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Essays on Environmental Policy and Climate Change

by

Fanglin Sun
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Chapter 1

Coastal Wetlands Reduce Property

Damage during Tropical Cyclones

Abstract: Coastal wetlands dampen the impact of storm surge and strong winds. Studies

on the economic valuation of this protective service provided by wetland ecosystems are, however,

rare. Here we analyze property damage caused by 88 tropical storms and hurricanes hitting the

U.S. between 1996 and 2016 and show that counties with more wetland coverage experienced

significantly less property damage. The expected economic value of the protective effects

of wetlands varies widely across coastal U.S. counties with an average value of about $1.8

million/km2 per year and a median value of $91,000/km2. Wetlands confer relatively more

protection against weaker storms and in states with weaker building codes. Recent wetland losses

are estimated to have increased property damage from Hurricane Irma by $430 million. Our

results suggest the importance of considering both natural and human factors in coastal zone

defense policy.
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1.1 Introduction

Traditional defensive measures against storm surge include building sea walls, levees

and dams. However, such structures can fail (Hughes & Nadal 2009) and there are concerns

about negative impacts of such structures on the local environment (Kennish 2001). Planners

are looking at coastal wetlands as potential natural levees for storms due to their ability to

reduce water velocity and wave turbulence (Christiansen, Wiberg, and Milligan 2000). Moreover,

wetlands accumulate sediments providing protection against rising sea levels and local subsidence

(Morris et al. 2002; Gedan et al. 2011).

Policymakers are often skeptical about employing wetlands as storm buffers, and hesitant

to preserve or restore wetland systems as part of a storm defense strategy. Previous work has

focused on mechanisms by which wetland plants attenuate storm surge (Christiansen et al. 2000;

Morris et al. 2002; Gedan et al. 2011; Möller et al. 2014; Wamsley et al. 2010). Surprisingly few

studies address the economic value of this protective service. These studies, which we build on,

tend to be limited to a particular type of wetland, such as mangrove forests (Badola and Hussain

2005; Danielsen et al. 2005; Das and Vincent 2009; Barbier 2007), a few specific disasters

(Badola and Hussain 2005; Danielsen et al. 2005; Das and Vincent 2009), or specific regions

[i.e., certain tropical countries (Badola and Hussain 2005; Danielsen et al. 2005; Das and Vincent

2009; Barbier 2007) and Louisiana (Boutwell and Westra 2016; Farber 1987; Barbier et al. 2013;

Barbier and Enchelmeyer 2014)]. The exception is the influential U.S. national study (Costanza et

al. 2008), which finds that 1 km2 of wetlands produce on average $3.3 million annually in storm

protection services. However, this study is limited by the coarse data employed and imprecise

measure of the storm impact region.

Here we estimate the economic value of coastal wetlands in storm protection by analyzing

all 88 tropical cyclones (of which 34 made landfall as hurricanes) impacting the counties along

the entire Atlantic and Gulf Coasts of the U.S. between 1996 and 2016 (Fig. 1.4 and Fig. 1.5).
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Tropical storms are defined as tropical cyclones with maximum sustained winds of 34 to 63

knots, while hurricanes are those with at least 64 knots (National Hurricane Center). Among the

232 coastal counties experiencing at least tropical storm level winds, 203 experienced property

damage at least once, and 38% of counties suffered damage when hit by tropical cyclone winds

(Table 1.2 -1.3). Many tropical cyclones hitting the U.S. are below hurricane strength – the focus

of most previous work. We show wetlands reduce property damage proportionately more at the

lower end of the tropical cyclone classification scale, although the absolute magnitude of damage

reduction is larger at the high end of the scale.

By using all the tropical storms and hurricanes affecting the U.S. since 1996, when consis-

tently defined county estimates of property damage become available, we avoid sample selection

bias issues, whereby damage data was generally available earlier only for more destructive storms.

Areas subject to flood risk in a county are more accurately estimated, based on local elevation data

and detailed information on individual storm trajectories that more precisely spatially delineate

storm paths and wind speeds at different distances and directions from the eye (see Fig. 1.1 for

the example of Hurricane Katrina). Wetland coverage varies over time and space within a county

due to natural or anthropogenic factors (Kennish 2001). It also effectively varies because each

storm’s flooding area is a function of (i) storm path and (ii) wind intensity. State characteristics

remaining largely unchanged over time and year-level economic shocks potentially influencing

property damage are controlled by using a fixed-effects statistical framework.

Annual expected property damage caused by tropical cyclones depends on: first, the

probability that a county experiences tropical cyclones of different wind velocities – the wind

velocity, in turn, determines the area likely to be flooded by storm surge; second, the probability

that, on experiencing a given wind speed, damage is nonzero. These relationships are described

by:

E(D|X−v) =
∫

P(D > 0|v,X−v)E(D|v,X−v,D > 0) f (v)dv, (1.1)

where D represents a county’s property damage when experiencing wind speed v during a tropical

3



cyclone, f (v) represents the annual probability of experiencing wind speed v, and X−v represents

other factors affecting property damage besides wind intensities. Applying the damage function

approach developed by (Das and Vincent 2009), coastal wetlands may influence property damage

during storms in two ways: first, through the likelihood of a county experiencing damage in a

storm surge; second, if damage occurs, the amount.

1.2 Results

Coastal wetland coverage is associated with statistically significant reductions in cyclone-

related property damage. A loss of 1 km2 of wetland coverage increases the predicted probability

of experiencing property damage during storms by 0.02% (P < 0.05) in a county with the average

wetland coverage, wind speed, and flooding area (Table 1.4). For coastal communities suffering

from property damage from a storm, a 1% loss of coastal wetlands is associated with a 0.6%

increase in property damage (P < 0.01), controlling for storm specific characteristics, property

value under flooding risk, state specific time invariant determinants of property damage, and

year-level shocks (Table 1.1, Fig. 1.6). Coefficient estimates of wind, potential storm surge

area, property value under flooding risk and being located to the right-hand of the storm path are

positive and significant. The wind effect is particularly large (a 1% increase increases damage

by 7%) and counties on the storm path’s right-side experience 140% (P < 0.01) more property

damage than those on the left. The estimated storm protection effects of wetlands are broadly

robust to the statistical model used (see Materials and Methods), and do not change substantially

when time trends are included instead of year fixed effects or whether the two largest disasters,

Hurricanes Katrina and Sandy, are excluded (Table 1.5).

Coastal wetlands’ protective effects are non-linear in wind intensity, conditional on

damage. This may be because once wetland vegetation is fully saturated with water, wave

dissipation effects are weaker (Resio and Westerink 2008; Möller et al. 1999). To detect this

4



type of nonlinearity, wetland effects are decomposed by the wind speeds experienced by a county.

Wetlands are effective against storms of all different magnitudes. The elasticity of property

damage with respect to wetlands is -0.58 for a tropical storm (a 1% decrease in wetlands is

associated with a 0.58% reduction in property damages), -0.55 for a Category 1 hurricane, -

0.40 for a Category 2 hurricane, and -0.35 for a Category 3-5 hurricane (Fig. 1.2A, Table 1.6).

This pattern is consistent with lab experiments (Möller et al. 2014). The preventative effect

is especially strong for tropical storms, which happen twice as often as hurricanes. However,

because property damage is rapidly increasing in storm strength, the absolute magnitude of

damages prevented is predicted to be largest for major hurricanes.

Saltwater wetlands are located closer to the shore than freshwater wetlands (Fig. 1.7),

providing the first line of defense against storm surges. Nevertheless, freshwater wetlands typically

have more coverage than saltwater wetlands, providing a wider buffer zone, as freshwater wetlands

constitute about 85% of total coastal wetland coverage. We find significant reductions in property

damage for both freshwater and saltwater wetlands. The difference between their contributions is

small and not significantly different from zero (Fig. 1.2B, Column 3 of Table 1.1). This is not

surprising since storm surge can extend miles inland and encompass both types of wetlands.

Forested wetlands, having rougher woody vegetation, may provide a more effective buffer

than emergent or scrub/shrub wetlands (Gedan et al. 2011, Barbier 2007, Barbier et al. 2013;

Barbier and Enchelmeyer 2014). Costanza et al. (2008) did not find significant evidence that

forested wetlands reduced economic losses, perhaps due to data limitations. We find forested

and non-forested wetlands play similarly protective roles (estimated elasticities are: -0.58 and

-0.56, respectively). We cannot reject the hypothesis that forested wetland reduces damage more

than non-forested wetlands, as suggested by simulation studies (Barbier et al. 2013; Barbier and

Enchelmeyer 2014), although our result is consistent with (Gedan et al. 2011), who survey field

observation studies and find mangroves and marshes confer comparable wave attenuation.

Coastal states take different strategies in terms of disaster relief and preparedness. Some

5



adopt more stringent building codes, e.g., requiring building on stilts or setting a minimum

construction elevation, while others do not. To investigate whether state level policy factors

induce heterogeneity in wetland protective effects, coastal states were separated into two groups

based on being above or below the median assessment score for strictness of the residential

building code and enforcement system (see Materials and Methods). Virginia, Florida, South

Carolina and New Jersey rank as the top four states, while Texas, Mississippi, Alabama and

Delaware have no mandatory statewide building code directed toward storm damage prevention.

Wetland effects on property damage reduction are significantly lower in states with more stringent

building codes and enforcement systems, suggesting that building codes are a partial substitute

for wetlands in terms of storm protection (stricter code estimate: -0.50; less strict code estimate:

-0.81), though wetlands still have a sizable effect even with stricter building codes (Fig. 1.2D,

Table 1.6).

Figure 1.1: Coastal wetland distribution and estimated storm surge area near Hurricane Katrina
landfall.
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Figure 1.2: Elasticity of property damage with respect to coastal wetland coverage. Percent
reduction (with 95% CI) in property damage per 1% increase in wetland coverage.

We estimate the marginal value of coastal wetlands for storm protection for each shoreline

county along the Atlantic and Gulf Coasts. Assuming the local probability of experiencing

different tropical cyclone intensities provided in (Klotzbach et al.) follows a gamma distribution,

estimated annual marginal values range from less than $800 to $100 million per km2, with an

average of about $1.8 million and a median value of $91,000 (Fig. 1.3, Table 1.7,1.8 and 1.9).

The heterogeneity in the storm protection value of wetlands (Fig. 1.8 and Fig. 1.9) across counties

is due to the property values at risk, local wetland coverage, coastline shape, local elevation,

building codes, and the probability of experiencing different wind intensities.

The marginal value of coastal wetlands for storm protection over a fixed time period, the

relevant quantity for benefit-cost assessments involving development projects, can be estimated

by discounting the future annual value of wetland over the desired time frame assuming the

current annual marginal value remains constant. Using a discount rate of 2.8% (US Army Corps

7



Table 1.1: Conditional damage model estimates. Standard errors (in parentheses) are clustered
two-ways at the county and storm level. N=946. All models include state and year fixed effects.
∗P < 0.10, ∗∗P < 0.05, ∗∗∗P < 0.01.

(1) (2) (3) (4) (5)
log(damage) log(damage) log(damage) log(damage) log(damage)

log(wetland) -0.5756∗∗∗ -0.5752∗∗∗ -0.5805∗∗∗ -0.5598∗∗∗ -0.8055∗∗∗

(0.1840) (0.1718) (0.1836) (0.1805) (0.2029)
C1 hurricanes × log(wetland) 0.0261

(0.0769)
C2 hurricanes × log(wetland) 0.1724∗

(0.1029)
C3-C5 hurricanes × log(wetland) 0.2251∗

(0.1208)
Saltwater wetlands × log(wetland) 0.0073

(0.0409)
Forested wetlands × log(wetland) -0.0198

(0.0390)
Strict building code × log(wetland) 0.3011∗

(0.1545)
log(wind) 7.1885∗∗∗ 6.4122∗∗∗ 7.1928∗∗∗ 7.1953∗∗∗ 7.1929∗∗∗

(0.5653) (0.9744) (0.5683) (0.5668) (0.5668)
Right 0.8821∗∗∗ 0.8749∗∗∗ 0.8828∗∗∗ 0.8880∗∗∗ 0.8825∗∗∗

(0.3129) (0.3200) (0.3147) (0.3183) (0.3128)
log(storm area) 0.4793∗∗ 0.4767∗∗ 0.4811∗∗ 0.4595∗∗ 0.4558∗

(0.2249) (0.2180) (0.2248) (0.2235) (0.2293)
log(property at risk) 0.3205∗∗∗ 0.3135∗∗∗ 0.3190∗∗∗ 0.3194∗∗∗ 0.3179∗∗∗

(0.0622) (0.0599) (0.0638) (0.0624) (0.0617)
adj. R2 0.52 0.52 0.52 0.52 0.52
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Engineers 2008), expected storm protection services provided by 1 km2 of coastal wetlands over

a 30-year (100-year) period are on average worth about $36 million ($60 million). The median

value is $2 million ($3 million).

Figure 1.3: Annual county-level marginal value of coastal wetlands for storm protection.

1.3 Discussion

Estimates of the marginal economic value of wetland services in protecting property

value can serve many purposes. Federal, state, and local agencies responsible for wetland

management could employ our estimated expected marginal value when determining the amount

and the optimal site of required compensatory mitigation. To achieve the goal of “no net loss” in
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both wetland acreage and function, Section 404 of the Clean Water Act requires development

projects that could have adverse impacts on wetlands to offset wetland loss by restoring, creating,

enhancing or preserving wetlands within the same watershed (Davlasheridze et al.). To determine

the amount of compensatory mitigation for each project, the Army Corps of Engineers conducts a

case-by-case evaluation and sets a compensatory mitigation ratio. The expected marginal value

of wetlands in reducing storm damages estimated in this study should be useful to a federal

agency making such assessments. One of our main findings is that location is a crucial factor

storm protection services provided by wetlands. This should be accounted for when evaluating

off-site compensatory mitigations since even relatively small differences in location between

the wetlands lost and the new wetlands created can substantively influence the storm protection

services provided. Further, a replacement wetland may take decades to fully develop the functions

provided by the original wetlands. The approach developed here, for a given discount rate, can be

used to obtain a consistent estimate of the economic value of the storm protection service lost

during the time it takes for the new wetland to fully reach the capacity of the lost wetland.

Our model can be used to estimate property damage under different wetland loss scenarios.

To illustrate this use, we consider the question of how much property damage from Hurricane

Irma, in 2017, which occurred just outside of our sample period, might have been prevented if

there had been no loss of wetlands in Florida between 1996 and 2016. In the 19 coastal counties

that experienced tropical storm level wind speeds when Hurricane Irma made landfall, wetland

coverage was reduced by 2.8% between 1996 and 2016. Absent this reduction in wetlands, we

estimate property damage in these counties would have been lower by about $430 million (see

Materials and Methods). This is substantial for a single storm. For a comparison, FEMA spent

$10 billion on preventative hurricane, storm, and flood mitigation programs from 1989-2017

(Davlasheridze et al.). This suggests that wetland preservation is likely to be a comparatively

effective way of protecting coastal communities against tropical cyclones. Restoring wetlands

may also be a cost-effective policy, but that action needs to consider the time path noted earlier
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for such wetlands to provide storm protection services. The interaction between building codes,

restrictions on building in high risk locations, and wetland coverage locations deserves further

attention from a policy perspective.

Our model can also be used to predict the storm protection value of coastal wetlands in the

context of different climate change scenarios. This can be done in a straightforward manner for the

winds associated with tropical cyclone activity by simply replacing the actual wind distribution at

each location with the forecast wind distribution based on a particular climate change scenario

and reintegrating property damages estimates over the desired spatial locations and time frame.

It is also possible to use our model to look at the interaction between changing sea levels and

wetlands in coastal counties by holding the estimated parameters constant and substituting in a

new detailed topographic map of areas at risk under different storm conditions. With projections

of rising sea levels and increasingly intense storms associated with climate change (Knutson

et al. 2010), low-lying coastal communities are likely to become more vulnerable to flooding.

Model-based estimates can be calculated for the economic value of preventing future property

damage under specific climate change and mitigation scenarios under different assumptions about

wetland coverage.

It is important to recognize storm protection for property is just one of the ecological

services that wetlands provide. Other ecosystem services delivered by wetlands include habitat for

fish and wildlife, filtration of industrial, residential, and agricultural runoff, outdoor recreational

opportunities, and carbon sequestration, all of which we do not value here. These services

are at the heart of the current controversy over the U.S. Clean Water Act (US Army Corps

Engineers 2008; Boyle et al. 2017). While we have provided comprehensive estimates for a major

component of wetland services, having values for the entire suite of these services is needed

for effective policy decisions (Guerry et al. 2015), particularly when unmonetized benefits of

wetland services are likely to be ignored.
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1.4 Materials and Methods

1.4.1 Data

Information on data sources can be found in the Appendix.

1.4.2 Construction of Potential Flooding Area for Each Storm

For each tropical cyclone, the maximum sustained wind speed experienced by each

affected county was estimated based on distance from the storm center and the radii of different

wind intensities. Potential flooding areas for each tropical cyclone wind category are estimated

based on local elevation since inland penetration of storm surge is highly dependent on local

topography. For each county, we map the area below each elevation from 0 to 8 meters in 0.5

meter increments. We then compare the area with the Storm Surge Inundation Map developed

by NOAA Map (Zachry et al. 2015), which provides the flooding inland extent for different

hurricane categories based on simulated storms, taking into account local topography, elevation,

and other environmental features. We select the elevation for which these two maps coincide

the closest. For tropical storms and Category 1 hurricanes, we select locations with elevation

below 1 to 1.5 meters as the potential flooding areas. For Category 2 to Category 5 hurricanes, we

choose elevations ranging from 2 to 8 meters to create the flooding areas. The estimated storm

surge impact region for a specific storm is the intersection of the potential flooding areas and the

areas exposed to at least tropical storm strength wind. The property value at risk of flooding is

the value of total housing, estimated based on U.S. Census Bureau block group housing value

data, within the flood risk area.
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1.4.3 Regression Models

To estimate the marginal effects of coastal wetlands in storm protection along both the

extensive and intensive margins, we employ a Cragg lognormal hurdle model (Cragg 1971;

Wooldrige 2010) that consists of two parts: a probit model estimating whether coastal wetlands

reduce the likelihood that a county experiences damage in a storm, and a conditional damage

model estimating to what extent coastal wetlands reduce property damage when damage occurs.

