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Abstract
Precision treatments for epilepsy targeting the underlying genetic diagnoses are becoming a reality. Historically, the goal of 
epilepsy treatments was to reduce seizure frequency. In the era of precision medicine, however, outcomes such as preven-
tion of epilepsy progression or even improvements in cognitive functions are both aspirational targets for any intervention. 
Developing methods, both in clinical trial design and in novel endpoints, will be necessary for measuring, not only seizures, 
but also the other neurodevelopmental outcomes that are predicted to be targeted by precision treatments. Biomarkers that 
quantitatively measure disease progression or network level changes are needed to allow for unbiased measurements of the 
effects of any gene-level treatments. Here, we discuss some of the promising electrophysiological biomarkers that may be 
of use in clinical trials of precision therapies, as well as the difficulties in implementing them.
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Introduction

The promise of precision medicine—providing treatments 
for individuals based on specific phenotypes or genetic 
changes underlying their disease—is a longstanding goal 
for investigators in many fields. Cancer biology has already 
seen a massive shift toward treatment based on underlying 
genetic changes with treatments now targeted at commonly 
altered pathways such as angiogenesis or cell growth [1, 2]. 
In neurology, the increasing number of recognized single 
gene causes for disease along with the recent successes of 
a few such precision therapies has generated tremendous 
enthusiasm in developing targeted interventions. As these 
targeted therapies emerge, a major challenge facing trans-
lational/clinical scientists is ensuring that sensitive, rigor-
ous, and specific measures of all important outcomes are 
developed. The nightmare scenario is failure of a therapy, 
not due to the agent, but due to bad outcome measurements. 

This issue is further heightened in rare disorders where the 
numbers of patients and the cost per patient treated may be 
very high making failure more consequential. The challenge 
of accurately measuring outcomes of precision medicine is 
relevant to all genetic and rare disorders, and strategies are 
being acutely discussed in the epilepsies as epilepsy preci-
sion medicine is beginning.

Seizures are the defining symptom of “the epilepsies” 
but these disorders are ultimately network disorders, with 
seizures just one symptom with neurodevelopmental, physi-
cal, movement, cognitive, behavioral, social, sleep, and psy-
chological disorders all being equally important concerns 
for patients. The full gamut of symptoms is ultimately tar-
gets for precision medicine, and these non-seizure issues 
are more difficult to quantify than seizures. Therefore, in 
the epilepsies, like other genetic neurological disorders, the 
development of biomarkers to identify meaningful changes 
in disease status or even disease progression is essential to 
differentiate variability in disease progression from mean-
ingful modification of disease by precision interventions. 
Here, we discuss the complexity of the problem by both 
highlighting examples of biomarkers that are in use and 
defining the gaps in knowledge that must be addressed to 
develop more sensitive and specific biomarkers for evaluat-
ing precision medicines.
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The Rise of Precision Treatments 
for Neurologic Diseases

The potential for targeted therapeutics for genetic diseases 
to be applied to epilepsy is just beginning to be realized. 
Targeted therapies include pharmacologic interventions to 
normalize channel or protein function, protein replacement 
therapies, RNA-based therapies to alter protein expression, 
and even replacement, or correction of the genes that are 
dysfunctional. Despite the theoretical promise of targeted 
interventions, several examples of precision therapies 
demonstrate the difficulty of successfully translating pre-
cision preclinical studies into clinical practice.

One of the most anticipated precision therapies has been 
the use of everolimus—a mammalian target of rapamycin 
(mTOR) inhibitor—for tuberous sclerosis complex (TSC). 
Everolimus was the subject of numerous preclinical studies 
suggesting a disease modifying effect on not only the various 
tumor types seen in TSC, but also on seizures and neurode-
velopmental outcomes due to targeting the function of the 
underlying genetic defect [3, 4]. Everolimus has been found 
in clinical trials to be modestly effective in the treatment 
of subependymal giant cell astrocytomas (SEGAs) and for 
focal seizures, even in younger children [5–11]. However, 
consistent treatment earlier in the progression may be more 
effective in disease modification based on preclinical studies, 
and has yet to be used in that context [3].

