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Spin injection and inverse Edelstein effect in the
surface states of topological Kondo insulator SmB6

Qi Song1,2, Jian Mi1,2, Dan Zhao3,4, Tang Su1,2, Wei Yuan1,2, Wenyu Xing1,2, Yangyang Chen1,2, Tianyu Wang1,2,

Tao Wu3,4,5, Xian Hui Chen3,4,5,6, X.C. Xie1,2, Chi Zhang1,2, Jing Shi7 & Wei Han1,2

There has been considerable interest in exploiting the spin degrees of freedom of electrons

for potential information storage and computing technologies. Topological insulators (TIs),

a class of quantum materials, have special gapless edge/surface states, where the spin

polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum

locking property gives rise to very interesting spin-dependent physical phenomena such as

the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states

of TI is very challenging because of the coexistence of the highly conducting bulk states. Here,

we experimentally demonstrate the spin injection and observe the inverse Edelstein effect in

the surface states of a topological Kondo insulator, SmB6. At low temperatures when only

surface carriers are present, a clear spin signal is observed. Furthermore, the magnetic field

angle dependence of the spin signal is consistent with spin–momentum locking property of

surface states of SmB6.
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S
pintronics aims to use the spin degrees of freedom for
information technologies1–3. The injection of spin-polarized
carriers into two-dimensional quantum materials, including

graphene and the surface states of topological insulators (TIs),
is particularly interesting4,5. Different from graphene showing
weak spin–orbit coupling and long spin lifetimes6–9, the surface
states of TI exhibit very large spin–orbit coupling10–13. Even
more interestingly, the spin and the momentum directions are
strongly coupled to each other in the surface states of TI4,10–14.
Since the observation of the spin–momentum locking properties
with scanning tunneling microscopy and spin-angle-resolved
photoemission spectroscopy (spin-ARPES)15,16, a great deal of
effort has been made to demonstrate various unique effects
associated with this property, such as large spin polarization
currents and large spin–orbit torque in the Bi2Se3-based three-
dimensional TI17–25. However, a major obstacle to the clean
demonstration of the Edelstein/inverse Edelstein effects for the
spin–momentum locked surface states is the presence of
unavoidable bulk carriers which dominate the conduction in
these Bi2Se3-based three-dimensional TI19,26. Recently, SmB6, a
Kondo insulator, has been found to be a new type of TI based on
transport measurements and ARPES27–35. At temperatures below
B3 K, the bulk states are insulating, and only surface carriers
contribute to the conduction, as demonstrated by the previous
surface Hall measurements30,31.

Here, we report the spin injection into the surface states using
the spin pumping and the observation of the inverse Edelstein
effect in this topological Kondo insulator (TKI). The temperature
and magnetic field angle dependences of the spin voltage are
consistent with the spin–momentum locking properties of the
surface states, which have been shown to be topological in
previous studies29.

Results
Spin injection into the surface states of SmB6. The spin injec-
tion experiment is performed using Ni80Fe20 (Py) as the spin
injector, which is deposited onto the (001) surface of the SmB6

single crystals, as shown in Fig. 1a (see the ‘Methods’ for details).
When the ferromagnetic resonance condition for Py is fulfilled
under certain magnetic fields and microwave frequencies, the
precessing magnetization launches a spin current, which enters
the adjacent nonmagnetic SmB6 layer. This technique is called
spin pumping, which has been widely used to measure the spin to
charge conversion in various materials, including metals, semi-
conductors and graphene and so on36–43. In our measurements,
we use a radio frequency (RF) signal generator to provide the
microwave power and standard lock-in technique for better
sensitivity and signal-to-noise ratio (see the ‘Methods’ for details).
Figure 1b shows the schematic drawing of energy dispersion
relationship of the surface states at the Fermi level for both �X and
! points. The resistance of the SmB6 device is measured from 300
to B0.8 K, as shown in Fig. 1c. Clearly, the resistance saturates
blow B3 K, which indicates that the surface states are dominant
and the bulk states do not contribute to conduction. As the
temperature increases, the resistance decreases quite rapidly,
owing to a large number of the activated bulk carriers as the
temperature increases.