The two models can be expressed as follows:

P(damagecsht > 0|X) = Φ(γ0 + γ1wetlandcsht + γ2windcsht + γ3stormareacsht

+ γ4riskpropertycsht + γ5rightcsht +ηcsht),

(1.2)

ln(damage)csht = β0 +β1ln(wetland)csht +β2ln(wind)csht +β3ln(stormarea)csht

+β4ln(riskproperty)csht +β5rightcsht + γs +λt + εcsht ,

(1.3)

where damagecsht is the property damage caused by tropical cyclone h in year t in county c of

state s, wetlandcsht is the coastal wetland area in county c within the estimated storm surge impact

region of storm h, windcsht is the maximum sustained wind speed experienced by the county,

stormareacsht is the area of each county within the potential storm surge impact zone, and X is a

vector of all the regressors in the probit model. riskpropertycsht controls for the total property

value under the risk of coastal flooding for each county. Counties with more property value within

the potential flooding areas are likely to experience greater losses because the property to be

potentially destroyed is of greater value. To control for the location of a county relative to the

storm track, an indicator variable, rightcsht , is included in the model. rightcsht equals 1 if a county

is located to the right of the storm path, and 0 otherwise. Coastal flooding impacts are expected

to be greater on the right side of the storm path since tropical cyclones rotate counterclockwise
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in the Northern Hemisphere with strong winds pushing water onshore to the right of the storm

path, while blowing water away from the coast to the left (Morton 2002). γs is a state fixed effect,

which captures state specific characteristics that are largely fixed across time. One example is the

shape of the coastline of each state, which is relatively stable over time – a state with a coastline

curved inward may experience higher surge levels (thus, more damage) when a tropical cyclone

makes landfall, compared to states with a convex coastline (NOAA National Hurricane Center).

γs also includes factors such as each state’s historical exposure to storm surges and residents’

culture and attitudes towards storms. λt is a year fixed effect, which mainly picks up year specific

factors that affect all counties in the U.S. ηcsht and εcsht are error terms, which capture random

component with limited long-term forecast in advance such as tides, very specific storm track,

wind gusts, and rainfall. β1 is the coefficient of interest, which captures the elasticity of storm

damage to existing wetland coverage when a county suffers from positive property damage.

1.4.4 Alternative Specifications

Estimation results of Eq. (2), as well as a few alternative specifications are shown in Table

S4. Adding linear and quadratic time trends as controls instead of time fixed effects does not

substantively change the estimation of the protective effects of wetlands (Column 2). Figure 1.5

reflects one important feature of tropical cyclones – a highly skewed distribution of outcomes

(Nordhaus 2010). To check whether the regression results in Table 1 are driven primarily by only

a few extremely large disasters, observations corresponding to the highest and second highest

damage storms are dropped (Columns 3-4). The coefficient estimates remain stable across the

columns, suggesting that the main regression results are not largely driven by a few devastating

storms. To capture the observed and unobserved features specific to a county, county fixed effects

are included in the model instead of state fixed effects (Column 5). The identifying variation

comes from within-county differences in wetland coverage across storms, induced by differences

in the flooding area at risk. The elasticity of property damage with respect to wetlands changes
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to -1.69. That is, rather than controlling for time invariant factors that may affect damage at the

state level, when we attempt to more precisely control for such factors at the county level, the

wetland effect becomes larger. While this may suggest the elasticity in the main specification is

underestimated, the sample is effectively different because many counties appear only for one

storm and, more generally, the identification of the county-level fixed effects is tenuous (with

state-level fixed effects, New Hampshire is the only state that effectively drops out of the model).

The appropriateness of the log-log damage model specification was checked by estimating

a Box-Cox model (Box and Box 1964). We found that the null hypothesis of a log-log specification

cannot be rejected (P = 0.88). To check for whether it was necessary to account for possible

correlation, conditional on included covariates, between the first and second stages of the Cragg

lognormal hurdle model, we estimated a Heckman model which allows for potential correlation

between the two stages. We can not reject the null hypothesis using a Wald test that the error

terms of the two stages are independent (P = 0.55). Hence, we use the Cragg lognormal hurdle

model as our main model in the analysis.

1.4.5 Potential Endogeneity

The potential for endogeneity naturally arises in any consideration of property damage,

due to moral hazard and other concerns. This is largely due to locational and insurance decisions.

However, the housing units at risk have already been built at their particular location when a

storm strikes; each tropical cyclone’s path is exogenous, providing the randomly assigned wind

treatment. In addition, our damage measure includes total losses, not just insured losses, and

there are reasons to expect the two measures to be quite different – for example, the probability

of households in areas at high risk of coastal flooding having flood insurance was found to be

only about 63% (Dixon et al. 2006). Further, the government strongly favors an ex post response

to property damage, even though ex ante actions are considerably more effective, a contradiction

largely driven by political considerations (Davlasheridze et al. 2017).
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Another possible source of possible endogeneity is that units in areas at high risk of

being hit by tropical cyclones may be better built or located in areas that are better protected

by wetlands and other natural defenses against storm surge and flooding, although ex ante the

opposite scenario is also plausible. To a large extent, this should be captured by the property

value at risk. Also state fixed effects capture time invariant state level factors influencing damages.

The model results shown in Table S4, Column 5, go even further by including county level fixed

effects (but see substantive discussion and qualification above), suggesting that, if anything, our

main estimates for the marginal value of wetlands may be underestimated.

1.4.6 Marginal Value of Wetlands in Storm Protection

Let Dcsht , Wcsht , Vcsht , Scsht , Pcsht , and Rcsht refer to damagecsht , wetlandcsht , windcsht ,

stormareacsht , riskpropertycsht , and rightcsht , and let α stand for β0 + γs + λt . Based on the

conditional damage model, the expected damage to a county when the wind speed is v, conditional

on experiencing property damage, will be (omitting subscripts)

E(D|v,X−v,D > 0) =W β1vβ2Sβ3Pβ4eαE(eε). (1.4)

The underlying statistical framework here is a survival model where the expected value

depends on both the estimated regression parameters and the estimated variance. There are two

standard approaches to obtaining the estimate of E(eε). First, we can assume the residuals are

normally distributed, effectively treating the regression model as the maximum likelihood estima-

tor, which can be sensitive to outliers. Second, we can estimate this quantity by bootstrapping the

empirical residual distribution of the observed data. This latter approach is more flexible and, in

this instance, more conservative. It produces an estimated value of 10.81 for E(eε), and estimates

of marginal wetland values that are 17% lower than those obtained under the assumption that

the error terms are normally distributed. We report the more conservative estimates. The annual
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expected property damage due to tropical cyclones to a shoreline county can be calculated by

integrating the expected property damage over all the possible storm wind speeds that could affect

the county:

E(D|X−v) =
∫

E(D|v,X−v,D > 0)P(D > 0|v,X−v) f (v)dv (1.5)

The marginal value of wetlands in storm protection will be ∂E(D|X−v)
∂W , which can be expressed as:

∫
[
∂E(D|v,X−v,D > 0)

∂W
P(D > 0|v,X−v)+

∂P(D > 0|v,X−v)

∂W
E(D|v,X−v,D > 0)] f (v)dv (1.6)

This can be estimated using the expression:

∫
D̂
(

β̂1

W
̂P(D > 0|v,X−v)+

∂ ̂P(D > 0|v,X−v)

∂W

)
f (v)dv, (1.7)

where D̂ is the predicted property damage when county c experiences a storm with wind speed v

based on the estimation results of the model in Eq. (2). In a few instances, the predicted value

exceeds total property value under risk. To control the over-prediction problem, D̂ is capped

by the total property value under flooding risk for each wind category. ̂P(D > 0|v,X−v) and
∂ ̂P(D>0|v,X−v)

∂W are the predicted likelihood of a county experiencing damage when hit by wind

velocity v and the estimated marginal effect of wetlands in reducing the probability of suffering

property damage based on the estimation results of the model in Eq. (1).

The annual distribution of wind speeds projected for each county from (Klotzbach) is

assumed to follow a gamma distribution, and we impose 152 kt as the upper bound wind force

(strongest wind speed recorded post World War II in the U.S., which was during Hurricane

Camille in 1969). The Landfalling Hurricane Probability Project estimated the probability of one

or more events bringing three wind intensities, i.e., P(v≥ 34kt), P(v≥ 65kt), and P(v≥ 100kt),

for eleven coastal regions covering all counties in our analysis. These eleven coastal regions

group counties based on the frequency of major hurricane landfalls from 1900 to 1999. For each
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region, using these points on the cumulative distribution function of wind speeds, the parameters

of the best fit gamma probability distribution function of wind speeds are backed out using the

minimum distance estimation method (Drossos and Philippou 1980). The R-squared reported is

the average over regressions from 11 different wind regions (Klotzbach). As a robustness check,

Weibull and log-normal distributions are fit for each county as well. These have slightly lower R2

compared with that of the gamma distribution and generate similar estimates for the marginal

value of wetlands (Table 1.10).

The annual expected property damage due to tropical cyclones to a shoreline county can

be calculated by integrating the expected property damage over all the possible storm wind speeds

that could affect the county. It would be straightforward to use alternative projections for future

wind intensities in the modeling framework put forward here.

The marginal value of coastal wetlands across time is estimated by discounting the future

annual value of wetland to the current period. Assuming that the annual marginal value of

wetlands for storm protection stays the same in the future, then the formula can be expressed as:

T

∑
t=0

1
(1+ r)t

∂E(D|X−v)

∂W
, (1.8)

where r is the discount rate and t refers to year.

1.4.7 Wetland Loss in Florida and Hurricane Irma

The expected change in property damage can be forecasted under different wetland loss

scenarios for a given storm. Hurricane Irma made landfall in Florida on September 10, 2017,

as a Category 4 Hurricane (NOAA National Hurricane Center 2017) and influenced 19 coastal

counties at its landfall locations (Fig. 1.10). Since the storm path and wind speed radius data

from (Knapp et al. 2010, Demuth et al. 2006) have not been updated, we estimated wind

intensity experienced by each affected county using Hurricane Irma Advisory Archive data from
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the National Hurricane Center (NOAA National Hurricane Center 2017). We used our usual

methodology for the remaining explanatory variables. Total property damage caused by Hurricane

Irma is also not yet known, therefore we predict it using the model for two different scenarios:

first, using 2010 coastal wetland coverage; second, using coverage in 1996, that is, assuming

no loss. From 1996 to 2010, the total wetland coverage within the potential flooding area was

reduced by about 500 km2 (from 17900 km2 to 17400 km2), a loss about 2.8% of wetland coverage

in 1996. The forecasted property damage is $19.07 billion based on the wetland coverage in 1996

and $19.50 billion based on the wetland coverage in 2010. Thus, our model predicts that property

damage caused by Irma would have been reduced by $430 million, if the 500 km2 of wetlands

lost between 1996 and 2010 had been maintained.

1.5 Appendix

1.5.1 Additional Data Descriptions

Coastal wetlands. Included in this study are saltwater and freshwater wetlands located

within the coastal watershed boundary of U.S. states (U.S. Environmental Protection Agency).

The wetland coverage data is extracted from digital land cover maps provided by the NOAA

Coastal Change Analysis Program (C-CAP Land Cover Atlas). These land cover maps are created

based on 30-meter Landsat imagery and are updated every five years since 1996. Wetlands are

classified to palustrine and estuarine wetlands based on the salinity level where they located, and

each group is further categorized based on their vegetation types – forested, scrub/shrub, and

emergent wetlands. This analysis includes counties with more than a de minimis [over .2 km2 (50

acres)] coastal wetland coverage within the flooding area during a Category 5 hurricane.

Tropical cyclones. Storm trajectories, intensities and radii of various wind speeds are

collected from the International Best Track Archive for Climate Stewardship Dataset (Knapp et

al. 2010) and the Extended Best Track Dataset (Demuth et al. 2006).
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Storm damage. Storm property damage for each coastal county is from the Storm Event

Database, from NOAA (Storm Events Database). Note that the cost of economic disruption

included in (Costanza et al. 2008) is not covered here. These costs tend to be inaccurately

estimated and, given the need to evacuate people in the face of high winds and large scale loss of

utility services, may not be heavily influenced by wetland coverage. There are also injuries and

deaths associated with tropical cyclones but again these are less clearly tied to wetland coverage

than evacuation success. To the extent economic disruption cost and direct harm to people are

influenced by wetland coverage, our estimates will represent a lower bound.

Property value. Property value is estimated based on Census block group level housing

data from the 2000 and 2010 U.S. Censuses and the American Community Survey 5-Year

Estimates from 2005 to 2015. The 2000 U.S. Census data is retrieved from the IPUMS National

Historical Geographic Information System (Manson et al. 2017), while the rest of the housing data

is from the U.S. Census Bureau Topologically Integrated Geographic Encoding and Referencing

(TIGER) Product (U.S. Census Bureau). Linear interpolation is used to estimate housing value in

years not covered by these surveys.

Elevation. Elevation data is based on the National Elevation Dataset (NED) produced by

the United States Geological Survey (National Elevation Dataset).

Storm probability. Annual storm probability data for each coastal county is collected

from the United States Landfalling Hurricane Probability Project (Klotzbach et al.).

Building codes. The stringency of building codes for Atlantic and Gulf Coast states is

measured based on an assessment report by the Insurance Institute for Business and Home Safety

in 2015 (Insurance Institute for Business & Home Safety 2015). This report ranks hurricane-

prone states on a scale of 0-100 based on the effectiveness of the states’ residential building code

adoption and enforcement systems. The building code stringency dummy variable “code” equals

to 1 for states with an assessment score above the median score and 0 otherwise.
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1.5.2 Additional Figures

Figure 1.4: Paths of tropical cyclones hitting the United States (1996-2016).
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Figure 1.5: Property damage to U.S. shoreline counties during tropical cyclones from 1996 to
2016.
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Figure 1.6: Observed vs. predicted log property damage for each observation in the conditional
damage model.
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Figure 1.7: Coastal wetland coverage along the Atlantic and Gulf Coasts (2010).
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Figure 1.8: Annual county-level wetland values for storm protection services along Atlantic
and Gulf Coasts.

25



Figure 1.9: Kernel density plot of log of county level marginal wetland value.

Figure 1.10: Coastal wetlands distribution and storm surge area near Hurricane Irma landfall.
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1.5.3 Additional Tables

Table 1.2: Summary statistics of the conditional damage model.

Variable Description Units Mean SD Min Max
Property damage County property damage during a storm. Millions of 2016 dollars 122.75 792.22 0.00 12340.91

Wind Maximum sustained wind speed experienced knots 56.22 16.40 34.00 125.00
by a county.

Storm area Potential storm surge area. km2 620.76 906.76 0.92 5178.02

Wetland Coastal wetland coverage within the estimated km2 377.63 593.99 0.30 3636.25

storm surge area of a county. 377.63 593.99 0.30 3636.25

Property at risk Total amount of property value under the risk Millions of 2016 dollars 5437.80 16998.40 0.77 193456.90
of flooding during a storm. 5437.80 16998.40 0.77 193456.90

Right
0-1 dummy variable, equal to 1 if a county is 0.54 0.50 0 1
located to the right side of the storm path and 0 0.54 0.50 0 1
otherwise. 0.54 0.50 0 1

Freshwater wetlands
0-1 dummy variable, equal to 1 if freshwater 0.66 0.47 0 1
wetlands are dominant within the storm surge 0.66 0.47 0 1
area of a county and 0 otherwise. 0.66 0.47 0 1

Saltwater wetlands
0-1 dummy variable, equal to 1 if saltwater 0.34 0.47 0 1
wetlands are dominant within the storm 0.34 0.47 0 1
surge area of a county and 0 otherwise. 0.34 0.47 0 1

Forested wetlands
0-1 dummy variable, equal to 1 if forested 0.41 0.49 0 1
wetlands are dominant within the storm 0.41 0.49 0 1
surge area of a county and 0 otherwise. 0.41 0.49 0 1

Non-forested wetlands
0-1 dummy variable, equal to 1 if emergent 0.59 0.49 0 1
and shrub wetlands are dominant within the 0.59 0.49 0 1
storm surge area of a county and 0 otherwise. 0.59 0.49 0 1

Tropical storms
0-1 dummy variable, equal to 1 if a county 0.70 0.46 0 1
experienced tropical storm level wind intensity 0.70 0.46 0 1
(34-63 knots) and 0 otherwise. 0.70 0.46 0 1

Category 1 hurricanes
0-1 dummy variable, equal to 1 if a county 0.26 0.44 0 1
experienced Category 1 level wind 0.26 0.44 0 1
intensity (64-82 knots) and 0 otherwise. 0.26 0.44 0 1

Category 2 hurricanes
0-1 dummy variable, equal to 1 if a county 0.03 0.17 0 1
experienced Category 2 level wind 0.03 0.17 0 1
intensity (83-95 knots) and 0 otherwise. 0.03 0.17 0 1

Category 3-5 hurricanes
0-1 dummy variable, equal to 1 if a county 0.01 0.10 0 1
experienced Category 3-5 level wind 0.01 0.10 0 1
intensity (≥ 96 knots) and 0 otherwise. 0.01 0.10 0 1

Strict building codes
0-1 dummy variable, equal to 1 if 0.81 0.40 0 1
observation is in a state with above median 0.81 0.40 0 1
building code assessment score and 0 otherwise. 0.81 0.40 0 1

Less strict building codes
0-1 dummy variable, equal to 1 if 0.19 0.40 0 1
observation is in a state with below median 0.19 0.40 0 1
building code assessment score and 0 otherwise. 0.19 0.40 0 1
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Table 1.3: Summary statistics for property damage across different tropical cyclone classes.
Sample is comprised of 2,483 county by storm observations, of which 947 observations (38% of
total observations) experienced property damage (millions of 2016 dollars).

