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A Versatile Model for Packet Loss Visibility and its
Application to Packet Prioritization

Ting-Lan Lin, Student Member, IEEE, Sandeep Kanumuri, Member, IEEE, Yuan Zhi, David Poole,
Pamela C. Cosman, Fellow, IEEE, and Amy R. Reibman

Abstract—In this paper, we propose a generalized linear model
for video packet loss visibility that is applicable to different
group-of-picture structures. We develop the model using three
subjective experiment data sets that span various encoding stan-
dards (H.264 and MPEG-2), group-of-picture structures, and
decoder error concealment choices. We consider factors not only
within a packet, but also in its vicinity, to account for possible tem-
poral and spatial masking effects. We discover that the factors of
scene cuts, camera motion, and reference distance are highly sig-
nificant to the packet loss visibility. We apply our visibility model
to packet prioritization for a video stream; when the network gets
congested at an intermediate router, the router is able to decide
which packets to drop such that visual quality of the video is min-
imally impacted. To show the effectiveness of our visibility model
and its corresponding packet prioritization method, experiments
are done to compare our perceptual-quality-based packet prioriti-
zation approach with existing Drop-Tail and Hint-Track-inspired
cumulative-MSE-based prioritization methods. The result shows
that our prioritization method produces videos of higher percep-
tual quality for different network conditions and group-of-picture
structures. Our model was developed using data from high
encoding-rate videos, and designed for high-quality video trans-
ported over a mostly reliable network; however, the experiments
show the model is applicable to different encoding rates.

Index Terms—Packet dropping policy, packet loss, perceptual
video quality, video coding, visibility model.

1. INTRODUCTION

RANSMISSION of compressed video over a network
T is becoming more and more popular due to the rising
demand for multimedia applications. To ensure a satisfactory
viewing experience for the end users, it will be beneficial for
network providers or video transmitters to have an accurate
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video quality monitoring system in the network to help evaluate
the quality of video reception. A good in-the-network video
quality monitoring system can help video senders or network
service providers decide/optimize the transmission settings that
result in efficient usage of network resources (for example,
bandwidth) for video services with cost-based quality.

Video quality measurement in the network can be categorized
into three different types based on the accessibility of informa-
tion about the original (reference) video. Full-reference (FR)
methods evaluate the video quality with access to the original
video, providing the most precise measurements on the video
quality difference. Reduced-reference (RR) metrics extract par-
tial information about the original video at the sender and are
sent reliably to the receiver to estimate the video quality. No-ref-
erence (NR) methods only use information available in the bit-
stream or the decoded pixels without reference video informa-
tion. One of the most widely used FR metrics is MSE (Mean
square error) of pixel values between original and evaluated
videos. The Structural SIMilarity index for images (SSIM) [1]
and for videos (VSSIM) [2] also requires the original content
to calculate statistical structure information. Another FR metric
is Continuous Video Quality Evaluation (CVQE) [3], which
models the temporally continuous quality scores of human ob-
servers. Video Quality Metric (VQM) [4], a FR metric devel-
oped by the National Telecommunication and Information Ad-
ministration, is shown to be better correlated with human per-
ception than other FR video quality metrics [5]. A RR method
developed in [6] sends a low-bandwidth descriptor which ap-
proaches the performance of VQM. In [7], harmonic analysis
on filtered images is done to provide a RR metric, which shows
good correlations with subjective data in the VQEG database.
A NR method proposed in [8] evaluates blurring artifacts using
edges and adjacent regions in the lossy image. In [9], PSNR of
a lossy video is estimated by a NR metric using only received
coded transform coefficients.

Packet losses in the network (for example, due to congestion)
can significantly damage video quality during transmission.
Therefore, considerable research has been conducted to under-
stand the relationship between packet losses and visual quality
degradation. Although PSNR (Peak Signal to Noise Ratio)
and MSE do not always reflect perceptual quality well, they
are commonly used to measure video quality. The relation
between PSNR and perceptual quality scores is considered
in [10]. It finds that packet losses are visible when the PSNR
drop is greater than a threshold, and the distance between
dropped packets is crucial to perceptual quality. The prediction
of objective distortion by MSE is discussed in [11]. Average
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performance across an entire video sequence is the focus in
[12], which uses MSE to assess quality for different compres-
sion standards and different concealment techniques; a specific
model is used for each compression standard and concealment
technique. Three different NR metrics in [13] are developed to
estimate the MSE caused by a packet loss.

Much of the effort to understand the visual impact of packet
losses [14]-[17] has focused on modeling the average quality
of videos as a function of average packet loss rate (PLR). Video
conferencing was studied in [14] using the average consumer
judgments on the relative importance of bandwidth, latency and
packet loss. A random-neural-network model was developed in
[16] to assess quality given different bandwidths, frame-rates,
packet loss rates, and I-block refresh rates. In [18] and [19], NR
metrics of low complexity were developed using the length and
strength of packet loss impairment from each decoded image.

However, PLR can provide wrong interpretations on video
quality since packet losses are perceptually not equal. The vi-
sual impact of a packet loss is a combined effect of various fac-
tors such as the location of the packet loss in the video, the con-
tent of the video at that location, and whether there are other
packet losses in its vicinity. Therefore, subjective experiments
are important to construct/verify the video quality metrics re-
lated to packet losses. Hughes et al. [17] discovered that many
different realizations of both packet loss and video content are
necessary to reduce the variability of viewer responses. Also,
the “forgiveness effect” causes viewers to rank a long video
based on more recently viewed information. In [20], using com-
putational metrics from a no-reference model as well as a sub-
jective test, it was found that simple quality metrics (such as
blockiness, blurriness, and jerkiness) do not predict quality im-
pairments (caused by packet losses or compression) very well.
In [21], an NR metric was used to calculate the temporal flu-
idity impairments resulting from packet losses. This is a good
predictor for the perceptual scores due to motion discontinuity
under several image dropping conditions.

Instead of studying how packet losses affect the overall per-
ceptual video quality, or how packet losses relate to MSE, our
goal is to develop a robust predictor for packet loss visibility for
each individual packet based on the information of its encoded
content and other factors. This will serve as a useful tool for
various purposes. For packet prioritization, one can assign low
priority to packets that cause low loss visibility. When the buffer
in a network node is congested, it can opt to discard the low-pri-
ority packets and, hence, minimize the degradation to perceived
video quality for the end user. For unequal error protection, one
can give more parity bits and, hence, more protection to packets
with higher visual importance, so that if those packets are cor-
rupted during transmission, they are more likely to be corrected
by the channel decoder. The packet visibility model can also be
useful for in-the-network quality monitoring to obtain accurate
and real-time information on the transmitted video.

In our previous work [22], we studied the problem of pre-
dicting the visibility of individual packet losses in MPEG-2 bit-
streams. Packet losses were introduced in MPEG-2 bitstreams
and concealed using zero-motion error concealment (ZMEC).
Viewers were asked to observe the videos and respond to the
visible glitches that they notice. Using the subjective test re-
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sults and a set of factors that were extracted from the videos,
the Classification and Regression Trees (CART) algorithm [23]
was applied to classify the losses as visible or invisible. This
work was extended in [24] and [25] to model the probability of
packet loss visibility using a generalized linear model (GLM)
[26]. The visibility for H.264 packets is discussed in [27]. We
derived visibility models specifically for individual and multiple
packet losses based on RR factors.