Figure 1d shows the typical magnetic field dependence of the
spin voltage measured at 1.7 K with three representative
microwave frequencies of 8.3, 9.4 and 10.1 GHz, respectively.
We first confirm that the magnetic fields, at which we observe the
voltage signals, are the same as the resonance magnetic fields
(Hres) of the Py under the same microwave frequencies
(Supplementary Fig. 1 and Supplementary Note 1). It is noticed
that there are mainly three contributions to the voltages, namely

the voltage due to the spin pumping and inverse Edelstein effect
(VSP), the voltage due to the Seebeck effect from the microwave
heating (VSE) and the anomalous Hall effect (VAHE) of the Py.
Due to their different symmetries as a function of the magnetic
field, we can obtain the voltage amplitudes of all these three
contributions by fitting the magnetic field dependence of the
voltage with the following equation (Supplementary Fig. 2 and
Supplementary Note 2).

V Hð Þ¼VS
DHð Þ2

H�Hresð Þ2þ DHð Þ2
þVAS

� 2DH H�Hresð Þ
H�Hresð Þ2þ DHð Þ2

ð1Þ
where VS and VAS are the voltage amplitudes for the symmetric and
antisymmetric Lorentzian shapes, respectively, and DH is the half-
line width. The VSP exhibits a positive sign for positive magnetic
fields and the positive sign of the spin-to-charge conversion in the
surface states of the SmB6 is theoretically expected from the
counter-clockwise spin textures for the electron band of the
topological surface states18,42. The counter-clockwise spin textures
have been shown by both spin-ARPES measurements and DFT
calculations34,44. After the determination of Hres and DH for all
applied microwave frequencies, we obtain the effective magneti-
zation (Meff) and the Gilbert damping constant for the Py layer. Our
results show that Meff is 781±16 e.m.u. cm� 3, which is obtained
using the Kittel formula shown below45:

fres¼
g

2p

� �
Hres Hresþ 4pMeffð Þ½ �1=2 ð2Þ

where g is the geomagnetic ratio. From the slope of the linearly
fitted curve of the half-line width versus microwave frequency at
1.7 K, we calculate the Gilbert damping constant of the Py on SmB6

to be 0.0166±0.0006 (Supplementary Fig. 3).
The microwave power dependence of the spin voltage is shown

in Fig. 2a measured at 1.7 K and with the microwave frequency of
10.1 GHz. The measured resonance peak increases as the
microwave power increases. Following the same fitting procedure
(Supplementary Note 2), we obtain the power dependence of VSP

and VSE. Both VSP and VSE show a linear relationship with the
microwave power, as shown in Fig. 2b,c.

Temperature dependence of the spin voltage. As mentioned
earlier, the surface states of SmB6 dominate the transport as the
bulk carriers freeze out below B3 K; above B3 K, the contribu-
tion from the bulk states is thermally activated. When a spin
current enters the spin–momentum locked surface states, an
electric field is resulted due to the inverse Edelstein effect, which
is measured as a spin voltage. To investigate how the spin voltage
evolves as the surface states emerge and become dominant,
we perform the measurements from B0.8 to 10 K. Below B0.8 K,
it is difficult to stabilize the temperature due to the microwave
heating. Figure 3a shows the typical measurements of the voltage
as a function of the magnetic field with the microwave power of
100 mW and frequency of 10.1 GHz at 0.84, 1.66, 2.1, 2.3 and
10 K, respectively. At 0.8 K, when only spin–momentum locked
surface states exist, the spin signal is B42 nV. This value is
relatively small compared with previous studies on Bi1.5Sb0.5