Observation For counties experiencing property damage
Cyclone Class Total Without With Median Mean Min Max SD

Damage Damage
Tropical Storm 1164 855 309 0.03 25.56 0.00 6845.40 389.64
C1 Hurricane 506 242 264 0.78 90.98 0.00 10497.57 913.36
C2 Hurricane 536 306 230 5.36 77.80 0.01 3189.76 302.88
C3 Hurricane 252 126 126 8.34 475.13 0.01 12340.91 1462.66
C4 Hurricane 25 7 18 3.51 364.68 0.06 3827.71 1051.08

Table 1.4: Probit model assessing effect of wetlands on reducing probability of experiencing
property damage during a tropical cyclone hitting the U.S. from 1996 to 2016. ∗P < 0.10,
∗∗P < 0.05, ∗∗∗P < 0.01. Robust standard errors are given in parenthesis.

(1)
Prob(damage)

Wetland -0.001∗∗

(0.0003)
Wind 0.035∗∗∗

(0.0026)
Storm area 0.001∗∗∗

(0.0002)
Property at risk -0.000

(0.0000)
Right 0.492∗∗∗

(0.0554)
Constant -2.414∗∗∗

(0.1373)
Log-likelihood -1403.412
N 2483
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Table 1.5: Regression results for alternative specifications of the conditional damage model.
Standard errors (in parentheses) are clustered two-ways at the county and storm level. ∗P <
0.10, ∗∗P < 0.05, ∗∗∗P < 0.01. Column 2 includes both linear and quadratic time trends, the
coefficients of which are significant different from zero jointly at the 95% confidence level.

(1) (2) (3) (4) (5)
Base Model Add time Drop Katrina Drop Katrina County FE

trends & Sandy
log(wetland) -0.5756∗∗∗ -0.6149∗∗∗ -0.5733∗∗∗ -0.6089∗∗∗ -1.6945∗

(0.1840) (0.1659) (0.1890) (0.1936) (0.9116)
log(wind) 7.1885∗∗∗ 7.2137∗∗∗ 7.0594∗∗∗ 7.0405∗∗∗ 7.5881∗∗∗

(0.5653) (0.6587) (0.5858) (0.6182) (0.5715)
Right 0.8821∗∗∗ 0.6610∗ 0.8151∗∗ 0.7844∗∗ 1.0383∗∗∗

(0.3129) (0.3668) (0.3151) (0.3340) (0.3250)
log(storm area) 0.4793∗∗ 0.5448∗∗∗ 0.4775∗∗ 0.4772∗ 1.5418

(0.2249) (0.1980) (0.2283) (0.2397) (1.0237)
log(property at risk) 0.3205∗∗∗ 0.2835∗∗∗ 0.3110∗∗∗ 0.3068∗∗∗ 0.0709

(0.0622) (0.0736) (0.0622) (0.0664) (0.2674)
State FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
County FE Yes
Time trends Yes
N 946 946 920 866 906
Adj. R2 0.52 0.48 0.50 0.50 0.49
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Table 1.6: Conditional damage model estimates (with the marginal effects of wetlands reported
in the table). Standard errors (in parentheses) are clustered two-ways at the county level and
storm level. ∗P < 0.10, ∗∗P < 0.05, ∗∗∗P < 0.01.

(1) (2) (3) (4) (5)
log(wetland) -0.5756∗∗∗

(0.1840)
Tropical storms × log(wetland) -0.5752∗∗∗

(0.1718)
C1 hurricanes × log(wetland) -0.5491∗∗∗

(0.1876)
C2 hurricanes × log(wetland) -0.4029∗∗

(0.1724)
C3-C5 hurricanes × log(wetland) -0.3501∗

(0.1873)
Freshwater wetlands × log(wetland) -0.5805∗∗∗

(0.1836)
Saltwater wetlands × log(wetland) -0.5731∗∗∗

(0.1863)
Non-forested wetlands × log(wetland) -0.5598∗∗∗

(0.1805)
Forested wetlands × log(wetland) -0.5796∗∗∗

(0.1857)
Strict building codes × log(wetland) -0.5044∗∗

(0.1979)
Less strict building codes × log(wetland) -0.8055∗∗∗

(0.2029)
Right 0.8821∗∗∗ 0.8749∗∗∗ 0.8828∗∗∗ 0.8880∗∗∗ 0.8825∗∗∗

(0.3129) (0.3200) (0.3147) (0.3183) (0.3128)
log(wind) 7.1885∗∗∗ 6.4122∗∗∗ 7.1928∗∗∗ 7.1953∗∗∗ 7.1929∗∗∗

(0.5653) (0.9744) (0.5683) (0.5668) (0.5668)
log(storm area) 0.4793∗∗ 0.4767∗∗ 0.4811∗∗ 0.4595∗∗ 0.4558∗

(0.2249) (0.2180) (0.2248) (0.2235) (0.2293)
log(property at risk) 0.3205∗∗∗ 0.3135∗∗∗ 0.3190∗∗∗ 0.3194*** 0.3179∗∗∗

(0.0622) (0.0599) (0.0638) (0.0624) (0.0617)
State FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
N 946 946 946 946 946
Adj. R2 0.52 0.53 0.52 0.52 0.52
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Table 1.7: Annual, 30-year and 100-year marginal value of coastal wetlands for storm protection
for Atlantic and Gulf shoreline counties (thousands of 2016 dollars per km2).

County Annual 30-year 100-year
Alabama Okaloosa 8,028 161,493 268,584
Baldwin 177 3,552 5,908 Palm Beach 3,360 67,599 112,425
Mobile 189 3,803 6,325 Pasco 928 18,668 31,048
Connecticut Pinellas 2,406 48,412 80,515
Fairfield 1,100 22,122 36,792 Putnam 69 1,381 2,296
Middlesex 138 2,772 4,610 Saint Johns 290 5,829 9,695
New Haven 195 3,930 6,536 Saint Lucie 383 7,711 12,825
New London 189 3,797 6,316 Santa Rosa 262 5,277 8,777
Delaware Sarasota 763 15,355 25,538
Kent 17 351 584 Taylor 16 329 548
New Castle 70 1,403 2,334 Volusia 98 1,976 3,286
Sussex 91 1,834 3,050 Wakulla 52 1,047 1,741
District of Columbia Walton 588 11,828 19,672
District of Columbia 3,184 64,060 106,540 Georgia
Florida Brantley 28 565 940
Bay 231 4,643 7,722 Bryan 25 507 843
Brevard 54 1,083 1,801 Camden 7 140 232
Broward 284 5,718 9,511 Charlton 16 325 541
Charlotte 305 6,132 10,199 Chatham 17 341 568
Citrus 77 1,546 2,571 Glynn 15 298 496
Clay 368 7,410 12,325 Liberty 8 160 267
Collier 38 764 1,271 McIntosh 5 107 178
Dixie 28 570 949 Wayne 3 58 97
Duval 270 5,441 9,049 Louisiana
Escambia 720 14,484 24,089 Ascension 205 4,117 6,847
Flagler 156 3,142 5,226 Assumption 39 791 1,316
Franklin 36 733 1,220 Calcasieu 159 3,203 5,327
Gulf 31 615 1,022 Cameron 3 66 111
Hernando 92 1,857 3,089 Iberia 43 865 1,439
Hillsborough 987 19,847 33,009 Jefferson 392 7,889 13,120
Indian River 593 11,919 19,824 Jefferson Davis 171 3,443 5,727
Jefferson 12 242 402 Lafourche 28 573 953
Lee 321 6,452 10,731 Livingston 69 1,380 2,295
Levy 17 341 566 Orleans 1,139 22,905 38,094
Liberty 5 92 153 Plaquemines 23 454 755
Manatee 806 16,207 26,954 Saint Bernard 36 721 1,199
Martin 1,617 32,535 54,110 Saint Charles 88 1,769 2,942
Miami-Dade 138 2,776 4,616 Saint James 58 1,167 1,941
Monroe 81 1,628 2,707 Saint John the Baptist 97 1,947 3,238
Nassau 89 1,788 2,973 Saint Martin 23 457 760
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Table 1.8: Annual, 30-year and 100-year marginal value of coastal wetlands for storm protection
for Atlantic and Gulf shoreline counties (thousands of 2016 dollars per km2) continued.

County Annual 30-year 100-year
Saint Mary 30 594 988 Jackson 161 3,232 5,376
Saint Tammany 289 5,806 9,655 New Hampshire
Tangipahoa 73 1,473 2,450 Rockingham 30 600 998
Terrebonne 24 480 798 Strafford 137 2,764 4,597
Vermilion 19 383 637 New Jersey
Maine Atlantic 79 1,598 2,658
Cumberland 2 37 62 Bergen 1,699 34,173 56,834
Hancock 2 39 65 Burlington 100 2,005 3,335
Knox 2 50 83 Camden 2,164 43,525 72,388
Lincoln 3 52 86 Cape May 113 2,267 3,770
Sagadahoc 1 19 31 Cumberland 13 254 422
Waldo 8 158 263 Gloucester 157 3,156 5,249
Washington 1 14 24 Hudson 31,456 632,802 1,052,434
York 2 47 79 Middlesex 522 10,501 17,465
Maryland Monmouth 1,858 37,375 62,160
Anne Arundel 181 3,646 6,063 Ocean 203 4,075 6,778
Baltimore 302 6,066 10,089 Salem 40 801 1,333
Calvert 98 1,963 3,265 Somerset 100,155 2,014,829 3,350,930
Caroline 29 593 987 Union 11,758 236,540 393,397
Cecil 86 1,735 2,885 New York
Charles 32 653 1,086 Bronx 1,984 39,903 66,365
Dorchester 4 71 118 Dutchess 1,003 20,180 33,562
Harford 48 966 1,606 Kings 6,202 124,757 207,487
Kent 50 1,009 1,679 Nassau 77 1,557 2,589
Prince George’s 61 1,227 2,041 New York 27,139 545,955 907,997
Queen Anne’s 95 1,919 3,192 Orange 1,677 33,738 56,112
Saint Mary’s 74 1,490 2,477 Putnam 440 8,843 14,707
Somerset 6 113 188 Queens 582 11,711 19,477
Talbot 65 1,298 2,159 Richmond 166 3,340 5,556
Wicomico 16 318 529 Rockland 1,035 20,830 34,643
Worcester 31 615 1,024 Suffolk 31 620 1,031
Massachusetts Ulster 650 13,084 21,760
Barnstable 915 18,405 30,610 Westchester 2,412 48,514 80,686
Bristol 1,118 22,487 37,399 North Carolina
Dukes 2,578 51,856 86,244 Beaufort 63 1,259 2,093
Essex 137 2,752 4,577 Bertie 2 36 60
Middlesex 77,783 1,564,761 2,602,406 Brunswick 174 3,499 5,819
Nantucket 2,330 46,869 77,950 Camden 5 95 158
Norfolk 3,239 65,163 108,376 Carteret 62 1,243 2,067
Plymouth 915 18,409 30,617 Chowan 19 379 630
Suffolk 15,019 302,147 502,511 Craven 103 2,072 3,446
Mississippi Currituck 9 179 298
Hancock 153 3,085 5,131 Dare 31 618 1,027
Harrison 800 16,098 26,773 Gates 4 71 118
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Table 1.9: Annual, 30-year and 100-year marginal value of coastal wetlands for storm protection
for Atlantic and Gulf shoreline counties (thousands of 2016 dollars per km2) continued.

County Annual 30-year 100-year
Hertford 5 110 182 San Patricio 249 5,007 8,327
Hyde 8 160 265 Victoria 27 548 911
Jones 45 900 1,496 Willacy 14 290 483
New Hanover 454 9,140 15,202 Virginia
Onslow 144 2,900 4,824 Accomack 8 155 258
Pamlico 38 757 1,259 Alexandria 40,812 821,025 1,365,475
Pasquotank 26 517 859 Arlington 8,042 161,785 269,071
Pender 51 1,030 1,713 Caroline 14 287 478
Perquimans 15 307 511 Charles City 9 183 304
Pitt 107 2,156 3,586 Chesapeake 45 909 1,511
Tyrrell 7 136 227 Chesterfield 69 1,393 2,317
Washington 32 644 1,071 Essex 22 435 724
Rhode Island Fairfax 518 10,425 17,338
Bristol 1,033 20,775 34,551 Gloucester 35 711 1,182
Kent 2,814 56,600 94,133 Hampton 686 13,791 22,936
Newport 707 14,219 23,647 Hanover 57 1,153 1,918
Providence 4,914 98,861 164,418 Henrico 80 1,608 2,675
Washington 826 16,609 27,623 Hopewell 751 15,104 25,119
South Carolina Isle of Wight 87 1,751 2,912
Beaufort 50 997 1,658 James City 74 1,494 2,485
Berkeley 61 1,235 2,054 King and Queen 11 221 368
Charleston 36 720 1,198 King George 52 1,050 1,746
Colleton 19 375 624 King William 19 389 648
Dorchester 170 3,427 5,700 Lancaster 124 2,491 4,142
Georgetown 34 680 1,132 Mathews 51 1,026 1,706
Hampton 80 1,603 2,666 Middlesex 120 2,421 4,027
Horry 116 2,328 3,871 New Kent 31 626 1,041
Jasper 15 303 504 Newport News 317 6,378 10,608
Texas Norfolk 6,714 135,072 224,643
Aransas 267 5,378 8,944 Northampton 11 213 354
Brazoria 146 2,931 4,875 Northumberland 120 2,407 4,003
Calhoun 93 1,873 3,115 Poquoson 136 2,743 4,562
Cameron 470 9,462 15,736 Portsmouth 3,118 62,720 104,311
Chambers 54 1,084 1,802 Prince George 15 302 503
Galveston 1,242 24,990 41,562 Prince William 493 9,917 16,492
Harris 5,904 118,764 197,521 Richmond 16 314 523
Jackson 39 779 1,296 Spotsylvania 771 15,514 25,803
Jefferson 134 2,698 4,488 Stafford 150 3,014 5,013
Kenedy 6 123 204 Suffolk 101 2,042 3,396
Kleberg 34 693 1,152 Surry 17 333 553
Matagorda 72 1,440 2,394 Virginia Beach 116 2,326 3,869
Nueces 2,965 59,642 99,193 Westmoreland 84 1,686 2,805
Orange 224 4,515 7,508 Williamsburg 1,418 28,530 47,448
Refugio 11 217 361 York 210 4,224 7,025
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Table 1.10: Summary statistics of the estimated marginal value of wetlands in storm protection
for each coastal county based on the best fit gamma distribution, log-normal distribution and
Weibull distribution (thousands of 2016 dollars).

Best fit wind R-squared Mean Median SD Min Max
probability distribution MV MV MV MV MV
Gamma 0.9995 1785 91 9085 0.7 100155
Log-normal 0.9982 1727 90 8558 0.7 91551
Weibull 0.9980 1769 93 8873 0.7 96335

Chapter 1, in full, is currently being prepared for submission for publication of the

material. Fanglin Sun; Richard Carson “Coastal Wetlands Reduce Property Damage during

Tropical Cyclones.” The dissertation author was the primary investigator and author of this

material.
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Chapter 2

Green Stimulus: Tax Incentives in China’s

Automobile Market

Abstract: In response to the global economic downturn of 2008-2009, many countries

adopted “green stimulus” measures. These measures sought to achieve short-run economic

recovery and long-run environmental benefits. We investigate the effects of a large-scale green

stimulus measure in China involving a sales tax cut for greener vehicles. In early 2009, with less

than a week’s notice, the Chinese government halved the sales tax on small engine size vehicles

from 10% to 5%. Using administrative data covering every car registered in China from 2006

to 2011, a difference-in-differences design is employed to estimate the impacts of the program

on new vehicle sales and the environment. The program played a significant role in stimulating

auto demand. Sales of eligible vehicles increased by 0.6 million cars, while sales of similar but

ineligible vehicles decreased by 0.2 million cars. Under plausible counterfactuals, the policy

reduced CO2 emissions. However, as a stand alone emission control policy it was quite expensive

as about 88% of the tax cut went to consumers who would have purchased a small car anyway.
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2.1 Introduction

The global economic downturn of 2008-2009 caused many governments to allocate siz-

able portions of their national stimulus packages towards programs that also had environmental

objectives. These programs are often referred to as “green stimulus” in the popular discourse

(United Nations Environment Programme 2009, Barbier 2010, International Labour Organization

2011). Green stimulus measures attempt to stimulate short-run economic recovery while simulta-

neously advancing long-run environmental goals. These include direct investments in renewable

energy and smart grids, incentive programs improving the energy efficiency of buildings and

vehicles, and policies supporting water, waste and pollution management (Robins et al. 2009).