In all these studies, the main factors we considered are based
on encoding information within a slice (packet), such as mo-
tion vectors, residuals, and number of inter partitions. In [28],
we focus more on exploring features of the video frames in the
pixel domain: encoded signal, decoded signal, and the error be-
tween them. Those factors are not only considered in the scope
of a slice, but also for its neighboring slices, both spatially and
temporally. For example, we considered both the temporal and
spatial edges induced by a packet loss, and also the error dura-
tion. In addition, in [28], we obtained a generic model that pre-
dicts the visibility of packet loss for two compression standards
and three decoder concealment techniques without prior speci-
fication of either the standard or the concealment technique. In
[29], we considered factors related to the proximity of a scene
cut and camera motion, and found their effectiveness to predict
the visibility of packet loss. The Patient Rule Induction Method
(PRIM) [30] was used to understand when the packet loss will
be very visible and very invisible.

In this paper, we present a new packet-loss visibility model
based on a more general strategy for factor inclusion than in
[28], [29]. The goals of this paper are twofold: to develop a vis-
ibility model for different GOP structures and encoding rates,
and to demonstrate the effectiveness of a packet prioritization
application based on our visibility model. Using the packet pri-
orities, an intermediate router can intelligently drop low-priority
packets. Among existing approaches on packet classification,
the work by De Martin e al. assigns a packet high/low pri-
ority based on the cumulative MSE due to the packet loss [31],
[32], network status and end-to-end QOS constraint [33]. Also,
the Rate-Distortion Hint-Track method was proposed for packet
scheduling [34], [35] and packet dropping [36], [37]. Especially
in [36] and [37], an intermediate router with an optimization al-
gorithm drops packets in a congested network from different
streams to minimize the sum of the cumulative MSE, where the
sum of the outgoing rates is constrained to be less than the band-
width of the outgoing link. A similar idea on a rate-distortion
optimized dropping policy was proposed earlier in [38] using a
rate vector and a distortion matrix, and employing a different
optimization philosophy. A detailed discussion of Hint-Track
(HT) and Distortion Matrix (DM) methods is in [39]. The most
significant difference between our approach and the above-men-
tioned methods is that we do not use MSE (or PSNR) as a quality
metric to develop our method; our model is built from subjective
experiments. We compare our visibility-based packet prioritiza-
tion strategy with the Cumulative-MSE-based method and the
widely-used Drop-Tail policy using NS-2 (Network Simulator)
[40]. The comparisons are made using the well-known percep-
tual quality metric VQM [4]. Some of the results in this paper
were presented in [41].
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There are many differences between this paper and our pre-
vious work which appeared in [25]. Our earlier work used data
from a single codec (MPEG-2), video resolution (720 x 480),
GOP structure (IBBP), and error concealment method (ZMEC).
The current paper uses data from multiple codecs, video resolu-
tions, GOP structures, and error concealment methods. Also, the
visibility model in [25] uses features which are specific to that
GOP structure. For example, the features named P1, P2, P3, and
P4 denote P frames with different distances to the I frame for the
IBBP GOP structure. These variables may be undefined if there
are more or fewer than 4 P frames in a GOP, or if the GOP struc-
ture is other than IBBP. In this paper, we avoid GOP-specific
variables. So, the current model allows a far more generalized
use, due to both the data used to build the model, and the choice
of factors for prediction. Another major difference with [25] is
that the current paper demonstrates the utility of this general
model in a packet prioritization application; the application uses
various GOP structures, including ones which were not used in
the subjective experiments used for building the model.

This paper is organized as follows: Section II describes the
experiment settings for the three different subjective tests and
the variety of settings used for video encoding. Section III dis-
cusses possible applications of the proposed model. Section IV
introduces the attributes of packet loss that can be extracted
from the encoded signal, the decoded signal, and the error be-
tween them, to predict packet loss visibility. The measurements
of packet loss are explained in terms of required information
about the video, computational complexity and factor attributes.
In Section V, we first provide a brief introduction to the GLM
modeling method. Then we illustrate our GLM model building
strategy using all the different data sets and incorporate signif-
icant factors. Section VI presents the experiment results com-
paring our visibility-based prioritization method with others.
Section VII concludes the paper.

II. SUBJECTIVE DATASETS

The major purpose of this work is to develop a generalized
and robust visibility model for packet loss impairments. There-
fore, we combine the results of three prior subjective experi-
ments [25], [27], [42] in which the video clips are generated by
using various codecs and settings as summarized in Table I. The
data sets we used are the same as in [29], and the description of
the data sets in this section is mostly based on [29].

Tests 1 and 2 use videos compressed by MPEG-2 at spatial
resolution 720 x 480 with an adaptive GOP (group-of-picture)
structure in which an I-frame is inserted at each scene cut. In
these videos, there are usually 2 B-frames between each refer-
ence frame, and the typical GOP length is 13 frames. However,
each GOP ends with a P frame and there are no B-frames be-
tween the final P-frame of one GOP and the first I-frame of
the next GOP. Test 3 uses videos encoded by H.264/AVC ex-
tended profile (JM 9.1) at spatial resolution 352 x 240 with a
fixed IBPBPB-type GOP structure of 20 frames. The encoder in
this case uses each I-frame of the current GOP as a long-term
reference frame. For P frames, a long-term reference frame and
a short-term reference frame (previously-coded P frame) are
used for motion compensation. B frames use the future P frame
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TABLE I
SUMMARY OF SUBJECTIVE TESTS’ PARAMETERS AND THEIR DATASETS
Test 1 [42] Test 2 [25] | Test 3 [27]

Spatial resolution 720x480 720x480 352x240
Frame rate (fps) 30 24 30 30
Duration of
video in test

(minutes) 7.3 8.9 72 36
Compression

standard MPEG-2 MPEG-2 H.264
GOP structure I-B-B-P- I-B-B-P- 1-B-P-

SCene SCENne
I-frame insertion adaptive adaptive fixed
GOP length <13] <15 <13 20
[ concealment [ default [ ZMEC | MCEC |

Losses 108 | 107 1080 2160
Losses in B-frames 14% 14% 50%
Full-frame losses 20% 30% 0%
Mean num. viewers
who saw each loss 4.56 5.13 3.11 1.32
Null Pred. error 0.14599 0.12236 0.041571
Initial Mean Sq.

Error (IMSE) 5.245 3919 1.708

and either the long-term or short-term reference frame for bidi-
rectional prediction. Test 3 does not enable the Flexible Mac-
roblock Ordering (FMO) functionality in H.264. An important
application of the desired visibility model is for high-quality
video transmission over mostly reliable networks, where there
are few, if any, visible compression artifacts and only isolated
packet-loss events. Therefore, the encoding rates for all videos
in the three tests were set such that there are no obvious en-
coding artifacts. This allows us to concentrate on impairments
induced by packet loss. H.264 videos have one slice (a row of
macroblocks) per Network Adaptation Layer Unit (NALU) by
default, and each packet loss is equivalent to the loss of one slice.
For MPEG-2 videos, we explore generic packet sizes, by recog-
nizing that a large variety of packet sizes can be accommodated
by considering the loss of one slice, two slices (where a loss af-
fects a slice header) or a full frame (where a loss may affect a
picture header).