The specific impact of any particular pathogenic vari-
ant matters: i.e., gain of function variants behave differ-
ently from loss of function variants. For example, sodium 
channels causing a loss of function in the SCN1A sodium 
channel cause seizures which can be worsened by sodium 
channel blockers, while seizures caused by gain of func-
tion changes in the SCN8A sodium channel gene respond 
particularly well to sodium channel antagonists [12–14].

Retigabine, an alkyl carbamate anti-seizure medica-
tion (ASM) that potentiates GABAA and acts as an inhibi-
tory M-current enhancing Kv7.2–7.5 potassium chan-
nel opener, has been of interest to patients with KCNQ2 
related epilepsy, which can cause self-limited familial neo-
natal epilepsy or a developmental and epileptic encepha-
lopathy (DEE) [15, 16]. The use of a potassium channel 
opener in patients with defects in potassium channel func-
tion seemed to have benefit in patients, especially when 
started early in the disease course [17]. However, while 
retigabine was initially approved as adjunct therapy in 
focal epilepsy, its use was subsequently restricted due to 
an idiosyncratic adverse effect of blue tissue discoloration 
and the original manufacturer withdrew the medication 
from the market [18]. There is now an ongoing phase 3 
clinical trial investigating retigabine for seizure control 
specifically for children with KCNQ2 DEE [19].

One of the more complicated precision medication sto-
ries for genetic epilepsy has been quinidine in the treatment 
of seizures due to potassium channel KCNT1 pathogenic 
variants, associated with familial focal epilepsy, autosomal 
dominant nocturnal frontal lobe epilepsy, and malignant 
migrating focal seizures of infancy. The pathogenic variant 
typically causes a gain of function in the sodium-activated 
potassium channel, and in vitro the effects can be reversed 
by quinidine which is both a broad spectrum potassium 
channel blocker and a fast inward sodium current antago-
nist [20, 21]. Despite promising preclinical studies, small 
clinical trials have been conducted and have not consist-
ently demonstrated seizure reduction by quinidine [21–26]. 
The variable effect is likely due in part to the variable CNS 
concentrations of quinidine that can be achieved, thought to 
be caused by polymorphisms in active transport of quini-
dine across the blood brain barrier, and also to cardiac side 
effects of prolonged QT at therapeutic doses [21, 27]. In 
addition, while some reports have suggested that treatment 
may only be effective in younger patients [26, 28], other 
studies in patients diagnosed and treated even in the neona-
tal period demonstrated no effect of quinidine [29]. Even in 
patients with KCNT1 who had reduced seizures with quini-
dine, developmental milestones did not seem to normalize 
and the patients remained severely affected despite reduced 
seizures [28].

Pathogenic variants in the NMDA receptor subunit 
encoded by GRIN2A were predicted in vitro to respond to 
memantine, an NMDA antangonist [30]. There are now case 
reports of reduced seizures with memantine in GRIN2A, 
though there have been no larger clinical studies in this pop-
ulation to date, [30–32]. In addition to memantine, ketamine, 
another NMDA antagonist along with magnesium, which 
blocks the NMDA channel, have been used with some suc-
cess in status epilepticus in case studies of a GRIN2D patho-
genic variant as well [33, 34].

Beyond pharmacologic targeted treatments, genetic and 
protein targets are also being used for precision medicine. 
Recombinant protein substitution, though limited due to dif-
ficulty of delivery to the CNS, has been used in neuronal 
ceroid lipofuscinosis type 2 (CLN2) with stabilization or 
slowing of the typical decline associated with this lysoso-
mal neurodegenerative disorder [35]. A newer technology, 
antisense oligonucleotides (ASOs) are an exciting class of 
therapy consisting of synthetic short nucleotide sequences 
that are single stranded and thus bind to and alter mRNA 
expression in humans [36]. Recently, ASOs have been used 
clinically to wide acclaim in Duchenne muscular dystrophy 
(DMD) and spinal muscular atrophy (SMA), and are now in 
clinical trials for Dravet syndrome for epilepsy and in devel-
opment in preclinical trials for Rett syndrome, SCN8A, and 
KCNT1-related epilepsies [37–40]. There is also a potential 
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for the use of ASOs individualized to specific patients, for 
example, as done in one notable recent case with CLN7 [41]. 
In addition to altering protein expression, gene therapy is 
becoming a real possibility using adeno associated viral 
(AAV) vectors for SMA and other degenerative disorders 
[42, 43]. In the coming years, when these precision therapies 
are trialed for single-gene causes of epilepsy [44], better out-
come measures and biomarkers must be available to prevent 
the disappointing responses seen in the examples above.