South Korea led the world by committing over 80% of its total expenditure of $38 billion to green

stimulus, while China took first place in terms of the overall amount of green stimulus – $220

billion (37% of its total stimulus package) – followed by the U.S. ($94 billion, 12% of its total

stimulus package). The widespread promotion of a low-carbon green recovery around the world

reflects common concerns over climate change, energy security and pollution.

It is often difficult to achieve multiple goals with a single policy (Tinbergen 1952), espe-

cially in the case of green stimulus where the two goals – economic recovery and environmental

protection – are at least some degree contradictory. Understanding the effectiveness of green stim-

ulus measures in achieving both of their goals is important, particularly in light of the vast sums

spent on these programs. This is challenging given the lack of information on what economic

outcomes would have occurred in the absence of the green stimulus programs.

We investigate the effects of a large-scale green stimulus measure in China: a major sales

tax cut for greener vehicles. In early 2009, with less than a week’s notice, the Chinese government

cut the sales tax on small engine size vehicles (no larger than 1.6 Liter) from 10% to 5%. A year

later in 2010, the tax rate was raised to 7.5%. The average savings per small car due to the tax cut

was over $670, a large incentive given that the average annual income per capita in urban areas of
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China was below $3,200 during this period. The tax cut was intended to achieve dual goals: to

invigorate the auto industry by stimulating vehicle demand, and to reduce carbon emissions by

shifting the motor vehicle fleet toward small cars. We examine the impacts of the tax cut on both

new vehicle sales and carbon emissions, using administrative data covering every new car sold in

China.

Stimulus programs specifically targeting the auto industry have been widely adopted by

countries around the world for two reasons. First, the automobile industry is usually one of the

most hard hit sectors during recessions. Demand fell sharply in major car-producing countries

such as the U.S. and Japan after mid-2008.1 Consumers tend to postpone their purchases of

durable goods due to uncertainty about future economic conditions and reduced access to credit

during financial crises (Bloom 2014). Second, stimulus of the auto industry is thought to have a

large multiplier effect since it is strongly linked with many other sectors such as steel, rubber, and

glass (Haugh et al. 2010). As such, countries fear that a collapse of their auto industry would

have large impacts on the broader economy, deepening the recession.

Governments have provided various forms of support for the automobile industry based

on the growth stage of the industry. Previous studies focus on stimulus policies implemented in

countries with mature automobile markets where vehicle ownership is high and close to saturation.

One prominent example was the “Cash-for-Clunkers” program implemented in the United States.

This program attempted to boost auto demand through vehicle scrappage programs in which

subsidies were offered for trading-in older vehicles and purchasing new vehicles with higher

energy efficiency. Over 15 countries implemented similar programs in response to the recession

(Haugh et al. 2010). Unlike developed countries, China attempted to accelerate auto demand

through encouraging consumers to purchase small cars as the first car in their families. The rapid

expansion of the Chinese middle class in the 2000s led to increased demand for cars. Cars went

from a luxury item for wealthy consumers to an essential component of everyday life. As the

1See https://www.nytimes.com/2008/10/02/business/02sales.html.
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vehicle fleet expanded, initial choices could significantly impact future vehicle emissions, which

motivated the Chinese government to incorporate environmental goals into its stimulus policies.

The tax cut for small cars in China provides an opportunity to examine the effects of green

stimulus measures in a middle income developing country context. China’s policy design enables

us to isolate its impact to a greater extent than previous studies. The policy was announced

just six days before it was implemented, giving consumers and automakers little time to adjust

their behavior ahead of time. The clear cutoffs in both time and eligibility allow us to estimate

policy effects in a difference-in-differences framework by comparing vehicle sales of models

with different levels of exposure to the policy before and after it began. An unexpected extension

of the program near the end of its planned end date, together with the change in magnitude of

the tax rate, allows us to look at whether the generosity of the tax cut mattered. The automobile

market in China developed relatively late, but China is now both the largest auto manufacturing

country and the largest auto market in the world. As such, China’s car market is of considerable

interest in its own right. The tax cut provides a good opportunity to study how consumers and

suppliers in a rapidly developing market respond to fiscal stimulus initiatives.

During 2009, the first year of the policy, sales for small (eligible) cars were boosted by

16%. Sales of vehicles barely missing the program’s eligibility cutoff were reduced by 19%,

likely as consumers substituted towards smaller cars. Since small cars make up the largest part of

the market, overall car sales went up. The policy effects were more muted during the second year.

The increase in sales of small cars was about 0.6 million cars in 2009, about 12% of the total

sales of small cars. This implies that over 88% of the tax cut went to consumers who would have

purchased a small car anyway during the policy. The large fraction of inframarginal consumers

suggest that the policy was an expensive way to stimulate demand. Of the 0.6 million increase in

sales of small cars induced by the policy, approximately 32% were from consumers who changed

their purchase plans from medium engine size cars to small engine size cars, and the rest were

from consumers pulling forward demand from the future to the policy period.

41



Using these results, we investigate the extent to which the green component of the policy

contributed to reducing gasoline consumption and emissions. The net impact of the policy on the

environment is not clear ex ante. The engine size restrictions on eligibility can reduce emissions

in the long run by inducing consumers to switch from ineligible models to eligible models with

similar attributes. However, the program can increase emissions in the current period by inducing

consumers to pull forward demand from the future. To get a comprehensive understanding of the

environmental effects, we estimate emissions under two plausible counterfactual scenarios: (1) no

program; and (2) an across-the-board tax reduction for all cars, holding the program’s fiscal cost

constant. We find that the tax cut moderately reduced carbon emissions and other environmental

pollutants, but the cost of the emission reductions was very high due to the large proportion of

inframarginal consumers.

A key contribution of this study is its provision of the first evidence on the effectiveness

of a major green stimulus program during the Global Financial Crisis in a developing country

context. Previous studies mainly focus on scrappage programs adopted in developed countries

during the global recession. In particular, the “Cash-for-Clunkers” program has received much

attention due to its popularity among consumers (Mian and Sufi 2012, Copeland and Kahn 2013,

Li and Wei 2013, Li et al. 2013, Hoekstra et al. 2017). The program provided an average

subsidy of $4,200 per order, and exhausted the fund of $3 billion within 30 days, increasing new

vehicle sales by about 0.37 million (Li et al. 2013). The surge in auto purchases induced by

the program was largely offset by a sharp drop in purchases in subsequent months. Compared

to the “Cash-for-Clunkers” program, the tax incentives provided by the Chinese program were

much smaller in absolute terms, about $670 per car, but we estimate that it increased sales by

0.6 million in 2009. Our results suggest that Chinese consumers were more sensitive to vehicle

price changes, likely due to a much lower average annual income. Another contribution is our

examination of the Chinese auto market, which is young, rapidly growing and large, and still

barely explored by the literature. Lessons learned here may be instructive to other emerging car
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markets.

Our study adds to the emerging literature studying the impacts of different emission

control practices targeting motor vehicles in China. A series of policies have been designed:

tightening new vehicle fuel economy standards (Oliver 2009), limiting car purchases (Li 2017),

restricting driving (Chen et al. 2013, Viard and Fu 2015), and changing vehicle consumption and

fuel taxes (Xiao and Ju 2014), among many others. However, these policies did not specifically

target small engine size vehicles. The one exception is a recent study by Chen et al. (2017) that

investigates the effects of an alternative policy instrument targeted at energy efficient vehicles –

a five-year flat rate subsidy program (about $430 per car) implemented after the policy studied

here, with much more complicated eligibility rules that not only considered engine size, but

also other features such as fuel economy, curb mass, transmission type, and emission standard

levels. The green stimulus measure studied in this paper differs from these policies because it was

designed with the primary goal of stimulating vehicle demand and averting industry downturn.

Furthermore, as with most fiscal stimulus policies, the tax cut was temporary, while other green

policies were designed for a much longer time horizon. Due to its short-term nature, the policy

pulled forward a substantial portion of demand from the future, potentially offsetting part of the

emission reduction because these are largely first time car buyers.

Our rich dataset allow us to explore the heterogeneous effects of the policy across cities

with different levels of economic development and automakers with different exposure to the

policy. Unlike subsidies for energy efficient products, which have often been criticized for

disproportionately benefiting the wealthy (Allcott et al. 2015, Borenstein and Davis 2016, Davis

and Knittel 2016), we find this tax cut policy had stronger effects in stimulating demand for

eligible cars in less developed regions of China.
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2.2 Policy Background

China’s passenger vehicle market has recorded strong growth in production and sales

since China joined the World Trade Organization in 2001 (see Fig. 2.1).2 In order to improve

technology and expand production capacity, the Chinese government has gradually eased barriers

to market access and encouraged foreign manufacturers to invest in the Chinese auto market

through joint ventures with local partners. By the end of 2008, 34 domestic auto manufacturers

had been established in China, consisting of 75 vehicle subsidiary companies (about 30% are joint

ventures) and 78 brands.3 On the demand side, rapid economic growth has made cars affordable

for a growing fraction of Chinese families. The boom in the Chinese auto industry has been

mainly driven by the domestic market since both exports and imports are at relatively low levels

(less than 5% of production and sales in 2008). As such, the number of vehicles produced in

China annually more or less equals the number of vehicles sold there.

Figure 2.1: Passenger Vehicle Sales in Major Auto Markets (2005-2017).Note: Data collected
from the International Organization of Motor Vehicle Manufacturers, www.oica.net.

2Passenger vehicles consists of vehicles designed for carrying passengers with less than ten seats. They made up
70% of total auto sales in China in 2008. This study focus on analyzing this market since it is the relevant one for the
tax cut. Definitions of vehicle categorizations and market share data come from the International Organization of
Motor Vehicle Manufacturers website, www.oica.net.

3During the substantial growth of the Chinese auto industry, many mergers, acquisitions, and changes in brand
names happened in the industry, and the numbers reported here are based on the authors’ counts from the 2008
vehicle registration data together with information from each automaker’s Wikipedia page.
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The double-digit year-to-year growth in Chinese auto sales dipped below 6% in 2008, its

slowest during the 2000s, when the global financial crisis severely hit the auto industry in other

countries. The negative impacts were even more serious in the United States – demand dropped

sharply in 2008, by 26% compared to the previous year.4 Leading auto manufacturing companies

such as General Motors and Chrysler were on the verge of bankruptcy and sought bailouts at the

end of 2008.5 After witnessing the collapse of the auto industry in mature markets, in early 2009,

the Chinese government quickly came up with stimulus measures, halving the vehicle sales tax

for small cars in an effort to avert a sharper slowdown in domestic demand.

All cars sold in China had been subject to a 10% vehicle sales tax since 2001.6 On January

14, 2009, the State Council of China announced, in a bid to boost the domestic car demand and to

facilitate emission cuts, that the vehicle sales tax would be cut to 5% for cars with engine sizes no

larger than 1.6 liters (L) during the period January 20 to December 31, 2009.7 After that date the

tax rate was expected to return to its normal 10%. However, the State Administration of Taxation

(SAT) decided to extend the policy for an extra year, but raised the tax rate from 5% to 7.5% in

2010 (See Fig. 2.2). The tax rate went back to 10% after 2011. During the tax cut, 11 million

cars out of the 17 million cars sold from 2009 to 2010 met the requirements for the tax reduction,

about 60% of the total market. With the average price of eligible vehicles sold during the policy

being about 115,000 RMB (about $17,000), the average tax savings for each eligible vehicle are

about 4,900 RMB in 2009 and 2,450 RMB in 2010 (about $720 and $360 in 2009 and 2010).
4See https://www.nytimes.com/2008/10/02/business/02sales.html.
5See https://www.nytimes.com/2008/12/09/business/09auto.html.
6Consumers are required to pay the sales tax to local vehicle registration departments within 60 days of the

purchase date. In most cases, consumers pay the tax through dealers to avoid the time consuming processes of
registration. To calculate the amount of vehicle sales tax, the 17% value added tax should be excluded from
the transaction price. Thus, the formula can be expressed as Vehicle Sales Tax = Vehicle Transaction Price

(1+17%) ∗ 10%. See
http://www.gov.cn/banshi/2005-08/19/content 24868.htm.

7Details of policy descriptions are available through www.chinatax.gov.cn. The tax cut for small cars was also
considered as one of the major economic measures included in the energy conservation and emission reduction plan
in 2009, available through http://www.gov.cn/zwgk/2009-07/31/content 1380418.htm.
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Figure 2.2: Tax Cut Policy Time Line. Vehicle sales tax rate is indicated by the percentages.

Several features of this policy make it particular conducive for our empirical analysis.

First, the policy was announced less than a week before it was launched, creating a real shock to

the automobile market in China. The possibility of a sales tax reduction targeting small engine

size vehicles was first mentioned in online news published in December 2008, when the China

Passenger Car Association submitted a report to the central government of China, discussing

a series of suggestions to develop the domestic auto market.8 However, neither the market nor

the report established a clear definition of small cars. Furthermore, it was unclear whether the

central government would support the suggestion, when the policy would be implemented, or

the magnitude of the tax reductions. Thus, with all these uncertainties, our estimated policy

effects are not expected to be dampened by auto makers and consumers adjusting their original

production or purchase plans before the policy was introduced.

Another nice feature of the policy is that it has a clear and simple eligibility rule based on

an important attribute of the car: engine size. This is a key factor that influences the performance

and energy consumption of a vehicle. Generally, vehicles with larger engines consume more

fuel, holding other characteristics constant. The Chinese government’s intent was to encourage

consumers to purchase smaller and more energy efficient vehicles by designing the tax incentives

based on engine size. The policy is likely to be more beneficial for auto makers with large share of

existing models eligible for the tax cut since it would be very costly for auto makers to adjust the

8See http://auto.gasgoo.com/News/2008/12/061044154415.shtml.

46



engine size of an existing car model or to expand production capacity in the short run, especially

during the initial year of the policy.9

2.3 Data

We create a novel and comprehensive dataset of the Chinese automobile market by

merging together several datasets, including administrative vehicle registration records, vehicle

model characteristics, and city-level socioeconomic conditions.

The administrative vehicle registration data was collected from local Vehicle Management

Offices in each city, containing monthly records on every new vehicle registered in China from

2006 to 2011. The complete set of registration records includes data from 41,305,947 vehicles,

together with major vehicle attributes such as engine size, transmission type, segment, curb

weight, and vehicle dimensions. Information on engine size is crucial for our empirical analysis

because it enables us to separately identify vehicles of the same model but different engine sizes.

In this analysis, we define a “vehicle model” at the model by engine size level (e.g., a 1.6 L

Corolla and a 1.8 L Corolla are considered as two vehicle models).

Each vehicle is registered at the trim level with a unique product ID.10 Using the product

ID, we merge the registration data with the Vehicle Fuel Consumption Database from the Ministry

of Industry and Information Technology of China to get the average fuel economy for each

model and subsequently merge it with data collected from Haicheji.com, a major vehicle trading

website that provides information on the manufacturer suggested price and other features for each

model.11

9Any change in the design of main vehicle features including engines requires a lengthy application and approval
process (Ministry of Industry and Information Technology of China, www.miit.gov.cn).

10All vehicles produced in China are required to have a product ID which is an identification code designed based
on the National Standard GB 9417-88 Motor Vehicles-type and Model Designation.

11The Vehicle Fuel Consumption Database is available through http://chaxun.miit.gov.cn/asopCmsSearch/. We
also collect vehicle information from other primary online vehicle trading websites including Quanna, Sohu,
Autohome to cross check the data from Haicheji and to fill in some missing information from Haicheji.
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Moreover, we control for the gasoline expenditure for each vehicle model in the empirical

analysis since fuel cost is an important factor determining vehicle choices. The monthly retail

gasoline prices in each city was collected from the gasoline price adjustment announcements by

the National Development and Reform Commission of China.12 The average gasoline price in

China followed an increasing trend during the study period, with much less volatility compared

to the U.S. retail gasoline price and the Brent crude oil spot price (see Fig. 2.10).

Lastly, to investigate the extent to which the policy had heterogeneous effects across cities

with different socio-economic conditions, we use city level demographic data from the China

City Statistical Year Book and Provincial Statistical Year Book during the study period.

Table 2.1 provides summary statistics for the final sample. It includes 3,352,429 city-

month-model-level observations, covering 39,815,318 vehicles, about 96% of all new passenger

vehicles sold across 361 cities in China between 2006 to 2011.13 We focus on vehicle models

with engine size no larger 2.5 L as the excluded vehicle models are dominated by luxury sedans,

large SUVs, or MPVs, which only make up about 2% of the total market share but highly skew

the price distribution (the average price of models with engine size above 2.5 L is about 506,000

RMB, over four times higher than that of eligible models during the study period). Though

including these vehicles does not significantly change our estimation results (see Section 8).

The policy may change the market composition by encouraging consumers to switch to

eligible cars. Fig. 2.3 shows the market share by engine size one year before and after the policy

was implemented (see Fig. 2.11 for data of other years). Market share of vehicles eligible for the

tax cut increased from 55% in 2008 to 64% one year after the policy was implemented. Among

eligible vehicle models, 1.6 L vehicles were the most popular ones, making up over half of sales

12Retail gasoline prices in China are strictly regulated by the central government. From 2006 to 2011, The National
Development and Reform Commission of China (NDRC) had adjusted the gasoline prices in different provinces 21
times. Retail gasoline prices schedules are available through http://www.ndrc.gov.cn/.