The main difference among the decoders is the concealment
strategy, which is the most important factor influencing the
initial error induced by a packet loss. Test 1 uses a default error
concealment typical of a software decoder that is designed
for speed rather than error resilience. Such a decoder will
effectively “conceal” missing data in a reference frame using
data from rwo reference frames ago, while missing data from
B-frames are “concealed” using data from the prior B-frame.
Test 2 uses zero-motion error concealment (ZMEC), in which a
lost macroblock is concealed using the macroblock in the same
spatial location from the closest prior reference frame in display
order. Test 3 uses Motion-Compensated Error Concealment
(MCEC) [27], which incurs a lower initial error compared to
ZMEC [22], [24], [25]. The MCEC algorithm estimates the mo-
tion vector and the reference frame for the lost macroblock and
conceals it with the macroblock predicted using the estimated
motion vector. Motion compensation in H.264/AVC can occur
at different levels from the macroblock level to the smallest
block level (4 x 4 pixel block). Accordingly, each macroblock
can have a different number of motion vectors ranging from 1
to 16. These motion vectors can reference different reference
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frames because of multiple frame prediction. A set of motion
vectors is formed from motion vectors of blocks around the lost
macroblock. The frame that is referenced the most number of
times in the set among all the reference frames is selected for
concealment. The estimated motion vector is the median of all
the motion vectors in the set that refer to this selected frame.
The improved performance of MCEC can be seen from Table I.
In Test 3, both the number of viewers observing each packet
loss, and the initial MSE (IMSE), are reduced compared to Tests
1 and 2. Note that one common feature for the error-handling
strategies of all the three decoders is that the video decoder
only processes slices that are completely received.

The videos used in each test are highly varied in motion
and spatial texture. They contain a wide variety of scenes
with different types of camera motion (panning, zooming) and
object motion. The high motion scenes include bike racing, bull
fighting, dancing and flowing water. The low motion scenes
include a slow camera pan of geographical maps, historic build-
ings and structures. The videos also have scenes with varying
spatial content such as a bird’s eye view of a city, a crowded
market, portraits, sky, and still water. The signal attributes of
per-frame mean, variance, mean motion-vector length, and
residual energy after motion compensation are all statistically
identical across the three tests. The video content in Test 3 is
identical to half the video content in Test 2, while the content in
Test 1 is distinct and includes some content from film encoded
at 24 fps.

The purpose of our subjective experiments is to obtain the
ground truth on the visibility of packet losses. In each of our
three tests, the viewers’ task is to indicate when they saw an
artifact, where an artifact is defined simply as a glitch or abnor-
mality. All the subjective tests were single stimulus tests, which
means that the viewers were only shown the videos with packet
losses and not the original videos. A single stimulus test mimics
the perceptual response of a viewer who does not have access to
the original video, which is a natural setting for most applica-
tions. For each of the three tests, exactly one packet loss occurs
in the first 3 s of every 4-s time slot, and the last second in the
slot has no losses. This isolates the visual effect of one packet
loss from another, and provides the viewer time to respond to
the current loss before the next loss occurs. This was not in-
tended to be a realistic simulation of a real network, rather, it was
intended to allow us to understand the visibility of individual
packet losses. However, we will show in the experimental sec-
tion that our model is robust to various packet loss rates and to
losses which may not be isolated. The distribution of the losses
in three tests are different. In Test 1, we forced roughly 1/7th
of all losses to be in B-frames, 1/7th in I-frames, and 5/7th in
P-frames, and we also forced roughly 20% of losses to cause
an entire frame to be lost. In Test 2, we have a similar ratio of
losses in I/B/P frames, and roughly 30% of losses cause an en-
tire frame to be lost. In Test 3, roughly half of the losses are in
B-frames and about 5% of losses are in I-frames.

During the subjective test in all three tests, each packet loss
was evaluated by 12 viewers. No more than one viewer for each
packet loss is an expert viewer. A 1-min pilot training video is
shown to viewers, before the actual test, to help them under-
stand the task and attain a basic level of expertise. Viewers were
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told that they will watch videos which are affected by packet
losses. Whenever they see a visible artifact or a glitch, they
should respond by pressing the space bar. They were asked to
keep their finger on the space bar to minimize response time
and ensure that this task did not take their attention away from
the monitor. All tests were conducted in a well-lit office en-
vironment. Viewers were positioned approximately six picture
heights from the CRT display. Based on comments from viewers
after the tests, the full-color full-motion video was sufficiently
compelling that they were immersed in the viewing process
rather than searching for every artifact.

The output of the subjective test was a set of files containing
the times that the viewer pressed the space bar relative to the
start of the video. Once gathered, the data is processed as in [25]
to obtain viewers’ Boolean responses corresponding to whether
they saw a loss or not. The ground-truth packet visibility was
calculated as the number of viewers who saw the loss divided
by 12.

III. APPLICATIONS OF A PACKET-LOSS VISIBILITY MODEL

Before describing what we can measure about a packet loss to
predict its visibility, it is worthwhile to describe briefly several
applications of our visibility model.

In one scenario, our visibility model is used for in-network
quality monitoring of transmitted video, as described in [25]. In
this application, the visibility model is computed for the specific
loss pattern that is observed in the network. Useful NR factors
are extracted from the actual lossy bitstream observed in the
network, while any required RR factors are sent to the quality
monitor on a reliable side channel. System constraints dictate
that there should not be FR factors.

In a second scenario, explored in this paper in Section VI, our
visibility model is used to prioritize packets for transmission by
a video server. In this case, the goal is to label each packet with
a priority, assigned using our visibility model, that describes
the impact of losing this specific packet during transmission.
Factors needed by the visibility model can either be extracted
from the complete loss-free bitstream on the fly at the server
when needed for transmission, or precomputed and stored with
the specific packet in the server. Any factors that depend on the
uncompressed video must be computed at the encoder and sent
to the server on a reliable channel along with the compressed
video. However, factors that depend on the compressed video
can be computed either at the server or at the encoder; the choice
of where is up to the system constraints. However, in this paper,
we assume that to minimize the bandwidth between encoder and
server that is required for these RR factors, only those based
on the uncompressed video will be computed at the encoder.
However, since the primary functions of the server are streaming
and traffic shaping, factors computed here should not require
excessive computation. In particular, any factors related to the
propagation or accumulation of errors due to packet loss are not
suitable to be computed here.

Whether computing factors for actual losses (for in-network
quality monitoring) or for hypothetical losses (for packet pri-
oritization), it is necessary to assume some knowledge of what
concealment strategy is implemented by the actual decoder.
For example, if using motion-compensated error concealment,
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the estimated motion depends on the motion of the neighboring
received packets. When computing factors for hypothetical
losses, either for the RR factors for in-network monitoring or
for the packet priority assignment, we assume that the neigh-
boring packets are not lost. Since this will not be true in the
decoder when the surrounding packets are also lost, per-loss
factors may not be completely accurate.

In Section IV, when we describe the factors we choose to
predict the visibility of packet loss, we indicate for each factor
both whether it must be computed at the encoder or could be
computed at the server for the application of prioritized trans-
mission, as well as whether it is a RR or NR factor for the appli-
cation of in-network quality monitoring. To enable the model to
be used for both applications, we do not consider FR factors.

IV. ATTRIBUTES OF PACKET-LOSS IMPAIRMENTS

To create a versatile model for packet loss visibility, it is cru-
cial to understand the types of impairments induced by a packet
loss, and whether these impairments depend on (a) the codec
and its parameters, (b) the packetization strategy, (c) the decoder
error concealment, and (d) the video content. In this section, we
explore these issues by describing attributes that affect the vis-
ibility of packet loss impairments, and describe the associated
measurements, or factors. To facilitate the following discussion,
we define:
1) the original signal of uncompressed video frames at time ¢
as f(t);

2) the compressed signal as f(t);

3) the decompressed signal (with possible packet loss) as
f(); . N

4) the error signal as e(t) = f(¢) — f(¢).