Untangling Causation in Developmental 
and Epileptic Encephalopathies—
Will Changing Seizures Change 
the Comorbidities?

One of the most important questions to consider as we turn 
to therapies designed to target single gene causes of epilepsy 
is whether the uncontrolled seizures or the underlying pro-
tein dysfunction primarily drive the cognitive and neuropsy-
chological dysfunction often seen in these syndromes. Some 
80% of school aged children with active epilepsy are also 
noted to have behavioral or cognitive impairments which are 
of significant importance to quality of life for these patients 
[45]. While we know that poor seizure control can exacer-
bate cognitive and behavioral difficulties in patients who 
suffer from epilepsy, the cognitive and behavioral concerns 
associated with epilepsy often predate the onset of seizures, 
suggesting that underlying pathophysiology leads to both 
epilepsy and neurodevelopmental deficits [45]. As targeted 
therapies for epilepsies emerge, it stands to reason that not 
only seizure control but also other domains of functioning 
will be important potential targets for intervention and will 
need to be evaluated. These comorbidities differ depending 
on the specific disease being targeted and on the stage of 
that disease.

Often, caregiver and physician scales are used to moni-
tor therapies, and if not tailored to the specific outcomes of 
interest, can yield inconsistent or negative trials for preci-
sion medications. Insulin like growth factor-1 (IGF-1) ana-
logs underwent several less successful trials in Rett syn-
drome before a recent phase 2 clinical trial of trofinetide 
using different scales did eventually show improvements in 
ambulation and seizures as well as repetitive movements, 
breathing problems, mood dysfunction, attentiveness, and 
social interaction [46–50]. Trofinetide also had a positive 
phase II study in Fragile X, but notably, this trial used a 
novel assessment tool that incorporated specific key symp-
toms of Fragile X into the scales [51]. Clinical trials for 
metabotropic glutamate receptor type 5 (mGluR5) antago-
nist mavoglurant or negative allosteric modulator basim-
glurant for behavior symptoms in Fragile X did not show 
any benefit when measured by a checklist designed for use 

in autism in patients, while behavior measured on different 
scales and studies of visual attention during viewing of faces 
did show changes with mavoglurant [52–56]. And studies of 
methylation-targeting medication in Rett syndrome did not 
provide objective evidence of improvements, though par-
ents reported subjective improvements during the study [57]. 
Failed clinical trials like this, in the face of robust preclinical 
findings and subjective reports by parents of improvements, 
raise the question of whether it is the treatment or the out-
come measurement which has failed. There is a clear need 
for better objective biomarkers that can act as more sensi-
tive measure of functioning in domains that are important 
families but may lie beyond subjective surveys of seizure 
counts or intermittent measurements of specific behaviors. 
Are there better measurements to use that can avoid this fate 
in future therapeutic trials?

To obtain higher quality information in clinical trials, we 
must first consider which features of DEEs can be meas-
ured reliably, and which features we expect to be sensitive to 
changes in its underlying pathophysiology, even if changes 
in that physiology may not have an immediate robust sei-
zure reducing effect. Measurement tools that largely consist 
of subjective scales are susceptible to placebo effects and 
are not sensitive to small changes that may be overlooked 
by a close observer over time. What kinds of biomarkers 
can be used to determine if our interventions are changing 
the course of disease, and over what time course should we 
expect to see a change in these biomarkers? Next, we will 
look at the existing potential biomarkers that may be of use 
in clinical trials to get at some of these questions for DEEs.