13The rest 4% (about 1.5 million cars) of the total number of cars sold in China during the study period are
excluded due to having reporting errors in registered locations (27,941 vehicles), missing price data (555,784 vehicles
could not be matched with vehicle information data from Haicheji), or missing fuel economy data (511 vehicles), or
having engine sizes above 2.5 L (906,393 vehicles).
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Table 2.1: Summary Statistics of Vehicle and City Characteristics

Mean SD Min Max
Panel 1: Passenger Vehicles Sold in China (2006-2011)
Monthly sales by city-model 11.88 35.47 1.00 4635.00
Engine size (L) 1.73 0.40 0.00 2.50
Fuel economy (L/100km) 7.93 1.43 0.00 13.50
Curb Weight (1000kg) 1.31 0.26 0.60 2.30
Volume (m3) 11.78 1.92 6.45 18.66
Horsepower (hp) 119.93 33.95 15.00 262.00
MSRP (1000RMB) 170.17 107.37 25.72 879.87
Fuel cost (RMB/100km) 51.88 11.87 0 132.09

Share of Vehicle Segments
Sedan 0.80 0.40 0.00 1.00
SUV 0.13 0.34 0.00 1.00
MPV 0.07 0.25 0.00 1.00

Share of Vehicle Brand by Country
China 0.38 0.48 0.00 1.00
Japan 0.25 0.43 0.00 1.00
Europe 0.21 0.41 0.00 1.00
US 0.10 0.30 0.00 1.00
Korea 0.07 0.25 0.00 1.00

Panel 2: City Socio-economic Conditions (2008)
GDP per capita (1000RMB) 23.45 18.29 3.60 106.86
Salary (1000RMB) 24.79 6.90 11.71 56.56
Population density (person/km2) 357.13 315.70 0.28 2454.31
Share of eligible vehicles 0.57 0.10 0.26 0.84

This table describes the summary statistics for the city-month-model level
data of passengers vehicles sold in China from 2006 to 2011. The total
number of observations is 3,352,429, including 39,815,318 vehicles. Fuel
cost refers to the estimated gasoline expenditure of driving 100km for each
vehicle model.
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of eligible cars in 2009. Detailed comparisons of vehicle features across eligible and ineligible

models are discussed in Section 3.

Figure 2.3: Market Share of New Vehicle Sales by Engine Size Group (2008-2009)

2.4 Empirical Model

2.4.1 Research Design

To estimate the policy effects on sales, our empirical strategy exploits across-model

variation in exposure to the tax cut. All newly purchased vehicles are categorized into three

groups based on engine size: small, medium and large vehicles. Table 2.8 presents major

characteristics of vehicle models by engine size sold during 2006 to 2011. The small vehicle

category includes models qualifying for the tax cut (engine size less than or equal to 1.6 L), which

are directly influenced by the policy. The medium vehicles consist of models that are not eligible

for the policy but with an engine size very close to the regulation cut off (engine size equal to 1.7

L or 1.8 L).14 We refer to this group of vehicles as the switcher group as many vehicle models in

this category are comparable in price and vehicle characteristics, such as horse power, weight and

interior space. Thus consumers at the margin are likely to trade off in some vehicle features such

as horse power and switch to smaller engine cars. We consider the small and medium groups as

14Only two models have a 1.7 L engine size and they are grouped into medium vehicles.
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treatment groups and the large engine size group, consisting models with engine size above 1.8 L,

as control group. Sales of large vehicle models are less likely to be influenced by the policy since

the gap in prices and attributes of these vehicles are likely too big for consumers to substitute to

small engine cars.

1.8 L is a reasonable cutoff dividing the medium and large vehicle groups as there is much

overlap in price, segment type, and other vehicle features across the small and medium groups,

but much less with the large group. First, price is one of the most important factors in vehicle

purchase decisions. This is especially the case during the study period when the auto loan and

financing system was not well developed in China and about 90% of new vehicle purchases were

purchased with cash (Huang and Hecker 2015). Many of the 1.8 L models are priced roughly in

the range of eligible models, especially 1.6 L models (Table 2.8). 1.9-2.0 L vehicles, however, are

much more expensive, with the average price over 70% higher than that of 1.6 L models (251,000

RMB vs 147,000 RMB).

Second, 1.9-2.0 L vehicles also tend to be much larger, heavier and more powerful

compared to eligible vehicles. In terms of segment types, over 85% of cars with 1.7-1.8 L

engine size are classified as microcompact, subcompact or compact sedans, which are the primary

segment types (96%) of eligible vehicles. 1.9-2.0 L vehicles, on the other hand, mainly consist of

intermediate sedans, SUVs, and MPVs, while microcompact, subcompact or compact sedans take

less than 12%. Moreover, the average horsepower of 1.9-2.0 L models is 35% higher than that of

1.6 L models. It is therefore relatively less likely that consumers who planned to buy 1.9-2.0 L

models would be willing to switch to small cars during the policy.

Once the policy is implemented, we expect to see an upsurge in sales of small engine size

cars. The increase might be induced by consumer behavior on two margins – vehicle choices

(switching effect) or purchase timing (pull forward effect), with different implications for emission

control. Fig. 2.4 illustrates the main potential policy impacts on consumer behavior. First, the

switching effect refers to consumers who would have purchased a medium car but switch to an
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eligible car since the policy lowers the relative price of small engine size vehicles (Fig. 2.4, arrow

1 ). The switching effect is expected to be stronger when consumers originally plan to purchase

vehicles with engine size slightly above the policy requirement but having other attributes similar

to the eligible vehicle models. Consumers in this group contribute to carbon control through

purchasing a more energy-efficient vehicle.

Figure 2.4: Potential Policy Impacts on Consumer Behavior. Rows represent the original vehicle
choices and columns represent the timing. Arrows indicate the expected direction of the policy
effects.

Second, the pull forward effect means that consumers who would have purchased a new

car in the near future may bring forward their purchase to take the advantage of the policy. These

include consumers who planned to buy a small car in the future (Fig. 2.4, arrow 2 ) or consumers

who planned to buy a medium car in the future (Fig. 2.4, arrow 3 ). The former consumers

would increase emissions, and the amount depends on the extent to which the policy stimulates

demand from the future. The latter consumers adjust both their vehicle choices and purchase

timing because of the policy, thus the impacts on emissions are ambiguous.

There might be another channel within the pull forward effects. The policy may induce

consumers who never wanted to buy a car to make a purchase during the policy period. We

believe this group of people is small because very few people in China use loans to buy cars

during our study period. Given the price of a vehicle relative to the average income, the 5% tax

reduction is expected to mainly influence consumers who are close buying a new car and have

saved most of the money to make the purchase. After the policy is announced, they are then able
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to come up with the cash or credit needed to purchase a new vehicle. In any case, if this group is

large, then we underestimate the effects on emissions.

We see suggestive evidence of the switching effect and pull forward effect by looking at

the monthly sales of new vehicles falling into the three categories described above (Fig. 2.5). The

logarithm of sales of vehicles in the three categories followed parallel trends before the policy was

announced, which provides supporting evidence that the large vehicles group is a valid control

group to vehicles in the other two categories. We do not observe a drop in sales of eligible models

in the months right before the policy went into force, which suggests that consumers did not

anticipate the tax cut, in which case they likely would have delayed their purchases by a few

months. The sales of all cars were following a growing trend from 2006 to 2011, but a sudden

jump in monthly sales of small engine size vehicles is visible immediately after the tax policy

took force in January 2009. On the other hand, sales of large cars remain relatively stable over

time.

Fig. 2.5 also provides evidences of the pulling forward effects. Absent the policy, annual

sales of all vehicles peak in the month before the Chinese New Year.15 During the policy period,

peak sales of ineligible cars still occurred in January, but for small cars the peak is observed in

December instead. This is due to the fact that the policy was expected to end in December and

many consumers pulled forward their demand to take advantage of the discount.

15The Chinese New Year follows the lunar calendar, and most of the time it happens around February, so the peaks
are usually in January.
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Figure 2.5: Monthly New Vehicle Sales by Engine Size Group (2006-2011). Vertical dashed
lines indicate the start and end of the two year tax cut, and the announcement of the extension of
the program with adjusted tax rate happened in December 2010.

2.4.2 Econometric Model

In the empirical analysis, we first estimate the switching effect and pull forward effect

on new vehicle sales, then in Section 6, we further decompose the pull forward effect with some

additional assumptions to estimate the impacts of policy on emissions.

To analyze the effects of the policy on new vehicle sales, we use a difference-in-difference

framework, comparing sales of vehicle models with different levels of exposure to the policy

before and after the policy was implemented. The regression model can be expressed as follow:

ln(Qmct) =β1(Smallm×Taxt)+β2(Mediumm×Taxt)

+β3ln(FuelCostmct)+αcm +λct + εmct ,

(2.1)

where Qmct is the monthly sales for a certain car model m in city c of year-month t. Smallm and
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Mediumm are dummy variables for small and medium engine size vehicles. The omitted category

consists of large vehicles with an engine size above 1.8 L. Taxt is an indicator for the period

during which the policy was in place, equal to 1 after Jan 2009 and 0 otherwise.

αcm is a city-model fixed effect which not only captures time invariant model-specific

attributes but also allows each city to have a unique preference for a specific vehicle model due

to, for example, the city’s geography (larger engine size vehicles might be more popular in cities

located in mountainous areas), population density, or whether an automaker is located in the city.

Furthermore, China is a large country covering various climatic zones. Thus, to control for the

seasonality of vehicle sales in each city, a city-year-month fixed effect, λct , is included.

We also control for the expected fuel costs, ln(FuelCostmct), of each vehicle model, which

play an important role in determining consumers’ vehicle choices (Li et al. 2009; Klier and Linn

2010). An increase in gasoline price could reduce new car sales of less fuel efficient models, thus

reducing sales of models with larger engine size. ln(FuelCostmct) is the logarithm of the gasoline

expenditure required to drive 100 km for each model, which is constructed based on monthly

retail gasoline prices in different cities and the fuel use intensity of each vehicle model.

Based on the assumption that unobserved demand and supply shocks during the policy

period are the same across the three groups, β1 and β2 estimate the average equilibrium effect

of the tax cut on sales of small and medium vehicles, respectively. We believe that, from a

policy design perspective, the equilibrium effect is the relevant estimate for analyzing the tax

cut program. Based on an additional assumption that only consumers who planned to purchase

vehicles with engine size barely above the policy cutoff would be willing to switch to small cars

due to the policy, β2 identifies the switching effect on sales (Fig. 2.4, 1 ), and β1−β2 identifies

the pull forward effect.

Next, in order to study how the policy effects evolve over time throughout the policy

period, we employ a flexible difference-in-differences model that estimates a separate policy
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effect in each month. The regression model can be expressed as follows:

ln(Qmct) =
K

∑
0

β
k
1(Smallm×1(t = k)+

K

∑
0

β
k
2(Mediumm×1(t = k))

+β3ln(FuelCostmct)+αm +λt + εmct ,

(2.2)

where k refers to each month between 2009-2011, and βk
1 and βk

2 are the coefficients of primary

interest that capture the monthly policy effects on small and medium vehicles. This allows us to

explore in more depth the intertemporal substitution effects of the policy.

2.5 Results

2.5.1 Effects on Sales

Table 2.2 presents our main regression results over different time horizons. Since the

one-year tax cut in 2009 was unexpectedly extended to the end of 2010, but with a different rate,

we first examine the effects of the first year of the tax cut (Model 1); next, we extend the sample

to investigate the average effect on new vehicle sales during 2009 and 2010 and compare the

effects during these two years (Columns 2 and 3). Across all three models, standard errors are

clustered two-ways at the automaker and city level to allow the error terms to be correlated across

models and over time within an automaker and within a city.

The results of Model 1 suggest that the 5% tax cut in 2009 increased sales of small cars

by around 17% (about 160 small cars per city per month), while reducing sales of medium

cars by 22% (about 36 medium cars per city per month).16 The estimation results are robust

across various specifications – controlling for vehicle segment sales trends, vehicle model age, or

other national or local policies that might affect sales of different engine size groups (detailed

16The exact percentage value of the average effect on sales of small and medium cars was calculated by
100[exp(0.158)-1]≈17 and 100[exp(0.195)-1]≈22, respectively.]
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discussions in Section 8).

When we extend the sample to 2010 (Model 2), the average policy effect on sales of small

cars is no longer statistically different from zero. The increase in sales of small cars was mainly

driven by the first year of the policy (Model 3). This could be explained through two channels.

First, with the expectation that the tax reduction would end in December 2009, consumers who

intended to purchase small cars or medium cars in 2010 may have pulled forward their demand

and made the purchase in 2009. Second, the tax rate was raised from 5% to 7.5% in 2010, which

may have been less attractive.

The coefficient estimate for fuel costs, ln(FuelCostmct), is negative, as expected, but it is

not significantly different from zero across all specifications. It is likely that the across vehicle

model variations of fuel cost are largely absorbed by the model-year-month fixed effects since

gasoline prices are adjusted at the same time by the same amount across the nation and the

differences of gasoline price across cities is relatively small.

2.5.2 Effects on the Timing of Purchase

Fig. 2.6 and Fig. 2.7 plots the estimated policy effects on new car sales in each month after

the tax cut was implemented using the average monthly sales before 2009 as the baseline (Fig.

2.6 plots the estimation parameters and Fig. 2.7 transforms the parameters to number of cars).

The first year of the tax cut resulted in a significant increase in small engine car sales every month.

The increase was the weakest in January, the first month when the policy implemented. This is

probably because the policy began in late January (January 20) and it took a while for consumers

to learn about it before the sales really took off in February. From February to December of

2009, the policy results in a U-shape trend in the effect on eligible car sales. This is consistent

with the intuition that, at the beginning, consumers are excited about the new policy, while

their enthusiasm cools down later on. However, consumers rush to make their purchases when

approaching the end of the policy period, in expectation of a higher tax rate to follow.
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Table 2.2: Average Policy Effects on Sales of Small and Medium Vehicles.

(1) (2) (3)
2006–2009 2006–2010 2006–2010

Small × Tax 0.158∗∗ 0.096
(0.066) (0.073)

Medium × Tax -0.195∗ -0.237∗∗

(0.100) (0.108)
Small× Tax2009 0.128∗

(0.072)
Small× Tax2010 0.060

(0.079)
Medium× Tax2009 -0.204∗

(0.110)
Medium× Tax2010 -0.273∗∗

(0.115)
City-Model FEs Yes Yes Yes
City-Year-Month FEs Yes Yes Yes
Fuel Costs Yes Yes Yes
N 1,843,687 2,559,697 2,559,697
Number of vehicles 20,304,815 29,979,661 29,979,661
adj. R2 0.71 0.72 0.72

Standard errors in parentheses are clustered two-ways at the automaker
and city level. Column 1 includes passenger vehicles sold between 2006
and 2009 while Column 2 and 3 extend the sample to include passenger
vehicles sold in 2010 as well.∗ p < 0.10, ∗∗ p < 0.05,∗∗∗ p < .01.
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In the first quarter of 2010, sales of eligible cars significantly dropped. This might due to

the fact that the policy was expected to end – many consumers who planned to buy cars in these

months already made the purchase in 2009. Like the first year, the policy created another small

car sales spike in the last month of the policy (December 2010).

On the other hand, the policy decreased sales of medium cars during the policy, and the

reduction continued to exist even after the policy ended for at least 12 months. There are several

possible explanations for this long term change in medium car sales. First, the policy shifted

people’s preferences towards small cars as more people realized the benefits in terms of fuel

costs and convenience for parking or due to peer effects and so on. Second, in the long run,

automakers can adjust their production agenda by cutting medium car production and reallocating

their capital and labor towards producing more small cars or introducing new models with small

engines. Furthermore, near the end of the two-year tax cut, the Chinese government launched a

long term subsidy program (3,000 RMB/vehicle, about $440/vehicle) targeting certain car models

with small engines starting from June 2010. This long run policy support for small vehicles might

encourage more automakers to switch away from producing medium vehicles. This is likely to be

the reason for decreasing sales of medium vehicle in 2011.

Figure 2.6: Sales Effect Parameter Estimates (with 95% C.I.). The plots show parameter
estimates, βk

1 and βk
2, in Eq. 2.2. The average monthly sales before 2009 is the baseline.

Standard errors are clustered at the province-engine size level.

59



Figure 2.7: Sales Effect (in Thousands, with 95% C.I.). Policy effect on vehicle sales from
January 2009 to December 2011. The estimates are based on parameter estimates in Eq. 2.2.
The 95% confidence intervals are estimated using the Delta Method.

2.5.3 Effects on Carbon Emissions

This section evaluates how green the “green stimulus” measure was and whether the tax

cut reached its environmental goal of reducing carbon emissions during the first year of the policy.

We compare the observed emission outcomes with two plausible counterfactual outcomes: first,

what would have happened to emissions in the absence of the program; second, what would have

happened to emissions if the policy had been designed without the green component, i.e., if the

Chinese government had only cared about stimulating automobile demand and implemented an

across-the-board tax cut for all cars, holding constant the loss in tax revenue.

Counterfactual Scenario 1

As discussed in Section 4.1, the tax cut might affect vehicle sales through three main

channels (illustrated in Fig. 2.4), each of which has a different impact on emissions. Group 1

(Fig. 2.4, 1 ) is expected to contribute to emission reduction in the long run by switching to more
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fuel-efficient cars. The reduction can be approximated by the following equation:

Emission1 = (Esmall−Emedium)×V KT ×Li f espan×Q1, (2.3)

where Esmall −Emedium is the difference in emissions between small and medium cars, VKT

is annual vehicle kilometers traveled, Li f espan is the average lifespan of a car, and Q1 is the

number of switchers.

