 2820.4 ± 1487.2 13.1 11.9 0.52 14.2 11.9 0.06 72.7 76.2 0.17
Potassium (mg) 2619.5 ± 971.3 11.8 10.4 0.30 12.6 12.3 0.74 75.5 77.2 0.30
Vitamin A (IU) 7201.8 ± 8269.1 13.4 11.5 0.20 14.0 12.6 0.30 72.6 75.9 0.16
B1/thiamine (mg) 1.22 ± 0.57 12.7 11.1 0.27 14.3 11.9 0.05 72.9 76.9 0.06
B2/riboflavin (mg) 1.66 ± 0.83 12.3 11.2 0.43 14.2 12.8 0.18 73.5 76.0 0.19
B3/niacin (mg) 16.0 ± 6.8 12.7 11.1 0.27 14.8 12.1 0.03 72.5 76.8 0.05
Vitamin C (mg) 114.2 ± 70.1 13.2 12.2 0.57 13.8 12.1 0.17 73.0 75.6 0.25
Saturated fat (g) 27.9 ± 16.3 13.5 11.1 0.18 13.3 12.7 0.59 73.2 75.6 0.24
Oleic acid (g) 27.9 ± 16.1 13.6 12.3 0.41 13.3 12.8 0.66 73.0 74.9 0.44
Linoleic acid (g) 13.7 ± 7.2 12.1 13.1 0.58 13.8 13.3 0.69 74.1 73.6 0.85
Cholesterol (mg) 328.2 ± 243.8 11.5 12.4 0.46 12.3 12.9 0.61 76.2 74.7 0.42
Fiber (g) 11.8 ± 5.2 13.7 11.7 0.19 13.7 13.4 0.79 72.6 74.9 0.30
Folate (µg) 239.2 ± 103.8 12.2 11.6 0.69 13.8 12.3 0.16 74.0 76.1 0.26
Vitamin E (ATE) 8.2 ± 3.5 12.7 13.8 0.49 13.1 12.7 0.75 74.2 73.4 0.77
Zinc (mg) 9.7 ± 4.4 12.9 12.0 0.54 14.1 12.5 0.17 73.0 75.5 0.18
Vitamin B6 (mg) 1.28 ± 0.56 12.4 11.9 0.75 14.8 11.8 0.004 72.8 76.3 0.08
Magnesium (mg) 259.5 ± 99.0 11.9 11.5 0.76 13.1 12.1 0.30 74.9 76.4 0.41
α-Carotene (µg) 408.6 ± 1032.0 14.1 10.3 0.02 13.9 12.3 0.13 72.0 77.5 0.02
β-Carotene (µg) 2805.4 ± 3810.7 13.1 12.1 0.47 14.1 12.3 0.20 72.8 75.6 0.23
Lutein (µg) 2152.2 ± 2868.2 10.9 12.4 0.19 14.3 12.1 0.04 74.8 75.6 0.66
Lycopene (µg) 1173.0 ± 1082.8 13.1 12.0 0.51 13.0 12.6 0.69 73.8 75.4 0.51
Retinol (µg) 577.7 ± 350.6 12.7 12.4 0.86 13.6 12.9 0.61 73.7 74.7 0.69
ProA-carotene (µg) 3159.0 ± 4761.5 14.0 11.6 0.15 13.6 11.9 0.13 72.4 76.5 0.08
Cryptoxanthin (µg) 59.5 ± 60.8 13.4 12.5 0.63 13.2 13.7 0.72 73.4 73.7 0.89

ATE, α-tocopherol equivalents.



not provided sufficient information to estimate
dose–response relationships. Thus, the exact
impact that these relatively small changes in
methylation patterns have on arsenic-caused
cancer risks is currently unknown.