Biomarkers of Brain and Network Functions

A major concern is that precision interventions may not 
perform well in clinical trials designed for new anti-seizure 
medications (ASMs) which evaluate seizure reduction in 
established refractory cases. By using biomarkers designed 
to query underlying network function, the goal is to identify 
meaningful changes in a network earlier and with greater 
sensitivity than behavioral scales. The hope is that focusing 
our efforts on those biomarkers that are normal or minimally 
abnormal early on in a particular disease and which typi-
cally show progression as the disease progresses may better 
identify those targeted interventions that halt meaningful 
clinical disease progression before the onset of severe symp-
toms. Biomarkers that can provide information about net-
work function across a range of DEEs would be ideal since 
they might be applicable to several rare diseases. In neurol-
ogy, assessments often involve imaging-based evaluations 
such as MRI; function-based measures such as nerve con-
duction, auditory, visual, or sensory evoked potentials, and 
EEG; or a combination of imaging and functional modalities 
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such as fMRI, PET, and magnetoencephalography (MEG). 
Other biosensors may also add to the overall assessment 
in meaningful ways [58]. An intriguing in vitro predictive 
biomarker of sorts has been in development using patient-
derived human-induced pluripotent stem cells (iPSCs) to 
evaluate the nature of specific mutations in certain patients 
and predict responses to possible precision treatments, but 
these studies also raise questions of neuronal cell type, 
brain regional effects, maturity, and network role that must 
be addressed in order to bring the information back to the 
treatment of specific patients [59, 60]. Nevertheless, specific 
biomarkers like this that may be able to detect successful 
target engagement and functional improvement with therapy 
early in treatment would be helpful in quickly identifying 
precision treatments of use in specific patients.

Some modalities such as fMRI or MEG are out of reach 
without sedation in DEEs, degrading the quality of the infor-
mation that can be obtained. However, neurophysiological 
techniques can often be performed in patients without need 
for sedation or cooperation. Here we review examples of the 
use of standard neurophysiological techniques as biomarkers 
in DEEs that might be of use as we develop more targeted 
therapies.

Evoked Potentials

A few studies have demonstrated that auditory evoked 
potentials (AEPs) can track disease progression in certain 
syndromes. In Rett syndrome, a recent multicenter study 
reported on a clear association of P1-N1 amplitudes with 
severity as measured by the Rett specific clinical severity 
scale or motor behavioral assessment [61]. Additionally, in 
subjects recorded 1 year later, both the waveforms and the 
association with severity were reproducible [61]. This was 
the first multicenter study to show the promise of evoked 
potentials in the DEEs. Previous to this study, a number of 
single-site studies in Rett syndrome reported similar results 
using responses to basic tones and responses to “oddball” 
stimulus delivery paradigms, with increasing central abnor-
malities seen with disease progression [62, 63]. Increases in 
gamma frequency are seen in Rett patients when exposed to 
familiar voices and event-related potentials (ERPs) to their 
own name are increased in magnitude, while interestingly in 
MeCP2 duplication syndrome, the increases in gamma are 
seen when exposed to unfamiliar voices, and ERP amplitude 
increased to others’ names rather than the patient’s own [64, 
65]. More negative left hemisphere amplitudes in response 
to words as compared with non-words are correlated with 
better receptive language skills and adaptive behavior in 
girls with Rett syndrome and may be a measurement that 
could serve as a biomarker of disease severity [66]. Evoked 
potentials can also be detected using MEG, and delays in the 
M100 response in the right hemisphere seem to be correlated 

with autism [67]. Gamma frequency modulation differences 
are also seen in other DEs; for example, gamma modulation 
is not seen in response to frequency-varying stimulation in 
patients with Dravet syndrome [68]. In patients with Fragile 
X syndrome exposed to minocycline, ERPs to a passive odd-
ball paradigm demonstrated reduced amplitudes compared 
to patients exposed to placebo, demonstrating that the dif-
ferences in AEPs seen in DEEs are sensitive to medication 
effects [69]. In patients with Angleman syndrome, auditory 
evoked potentials using an odd-ball paradigm were corre-
lated (but not statistically significantly) with adaptive behav-
ior scale [70]. Besides the recent study in Rett, these were 
all single site—small numbers of subjects, but each gives 
promise for auditory evoked potentials in the DEEs.