Group 2 (Fig. 2.4, 2 ) is expected to increase emissions because consumers of this group

previously commuted either by walking, biking or public transit. The increase in emissions

depends on how far from the future the policy pulls forward demand for small cars and the

average emission gap between small cars and public transportation over the pull forward period:

Emission2 = (Esmall×V KT −E public)×Time pulled forward×Q2. (2.4)

The emission effect of Group 3, is more complicated. On one hand, this group might

contribute to emission reductions by switching to more energy efficient vehicles. On the other

hand, it might increase emissions through intertemporal substitution. As a consequence, the net

emission effect of Group 3 is unclear ex-ante, and can be estimated as

Emission3 =(Esmall×V KT −E public)×Time pulled forward×Q3

+(Esmall−Emedium)×V KT ×Li f espan×Q3.

(2.5)

The policy effect on emissions can be estimated by adding up the above three components.

We are implicitly assuming that all the increase in sales of small cars induced by the policy are

from the first car owners, i.e., these consumers would have used public transit absent the policy.

This is a reasonable assumption because the car ownership in China during the study period was

very low.17

17If the tax cut induces some car owners to purchase new small cars (they can either sell their old cars or keep
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Table 2.3: Parameters for Emission Estimation

Parameter Unit Value
Average fuel economy of small cars L/100km 7.15
Average fuel economy of 1.6L cars L/100km 7.59
Average fuel economy of medium cars L/100km 8.26
VKT km/year 16900
Lifespan year 10
E public Metric ton CO2/passenger/year 0.0013

How far from the future did the policy pull forward vehicle demand? To answer this

question, recall that the tax cut could increase sales of small vehicles through consumers who

planned to buy medium cars but switch to small cars, and consumers who planned to buy small or

medium cars in the future who pull forward demand and make the purchase earlier. To estimate

the pull forward window, we follow a similar procedure to that of Li et al. (2013) and Hoeskstra

et al. (2017), who estimate the pull forward time for the Cash-for-Clunker program. We first

estimate the total increase in the number of small cars during the policy. Then, we expand the

time window sequentially to include more months after the policy and search for the month in

which the total number of small car sales increased during the policy is offset by the decrease

in small and medium car sales after the policy up to that point. This is based on the assumption

that total sales of new vehicles in absence of the policy would be the same as the observed total

sales. This assumption is reasonable since we cannot reject that the aggregate sales effect equals

zero during 2011 (see Fig. 2.8). To formally estimate the pull forward window, we let γ be the

maximum number of months from which the tax cut can pull forward demand, and estimate γ

such that the following equation is satisfied:

both), then the change in emissions depends on the differences in fuel economy between the old and the new cars
and how often the consumer drive them. Since new cars are more energy efficient due to improvements in fuel
economy standards over time, the current analysis is likely to overestimate emissions. On the other hand, this might
be offset by the higher VKT of new purchased cars due to the rebound effect (Small and Dender 2007). In any case,
this group of consumers is likely to take only a small portion of the total increase in eligible cars since very few
people own more than one car during the study period. According to the Chinese Household Financial Survey (see
http://www.chfsdata.org/), of Chinese households with at least one vehicle in 2011, 89.64% own one vehicle, 8.18%
own two vehicles, and 2.18% own three or more vehicles (these statistics are very different to those of the United
States, where 37.6% of households own one vehicle, 41.3% own two vehicles, and 21.1% own three or more).

62



∫ t=Dec2009

t=Jan2009
∆Qs

t dt︸ ︷︷ ︸
Sales effect on small cars

during the policy

+
∫ t=Dec2009

t=Jan2009
∆Q1tdt︸ ︷︷ ︸

Switcher effect
during the policy

+
∫ t=γ

t=Jan2010
∆Q2tdt︸ ︷︷ ︸

Pull forward effect
of small cars

+
∫ t=γ

t=Jan2010
∆Q3tdt︸ ︷︷ ︸

Pull forward effect
of medium cars

= 0 (2.6)

Figure 2.8: Aggregate Sales Effect (in Thousands, with 95% C.I.). Policy effect on aggregate
vehicle sales from January 2009 to December 2011. The estimates are based on parameter
estimates in Eq.2.2. The 95% confidence intervals are estimated using the Delta Method.

Based on the point estimates of Eq. 2.2, we find that the tax cut increased small car sales

by about 600,000 during 2009, from which 190,000 (32%) come from the switcher effect. The

rest of the increase is from pulling forward of either small cars or medium cars from the moths

after the policy ended. γ is estimated to be 8 months, suggesting that the pull forward window

is January to August 2010. The pull forward effect on small car sales and medium car sales is

estimated to be 160,000 and 250,000, respectively. The policy is effective in inducing people

to buy small cars. On the other hand, Fig. 2.7 suggests that the pull forward effect dominates

approaching to the end of the policy (October to December 2010), and the effect is the strongest

in December. While these effects are large, baseline small car sales are also large. The overall

increase in small cars contributes only 12% of the total sales of small cars during 2009, implying

that over 88% of the tax cut went to consumers who would have purchased a small car anyway.
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The large fraction of inframarginal consumers suggest that the policy is not cost effective.

Table 2.3 presents the parameters used to estimate Eqs 4-6. The average emissions of small

and medium cars are estimated based on their average fuel economy and the common conversion

factor that burning 1 L of gasoline emits 0.0023 metric tons of CO2. When calculating Eq. 2.3, to

be conservative, we use the average fuel economy of 1.6 L cars (7.59 L/100km) as the average fuel

economy of small cars since the substitution effects between medium and 1.6 L cars are stronger

as they share similar characteristics (Section 6). Furthermore, we assume that the annual VKT is

16900 km (about 46 km/day), following Huo et. al. (2012). The regulated scrappage mileage

for passenger vehicles is 600,000 km in China, however, most cars are scrapped long before

reaching that mileage. Instead, we make the conservative assumption that the average lifespan of

a car is 10 years, leading to a lifetime VKT for passenger cars of 169,000 km.18 We also provide

emission estimates under alternative cases where VKT and lifespan follow the estimation by the

US Department of Transportation, National Highway Traffic Safety Administration that passenger

cars should last roughly 20 years and travel a lifetime mileage of 126,665 miles (328,061 km).19

The average annual emissions from the public transit system per person, E public, are likely

to be close to zero. This is because the number of consumers switching from public transit to cars

due to the policy only make up a small portion of the total passengers served by the public transit

system. Thus, they are unlikely to have a substantial influence on public transportation supply

and related emissions. In this analysis, we assume that public transportation emits 0.00013 metric

tons of CO2 per passenger per year. This number is calculated based on an evaluation of a major

bus and taxi company in Shenzhen (Shenzhen Green & Low-Carbon Development Foundation

2014).20

We consider three cases regarding how long consumers pull forward their demand in Eqs

5-6. As discussed in Section 5, the pull forward window is about 8 months after the first year

18Regulations on vehicle scrappage are accessible through the website of the Ministry of Commerce of China:
http://www.mofcom.gov.cn/article/b/d/201301/20130100003957.shtml.

19https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/809952.
20The report is accessible through https://ets-china.org/.
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of the policy ended, and the decrease in small and medium car sales after the policy could have

been pulled forward to any month during the policy. Fig. 2.7 shows that demand is most likely to

be pulled forward from the immediate months after the policy and the intertemporal substitution

is likely to decay over time. Thus the average number of months pulled forward would likely

range from a lower bound of 1 month to an upper bound of 8 months. The results from these

two cases are likely to bound the true effects on carbon emissions. We also provide an emission

estimation for the case where the average number of months pulled forward is assumed to be 4

months, which we think is closer to the reality.

Table 2.4 presents estimates for the change in CO2 emissions due to the policy under

different scenarios. The results suggest that the policy actually reduced emissions by between

0.4 and 2.2 million tons, equivalent to the annual emissions of about 70,000 to 380,000 people

in China during the study period.21 This is also equivalent to about 2 to 9 days worth of

residential gasoline consumption in China.22 Even though the reduction amount is not very large

in magnitude, the stimulus policy did not, in fact, lead to a net increase in carbon emissions.

From January 2009 to August 2010, the sales tax revenue collected from newly sold small

and medium cars was estimated to be 74 billion RMB based on the average price of small and

medium cars (137,170 and 208,710 RMB). Absent the tax cut, total tax collected is estimated

to be around 108 billion RMB, suggesting that the Chinese government spent around 34 billion

RMB (about 5 billion USD) for this green stimulus program. The fiscal cost of CO2 reduction is

at least 2300 $/ton. This is very large compared to the social cost of carbon estimated by the EPA

(105 $/metric ton of CO2).23 However, since the policy also provided stimulus benefits during the

financial crisis, simply comparing the cost of the emissions reduction with other environmental

policies that were only targeted at emission control, does not tell the full story. In Section 7.2, we

21China’s CO2 emissions per capita were estimated to be 5.72 metric tons in 2008. Data is available through
https://data.worldbank.org/.

22Residential gasoline consumption in China is about 110 million L per day, emitting about 250 thousand metric
tons of CO2. Residential gasoline consumption is collected from the 2017 China Energy Statistic Year Book and the
corresponding emission is estimated based on a factor of 0.0023 metric tons per liter of gasoline.

23See https://19january2017snapshot.epa.gov/climatechange/social-cost-carbon .html.
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discuss some evidence of other stimulus effects such as increasing employment in automakers

with more exposures to the policy.

Counterfactual Scenario 2

In the second scenario, we estimate vehicle sales and related emissions if the government

had ignored the green component of the stimulus policy and implemented a 5% tax cut for all

cars, keeping the amount of stimulus budget constant.

We conduct a back-of-the-envelope calculation of the counterfactual sales based on several

plausible assumptions. First, we only focus on the pull forward effects induced by the policy and

assume zero cross product substitution when the government reduces the sales tax from 10% to

5% for all cars. This is likely to provide a lower bound on emissions since the across-the-board

tax cut is likely to induce consumers to switch to larger engine size vehicles.

In Section 5.3, we estimated that the 5% tax cut pulled forward the purchase of about

155,000 small vehicles from the following 8 months after the policy ended. This is a 3.7% increase

in sales due to only the pull forward channel.24 We assume that the pull forward effects of medium

and large cars experience the same pull forward effects as small cars under the true policy, i.e., the

across-the-board tax cut would increase sales of all cars by 3.7% due to intertemporal substitution.

Based on the above assumptions, we find that the stimulus budget can support an across-

the-board tax cut for 9 months. Based on the counterfactual sales of small, medium and large cars

during the policy, we estimate the related CO2 emissions under different pull forward periods in

Table 2.4.

24155150/4182847=0.037, where 4,182,847 is the total sales of small cars in 2009 absent the tax cut.
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Table 2.4: Emission Results

Scenario 1 Scenario2
Etrue−Escenario1 Etrue−Escenario2

Panel 1: Lifetime VKT=169000 km
Case 1: Time pull forward=1 month -1,045 -1,086
Case 2: Time pull forward=4 month -765 -927
Case 3: Time pull forward=8 month -393 -717

Panel 2: Lifetime VKT=328061 km
Case 4: Time pull forward=1 month -2,164 -2216
Case 5: Time pull forward=4 month -1,802 -2011
Case 6: Time pull forward=8 month -1,351 -1769

Note: Etrue−Escenario1 reports the net emissions induced by the true policy compared with
emission outcomes under Scenario 1. Etrue−Escenario2 reports the net emissions induced by the
true policy compared with emission outcomes under Scenario 2.

2.5.4 Heterogeneity

In this section, we exploit our rich dataset to investigate differential policy effects across

eligible models and cities.

Heterogeneity Across Vehicle Models

Estimation results in the previous section suggest that the 5% tax cut in 2009 substantially

increased sales of small cars, however, the effects might vary across different eligible models.

Which group of small cars benefit the most from the tax cut? We expect a larger increase in

sales as the engine size of a vehicle model gets closer to the eligibility cut off. There are two

reasons for this hypothesis. First, consumers who planned to buy small cars in the absence of the

policy might switch to cars that have bigger engines, but are still eligible for the policy. Second,

consumers who planned to buy medium cars in absence of the policy are more likely to switch to

eligible cars with similar attributes. As a consequence, sales of 1.6 L cars would increase due to

consumers switching from either smaller or larger engine size groups. To test this hypothesis, we
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categorize eligible cars into three groups based on their engine size and estimate policy effects for

each group. Estimation results in Table 2.5 reveal that the sales increase for 1.6 L vehicle models

is larger than other eligible models.

Table 2.5: Heterogeneous Policy Effects Across Eligible Vehicles

(1)
0-1.3× Tax 0.000

(0.078)
1.4-1.5× Tax 0.214∗

(0.117)
1.6× Tax 0.238∗∗∗

(0.089)
Medium× Tax -0.194∗

(0.099)
City-Model FEs Yes
City-Year-Month FEs Yes
Fuel Costs Yes
N 1,780,123
Number of vehicles 19,694,297
adj. R2 0.71
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Heterogeneity Across Cities

We explore the distributional effects of the tax cut across cities with different socioeco-

nomic conditions in Table 2.6. Environmentally oriented tax incentives including for hybrid

and electrical vehicles and adoption of solar panels have long been criticized for subsidizing the

wealthy at the cost of all taxpayers (Allcott et al. 2015, Borenstein and Davis 2016). Which

income group benefits the most from this tax incentive program is an important but challenging

question to answer. Unfortunately, we do not have access to data on the socioeconomic character-

istics of program recipients. We instead address this issue by exploring the level of economic

wellbeing of different cities.

In Columns 1-2 of Table 2.6, we use GDP per capita and share of urban population to

measure the level of economic development in different cities. The estimation results suggest
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that cities with lower GDP per capita and that are less urbanized have larger increases in sales of

small cars due to the policy; on the other hand, richer cities have larger switcher effects. There

are two possible reasons. First, richer cities often have higher population density, more existing

cars, more congestion, and limited parking space, making switching to small cars potentially

more attractive. Second, the policy effect on sales may also depend on the existing market for

small and medium cars. Richer cities may experience smaller increase in small car sales because

existing small car shares might already be high, leaving less people to potentially purchase small

cars. In less developed cities, the switcher effects may be small because fewer consumers planned

to purchase medium cars. We additionally consider using population density and existing shares

of small cars in Columns 3-4, and the results are again consistent with our expectations. The

results suggest that the tax savings were not necessarily regressive, but targeted proportionally

more of the benefits to less developed cities.

Figure 2.9: City Characteristics
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Table 2.6: Heterogeneous Policy Effects Across Cities

(1) (2) (3) (4)
GDP Urban Density Small Car Share

Small × Tax 0.216∗∗∗ 0.198∗∗∗ 0.217∗∗∗ 0.087
(0.060) (0.064) (0.060) (0.074)

Small × Tax × High GDP -0.090∗∗

(0.043)
Small × Tax × Urban -0.068∗∗

(0.032)
Small × Tax × High Density -0.092∗∗

(0.044)
Small × Tax × High Small Car Share 0.147∗∗∗

(0.034)
Medium × Tax -0.110 -0.126 -0.106 -0.234∗∗

(0.070) (0.086) (0.075) (0.117)
Medium × Tax × High GDP -0.134∗∗

(0.057)
Medium × Tax × Urban -0.125∗∗∗

(0.032)
Medium × Tax × High Density -0.142∗∗

(0.055)
Medium × Tax × High Small Car Share 0.084∗

(0.047)
N 1,780,123 1,780,123 1,780,123 1780123
Number of vehicles 19,694,297 19,694,297 19,694,297 19,694,297
adj. R2 0.71 0.71 0.71 0.71

Standard errors in parentheses are clustered two-ways at the automaker and city level. Column 1-4 examine whether
the policy effects various depending on GDP per capita, share of urban population,population density, and market
share of small car during the pre-policy period. ∗ p < 0.10, ∗∗ p < 0.05,∗∗∗ p < .01.
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2.6 Robustness Checks

Table 2.7 reports regression estimates from four alternative specifications. Column 1

shows results of our base specification of Eq.2.1. In order to control for the national-wide

decline/increase of a certain vehicle segment (sedans, SUVs, MPVs, and light trucks) over time

(for example, the increasing popularity of SUVs), we control linear and quadratic segment time

trend in Model 2. Moreover, different vehicle models are introduced to the market at different

times, and the popularity of a vehicle model might be correlated with the time it exists in the

market. To control for such sales pattern of each model, we introduce model age and age squared

in Model 3. So far, all models we present in the paper use samples excluding vehicle models with

engine size over 2.5 L for reasons discussed in Section 3. In Model 4 and Model 5, we check

whether the estimation results are sensitive to relaxing or removing the engine size restrictions.

In Model 4, we run the base model with extended samples consisting all vehicle models within

engine size no larger than 3 L. Furthermore, in Model 5, we completely remove the restrictions

on engine size and include all vehicle models. The estimation results are largely stable across

different specifications.

To verify that a single city is not driving the tax cut results, we run the base model

regressions excluding each city in turn. The coefficient on β1 varies from 0.157 (SE=0.066) to

0.161 (SE=0.066) and the coefficient on β2 varies from -0.196 (SE=0.100) to -0.193 (SE=0.099).

2.7 Conclusion

We examine the effectiveness of a large-scale fiscal policy in China targeted at stimulating

auto demand while at the same time incorporating the green objective of inducing consumers to

buy energy efficient vehicles. A difference-in-differences design is employed to investigate the

impacts of the tax cut on stimulating new vehicle purchases over different time horizons as well

as its impacts on emissions.
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Table 2.7: Alternative Specifications.

