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EVOLUTION

How vertebrates got 
their bite
A newly discovered enhancer region may have allowed vertebrates to 
evolve the ability to open and close their jaws.

THOMAS F SCHILLING AND PIERRE LE PABIC

Most vertebrates, including humans, 
evolved from jawless fish which roamed 
the oceans 420–390  million years 

ago (Forey and Janvier, 1993). Acquiring 
jaws allowed our ancestors to bite and chew, 
expanding the range of food they could eat and 
where they could live. Understanding how this 
mouth structure arose is therefore a central ques-
tion in evolution (Miyashita, 2016).

Studies in lampreys and hagfish, the only 
species of jawless fish that still exist today, 
suggest that the jaw evolved from a pre- existing 
skeletal system surrounding the mouth and throat 
that was used for filtering food and breathing. A 
key step in this process was the acquisition of a 
mobile joint, essentially a skeletal hinge that can 
open and close the mouth. For this to happen, 
cells within the jaw skeleton – most likely carti-
lage cells – had to alter their gene expression 
to become more flexible. Such changes often 
involve enhancers, regions of DNA that control 
when a nearby gene is expressed, and in which 
part of the body.

Very few enhancer sequences have been 
preserved between species over long evolu-
tionary periods (Long et  al., 2016), and these 

often control processes related to development 
(Pennacchio et al., 2006; Bejerano et al., 2004; 
Lettice et al., 2003; Kvon et al., 2016; Leal and 
Cohn, 2016; Letelier et al., 2018). Now, in eLife, 
Tatjana Haitina and colleagues from Uppsala 
University – including Jake Leyhr as first author 
– report the discovery of a widely conserved 
enhancer named Joint Regulatory Sequence 1 
(JRS1) that is critical for the development of the 
jaw joint and, potentially, the early evolution of 
the jaw (Leyhr et al., 2022).

The team spotted JRS1 by comparing the 
genomes of multiple species and noticing a 
sequence present in most jawed vertebrates, but 
missing in lampreys and hagfish (Figure 1). Exper-
iments in zebrafish revealed that this enhancer 
drives the expression of a gene called nkx3.2, 
which encodes a transcription factor essential for 
jaw joint development. This gene is specifically 
expressed in the jaw joint of embryos, where it 
regulates the activity of other genes needed to 
form the hinge that opens and closes the mouth 
(Miller et  al., 2003; Waldmann et  al., 2021; 
Smeeton et al., 2021).

To investigate where JRS1 drives expression 
of nxk3.2 across jawed vertebrates, Leyhr et al. 
manipulated the genome of zebrafish embryos 
by placing the coding sequence for a fluorescent 
reporter under the control of JRS1 sequences 
from other species. The JRS1 region of all the 
vertebrates studied, including humans, induced 
expression in the jaw joint and surrounding carti-
lage, despite the enhancer sequence varying 
slightly between species. Further experiments 
provided additional details about the role of 
JRS1 in zebrafish, showing that zebrafish embryos 
genetically modified to lack a functional JRS1 
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enhancer expressed less nxk3.2, which caused 
their upper and lower jaw to transiently fuse 
(Figure 1).

Lampreys lack the JRS1 sequence and asso-
ciated expression of nxk3.2 in their first pharyn-
geal arch, which will go on to form the cartilage, 
bone and other structures of the jaw. However, 
other genes involved in jaw patterning are 
still expressed during lamprey development, 
suggesting that JRS1 appeared late in jaw joint 
evolution (Cerny et  al., 2010). In particular, 
lamprey embryos activate several genes that 
control the identity of the upper and lower jaw in 
other vertebrates, the significance of which is an 
exciting subject for future studies.

There is growing recognition of how 
enhancers impact development and disease, 
but very few have been shown to have essential 
roles in vivo, or to contribute to morphological 
evolution. The work of Leyhr et al. has important 
implications for the basic understanding of jaw 
evolution, and could potentially help researchers 
identify the genetic causes underlying craniofa-
cial defects.
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and Agnatha are based on drawings by Goodrich, 1930.
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