A. Encoded Signal at Location of Loss

Here we first describe the attributes of the encoded signal ar
the location of the packet loss. For the encoded signal f(t), the
tendency of human observers to track moving objects with their
eyes may enhance visibility of packet loss in smoothly moving
regions, yet local signal variance and motion variability may
hide the packet loss. Texture masking, luminance masking, and
motion masking may each reduce visibility of the packet loss.
In a high-quality encoding, these features of the encoded signal
are essentially equal to those of the original uncompressed
signal. These signal attributes do not depend on the compres-
sion standard.

We consider motion information to be an underlying fea-
ture of a video, independent of the compression algorithm.
Therefore, we measure the following RR signal descriptors
related to motion information directly from the uncompressed
signal f(t). For each macroblock, we measure its motion
vector (x,y) by forward motion estimation from the previous
frame. For each packet, we define MOTX and MOTY to
be the mean motion vector in the x and y directions over
all MBs in the packet. We also compute MotionVarX and
MotionVarY, the variance of the the motion vectors in the
x and y directions over the macroblocks in the packet, and
define a high-motion descriptor HighMOT to be true if
MOTM = vVMOTX? 4+ MOTY? > /2. ResidEng is the
average residual energy after motion compensation within a
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packet. The above motion-related descriptors were also consid-
ered in [25]. Finally, SigMean and SigVar are the mean and
variance of the signal f(t).

B. Encoded Signal Surrounding Location of Loss

The attributes of the encoded signal f(t) surrounding the lo-
cation of the packet loss can also affect visibility. For a packet
loss after a scene cut, the impairments can be masked by the
change of the scenes. This is forward masking and it decreases
visibility of packet loss. Backward masking also decreases the
visibility of a packet loss before a scene cut [29]. In addition,
when an entire frame is lost immediately ar the start of a new
scene cut to a still (low motion) scene, even though the still scene
will be concealed using a frame from the previous scene, leading
to a large MSE, the impairment may be invisible. The low mo-
tion in the new scene does not change the displayed images very
much, and the new scene may appear to start at the next I-frame
[43]. In addition to scene cuts, camera motion is also important
to packet loss visibility. Viewers are likely to follow, or track,
consistent camera motion. This will enhance the visibility of
temporal glitches.

Scene- and reference-related factors were examined in [29]
using exploratory data analysis (EDA). We extract these factors
from the encoded video signal f(¢), without losing any accuracy
relative to the original uncompressed video. Many techniques
exist to detect scene boundaries, including those in [44] and
[45]. We label each packet loss by the distance in time between
the frame first affected by the packet loss and the nearest scene
cut, either before or after. This quantity is DistFromSceneCut,
and is positive if the packet loss happens after the closest scene
cut in display order, and negative otherwise. DistToRef per
MB describes the distance between the current frame (with
the packet loss) and the reference frame used for concealment.
This variable is positive if the frame at which the packet loss
occurs uses a previous (in display order) frame as reference,
and negative otherwise. We define FarConceal to be true if
MaxDistToRef (maximum of | DistToRef | in a slice) > 3.
In this inequality, MaxDistToRef has units of frames. We
also define a Boolean variable, OtherSceneConceal, which
is TRUE if | DistFromSceneCut |<| MaxDistToRef |,
where the compared variables must be of the same sign (same
direction). In this inequality, the compared variables have units
of seconds. If the compared variables have different signs,
OtherSceneConceal is FALSE. OtherSceneConceal describes
whether the packet loss will be concealed by an out-of-scene
reference frame which will increase the visibility of packet
loss. To account for the depressed visibility immediately before
the scene cut, we define a Boolean variable BeforeSceneCut,
which is TRUE if —0.4 s < DistFromSceneCut < 0 s
[29]. Depressed visibility after a scene cut requires that
the packet loss not only appear close to the scene cut, but
also disappear quickly after the scene cut. Therefore, to ac-
count for the depressed visibility immediately after a scene
cut, we define the Boolean variable AfterSceneCut, which
is TRUE when both OtherSceneConceal is FALSE and
0s < (DistFromSceneCut 4+ Duration) < 0.25 s.

Camera motion information can also be extracted from the
compressed video using a number of techniques, including those
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TABLE II
DISTRIBUTION OF CAMERA MOTION IN ORIGINAL CONTENT AND IN LOSSES

Mean viewers noticing
Camera motion type | % Frames | # Losses | % Losses | a packet loss among 12 people
Still 63.7 2380 68.9 1.31
Panning 23.6 814 23.6 3.95
Zooming 6.7 169 4.9 3.99
Complex 1.8 92 2.7 2.62

in [46]. In this paper, we classify scenes based on four camera-
motion types: still, panning, zooming, or complex camera mo-
tions. Table II indicates the distribution of camera motion both
in the complete videos shown to viewers, as well as the fraction
of losses which occurred in each type of camera motion. We
observe that significantly fewer viewers saw packet loss in still
scenes than in panning or zooming scenes. Therefore, we define
NotStill to be TRUE if motion type is not still.

C. Decoded Signal

The decoded signal, f (t), at the location of a packet loss has
several attributes that affect packet-loss visibility. Due to imper-
fections in the error concealment of the lost packet, there can be
spatial (vertical or horizontal) or temporal discontinuity with the
neighboring MBs or frames; these are called edge artifacts. A
lost frame is likely to introduce temporal edges and a lost slice is
likely to introduce both temporal and horizontal edges into the
decoded signal. For example, a moving vertical bar that is con-
tinuous in the encoded signal may become disjointed in the de-
coded signal due to the impairment. Vertical edges may also be
introduced with FMO, or when the impairment propagates into
subsequent frames. All of these edge artifacts are likely to in-
crease the visibility of the impairment. We consider SBM, Slice
Boundary Mismatch, to describe the impact of packet loss on
slice boundaries. Methods to measure SBM can be found in [28]
and [29].

D. Error Signal

The error caused by the impairment, e(¢), is completely char-
acterized by its support and its amplitude. The error support is
characterized by spatial support (size, spatial pattern and loca-
tion) and temporal support (duration). The size is controlled by
the packet size as well as the frequency of synchronization code-
words like slice start codes. The spatial pattern of the error can
be governed by the FMO setting in H.264. The error duration
is dominated by the frequency of I-frame or I-block informa-
tion. The initial amplitude of the error at the time of the loss
depends more heavily on the underlying video content and the
decoder concealment strategy than on the compression standard
itself. The effectiveness of error concealment strategies greatly
depends on the content, since some content is more easily con-
cealed than others; however, it can also be improved with a
careful selection of encoding parameters. For example, conceal-
ment motion vectors in MPEG-2 I-frames are very helpful. The
error amplitude may decrease as a function of time even when no
I-blocks are present due to the motion-compensation prediction
process [47]. In addition, using long-term prediction in H.264
can improve error attenuation [48].