(1) (2) (3) (4) (5)
Base Segment Model Extended Sample

Model Trend Age 0 - 3 L All Vehicles
Small× Tax 0.1582∗∗ 0.1462∗∗ 0.1434∗∗ 0.1825∗∗∗ 0.1887∗∗∗

(0.0665) (0.0699) (0.0687) (0.0654) (0.0651)
Medium× Tax -0.1954∗ -0.1933∗ -0.2206∗∗ -0.1703∗ -0.1637∗

(0.0999) (0.1072) (0.1065) (0.0978) (0.0973)
Segment Trend Yes
Model Age Yes
N 1,843,687 1,843,687 1,843,687 1,945,872 1,980,279
Number of vehicles 20,304,815 20,304,815 20,304,815 20,699,542 20,801,890
adj. R2 0.71 0.71 0.71 0.71 0.71

All models consist passenger vehicles sold in 200 and control for fuel costs, City-Model FEs and City-
Year-Month FEs. Standard errors in parentheses are clustered two-ways at the automaker and city level.
Column 1-3 restrict samples to vehicles with engine size less than or equal to 2.5 L. Column 4 extends
the sample to include vehicle models with engine size no larger than 3 L, and Column 5 completely
removes the restrictions on engine size to includes all vehicle models. ∗ p < 0.10, ∗∗ p < 0.05,∗∗∗

p < .01.

The tax cut played a significant role in stimulating auto demand, boosting sales of eligible

vehicles while reducing sales of similar but ineligible vehicles. It induced a substantial amount of

intertemporal substitution – about 70% of the increase in sales observed during the policy was

pulled forward from the following eight months. Unlike subsidies for greener products such as

solar panels, hybrid or electrical vehicles that have often been criticized as regressive, the tax cut

had stronger effects in stimulating demand for eligible cars in less developed regions of China.

Overall, the policy reduced CO2 emissions compared to what would have happened absent

of policy, though it was expensive from the perspective of a pure environmental policy. This is

because the program was not successful in targeting marginal consumers – most buyers under the

program would have bought a new vehicle anyway. In practice, however, the policy should not be

viewed as a pure environmental policy – China would likely have chosen to stimulate demand in

any case. Rather, it should be viewed as a means of mitigating some of the negative environmental

consequences of stimulus, and should be compared to alternative stimulus packages with different

or no green measures. Compared to an alternative counterfactual scenario of stimulus with no
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green element, in which the government implements an across-the-board tax cut with the same

fiscal cost, net emission savings would have been larger by about 20%.

Our findings thus show that green stimulus is capable of achieving “win-win” outcomes

by reducing emissions despite increasing the number of cars. A remaining question is whether

other environmental measures could have been chosen that would have reduced emissions even

further. While green stimulus is a relatively new phenomenon and few comparable policies have

been implemented, our results provide several insights that should be considered in the future. To

improve the targeting of marginal rather than inframarginal consumers, it might be desirable to

tighten the eligibility requirements by combining engine size rules with other features such as

fuel economy. For example, the tax cut could be greater for small cars with higher fuel economy.

Also, our findings suggest important distributional effects. By allowing the policy to vary at the

local level, rather than having a uniform national policy, it might be possible to more finely target

places with greater economic or environmental needs.

We provide the first evidence on the effectiveness of a major green stimulus program

during the Global Financial Crisis in a developing country context. With climate change, treaties

targeted at reducing emissions are a key and increasingly prominent issue in international politics,

and many developing countries are among the largest polluters. Most international treaties

include a significant fiscal policy element and, moreover, allow for different contingencies such as

recessions. Understanding how such policies should be designed will remain an important task.
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2.8 Appendix

2.8.1 Additional Figures and Tables

Figure 2.10: Average Monthly Gasoline Price (2006-2011). Prices are in 2017 yuan. Monthly
data of U.S. retail gasoline prices and Brent crude oil spot prices are collected from U.S. Energy
Information Administration.
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Figure 2.11: Market Share of New Vehicle Sales by Engine Size Group (2006-2011)
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Chapter 2, in full, is currently being prepared for submission for publication of the material.

Fanglin Sun; Rudai Yang; Dong Yuan “Green Stimulus: Tax Incentives in China’s Automobile

Market.” The dissertation author was the primary investigator and author of this material.
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Chapter 3

Extreme Temperatures and Time Use in

China

Abstract: How do the poor in developing countries respond to extreme temperatures?

Using individual-level panel data over two decades and relying on plausibly exogenous variation

in weather, we estimate how extreme temperatures affect time use in China. Extreme temperatures

reduce time spent working, and this effect is largest for female farmers. Hot days reduce time

spent by women on outdoor chores, but there are no compensatory increases by men. Finally, hot

days dramatically reduce time spent on childcare, reflecting large effects on home production.

Taken together, our results suggest time use is an important margin of response to extreme

temperatures.

3.1 Introduction

Despite a growing interest amongst economists and social scientists in the effects of

extreme temperatures, evidence remains concentrated in developed countries. The relative

scarcity of evidence in developing countries limits our understanding of the economic damages
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from rising temperatures in two important ways (Greenstone and Jack, 2015; Jack, 2017). First,

damage functions in developing countries may differ because of income differences, non-linearity

in dose-response functions (Hsiang et al. 2019), and differences in the availability and adoption

of adaptation technologies (Graff-Zivin and Neidell 2014). Second, responses in home production

and informal labor markets may be substantially more important in developing countries.

In this paper, we use individual-level panel data from nine major provinces in China to es-

timate the causal effect of extreme temperatures on time use. This unique data set was constructed

by confidential matching of gridded weather data with a geolocated panel of households tracked

over two decades, from 1989 to 2011. To recover the causal effects of extreme temperatures, we

use random daily variation in weather faced by individuals over time, conditional on individual

and space-time fixed effects. We report three principal findings. First, extreme temperatures

negatively affect time spent working, but there is substantial heterogeneity on dimensions of

research and policy interest. Effects are larger amongst farmers, particularly female farmers.

Second, extreme heat reduces time spent by women on household chores, with no compensatory

increases by men. Finally, time spent on childcare falls by almost 30% for every additional day

with an average temperature above 80◦F, but this effect is only present in households without

cooling technologies.

Our research makes several contributions to the literature. First, we add to a small body

of evidence on the effect of extreme temperatures on poor populations in developing countries.1

Within this literature, to the best of our knowledge, we are the first to examine how heat affects

allocation of the time budget, which is especially important in households with small cash

budgets.2 Second, this paper is among the first to study optimizing time-use responses to an

exogenous shock using panel data.3 Previous work in this space has relied on using repeated

1For a non-exhaustive list, see Burgess et al. (2017); Geruso and Spears (2018) on mortality, Colmer (2018);
Santangelo (2016) on labor reallocation, Fishman, Carrillo and Russ (2019); Garg, Jagnani and Taraz (2018) on
human capital, Chen and Yang (2017); Zhang et al. (2018) on industrial output and Masuda et al. (2019); Somanathan
et al. (2015) on labor productivity. For a broader review, see Heal and Park (2016).

2See Graff-Zivin and Neidell (2014) for the effects of temperature on time-use in the United States.
3Krueger and Mueller (2012) use a panel to examine time-use responses to endogenous reemployment. Cherchye,
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cross-sections (Garg, Jagnani and Taraz, 2018; Graff-Zivin and Neidell, 2014). By instead using

a panel, we are able to rule out time-varying sample selection correlated with the treatment

of interest. Third, our estimated weather effects provide a lower bound on the magnitudes of

climate effects. Lemoine (2018) shows that the effect of climate on costly adaptive actions,

like changes in time allocation, can be approximated by the sum of responses to forecast and

realized weather. For agents with plausibly low cost of time-use change, like farmers, forecasts

are less important and our estimates approach the effect of long-run climate changes. Finally, we

investigate the heterogenous effects of temperature by gender: our finding that women’s time

use is more sensitive to extreme temperatures than men’s has important implications for the

distribution of damages from extreme temperatures.

3.2 Data

Data on Time Use: We obtain time-use data from the China Health and Nutrition Survey

(CHNS), an ongoing large-scale longitudinal survey. It is conducted by the Carolina Population

Center at the University of North Carolina at Chapel Hill and the National Institute for Nutrition

and Health at the Chinese Center for Disease Control and Prevention. The baseline data was

collected in 1989 and nine subsequent surveys have been implemented every two to four years

since. The survey uses a multistage, random-clustered sampling process to draw a sample from

nine provinces and six large cities, covering about 7,200 households with over 30,000 individuals.4

The CHNS is valuable for our empirical analysis for two reasons. First, though the CHNS

instruments were mainly designed to investigate the health and nutrition status of Chinese families,

one section of the survey collects data on individuals’ time allocation to working, household

chores, childcare and other activities. Most of the questions relating to time allocation to a specific

De Rock and Vermeulen (2012) study household labor supply using panel time-use data, with identifying variation
from the number and age of children.

4Detailed descriptions of the survey design and sample profiles are available through htt ps :
//www.cpc.unc.edu/pro jects/china and Popkin et al. (2010).
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activity are framed as, for instance, “during the past week, for how many hours did you work” or

“during the past week, how much time (minutes) did you spend per day, on average, to prepare

and cook food for your household.”5 Our analysis focuses on data collected from nine rounds

of the CHNS, conducted from 1989 to 2011. When analyzing temperature impacts on time

spent on childcare, household chores and working, we use data from survey years 1989-2011,

1997-2011, and 1991-2011, respectively, depending on the availability of the questions on time

use. Importantly, each interview date is known, which allows us to link the interview date with

weather data to capture how individuals’ time use responds to short-run weather variation. In

Appendix Tables 3.1, 3.2, and 3.3 we provide descriptive statistics on the datasets used to estimate

the effects on work, household chores and childcare respectively.

Second, CHNS covers a large sample size from different climate zones which allows us

to obtain greater spatial variation in temperature exposure. There is substantial spatial variation

in weather conditions in China (see Appendix Figure 3.6). Our sample covers 13,769 individ-

uals from nine provinces: Heilongjiang, Liaoning, Shandong, Henan, Jiangsu, Hubei, Human,

Guangxi, and Guizhou, which are highlighted in Appendix Figure 3.6.6

Weather Data: Weather data, including temperature, precipitation, and relative humidity

at the daily level are collected from the ERA-Interim archive, which is a global atmospheric

reanalysis dataset constructed by the European Centre for Medium-Term Weather Forecasting

(Dee et al., 2011). This dataset provides consistent estimates of weather conditions from 1979

to the present. Our analysis uses ERA-Interim weather data on a 0.125 x 0.125 degree latitude-

longitude grid from 1989 to 2011. For each county, we construct the daily average temperature,

daily total rainfall, and daily mean relative humidity by averaging over all weather grid points

within the county boundaries. There is reasonable agreement in the environmental economics

5While the survey question is somewhat ambiguous on whether respondents interpret the question as the previous
calendar week or the past seven days, research in survey methods suggests that most respondents interpret such
questions as the “past seven days” (Gryczynski et al., 2015). As a robustness check, we also consider the previous
calendar week. The results are qualitatively similar.

6Three large cities, Beijing, Shanghai, and Chongqing, are excluded from our samples because CHNS sampled
them only in 2011.
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literature that use of such reanalysis data is the preferred way to consistently estimate marginal

effects of weather (Auffhammer et al., 2013; Schlenker and Lobell, 2010). Appendix Figure 3.7

shows the spatial distribution of temperature in the nine provinces covered by the CHNS survey

during the study period.

Linked Temperature-Time Use Data: The county-level household locations recorded by

the CHNS are confidential. To merge the weather data to the CHNS data, we submitted our county-

level weather data and a data linkage request to the Carolina Population Center at the University

of North Carolina (CPC). CPC in turn provided us the matched dataset with anonymized county

identifiers with one caveat: to prevent backward induction of county identities, CHNS introduced

small random errors in our weather variables. Since this is classical measurement error and small

by construction, the resulting attenuation bias is minimal. In Appendix Table 3.4, we compare

descriptive statistics from our original weather data and the linked CPC data; they are strongly

similar.

3.3 Research Design

To investigate how temperature influences individuals’ time-allocation decisions, we

flexibly estimate the effect ofweather theweek prior to the interviewon time use during the same

time frame following the approach laid out in Deschênes and Greenstone (2011) and Hsiang

(2016):

ActivityTimeicpwmy =
K

∑
k=1

βkTempbink
cpwmy +δZcpwmy +ξXicpy

+αi +λym + γpm + εicpwmy

where ActivityTimeicpwmy is the number of hours allocated to a given activity for individual i,

in county c of province p, during week w in month m of year y. The variable Tempbink
cpwmy
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measures the number of days in the bin that an individual is exposed to during week w in month m

of year y. To construct Tempbink
cpwmy, we first group the average daily temperature of the county

where the individual lives into 13 temperature bins, with the hottest bin covering temperatures

above 80◦F, the coldest bin covering temperature below 25◦F, and 5◦F temperature increments

in-between. Second, we count the number of days experienced by the individual living in county

c of each temperature bin k during week w in month m of year y. The 56-60◦F temperature bin is

omitted. The coefficient βk can be interpreted as the marginal effect of shifting a day from the

reference bin (56-60◦F) to bin k (for example, above 80◦F).

Individual fixed effects are represented by αi and capture all time-invariant observable and

unobservable individual attributes that affect time allocation decisions. The λym are year-month

fixed effects to control for nationwide trends in time spent on working, household chores and

childcare. Since people living in different climate zones might, for example, harvest crops at a

different time, our model also includes province-month fixed effects, γpm, to control for seasonal

trends.

Zcpwmy includes county-level weather controls that might be correlated with temperature,

including precipitation, humidity, and sunset time. To allow flexible relationships between

precipitation and time allocation, we create 11 precipitation bins with 0.1 inches per bin. We also

control for quadratic polynomials in average relative humidity and average sunset time during

week wmy.

Xicpy includes individual-level controls that may be related to time allocation preferences.

This includes linear and quadratic terms for age, employment status, years of education, annual net

household income of individual i, and the ownership of cooling technologies, fridges and washing

machines. Some of these variables are likely endogenous and the corresponding coefficients

cannot be interpreted causally. These controls are included to improve precision.

Our parameters of interest, βk, reflect behavioral responses to short-run temperature

variations. The identifying assumption is exogeneity of daily average temperature with respect
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to time-varying unobservable determinants of time use, conditional on a battery of fixed effects

and other weather variables. Intuitively, the identifying variation in temperature comes from

unusual or unseasonable weather not captured by these controls. Standard errors are clustered at

the county level.

3.4 Results

In this section we document how poor communities in China adjust their time use in

response to extreme temperatures. We report three principal findings: (1) extreme temperatures

reduce overall time spent working, and this effect is most pronounced for agricultural work; (2)

extreme heat particularly reduces time spent by women on household chores; and (3) time spent

on childcare is sensitive to extreme heat, but this effect is only present in households without

cooling technologies like fans and air-conditioners. Finally, we discuss a number of checks on

the robustness of our results.

Time Spent Working: In Figure 3.1, we show the results by temperature bin on the

overall time spent working across all adults in our sample. As noted in Section 3.3, we interpret

each coefficient as the marginal effect of one day in a given week being moved from the omitted

bin (60◦F-65◦F, normalized to zero) to the given bin. Figure 3.1 shows that extreme temperatures

on both the hot and cold ends of the temperature distribution reduce overall time spent working.

During a given week, an extra day below 25◦F reduces time spent working by 1.8 hours, while an

extra day above 80◦F reduces time spent working by 1.2 hours. These two coefficient estimates

are 4.5% and 3% of the sample mean, respectively.
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Figure 3.1: Effects of Temperature on Working Time. This figure plots coefficient estimates for
individuals’ working time adjustment in response to different temperature bins corresponding to
specification in Column (1) of Table 3.5. Vertical lines represent 95% confidence intervals. The
temperature bin 60◦F-65◦F is the omitted category.

However, this result across the full sample of adults masks substantial heterogeneity. In

Figure 3.2 we explore this heterogeneity. Comparing Panel (A) to Panel (B), we find that the

effects of extreme temperatures are larger for farmers than non-farmers. Within the sample of

farmers, the effects are larger for women than for men. We formally test for this difference in

Appendix Table 3.5. An extra day above 80◦F in a given week decreases time spent working by

female farmers by 1.94 hours, and the difference relative to male farmers is statistically significant

at the one percent level.
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Figure 3.2: Effects of Temperature on Working Time: By Occupation and Gender. All four
graphs correspond to the same regression in Column (2) of Table 3.5. Vertical lines represent
95% confidence intervals. The temperature bin 60◦F-65◦F is the omitted category.

Time Spent on Household Chores: In Figure 3.3, we estimate the effects of extreme

temperatures on time spent on household chores by gender (Panel A) and by location of household

chores (Panel B). The interpretation of coefficients is the same as before. We find that an additional

extremely hot day reduces time spent on household chores for women but the same hot day has
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no discernible effect on men. Testing formally for this difference in Appendix Table 3.6, we find

that in response to another day above 80◦F during the week, relative to the omitted bin, women

spent about 0.4 hours less on chores. Importantly, we note that in response to reduced time on

household chores by women, there is no corresponding increase in time spent on household

chores by men, suggesting that extreme heat results in not just lower market work as documented

above, but also lower home production. As expected, in Panel (B), we note that most of the

reduction in time spent on home production comes from outdoor tasks as opposed to indoor tasks.
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Figure 3.3: Effects of Temperature on Time Spent on Household Chores. The top panel plots
the relationship between temperature and time allocated to household chores by gender, corre-
sponding to specification in Column (1) of Table 3.6. The bottom panel plots the relationship
between temperature and time allocation on indoor tasks (cleaning house) and outdoor tasks
(washing clothes), corresponding to the specification in Column (2) and Column (3) of Table 3.6,
respectively. Vertical lines represent 95% confidence intervals. The temperature bin 60◦F-65◦F
is the omitted category.