Visual evoked potentials (VEPs), though apparently nor-
mal in some studies of DEEs such as FOXG1, but with very 
small sample size, have been noted to have smaller ampli-
tude, varied latencies correlating with disease severity, and 
exhibit decreased visual spatial acuity in Rett syndrome [61, 
71–73]. Relatively fewer studies have been completed using 
VEPs compared with AEPs [61].

Somatosensory evoked potentials (SEPs) in girls with 
Rett syndrome were noted to have increased central laten-
cies, similar to findings in auditory and visual evoked poten-
tials [74, 75]. In addition, they demonstrate delayed giant 
SEPs which are associated with cortical reflex myoclonus 
[75, 76]. Several studies in younger girls under age 9 with 
Rett syndrome did not demonstrate differences from typi-
cally developing girls, and thus, SEPs may represent good 
biomarkers for disease progression [77, 78].

EEG

A longitudinal study in TSC seeking a biomarker for 
impending infantile seizures demonstrated that epileptiform 
discharges in TSC infants (identified by other features- such 
as cardiac rhabdomyomas) prior to developing epilepsy pre-
ceded clinical seizure onset by an average of 3.6 months, and 
thus, a routine EEG could indeed be used as a biomarker for 
seizure development in this population [79, 80]. In addition, 
background abnormalities and dysmaturity in newborns and 
infants with TSC also correlate with neurodevelopmental 
comorbidities at later time points [81]. Vigabatrin, another 
medication known to have specific clinical utility in TSC, 
was selected as another specific candidate for disease modi-
fying treatment, with initial open label studies suggesting 
that treatment at the onset of discharges on EEG, but prior 
to onset of clinical seizures, could improve outcome in 
terms of both seizures and neurocognitive scores compared 
with historical controls [82, 83]. Recently, published results 
of the EPISTOP trial in the EU demonstrated that infants 
who were treated with Vigabatrin prophylactically at onset 
of EEG abnormalities compared with children treated at 
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clinical seizure onset had longer time to first seizure (364 
vs 124 days), as well as decreased risk of clinical seizures 
(OR 0.21), drug-resistant epilepsy (OR 0.23), and infantile 
spasms (OR 0.0) [84, 85]. A similar trial in the USA called 
PREVeNT assigned infants with TSC to receive preventive 
or standard treatment with vigabatrin and is in progress at 
this time [86].

In patients with history of perinatal stroke, mean spike 
frequency diverges in patients who go on to develop electri-
cal status epilepticus in sleep (ESES) from those who do 
not approximately 3 years before diagnosis of ESES [87]. 
EEG in Rett syndrome follows a characteristic developmen-
tal pattern, in which EEG is largely normal before regression 
starts, then spike and sharp waves arise over the centrotem-
poral regions before becoming more generalized [88, 89]. 
As the disorder progresses further, epileptiform abnormali-
ties subside and a slow background with frontocentral theta 
remains. EEG in Angelman syndrome develops interictal 
epileptiform discharges, rhythmic delta and theta, and pos-
terior slowing which differ qualitatively depending on the 
genetic change [90, 91]. These all demonstrate that the EEG 
follows disease-specific trajectories that can potentially be 
used as an outcome measure in these disorders.