To measure these attributes of the error signal, it is straightfor-
ward to extract from a lossy bitstream the exact error size (Spa-
tialExtent), spatial pattern, vertical location within the frame
(Height), and temporal duration (Duration). From these, we
create Boolean variants of these factors: SXTNT2 is true when
two consecutive slices are lost (SpatialExtent = 2), SXTNT-
Frame when all slices in the frame are lost, and Error1Frame
is TRUE if the packet loss lasts only one frame (Duration = 1).

MSE and SSIM (Structural Similarity Index) are commonly
used to characterize the amplitude of the error. If we are in-
terested in an accurate evaluation of quality degradation due to
both compression artifacts and packet loss, then these must be
computed at the encoder, since they depend on f(¢). However,
we choose to consider here only the quality degradation due to
packet loss without encoding artifacts. Therefore, when calcu-
lating MSE and SSIM, we use f(t) as the reference video in-
stead of f(t). As aresult, these can be computed at the server.

The MSE directly measures the error due to packet loss,

e(t) = f(t) — f(t), and is defined for one frame, ¢, as

M N

1 2
MSE =+ D> ei(t)

=1 j5=1

ey

where M x N is the image video resolution, and ¢ and j are the
indexes in the horizontal and vertical directions of the frame.
MSE characterizes the error amplitude in part, but only indi-
rectly measures attributes such as error size. Also, MSE can
neither quantify the spatio-temporal frequency characteristics
of the error, nor capture any information about error location
or pattern. The SSIM for one frame is defined as

(2”}#} + Cl)(ZJ}J} + Cy)

SSIM(f, f) =
SD= ez s e+

@

where 1 and o are the mean and the standard deviation of the
corresponding signal, o'}  is the cross-correlation coefficient be-
tween f and f ,and C7 and Cj are constants [1]. SSIM captures
the structural statistics of f (t) at the location of the impairment
through its mean and variance. However, as with MSE, SSIM
characterizes error amplitude but neither error size nor duration.
SSIM also does not directly measure the decoded impairment
attributes (like horizontal and temporal edges).

Due to the predictive nature of video coding, if a packet is
lost, an error may propagate to the predicted frames. To com-
pletely describe the error, one must calculate the errors induced
on all affected frames. CumulativeMSE (CumulativeSSIM)
is the sum of MSE (SSIM) over all the frames that are affected
by a packet loss. To compute these at the encoder, it is neces-
sary to decode once for every single possible packet loss. Thus,
accumulating these factors across all affected frames for every
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TABLE III
FACTORS FOR PREDICTING VISIBILITY, CLASSIFIED BY ITS ATTRIBUTES, FACTOR TYPES (FR/RR/NR), AND
‘WHETHER THE FACTOR MUST BE COMPUTED AT THE ENCODER OR CAN BE COMPUTED AT THE SERVER

[ Factor Attributes [ Factor Name

| Factor type | Suggested Calculating Point |

SigMean, SigVar, MOTX, MOTY

Signal MotionVarX, MotionVarY, ResidEng, ... RR Encoder
IMSE, TISSIM
Error MaxIMSE, MinISSIM RR Server
SpatialExtent, Duration, Height, ... NR Server
DistFromSceneCut

Scene BeforeSceneCut, AfterSceneCut RR Server
Concealment reference | DistToRef, OtherSceneConceal, FarConceal RR Server
Camera motion NotStill RR Server

possible packet loss dramatically increases the computational
complexity. This is prohibitively expensive, and, thus, we con-
sider neither CumulativeMSE or CumulativeSSIM in our visi-
bility model.

Instead, we calculate only the initial error induced by a packet
loss within the frame where the packet loss occurs. Two mea-
surements are useful: initial MSE and initial SSIM. These fac-
tors can be pooled in two ways. The first is IMSE (or ISSIM),
the MSE (or SSIM) averaged over the entire frame that is ini-
tially impacted by the loss. Another pooling strategy for the ini-
tial MSE or initial SSIM is to consider extrema over a small
spatial window. We consider here MaxIMSE, defined as the
maximum per-MB MSE over all MBs in the initial impairment,
and MinISSIM, defined as the minimum per-MB SSIM over
all MBs in the initial impairment. MaxIMSE was shown to be
useful in [27]. An equation to compute a per-MB initial SSIM in
an RR framework was presented in [28] using the local means
and variances of the encoded and decoded signals, as well as
their MSEs. Table III summarizes the factors.

V. MODELING APPROACHES

Our goal in this paper is to develop a model that predicts the
probability of a lost packet being visible to viewers based on
the factors discussed above. In our experiment and data anal-
ysis, we assume each viewer’s response is an independent ob-
servation of the average viewer (for whom we are developing
the model). Therefore, each viewer response can be considered
independent and identically-distributed with probability p for
seeing a particular packet loss. This leads us to the binomial
distribution for modeling the packet loss visibility. A General-
ized Linear Model (GLM) is suitable for our purpose since it
can be used to predict the probability parameter of a binomial
distribution. In this section, we give a brief description of GLMs
and then we present our approach to develop a GLM from three
data sets of different sizes. Cross-validation and random seeds
are introduced to make the resulting model more robust to po-
tential over-fitting.

In order to reduce the dependency on the RR factors sent from
the encoder, as discussed in I1I, in this work we use only the mo-
tion and the residual information. We consider CumulativeMSE
and CumulativeSSIM to be too computationally intensive. In
[29], two classes of models were developed based on the pooling
strategy of initial MSE and initial SSIM (either per-frame aver-
aging or maximum-over-macroblock pooling). In this paper, to
obtain the best possible model, we do not make this distinction.

A. Introduction of Generalized Linear Models

GLMs are an extension of classical linear models [26], [49].
The probability of visibility is modeled using logistic regres-
sion, a type of GLM which is a natural model to predict the pa-
rameter p of a binomial distribution [26]. Let y1, 2, ..., yn be
a realization of independent random variables Y7,Ys,... YN
where Y; has binomial distribution with parameter p,. Lety, Y
and p denote the N-dimensional vectors represented by y;, Y;
and p; respectively. The parameter p; is modeled as a function
of P factors. Let X represent a N x P matrix, where each row ¢
contains the P factors influencing the corresponding parameter
p;. Let x;; be the elements in X.. A generalized linear model can
be represented as

P
9(pi) =7+ Y @b (©)

i=1

where ¢(.) is called the link function, which is typically non-
linear, and (31, 32, - . . , Op are the coefficients of the factors. Co-
efficients 3; and the constant term -y are usually unknown and
need to be estimated from the data. For logistic regression, the
link function is the logit function, which is the canonical link
function for the binomial distribution. The logit function is de-
fined as

p
9(p) = log <ﬂ> )

Given N observations, one can fit models using up to N pa-
rameters. The simplest model (Null model) has only one param-
eter: the constant vy. At the other extreme, it is possible to have
a model (full model) with as many factors as there are observa-
tions. To obtain the model coefficients for considered factors, an
iteratively re-weighted least-squares technique is used to gen-
erate a maximum-likelihood estimate. The statistical software
R [50] is used for model fitting and analysis. This procedure is
also used in [25] and [27].

B. GLM Model Building Approach on Multiple Data Sets

The subjective datasets available for training our model cap-
ture a wide range of possible system configurations: different
spatial resolution, compression standards, coding parameters,
and error concealment strategies. The RR and NR factors we
described in Section IV capture almost all of these variations.
For example, the effects of different GOP structures and lengths
on packet loss impairment can be partly described by temporal
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duration of the packet loss, as discussed in Section IV. The only
exception is that neither the encoder nor the quality monitor can
know what error concealment strategy will be used by the de-
coder.