Time Spent on Childcare: Next, we examine the effects of extreme temperatures on

childcare. In Figure 3.4 we estimate this effect separately for households with and without
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cooling technologies. For households without some form of cooling technology (ACs or fans),

one additional day with a mean temperature above 80◦F, instead of between 56◦F and 60◦F,

reduces time spent on child care by over 4 hours each week (see Appendix Table 3.7). Measured

against the baseline mean of 14.24 hours, this estimate corresponds to a 29% effect. Remarkably,

this entire effect disappears when we consider households that have adopted some form of

cooling technology, suggesting that in this setting, adaptation decisions of households may

disproportionately favor investments in infants and young children.

Figure 3.4: Effects of Temperature on Childcare by AC/Fan Adoption. This figure plots the
relationship between temperature and time allocated to taking care of children under 6 years
old, corresponding to the specification in Column (1) of Table 3.7. Vertical lines represent 95%
confidence intervals. The temperature bin 60◦F-65◦F is the omitted category.

Robustness Checks: In Figure 3.5 (and correspondingly in Appendix Table 3.8) we

report robustness checks for our model of work time. Results are robust to the using a degree-day

specification, using a poisson regression, limiting our sample to a balanced panel of individuals,

and including province×year×month fixed effects.
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Figure 3.5: Robustness Checks. These four graphs presents coefficient estimates for different
temperature bins corresponding to alternative specifications in Column (1)-(4) of Table 3.8. In
the degree days specification, we use 40◦F and 70◦F when calculating the heating and cooling
degree days. Vertical lines represent 95% confidence intervals. The temperature bin 60◦F-65◦F
is the omitted category.
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3.5 Conclusion

The vulnerability of marginal populations to extreme weather poses a particular risk for

global anti-poverty goals (Barrett, Garg and McBride 2016). In this paper, we use individual panel

time-use data over two decades to study how different groups respond along different margins

to extreme temperatures. In particular, we show that extreme temperatures reduce time spent

working, but that these effects are largest for female agricultural workers. Moreover, hot days

with a daily mean temperature above80◦F reduce women’s time spent on household chores (with

no compensatory increase from men) and households’ time on childcare, suggesting considerable

reductions in home production.

Our research has important implications for climate research and policy. First, it suggests

that broadening the outcomes studied may be vital in developing countries. For the rural poor in

the developing world, adjustments to time use may be important, particularly as adjustments on

other margins may be constrained or impossible. Some time-use adjustments, like childcare, can

have important long-run implications. Second, the distribution of effects can differ substantially

across important socio-demographic lines like gender. This suggests that effects may be non-

uniform even within households. More research into the distribution of extreme weather effects is

surely needed.
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3.6 Appendix

3.6.1 Additional Figures

Figure 3.6: China’s Climate Zones. This maps presents climate zones across the mainland
of China. Administrative boundaries of the nine provinces covered in the emipiral analysis
are highlighted in black. Climate zones are classified based on the Köppen-Geiger climate
classification, available through http://koeppen-geiger.vu-wien.ac.at/shifts.htm.
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Figure 3.7: Average Daily Temperature by County. Average daily temperature in Fahrenheit in
all counties of the nine provinces covered by the CHNS survey during the study period (1989,
1991, 1993, 1997, 2000, 2004, 2006, 2009, and 2011). Temperatures are categorized into eight
groups based on quantiles.
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3.6.2 Additional Tables

Table 3.1: Summary Statistics (Working Time)

mean sd min max
Working Time (hr/wk) 40.41 19.26 0.00 156.00
Female 0.42 0.49 0.00 1.00
Age 42.76 11.69 18.00 84.20
Year of Education 8.56 3.83 0.00 18.00
Net Household Income (1,000 yuan/yr) 27.06 35.80 -564.00 900.60
Employment Status 0.99 0.07 0.00 1.00
AC/Fan Ownership 0.83 0.37 0.00 1.00
Washing Machine Ownership 0.71 0.45 0.00 1.00
Fridge Ownership 0.56 0.50 0.00 1.00
Farmer 0.33 0.47 0.00 1.00
Average Humidity (%) 93.14 3.30 79.11 99.45
Average Sunset Time (hr) 18.05 0.65 15.65 19.63
N 26269

Based on sample of 26,269 individuals during survey year 1991 to 2011 when data
on working time is available. Individual characteristics are from CHNS and weather
variables are from the ERA-Interim archive. Our estimation results are robust to dropping
the top 1% of the observations in terms of working time.
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Table 3.2: Summary Statistics (Time Spent on Household Chores)

mean sd min max
Household Chores (hr/wk) 12.34 11.63 0.00 134.40
Clean House (hr/wk) 1.89 2.60 0.00 115.50
Wash Clothes (hr/wk) 2.40 3.10 0.00 107.33
Purchase Food (hr/wk) 2.39 3.46 0.00 116.32
Cook (hr/wk) 5.66 6.39 0.00 105.12
Female 0.55 0.50 0.00 1.00
Age 49.23 15.10 18.00 100.80
Year of Education 7.05 4.25 0.00 18.00
Net Household Income (1,000 yuan/yr) 25.59 33.40 -564.00 900.60
Employment Status 0.63 0.48 0.00 1.00
AC/Fan Ownership 0.80 0.40 0.00 1.00
Washing Machine Ownership 0.65 0.48 0.00 1.00
Fridge Ownership 0.54 0.50 0.00 1.00
Average Humidity (%) 93.33 3.32 79.11 99.45
Average Sunset Time (hr) 18.06 0.65 15.65 19.63
N 40826

Based on sample of 40,826 individuals during survey year 1997 to 2011 when data on
household chores is available. Household chores include four tasks – cleaning house,
washing clothes, purchasing food and cooking. Individual characteristics are from CHNS
and weather variables are from the ERA-Interim archive. Our estimation results are
robust to dropping the top 1% of the observations in terms of time spent on household
chores.
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Table 3.3: Summary Statistics (Time Spent on Childcare)

mean sd min max
Childcare (hr/wk) 14.24 20.80 0.00 148.00
Age 39.93 14.45 18.20 85.10
Year of Education 6.58 4.07 0.00 18.00
Net Household Income (1,000 yuan/yr) 19.19 28.86 -26.60 383.37
Employment Status 0.75 0.43 0.00 1.00
AC/Fan Ownership 0.80 0.40 0.00 1.00
Washing Machine Ownership 0.58 0.49 0.00 1.00
Fridge Ownership 0.39 0.49 0.00 1.00
Average Humidity (%) 93.30 3.34 79.11 99.29
Average Sunset Time (hr) 18.11 0.63 15.82 19.63
N 5936

Based on sample of 5,936 individuals during survey year 1989 to 2011 when data
on childcare is available. Time spent on childcare is defined as time spent on taking
care of children under six years old. Individual characteristics are from CHNS and
weather variables are from the ERA-Interim archive. Our estimation results are robust
to dropping the top 1% of the observations in terms of time spent on child care.
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Table 3.4: Summary Statistics of Weather Variables

mean sd min max
Panel 1: Weather Variables Provided to CHNS
Temperature (◦F) 55.08843 20.41572 -27.90515 96.18461
Precipitation (inch) 2.78724 6.45893 0.00000 233.15747
Humidity (%) 92.90370 5.31594 60.47364 99.94583
Sunset Time (hr) 18.34055 0.94822 15.33463 20.02283

Panel 2: Noise Added to Weather Variables
Temperature Noise (◦F) 0.00118 0.33946 -1.79692 1.81050
Precipitation Noise (inch) 0.00039 0.22174 -1.79915 1.86726
Humidity Noise (%) 0.00065 0.22686 -1.64472 1.64568
Sunset Time Noise (hr) -0.00005 0.04877 -0.29068 0.28398

Panel 3: New Weather Variables With Noise Added by CHNS
Temperature New (◦F) 55.08960 20.41914 -27.68640 95.78651
Precipitation New (inch) 2.78763 6.46340 -1.56230 233.17691
Humidity New(%) 92.90436 5.32079 60.28096 101.09986
Sunset Time New (hr) 18.34050 0.94960 15.13215 20.07031
Number of Linked County-Date Observations 322,176
Observations included in this table are daily weather conditions of counties that could be linked to
the CHNS dataset during survey year 1989 to 2011.
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Table 3.5: Time Spent on Working

(1) (2)
Work (All) Work by Individual Characteristics

<25 -1.841*** -1.899***

(0.405) (0.474)
25-30 -1.469*** -0.784

(0.502) (0.579)
31-35 -0.911* -1.262**

(0.527) (0.504)
36-40 -0.977* -0.816**

(0.505) (0.312)
41-45 -0.115 0.004

(0.322) (0.326)
46-50 -0.770** -0.936***

(0.314) (0.269)
51-55 0.063 0.037

(0.288) (0.312)
61-65 -0.032 0.189

(0.186) (0.207)
66-70 0.085 0.138

(0.236) (0.207)
71-75 -0.401* -0.102

(0.227) (0.237)
76-80 -0.277 0.204

(0.291) (0.308)
>80 -1.214** -1.331**

(0.508) (0.588)
female × farmer -1.530

(2.437)
<25 × female 0.965***

(0.199)
25-30 × female -0.075

(0.429)
31-35 × female 0.654

(0.488)
36-40 × female 0.467

(0.372)
41-45 × female -0.111

(0.413)
46-50 × female 0.276

(0.322)
51-55 × female 0.039

(0.340)
61-65 × female 0.005

(0.252)
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Table 3.5 Time Spent on Working (Continued)
(1) (2)

Work (All) Work by Individual Characteristics
66-70 × female 0.110

(0.215)
71-75 × female 0.002

(0.242)
76-80 × female -0.114

(0.258)
>80 × female 1.400***

(0.514)
<25 × farmer -2.010***

(0.439)
25-30 × farmer -2.839**

(1.190)
31-35 × farmer 0.015

(1.527)
36-40 × farmer -0.721

(1.093)
41-45 × farmer 0.268

(1.309)
46-50 × farmer 1.052

(0.722)
51-55 × farmer 0.306

(0.648)
61-65 × farmer -0.733

(0.530)
66-70 × farmer 0.170

(0.419)
71-75 × farmer -0.451

(0.505)
76-80 × farmer -1.071*

(0.613)
>80 × farmer 0.299

(0.683)
<25 × female × farmer -0.316

(1.834)
25-30 × female × farmer -2.579**

(1.165)
31-35 × female × farmer 1.505

(1.415)
36-40 × female × farmer -1.547*

(0.798)
41-45 × female × farmer -0.272

(1.029)
46-50 × female × farmer -2.081**
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Table 3.5 Time Spent on Working (Continued)
(1) (2)

Work (All) Work by Individual Characteristics
(0.962)

51-55 × female × farmer -0.514
(0.661)

61-65 × female × farmer -0.338
(0.467)

66-70 × female × farmer -0.757*

(0.435)
71-75 × female × farmer -0.780

(0.484)
76-80 × female × farmer -0.364

(0.376)
>80 × female × farmer -2.314***

(0.677)
farmer -13.583***

(2.343)
N 26269 26269
adj. R2 0.33 0.38
All specifications control for (1) county-level weather conditions including precipitation,
linear and quadratic terms of relative humidity level and sunset time; (2) individual-level
time-varying characteristics including linear and quadratic terms for age, years of educat-
ion, annual net household income, employment status, and ownership of fans or AC, frid-
ges and washing machines; (3) individual fixed effects, year-month fixed effects, and pro-
vince-month fixed effects. * p < 0.10, ** p < 0.05, *** p < .01. Standard errors are clust-
ered at the county level.
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Table 3.6: Time Spent on Household Chores

(1) (2) (3)
HHChore by Gender CleanHouse WashClothes

<25 0.026 -0.178* -0.149
(0.210) (0.103) (0.090)

25-30 -0.209 -0.065 -0.029
(0.207) (0.074) (0.071)

31-35 0.416** -0.001 0.162
(0.196) (0.078) (0.131)

36-40 0.188 0.045 -0.016
(0.210) (0.072) (0.081)

41-45 -0.180 0.024 -0.042
(0.138) (0.057) (0.053)

46-50 -0.090 -0.030 -0.042
(0.091) (0.038) (0.043)

51-55 -0.064 0.009 -0.028
(0.120) (0.040) (0.044)

61-65 -0.002 -0.015 -0.001
(0.081) (0.029) (0.030)

66-70 -0.045 -0.009 -0.019
(0.095) (0.027) (0.029)

71-75 -0.001 -0.031 0.003
(0.105) (0.033) (0.034)

76-80 -0.102 -0.012 -0.095**

(0.126) (0.049) (0.045)
>80 -0.120 -0.055 -0.183**

(0.192) (0.087) (0.075)
<25 × female -0.035

(0.458)
25-30 × female 0.129

(0.534)
31-35 × female 0.012

(0.387)
36-40 × female -0.015

(0.399)
41-45 × female 0.235

(0.231)
46-50 × female -0.176

(0.150)
51-55 × female -0.031

(0.166)
61-65 × female -0.137

(0.133)
66-70 × female -0.038

(0.105)
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Table 3.6 Time Spent on Household Chores (Continued)
(1) (2) (3)

HHChore by Gender CleanHouse WashClothes
71-75 × female -0.079

(0.136)
76-80 × female -0.059

(0.117)
>80 × female -0.400**

(0.169)
N 40826 24993 23410
adj. R2 0.47 0.17 0.10
All specifications control for (1) county-level weather conditions including precipitation,
linear and quadratic terms of relative humidity level and sunset time; (2) individual-level
time-varying characteristics including linear and quadratic terms for age, years of educat-
ion, annual net household income, employment status, and ownership of fans or AC, frid-
ges and washing machines; (3) individual fixed effects, year-month fixed effects, and pro-
vince-month fixed effects. * p < 0.10, ** p < 0.05, *** p < .01. Standard errors are clust-
ered at the county level.
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Table 3.7: Time Spent on Childcare

(1)
Childcare by AC/Fan Adoption

<25 2.366**

(1.051)
25-30 1.839

(2.748)
31-35 2.457*

(1.432)
36-40 2.026**

(0.990)
41-45 0.731

(0.991)
46-50 0.202

(0.785)
51-55 0.367

(0.559)
61-65 -0.329

(0.551)
66-70 -0.672

(0.501)
71-75 -1.168*

(0.676)
76-80 -0.470

(0.887)
>80 -4.134**

(1.924)
<25 × AC/Fan 0.584

(0.441)
25-30 × AC/Fan 0.211

(2.401)
31-35 × AC/Fan -2.569

(1.778)
36-40 × AC/Fan 0.709

(0.900)
41-45 × AC/Fan -0.181

(1.197)
46-50 × AC/Fan -0.015

(0.987)
51-55 × AC/Fan 0.375

(0.798)
61-65 × AC/Fan 0.931

(0.606)
66-70 × AC/Fan 0.751

(0.465)
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Table 3.7 Time Spent on Childcare (Continued)
(1)

Childcare by AC/Fan Adoption
71-75 × AC/Fan 1.001

(0.757)
76-80 × AC/Fan 0.430

(0.721)
>80 × AC/Fan 4.154**

(1.772)
AC/Fan -3.451

(2.821)
N 5936
adj. R2 0.32
All specifications control for (1) county-level weather conditions including precipitation,
linear and quadratic terms of relative humidity level and sunset time; (2) individual-level
time-varying characteristics including linear and quadratic terms for age, years of educat-
ion, annual net household income, employment status, and ownership of fans or AC, frid-
ges and washing machines; (3) individual fixed effects, year-month fixed effects, and pro-
vince-month fixed effects. * p < 0.10, ** p < 0.05, *** p < .01. Standard errors are clust-
ered at the county level.
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Table 3.8: Robustness Check

(1) (2) (3) (4)
Degree Days Poisson Balanced Panel Province*Year*Month

1997-2011
DD40 -0.078∗∗∗

(0.015)
DD70 -0.064∗∗

(0.026)
<25 -1.989∗∗∗ -2.130∗ -2.017∗∗∗

(0.496) (1.087) (0.523)
25-30 -1.237∗∗ -0.925 -2.122∗∗∗

(0.579) (1.457) (0.467)
31-35 -0.857 -2.277∗ -1.083∗∗

(0.529) (1.253) (0.528)
36-40 -0.969∗ -1.374 -0.772

(0.530) (1.022) (0.521)
41-45 -0.142 -1.289∗∗ -0.512

(0.326) (0.473) (0.366)
46-50 -0.738∗∗ -1.206∗∗ -0.699∗

(0.310) (0.497) (0.378)
51-55 0.039 -0.400 0.188

(0.281) (0.501) (0.319)
61-65 -0.001 -0.409 0.047

(0.191) (0.326) (0.182)
66-70 0.123 0.385 0.272

(0.236) (0.330) (0.240)
71-75 -0.358 -0.610∗ -0.214

(0.234) (0.302) (0.259)
76-80 -0.236 -0.247 -0.337

(0.295) (0.396) (0.353)
>80 -1.263∗∗ -1.368∗∗ -0.868

(0.575) (0.609) (0.535)
N 26269 26161 8920 26264
adj. R2 0.33 0.33 0.35

All specifications control for (1) county-level weather conditions including precipitation,
linear and quadratic terms of relative humidity level and sunset time; (2) individual-level
time-varying characteristics including linear and quadratic terms for age, years of education,
annual net household income, employment status, ownership of fans or AC, fridges and
washing machines; (3) individual fixed effects. Column (1)-(3) include year-month fixed
effects and province-month fixed effects, while Column (4) controls for province-month
fixed effects instead. Pseudo R2 of the Poisson regression in Column (3) is 0.33. Standard
errors are clustered at the county level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01
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Chapter 3, in full, is currently being prepared for submission for publication of the material.

Teevrat Garg; Matthew Gibson; Fanglin Sun “Extreme Temperatures and Time-Use in China.”

The dissertation author was one of three co-authors of this material.
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