Beyond the visual inspection of EEG, resting state quan-
titative EEG can identify even more subtle differences in 
EEG using the spectral power, interelectrode coherence, 
and other features like amplitude, kurtosis, skewness, and 
variability in the signal. Analysis of resting state and sleep 
EEG has been performed for several disorders including 
autism, anxiety and depression, several DEEs, and in nor-
mal child development [92–95]. The relative delta power 
and rhythmicity corrected for age and genotype in Angel-
man syndrome predict cognitive scores [96, 97]. Delta 
power is higher in post-perinatal stroke patients who go 
on to develop ESES than those who do not, higher in Rett 
syndrome patients in the post regression state compared 
with during, and higher in Angelman syndrome during both 
wakefulness and sleep [87, 98]. Power in the delta bands 
is also increased in sleep in Rett syndrome compared with 
neurotypical controls, and unlike in controls, that delta 
power does not decline overnight [99]. Coherence meas-
ures are also noted to be increased during sleep in children 
with Angelman syndrome [100]. Beta power is decreased in 
Angelman syndrome, while in duplication 15q syndrome, 
which includes the same region deleted in Angelman syn-
drome, beta power is increased, mimicking the observed 
effect on EEG of the addition of a benzodiazepine on adult 
neurotypical control patients [101].

Within similar phenotypic disorders, differences in 
quantitative EEG can be seen on the basis of genotype. For 
example, in occipital and temporal regions, differences in 
the pattern of interelectrode coherence have been noted 
both between Rett syndrome caused by MeCP2 deletion and 

CDKL5 deficiency disorder (CDD), as well as within dif-
ferent genotypes of Angelman syndrome [91]. At the same 
time, phenotypically different subtypes of Rett syndrome 
caused by alterations of the same gene (either with or with-
out epilepsy or with classic or preserved speech variant) 
display differences in patterns of interelectrode coherence 
[102].

Quantitative EEG measures also change with inter-
ventions. Even brief periods of cognitive training in Rett 
syndrome seem to increase beta and decrease theta power, 
suggesting that changes in power may be very sensitive to 
interventions [103]. And although mecasermin did not show 
clear improvements in subjective scales in Rett syndrome as 
discussed above, asymmetry in frontal alpha, a finding that 
typically correlates with anxiety and depression symptoms, 
was decreased with mecasermin use, suggesting this is a 
more sensitive biomarker than scales to evaluate medica-
tion effects in Rett syndrome [49, 93, 104]. In Angelman 
syndrome, power spectra were found to have decreased delta 
power after treatment with minocycline [105].

Beyond evaluating changes in EEG with interventions, 
attention has also been turned toward attempting to identify 
baseline quantitative EEG characteristics that will predict 
responses to therapy. For example, differences in network 
organization, synchronicity, and connectivity, often meas-
ured using EEG, evoked potentials, or functional imaging 
modalities, and heart rate variability seem to have better pre-
dictive validity in identifying patients who will benefit from 
vagal nerve stimulators (VNS) compared with structural dif-
ferences or laboratory values such as inflammatory markers 
[106–112]. In a recent study, patients with temporal lobe 
epilepsy with lower connectivity values on quantitative EEG 
measurements were noted to be more likely to experience 
seizure freedom on monotherapy with levetiracetam [113].

Taken together, the evidence for use of evoked poten-
tials and EEG as biomarkers for progression of disease or 
response to precision therapies looks promising, but with a 
significant number of hurdles to be tackled.

Pitfalls and Considerations

Before we can implement into clinical trials or in real-
world practice, these research results of neurophysiologic 
or other functional biomarkers for monitoring therapeutic 
treatments, larger studies including a battery of differ-
ent tests in people with varying genetic and phenotypic 
syndromes in different stages of disease will need to be 
performed. As these previous studies have documented 
(Table 1), there are differences not only over time within 
one disease, but between different diseases or even 
between phenotypic subsets of patients with the same 
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disease. Concomitant medications, age, state, and tempo-
ral relationships to seizures can alter the network function 
in ways that may affect neurophysiologic biomarkers and 
so attention will need to be paid to all these factors when 
taking measurements.

The measures which are most robust and most sensi-
tive to small changes in neurologic status must be identi-
fied, adjusted, and validated in specific populations before 
these potential biomarkers can be implemented in clinical 
trials. With the small patient populations being studied in the 
DEEs, good proof of reliability and reproducibility needs to 
occur before implementing these measures, as with small 
numbers the likely variability of any given study is greater 
than originally believed. As described above, many of the 
exploratory studies for EEG and EP biomarkers have per-
formed multiple tests on different features of the EEG/EP. 
Ensuring that sound statistical methods, including correct-
ing for multiple comparisons and ensuring reproducibility 
in different cohorts is needed before these tests are used as 
primary outcome measures in any clinical trial. Biomarkers 
which have an easily translatable counterpart in animals will 
also be ideal in allowing for more seamless translation of 
preclinical research into the clinical realm.