As noted in Table I, we have much less subjective data for de-
fault concealment than for the other two concealment strategies,
and the default concealment produces more visible errors (as in-
dicated in Table I by the mean number of viewers who saw each
loss). We have most data for the MCEC, which produces fewer
noticeable errors. If we train the model using samples chosen
randomly from the combined dataset, the resulting fit will be
dominated by the MCEC strategy. Therefore, we train models
using an equal number of samples from each of the datasets,
and then use cross-validation to evaluate the goodness of fit and
select the best model. Cross-validation [51] is commonly used
for model evaluation and to prevent over-fitting when data is
sparse. A model is trained on a fraction of the data (training set)
and then tested using the remaining data points (festing set). A
partition like this is known as a fold, and we repeat for different
folds with different training and testing partitions of the data.
We select our training and testing sets based on the fact that we
should achieve equal representation from all datasets including
Dataset 1, which has the fewest samples (215). Specifically for
each fold, we randomly choose 159 samples from each dataset
to fita model using 159 X 3 training data. Also, we have a testing
set containing the remaining 56 samples from Dataset 1, the re-
maining 921 samples from Dataset 2, and the remaining 2001
samples from Dataset 3. We apply the method discussed in Sec-
tion V-A to estimate the model coefficients from the training set
for given factors, and then evaluate the performance error of the
fitted model in the jth fold using the testing set as follows:

(pi — D)%) )

>

" ith packet loss
in testing set k

where p; is the predicted fraction of viewers who saw the ith
packet loss, and Ny, is the number of samples in the testing set
of Dataset k. We choose four-fold cross-validation: we do the
fitting process for a total of four times with four different folds,
therefore producing four fitted models and ¢;, 7 = 1,2,3,4.
We repeat this four-fold procedure four times with four different
random seeds. We define the average performance error of these
sixteen models as ()

144
Q=152 (6)

r=1j=1

where the superscript 7 stands for the rth random seed.

For factor selection, we use () to decide if a specific factor
is significant and should be included in the model: for each
considered factor added to the model, we calculate a Q by the
4-seeds-4-folds GLM modeling process. We include a factor
only if the model with that factor included has smaller () than
the model without that factor. By the same idea, we exclude fac-
tors from the model if it has lower Q without them. To obtain the
factor coefficients, we use the fitting from the seed that achieved
the lowest performance error. The factors and coefficients of our
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TABLE 1V
FACTORS IN THE FINAL MODEL
Coeff. for

Factors Final Model
Intercept 4.18061
log(1 —ISSIM + 10~ 7) 0.22871
SXTNT2 -0.41208
SXTNTFrame -1.47672
Error1Frame -0.33009
log(MaxIMSE + 10~7) 0.27578
log(ResidEng + 10~ 7) -0.61219
HighMOT 0.18290
NotStill 0.73364
BeforeSceneCut -1.14434
OtherSceneConceal 2.08966
log(IMSE + 10~7) 0.30492
log(IMSE + 10~ 7) x FarConceal 0.25720

final model are summarized in Table IV. Since the model is de-
veloped based on data from different GOP types, and the fac-
tors are not GOP-type-specific, this packet loss visibility model
is versatile enough to be applied to video compressed with var-
ious GOP types.

VI. EXPERIMENTAL RESULTS ON THE APPLICATION OF THE
VISIBILITY MODEL TO PACKET PRIORITIZATION

Our generalized-GOP visibility model can be used in dif-
ferent applications, such as packet prioritization, unequal error
protection and network quality monitoring. In this section,
we present how our visibility model can be used to prioritize
packets, and how this prioritization scheme helps an inter-
mediate router in a congested network decide which packets
should be dropped to minimize degradation in the quality of
the transmitted video stream. In particular, we demonstrate
that while the visibility model was designed for high-quality
video over a mostly reliable network, it is still applicable when
the video is more heavily quantized and there are more packet
losses.

Several existing packet classification methods were intro-
duced in Section I. Major applications of packet classification
are packet prioritization for a differentiated-services network
[31]-[33], packet scheduling in the transmitter [34], [35] in
which video packets are sent/resent by an optimal schedule
based on the packet classification, transmission delay and
network status, etc., and packet discarding at an intermediate
router [36], [37], in which packets are discarded, in the event
of network congestion, based on packet classification and
bandwidth of the outgoing link from the router. In particular,
an optimization algorithm is developed in [37] to be run in the
router to optimally discard less important packets. However,
it is technically difficult to implement complex algorithms
(such as rate-distortion optimization) into current intermediate
routers. Also for all the methods mentioned above, the algo-
rithms utilize the cumulative MSE, which is computationally
expensive to measure since it includes the MSE due to error
propagation.

Therefore, our aim is to develop an efficient packet dropping
policy for the router. We propose the perceptual-quality based
packet prioritization policy, denoted PQ, designed by our vis-
ibility model that prioritizes packets. At the server, we set a
packet to be low priority when its visibility is less than 0.25, and
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high priority otherwise. The 1-bit high/low priorities can be sig-
naled in the packet itself. The router can be, therefore, designed
to drop packets of low priority to reduce traffic during network
congestion. The intermediate router with this capability is re-
alizable in a DiffServ (Differentiated Services) network [52].
Furthermore, instead of the cumulative MSE, the initial MSE,
which only considers errors in a frame in which the packet is
lost, is used for our factor consideration.

The Hint Track method in [36] and [37] cannot directly be
used as a basis of comparison for our method. On the one hand,
we consider their optimization algorithm too complicated to run
in today’s router. On the other hand, the packet dropping policy
in [36] and [37] cannot be entirely implemented at the server
which has a much better computational ability, since it uses
knowledge of the router’s instantaneous outgoing bandwidth,
which is not accessible to the server. However, we can com-
pare our algorithm with their notion of using cumulative MSE.
A one-bit prioritization scheme, called cMSE (cumulative MSE
prioritization method), is designed. The cumulative MSE for a
particular packet is measured by summing the MSE in all frames
in a video affected by the packet drop, and a packet is assigned
high priority if the cumulative MSE due to its loss is larger than
a threshold, and low priority otherwise. The threshold is derived
such that we have approximately the same number of high-pri-
ority packets for both cMSE and PQ prioritization. We also com-
pare to the Drop-Tail (DT) policy, a widely-implemented packet
dropping approach, which drops packets at the end of the buffer
queue in the router when the network is congested. The different
policies are evaluated based on the received video quality, mea-
sured by VQM (developed by ITS [4]). The VQM metric was
found to be better correlated with human perception than two
competing metrics, DVQ (Digital Video Quality) and VSSIM,
as shown in [5].

We simulate the experiment using NS-2 [40] for a network
topology shown in Fig. 1. Two videos (variable-bit-rate encoded
at r1 and r2 bps on the average) are transmitted simultane-
ously from sources S1 and S2 to destination D. Packets be-
longing to both videos compete for space in the queuing buffer
(of size BF bits) at intermediate node 1. The bottleneck link’s
bit-rate is constant at R bps. When instantaneous rates of S1
and S2 sum to more than R, packets accumulate in the buffer. If
this condition persists, the buffer will eventually overflow and
packets are dropped in accordance with a policy. At destination
D, the quality of received videos is evaluated using VQM, which
ranges from 0 (excellent quality) to 1 (poorest possible quality).