Te1.7Se1.3 and a-Sn (refs 18,42), which could be related to the
spin pumping efficiency and/or the spin-to-charge conversion
efficiency and needs further studies (Supplementary Note 3). The
spin voltage steadily decreases as the temperature increases, and
when the temperature reaches 10 K, no voltage can be detected.
The resistance of the SmB6 from 10 to ~0.8 K is shown
in Fig. 3b, indicating that the bulk states start to contribute
to the total conductance between 2 and 3 K. From 3 to 5 K, the
conduction due to the bulk carriers quickly increases, resulting in
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a 100-fold decrease in the total resistance. This feature is
consistent with the previous surface conductance and Hall mea-
surements, indicating the nearly pure surface states contributing
to the conduction30,31. The temperature dependence of the VSP is
summarized in Fig. 3c. VSP shows little temperature dependence
below B2.2 K. At temperatures above B2.2 K, VSP steadily
decreases as the temperature increases. The temperature
dependences of both VSP and the resistance strongly support

that the spin signal originates from the spin–momentum locked
surface states. When the spin polarization is generated in the
surface states, an in-plane electrical voltage is produced in the
direction perpendicular to the spin directions, due to the inverse
Edelstein effect. As the temperature further increases, more bulk
carriers are activated and the spin voltage is greatly suppressed.
This is very interesting, for the bulk states should have strong
spin–orbit coupling as well and therefore ordinary inverse spin

a b

c d

RF Py

V

Surface
states

X
ky

kx

�

M

1

0.1

0.01

1E-3

1E-4

1E-5
1 10 100

–80
–2.0 –1.5 –1.0 –0.5 0.5 1.0 1.5 2.0

–60

–40V
ol

ta
ge

 (
nV

)

8.3 GHz
9.4 GHz
10.1 GHz

12

8

4

0

0.0 0.5 1.0 1.5

f (
G

H
z)

Hres (kOe)

–20

0

20

40

T (K) H (kOe)

T= 1.7 k

R
 (

kΩ
)

SmB6

Figure 1 | Spin injection into the surface states of SmB6. (a) Schematic drawing of device structure and the spin injection and inverse Edelstein effect

measurements. (b) Schematic drawing of the spin–momentum locking properties of the topological surface states at the �X and ! points based on previous

photoemission spectroscopy measurements and DFT calculations34,44. (c) The resistance of the SmB6 as a function of the temperature. (d) Typical

magnetic field dependence of the voltage with various GHz microwave frequencies. The power of the microwave is 100 mW and the temperature is 1.7 K.

Inset: the resonance frequency (f) as a function of the resonance magnetic field (Hres). The solid line is a fitted curve based on the Kittel formula,

equation (2) in the main text.
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Hall effect from bulk states could give rise to a finite voltage.
However, we do not observe any voltage signal at high
temperatures.

Magnetic field angle dependence of the spin voltage. To further
confirm the spin injection and detection in the surface states of
the TKI, SmB6, we study the in-plane and out-of-plane spin
polarization injection by changing the magnetic field direction.
Figure 4a shows the typical results of the magnetic field-
dependent voltages at 1.7 K with a microwave power of 200 mW
and frequency of 10.1 GHz for the angles between the magnetic
field and the Py electrode (shown in the inset figure), yH, equal to
0�, 63�, 76�, 83� and 86.5�. As yH increases, the resonance
magnetic field increases accordingly, and in the meantime, the
spin signal shows a decrease. At 86.5�, the spin-dependent voltage
becomes vanishingly small. The Hres and DH as a function of yH

are shown in Fig. 4b,c, which are consistent with the previous
measurement of the ferromagnetic resonance of Py under
different magnetic field directions37,46. This further confirms that
the measured spin voltage indeed arises from the precession of
the Py magnetization.