Predictive biomarkers of response to intervention are 
highly sought, since having a measure of the likelihood of 
a response to treatment before it is initiated would be ideal 
in selecting medications in clinical use or choosing subjects 
for prospective interventions. However, it is possible that the 
best biomarkers may ultimately be derived from identifying 
specific changes in network function after initiation of an 
intervention. While this may seem counterintuitive, having 
an early predictive biomarker that is calculated using data 
from a physiological study before initiation of a treatment 
then again after a brief trial of therapy without having to 

wait for sufficient time to evaluate for seizure reduction or 
change in behavior could allow us to more quickly find indi-
vidual solutions that will work best for a particular patient 
without lengthy trials.

Timing of clinical trials within a disease course is also 
critical to consider when engaging in therapeutic treat-
ments that might alter the course of a disease. Studies that 
are designed to focus on changing specific targets in older 
patients might fail to find even a robust treatment effect that 
could be evident if initiated prior to the onset of refractory 
epilepsy and neurodevelopmental deficits. For example, an 
ASO designed to facilitate functional Nav1.1 channel for-
mation in patients with pathogentic SCN1A variants has 
been tested in preclinical models and is now in a clinical 
trial [40]. While this is a very exciting trial with high hopes 
for use in patients with Dravet syndrome, patients cannot 
enroll prior to onset of refractory seizures. Therefore, the 
question of whether intervening before significant epilepsy 
and developmental consequences have already appeared 
cannot be answered using this trial design. As biomarkers 
are identified earlier in disease, these early symptomatic or 
presymptomatic biomarkers may become the most important 
targets for future studies.

Conclusions

As we develop new precision therapies, clinical trials will 
need to shift focus from altering seizures in patients with 
already refractory disease to allow for the early or even pre-
symptomatic treatment of individuals prior to their develop-
ing refractory epilepsy or other neurodevelopmental effects. 
This shift will require a substantial investment in the devel-
opment of biomarkers for different genetic and phenotypic 

Table 1   Summary of study types, disorders, and medications described in the text

TSC tuberous sclerosis complex, CLN2 neuronal ceroid lipofuscinosis type 2, CDD CDKL5 deficiency disorder

Measurement Disorders with clinical data Interventions tested with this  
modality

References

Clinical surveys: seizure counts TSC, SCN8A, KCNQ2, KCNT1, 
GRIN2A, GRIN2D

Everolimus, sodium channel  
antagonists, retigabine, quinidine, 
memantine, ketamine

[3–14, 17–26, 30–34]

Clinical surveys: behavior and 
other symptoms

CLN2, Rett Syndrome, Fragile X 
syndrome

Recombinant proteins, trofinetide, 
mavoglurant, basimglurant,  
methylation modulation

[35, 46–57]

Evoked potentials Autism, Rett, MeCP2 duplication, 
Fragile X, Angelman, and Dravet 
syndromes

minocycline (Fragile X) [61–78]

EEG abnormalities: qualitative TSC, post perinatal stroke, Rett  
syndrome, Angelman syndrome

Vigabatrin (TSC) [79–91]

EEG: quantitative Rett syndrome, Angelman syndrome, 
duplication 15q syndrome, post  
perinatal stroke, CDD

Mecasermin (Rett), minocycline  
(Angelman), cognitive training (Rett)

[49, 87, 91, 93, 96–105]
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patient populations that can identify patient groups who will 
benefit from novel therapies earlier. Neurophysiologic and 
other brain-based functional neurologic measurements are 
well positioned to fill this need, with a number of studies 
pointing toward the sensitivity of these measurements to 
even small interventions. Candidate biomarkers will need 
to be validated by age, disease genotype and phenotype, and 
stage of disease, and priority should be given to measures 
that correlate with the comorbidities that most influence the 
quality of life of patients and their caregivers.
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