Six videos (two videos for each motion type—still, low and
high motion) of 10 s duration are coded at R/2 bps using the
H.264/AVC JM codec, with MCEC implemented in the decoder
of the server and the receiver. Each simulation with a pair of
source videos produces a pair of corresponding received videos
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Fig. 2. Pyramid GOP structure; A B-frame in upper case can be used for ref-
erence while the ones in lower case cannot. The numbers indicate the coding
order within the group.

for each policy. We form nine pairs from the six videos such that
a balanced representation (each type of video competes twice
with all the three types) is obtained. For each of the received
videos (18 from nine pairs), a policy wins if its VQM score is
lower than the other policy used for comparison and a tie occurs
when the policies have identical VQM scores. This procedure
is repeated for each (R,BF) setting of interest. To show the ef-
fectiveness of our policy across different GOP structures, we
conducted experiments with I/PPP, IBBP and Pyramid (Fig. 2)
encoding structures, and the numbers of reference frames are 1,
2, and 4, respectively. I-frames are repeated every 24 frames for
all three of these different GOP structures.

A. PQ Comparison With DT and CMSE

Table V shows the comparison results for different buffer
sizes when the bottleneck rate is fixed at R = 1200 kbps.
A larger buffer size is used for Pyramid because the effect of
out-of-display-order coding is more prevalent than the other two
GOP structures, and, hence, its bitstream is burstier. To quantify
the performance comparison, we define comparison ratio =
> #wins/ Y #losses for each GOP-Competitor comparison.
The proposed PQ prioritization significantly outperforms DT
with comparison ratios of 5, 2, and 1.27 for IPPP, IBBP, and
Pyramid respectively. We can observe from the table that this
trend occurs across all settings of buffer size. When compared
with cMSE, the proposed method has a large advantage for
Pyramid and IBBP with comparison ratios of 6.14 and 5, respec-
tively. However, in the case of IPPP, the proposed method has a
slight disadvantage (comparison ratio of 0.687) when compared
with cMSE. The average of the comparison ratios from the six
GOP-Competitor comparisons is as high as 3.34, which means
on average we perform considerably better than the other poli-
cies. We also did similar experiments at a lower fixed bottleneck
rate (R = 800 kbps) and the results can be seen in Table VI. We
observe a similar trend as in Table V (we win for 5 GOP-Com-
petitor comparisons and lose for 1). We continue to have a good
average of comparison ratios (2.01) although it is lower than that
in Table V (3.34). The reason we have a lower average of com-
parison ratios for a lower fixed bottleneck rate could be the fact
that the data used for building the model were collected from
videos with no obvious coding artifacts. However, the model is
still capable of prioritizing the video well and outperforms other
policies.

Table VII Compares the Performance of the Different Policies
for a Variety of Bottleneck Rates While the Buffer Size is Fixed.
An Important Observation, Again, is that we Perform Relatively
Better at a Higher Encoding Rate (R = 1200 kbps) than at lower
rates. Nevertheless, the performance of our model is quite robust
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TABLE V
PROPOSED PQ COMPARED TO DT AND CMSE: HIGHER FIXED BOTTLENECK RATE (R KBPS) AND
VARIED BUFFER SIZE (BF KBITS). Average of Comparison Ratios = 3.34

Pyramid (R=1200) IBBP (R=1200) IPPP (R=1200)
vs. DT vs. DT vs. DT
(comparison (comparison (comparison
ratio ratio ratio
=1.27) Wins | Losses | Ties =2) Wins | Losses | Ties =5) Wins | Losses | Ties
BF=200 10 8 0 BF=80 12 6 0 BF=80 18 0 0
BF=400 9 9 0 BF=100 12 6 0 BF=100 13 5 0
BF=600 9 5 4 BF=120 12 6 0 BF=120 14 4 0
vs. cMSE vs. ctMSE vs. cMSE
(comparison (comparison (comparison
ratio ratio ratio
=6.14) Wins | Losses | Ties =5) Wins | Losses | Ties =0.68) Wins | Losses | Ties
BF=200 15 3 0 BF=80 16 2 0 BF=80 9 9 0
BF=400 16 2 0 BF=100 14 4 0 BF=100 7 11 0
BF=600 12 2 4 BF=120 15 3 0 BF=120 6 12 0
TABLE VI
PROPOSED PQ COMPARED TO DT AND CMSE: LOWER FIXED BOTTLENECK RATE (R KBPS) AND
VARIED BUFFER SIZE (BF KBITS). Average of Comparison Ratios = 2.01
Pyramid (R=800) IBBP (R=800) IPPP (R=800)
vs. DT vs. DT vs. DT
(comparison (comparison (comparison
ratio ratio ratio
=1.21) Wins | Losses | Ties =1.57) Wins | Losses | Ties =3.5) Wins | Losses | Ties
BF=200 10 8 0 BF=80 11 7 0 BF=80 13 5 0
BF=400 7 7 4 BF=100 11 7 0 BF=100 15 3 0
BF=600 6 4 8 BF=120 11 7 0 BF=120 14 4 0
vs. c(MSE vs. cMSE vs. ctMSE
(comparison (comparison (comparison
ratio ratio ratio
=2.5) Wins | Losses | Ties =2.85) Wins | Losses | Ties =0.459) Wins | Losses | Ties
BF=200 13 5 0 BF=80 14 4 0 BF=80 7 11 0
BF=400 10 4 4 BF=100 14 4 0 BF=100 5 13 0
BF=600 7 3 8 BF=120 12 6 0 BF=120 5 13 0
TABLE VII
PROPOSED PQ COMPARED TO DT AND CMSE: LOWER FIXED BUFFER SIZE (BF KBITS) AND
VARIED BOTTLENECK RATE(R KBPS). Average of Comparison Ratios = 2.31
Pyramid (BF=300) IBBP (BF=80) IPPP (BF=80)
vs. DT vs. DT vs. DT
(comparison (comparison (comparison
ratio ratio ratio
=1.07) Wins | Losses | Ties =1.57) Wins | Losses | Ties =4.4) Wins | Losses | Ties
R=800 9 9 0 R=800 11 7 0 R=800 13 5 0
R=1000 9 9 0 R=1000 10 8 0 R=1000 13 5 0
R=1200 10 8 0 R=1200 12 6 0 R=1200 18 0 0
vs. cMSE vs. cMSE vs. cMSE
(comparison (comparison (comparison
ratio ratio ratio
=2.17) Wins | Losses | Ties =3.9) Wins | Losses | Ties =0.74) Wins | Losses | Ties
R=800 13 5 0 R=800 14 4 0 R=800 7 11 0
R=1000 13 5 0 R=1000 13 5 0 R=1000 7 11 0
R=1200 11 7 0 R=1200 16 2 0 R=1200 9 9 0

at lower encoding rates. For IBBP, the proposed PQ prioritiza- most the same (2.31 for Table VII and 2.39 for Table VIII). This
tion performs very well at all encoding rates, and the compar- shows that we consistently perform better than other policies
ison ratios are 1.57 over DT, and 3.9 over cMSE. For Pyramid, across different fixed buffer sizes.