In addition to protein, we identified associ-
ations between arsenic methylation and iron
intake. In the West Bengal study discussed
above, the mean daily intake of iron was lower
in subjects with arsenic-caused skin lesions
than in controls, but this difference was rela-
tively small (13.1 mg in cases and 14.6 mg in
controls, p = 0.07) (Mitra et al. 2004). In one
study, oral administration of iron reduced
arsenic-caused DNA damage in mice, although
it is unknown whether this effect is related to
impacts on arsenic methylation (Poddar et al.
2000). Zinc has been linked to decreased
arsenic toxicity in some studies (Milton et al.
2004; NRC 1999; Rabbani et al. 2003) but
not in others (Mitra et al. 2004; Shimizu et al.
1998; Wang 1996). In our study, subjects with
higher intakes of zinc had lower percent MMA
and higher percent DMA, although these
results are not statistically significant. We also
identified associations between methylation
patterns and dietary niacin but are not aware of
any animal or human studies that have identi-
fied a similar association.

Several other dietary variables that have
been directly or indirectly linked to arsenic
metabolism in previous animal or in vitro

studies, including β-carotene, vitamin E,
folate, and vitamin B12, were not clearly asso-
ciated with arsenic methylation patterns in
our study (Brouwer et al. 1992; Buchet and
Lauwerys 1985; Hsueh et al. 2003). There are
several possible reasons why we may have
underestimated or missed some associations.
One possibility is that certain dietary variables
may have substantial impacts only when nutri-
tional deficiencies are severe. In our study,
almost all subjects had intakes of protein, iron,
vitamin A, thiamine, and other nutrients above
U.S. recommended dietary allowance values.
In the blackfoot region of Taiwan, where many
of the early studies linking ingested arsenic
to cancer took place, the mean intake of pro-
tein was similar to that of our study subjects
(60 g/day in the Taiwanese and 64 g/day in
our subjects) (Engel and Receveur 1993; Yang
and Blackwell 1961). However, the propor-
tion of subjects in Taiwan with severe defi-
ciencies is unknown, and mean intakes of
other variables, such as niacin and zinc, may
have been below recommended levels (Engel
and Receveur 1993; NRC 1999). In the West
Bengal study discussed above, only 44% of
subjects had protein intakes above recom-
mended levels (Mitra et al. 2004). Although it
is possible that the impacts of diet on arsenic
methylation may be greater in populations
where nutritional deficiencies are severe, high
risks of arsenic-associated cancers and other

diseases are not limited to malnourished popu-
lations and have been reported in populations
where overall nutrition is good (Ferreccio et al.
2000; Hopenhayn-Rich et al. 1996a, 1998;
Smith et al. 1998, 2000).

Errors in assessing diet or methylation sta-
tus could have biased the effect estimates in this
study. Although a validated diet questionnaire
was used, we asked subjects to provide an esti-
mate of their typical diet over a 1-year period. If
methylation patterns depend more on day-to-
day dietary choices than on long-term dietary
trends, and subjects changed diets substantially
from day to day, the magnitude of any true
effects may have been biased. Large intraindi-
vidual variability in arsenic methylation pat-
terns could have caused similar bias, although
we may have diminished this somewhat by col-
lecting multiple urine samples from each sub-
ject and basing methylation status on average
values. In measuring both diet and methylation
patterns, any misclassification would most
likely have been nondifferential and therefore
have biased our results toward the null rather
than toward spurious associations.

Another explanation for the relatively small
impacts we identified in this study is that
the dietary variables we assessed may indeed
play only a small role in arsenic methylation,
and other environmental or genetic factors
may have a more predominant role. The R 2

values for the percent MMA and percent
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Table 3. Adjusted linear regression coefficients (± SEs) for nutrient levels using percent InAs, percent MMA, and percent DMA as the dependent variables.a

Percent InAs Percent MMA Percent DMA
Nutrient b (SE) p-Value R 2 b (SE) p-Value R 2 b (SE) p-Value R 2