Discussion
It is particularly interesting that only in-plane spin polarization
injection generates an electric field, whereas the out-of-plane spin
polarization injection does not show this effect. This observation
could be attributed to the spin–momentum locking properties of
the surface states of the TKI, as illustrated in Fig. 5a,b. For the
in-plane spin polarization injection along the x direction, the

Fermi surface shifts along the y direction, and Dky indicates the
total shift due to the spin injection and the inverse Edelstein
effect, as shown in Fig. 5a. On the other hand, for the
out-of-plane spin polarization injection, there is no net effect of
spin injection as the spins of the surface states lie in-plane and are
locked perpendicular to the momentum directions, as shown in
Fig. 5b. Finally, we calculate the Py magnetization angle, yM,
from the yH dependence of the resonance magnetic field
(Supplementary Fig. 4) based on the 0 and 90 degrees data and
the following equation37.

2Hres sin yH � yMð Þ� 4pMS sin 2yMð Þ¼0 ð3Þ

where MS is the saturated magnetization. It is clearly seen that
VSP almost vanishes as yM approaches 90 degrees (Fig. 5c), which
is also consistent with the spin–momentum locking properties of
the surface states of the TKI, as discussed above and illustrated in
Fig. 5a,b. The complete understanding of the VSP as a function of
the yM needs future theoretical studies to quantitatively calculate
how much the Fermi surface shift as a result of the inverse
Edelstein effect of the spin polarization injection (Supplementary
Fig. 5 and Note 4).

Our experimental results strongly support the demonstration
of spin injection and the observation of the inverse Edelstein
effect in the surface states of SmB6. The temperature and
magnetization angle dependences, as well as the sign of the
spin-to-charge conversion are well consistent with spin–
momentum locking properties of the surface states, which have
been shown to be topological with the counter-clockwise spin
textures for the electron bands in previous studies29,34,44. Since
the detailed spin textures of the Rashba surface states have not
been reported yet, it is premature to exclude any contribution
from the Rashba-split surface states at the current stage. To fully
understand this, further studies, including the detailed spin
textures from spin-ARPES measurements of the Rashba surface
states and the quantitative theoretical calculations of the
contributions from topological and Rashba surface states, are
needed. Our observation could lead to future studies of the role of
strong correlation in TKIs for spintronics and highly efficient spin
current generation in the surface states of TIs via the materials
design and engineering.

Methods
Materials growth. High-quality single crystalline SmB6 samples are grown using
the conventional Al-flux method. A mixture consisting of a Sm chunk (purity:
99.9%), Boron (purity: 99.99%) and Al powders (purity: 99.99%) with a ratio of
1:6:400 is heated at high temperatures in the circumstance with continuously
flowing Ar gas to form SmB6 single crystals. Then the SmB6 samples are put into
diluted HNO3 acid to remove the residual aluminum flux.

We choose the samples with large rectangular crystals of millimeters size and
large (001) facet for spin injection experiment. A 20 nm thick Py electrode is
deposited on the (001) surface of the SmB6 single crystal by radio frequency
magnetron sputtering with a growth rate of 0.02 Å s� 1. To prevent the oxidation of
Py, a capping layer of 3 nm Al is deposited in situ before taking the samples out.

Device fabrication. A shadow mask technique (size: B0.9� 3 mm2) is used to
define the shape and position of the ferromagnetic electrode (Py/Al) on the (001)
surface of the SmB6 crystal (size: B1� 5 mm2, thickness: B0.5 mm). Al wires are
used to contact the two ends of SmB6 sample for the electrical voltage
measurement.

Device measurement. The spin injection is performed using the spin pumping
method and the spins are detected via the inverse Edelstein effect of the surface
states of SmB6. The microwave power is supplied by a signal generator (Anritsu
LTD. MG3690C) modulated with a digital lock-in amplifier (NF Co. LI5640) with
the frequency of 373 Hz to enhance the sensitivity and signal-to-noise ratio. The
spin pumping measurement is performed by precessing the Py magnetization
around its resonance conditions with a coplanar waveguide from 10 to B0.8 K in a
Janis He-3 system. The resistance of the SmB6 single crystal is measured using
Keithley K2400 and K2002 in Quantum Design Physical Properties Measurement
System (PPMS) from 300 to 10 K and in a Janis He-3 system from 10 to B0.8 K.
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Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information files.
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