we have a good comparison ratio over cMSE (2.17), while the From Tables V-VIII, an interesting observation is found: for
comparison ratio is smaller (1.07) when compared with DT. For ~ videos of Pyramid and IBBP, PQ outperforms cMSE even more
IPPP, we outperform DT with a comparison ratio of 4.40, but than it outperforms DT. This is interesting because DT is a sim-
we lose slightly against cMSE (0.741). Table VIII shows very plistic policy with no consideration of video content, and one
similar comparison results for a higher fixed buffer size. The would expect a policy that takes video content into account
average of comparison ratios for these two tables remains al- to do better. To understand why DT does as well as it does,
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TABLE VIII
PROPOSED PQ COMPARED TO DT AND CMSE: HIGHER FIXED BUFFER SIZE (BF KBITS) AND
VARIED BOTTLENECK RATE(R KBPS). Average of Comparison Ratios = 2.39

Pyramid (BF=600) IBBP (BF=140) IPPP (BF=140)
VvS. DT vs. DT vs. DT
(compajmson (comparison (comparison
ratio ratio ratio
io=1.5) Wins | Losses | Ties =2.6) Wins | Losses | Ties =3) Wins | Losses | Ties
R=800 6 4 8 R=800 13 5 0 R=800 14 2 2
R=1000 3 3 12 R=1000 11 7 0 R=1000 13 5 0
R=1200 9 5 4 R=1200 15 3 0 R=1200 12 6 0
vs. cMSE vs. cMSE vs. ctMSE
(comparison (comparison (comparison
ratio ratio ratio
=3.28) Wins | Losses | Ties =3.5) Wins | Losses | Ties =0.5) Wins | Losses | Ties
R=800 7 3 8 R=800 13 5 0 R=800 7 8 3
R=1000 4 2 12 R=1000 14 4 0 R=1000 5 13 0
R=1200 12 2 4 R=1200 15 3 0 R=1200 5 13 0
we compared DT, which drops tail packets during congestion, 04 Table V 035 Table VI 04 Table Vil 018 Table VIl

against DropRandom (DR), which randomly drops any buffered
packet during congestion. For all network conditions, DT out-
performed DR for those GOP structures which have B frames
(comparison ratio = > #wins/ Y  #losses = 12.81 over
all cases in Pyramid, and 5.42 in IBBP), and it did worse (com-
parison ratio = 0.53 over all cases) for the GOP structure (IPPP)
which has no B frames. To explain the better performance of
DT than DR in GOP structures with B frames, let us consider
the IBBP structure. The encoder must set aside the two B frames
in order to encode the P frame, and then it can encode the two
B frames. Assuming frame encoding time is much smaller than
frame display time, we can consider that the encoder releases
all the bits at once, corresponding to the P frame followed by
the two B frames. The router queueing buffer is, therefore, sit-
ting with B frame bits at the tail. After the encoder waits for the
next three frames, it processes and releases their bits all at once,
again the router queueing buffer will be sitting with B frame bits
at the tail. The DT policy almost always finds B-frame packets at
the tail. Dropping B frame packets is of course desirable because
there is no error propagation. This is the reason why DT can per-
form well and does better than DR for the GOP structures with B
frames (IBBP or Pyramid). The advantages of DT in IBBP and
Pyramid can overtake cMSE even though cMSE is much better
than DR in every case of our network scenarios and GOP struc-
tures (the comparison ratio=5.60 in Pyramid, 3 in IBBP and 3.34
in IPPP). However, the advantages of DT in IBBP and Pyramid
are not enough to overtake our visibility-based prioritization.
The PQ prioritization works well in most of the cases (five out
of six GOP-Competitor comparisons) in each of the four tables.
In particular, the proposed policy is always better than DT, a
widely implemented dropping method in existing intermediate
routers, and is better than cMSE for two out of three cases. The
reason that we are not better than cMSE in IPPP is that all frames
in this GOP structure are reference frames. Hence, an important
factor, Error1Frame (indicating whether the loss last only for
one frame), in our model is the same for all frames and cannot
be used to distinguish the importance of a packet. Therefore, in
IPPP, we perform slightly worse than cMSE. However, cMSE is
a very computationally expensive approach, since it is based on
cumulative MSE which has to account for the MSE due to error
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Fig. 3. Comparisons of average VQM scores among PQ, DT, and cMSE over
the competitions in Tables V-VIII.

propagation. Instead of cumulative MSE, our visibility model
just uses initial MSE (MSE in the frame where the packet loss
occurred) which is computationally trivial.

Another performance comparison is illustrated in Fig. 3,
where average VQM scores among PQ, DT, and cMSE over
the competitions in Tables V-VIII are shown. We can see that
on average, the VQM scores obtained by PQ are lower (better)
than that by DT and cMSE in different comparison scenarios.
We conclude that our PQ prioritization not only improves
more cases on video quality most of the time, as shown in
Tables V-VIII, but also on average has lower (better) VQM
scores over different comparisons.

Although our proposed visibility model is built using data of
isolated losses (one packet loss for every 4 s, as discussed in
Section II), the model is quite robust to different packet loss
rates in the simulations for real networks. In these experiments,
depending on the buffer size and the transmission rate and the
variability of the video content, packet losses occur with dif-
ferent degrees of bursty behavior. Our model does well consis-
tently across different buffer sizes and transmission rates. Note
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that in our experiments, the buffer sizes are chosen such that the
packet loss rate has a reasonable range for video quality; our
packet loss rates (0.7%—-20%) are similar to those investigated
in the literature (e.g., [16] and [18]).

B. Packet Loss Rate for PQ, CMSE, and DT

In addition to VQM score comparisons for various network
conditions detailed in Section IV-A, we also analyze the packet
loss rate (PLR) induced by each of the three dropping policies
(PQ, DT and cMSE) for Pyramid, IBBP, and IPPP in Fig. 4.
A PLR value corresponding to a dropping method in a GOP is
obtained by averaging the PLRs from corresponding (R, BF)
pairs listed in the tables from Section IV-A. Fig. 4 shows that
the proposed PQ prioritization drops slightly more packets than
DT or cMSE on average. In spite of the higher PLR values, our
PQ performs well as shown in Section IV-A. Also in each com-
parison, the bit-rate for the bottleneck link is the same for the
compared policies. Therefore, with higher PLR by PQ, we infer
that the average size of dropped packets with PQ is smaller than
that of other policies. Our PQ drops slightly more packets, but
they are smaller-size visually unimportant packets, and, there-
fore, PQ achieves a better perceptual video quality. This result
also indicates that traditional video quality assessments based
on the PLR as discussed in Section I may not relate well to per-
ceptual video quality.

VII. CONCLUSION

In this paper, we propose a generalized linear model for
packet loss visibility applicable to different GOP structures and
a perceptual-quality based packet dropping policy for a router
to intelligently drop packets, when necessary, to minimize the
degradation in visual quality. The contributions of this paper are
the following: (a) Unlike earlier models, this visibility model
is developed on datasets from multiple subjective experiments
using different codecs, different encoder settings, and different
decoder error concealment strategies. So the model has broad
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applicability. (b) We use our visibility model to prioritize
video packets and design a policy for perceptual-quality based
packet discarding. Experiments done under diverse network
conditions and GOP structures show that the proposed PQ
policy performs better than the policy using cumulative MSE as
used in the Hint-Track method in most cases, and outperforms
the widely-implemented Drop-Tail in all cases. Although the
model is designed for high-quality video transported over a
mostly reliable network, the experiments show that the model
performs well for videos with various encoding rates. (c) The
analysis on packet loss rate across three different dropping
policies shows that our policy achieves a better visual quality
by dropping more, but perceptually unimportant, packets with
smaller sizes. This emphasizes that evaluating video quality
based solely on packet loss rate is inaccurate.
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