Protein (g) –0.012 (0.040) 0.76 0.18 –0.075 (0.031) 0.02 0.20 0.088 (0.057) 0.12 0.21
Fat (g) –0.045 (0.028) 0.11 0.21 0.011 (0.023) 0.63 0.14 0.034 (0.041) 0.41 0.20
Carbohydrates (g) –0.011 (0.011) 0.33 0.19 0.003 (0.009) 0.71 0.14 0.008 (0.017) 0.64 0.19
Calcium (mg) 0.0024 (0.0015) 0.10 0.21 –0.0009 (0.0012) 0.48 0.15 –0.0016 (0.0022) 0.47 0.20
Phosphorus (mg) 0.0020 (0.0018) 0.26 0.20 –0.0016 (0.0015) 0.28 0.15 –0.0004 (0.0026) 0.87 0.19
Iron (mg) –0.32 (0.16) 0.05 0.22 –0.23 (0.13) 0.09 0.17 0.55 (0.23) 0.02 0.24
Sodium (g) –0.76 (0.69) 0.28 0.20 –0.31 (0.57) 0.58 0.14 1.07 (1.00) 0.28 0.20
Potassium (g) –0.18 (0.94) 0.84 0.18 –1.21 (0.75) 0.11 0.17 1.39 (1.34) 0.30 0.20
Vitamin A (1,000 IU) 0.038 (0.063) 0.55 0.19 –0.045 (0.051) 0.38 0.15 0.007 (0.091) 0.94 0.19
B1/thiamine (mg) –2.5 (1.6) 0.12 0.21 –1.7 (1.30) 0.18 0.16 4.2 (2.3) 0.07 0.23
B2/riboflavin (mg) 0.62 (0.92) 0.50 0.19 –0.91 (0.74) 0.22 0.16 0.29 (1.32) 0.83 0.19
B3/niacin (mg) –0.25 (0.13) 0.05 0.22 –0.20 (0.11) 0.07 0.18 0.45 (0.18) 0.02 0.25
Vitamin C (mg) –0.0002 (0.0078) 0.98 0.18 –0.0040 (0.0063) 0.53 0.15 0.0042 (0.0112) 0.71 0.19
Saturated fat (g) –0.088 (0.069) 0.21 0.20 0.049 (0.057) 0.39 0.15 0.039 (0.101) 0.70 0.19
Oleic acid (g) –0.16 (0.07) 0.02 0.23 0.02 (0.06) 0.75 0.14 0.14 (0.10) 0.17 0.21
Linoleic acid (g) –0.012 (0.109) 0.91 0.18 0.021 (0.089) 0.81 0.14 –0.009 (0.157) 0.95 0.19
Cholesterol (mg) 0.0009 (0.0033) 0.77 0.18 0.0016 (0.0026) 0.54 0.15 –0.0026 (0.0047) 0.58 0.19
Fiber (g) –0.045 (0.112) 0.69 0.19 –0.051 (0.091) 0.57 0.15 0.097 (0.160) 0.55 0.20
Folate (µg) –0.0003 (0.0060) 0.95 0.18 –0.0061 (0.0048) 0.21 0.16 0.0064 (0.0086) 0.46 0.20
Vitamin E (ATE) 0.020 (0.203) 0.92 0.18 –0.079 (0.165) 0.63 0.14 0.059 (0.292) 0.84 0.19
Zinc (mg) –0.22 (0.22) 0.32 0.19 –0.34 (0.18) 0.06 0.18 0.57 (0.32) 0.08 0.22
Vitamin B6 (mg) 0.76 (1.59) 0.63 0.19 –2.04 (1.28) 0.11 0.17 1.27 (2.28) 0.58 0.19
Magnesium (mg) –0.0005 (0.00760 0.94 0.18 –0.0066 (0.0061) 0.28 0.15 0.0072 (0.0108) 0.52 0.20
α-Carotene (mg) 0.13 (0.50) 0.79 0.18 –0.36 (0.41) 0.38 0.15 0.23 (0.72) 0.75 0.19
β-Carotene (mg) 0.11 (0.130) 0.41 0.19 –0.09 (0.11) 0.40 0.15 –0.02 (0.20) 0.92 0.19
Lutein (mg) 0.28 (0.17) 0.10 0.21 –0.15 (0.14) 0.31 0.15 –0.14 (0.25) 0.58 0.19
Lycopene (mg) –0.03 (0.48) 0.94 0.18 –0.73 (0.38) 0.06 0.18 0.77 (0.68) 0.26 0.20
Retinol (µg) 0.0019 (0.0017) 0.27 0.20 –0.0011 (0.0014) 0.44 0.15 –0.0008 (0.0024) 0.74 0.19
ProA-carotene (mg) 0.052 (0.109) 0.63 0.19 –0.072 (0.089) 0.42 0.15 –0.019 (0.157) 0.90 0.19
Cryptoxanthin (µg) –0.0037 (0.0086) 0.67 0.19 0.0054 (0.0070) 0.44 0.15 –0.0017 (0.0124) 0.89 0.19

ATE, α-tocopherol equivalents.
aAdjusted for age, sex, smoking, and urinary total arsenic.



DMA regression models including each dietary
variable with age, sex, smoking, and total uri-
nary arsenic were all < 0.26 (Table 3), suggest-
ing that these variables explain only a small
portion of the total variance seen in percent
MMA and percent DMA in our subjects. The
results of several studies suggest that inherited
genetic traits can have important influences on
individual methylation patterns (Chung et al.
2002; Concha et al. 2002; Vahter 1999, 2000,
2002). For example, in a study of 11 families
in Chile, the correlation in percent MMA in
sibling–sibling pairs, whose genetic makeup is
likely very similar, was greater than that in
mother–father pairs, who would not necessar-
ily share the same genetic traits (ICC = 0.69,
p < 0.01 in sibling–sibling pairs; ICC = 0.01,
p = 0.97 in mother–father pairs) (Chung et al.
2002). In a study of arsenic-exposed residents
in Taiwan, subjects with the null genotype of
glutathione S-transferase M1 had a higher
proportion of urinary arsenic in the inorganic
form than those with the non-null genotype
(regression coefficient = 3.8, SD = 1.9, p <
0.05) (Chiou et al. 1997). Other studies have
shown that arsenic methylation patterns
may vary by ethnicity (Vahter 2000, 2002).
Inheritance has also been shown to be a major
factor in the individual variation of the activity
of several other human methyltransferases
(Weinshilboum 1992, 1988).

The trivalent form of MMA was not meas-
ured as part of this study. MMA3 is rapidly
oxidized to MMA5 in human urine and could
not be reliably measured in field investigations
at the time this study was done. Several studies
have shown that MMA3 is more acutely toxic
than other arsenic species (Cullen et al. 1989;
Lin et al. 1999, 2001; Mass et al. 2001; Petrick
et al. 2000; Styblo et al. 1997, 1999, 2000).
However, only a few studies have investigated
the presence of MMA3 in nonchelated humans
(Del Razo et al. 2001; Mandal et al. 2001;
Valenzuela et al. 2005; Wang et al. 2004).
Given the high toxicity of MMA3, and the
links between total MMA and arsenic-associ-
ated cancer risks reported in several investiga-
tions (Chen et al. 2003a, 2003b; Del Razo et al.
1997; Hsueh et al. 1997; Maki-Paakkanen
et al. 1998; Yu et al. 2000), future studies on
MMA3 and its role in human toxicity could
add important insights into the mechanisms of
arsenic-caused health effects.

In conclusion, the data presented here
suggest that dietary protein intake and possi-
bly other nutritional deficiencies can affect
arsenic methylation, although the impacts
we identified in this well-fed population are
small compared with the wide interindividual
variability seen in this metabolic process.
Additional research on dose–response relation-
ships between arsenic methylation and chronic
health effects, as well as further information
on the environmental and genetic factors that

control arsenic methylation, may help in the
identification of susceptible subpopulations
and could provide important insights into the
carcinogenic mechanisms of this common
drinking water contaminant.
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