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Behavioral/Cognitive

Goal-Directed Modulation of Neural Memory Patterns:
Implications for fMRI-Based Memory Detection

Melina R. Uncapher,1* J. Tyler Boyd-Meredith,1* Tiffany E. Chow,3 Jesse Rissman,3 and X Anthony D. Wagner1,2

1Department of Psychology and 2Neurosciences Program, Stanford University, Stanford, California 94305, and 3Department of Psychology, University of
California, Los Angeles, Los Angeles, California 90095

Remembering a past event elicits distributed neural patterns that can be distinguished from patterns elicited when encountering novel
information. These differing patterns can be decoded with relatively high diagnostic accuracy for individual memories using multivoxel
pattern analysis (MVPA) of fMRI data. Brain-based memory detection—if valid and reliable—would have clear utility beyond the
domain of cognitive neuroscience, in the realm of law, marketing, and beyond. However, a significant boundary condition on memory
decoding validity may be the deployment of “countermeasures”: strategies used to mask memory signals. Here we tested the
vulnerability of fMRI-based memory detection to countermeasures, using a paradigm that bears resemblance to eyewitness identifi-
cation. Participants were scanned while performing two tasks on previously studied and novel faces: (1) a standard recognition memory
task; and (2) a task wherein they attempted to conceal their true memory state. Univariate analyses revealed that participants were able
to strategically modulate neural responses, averaged across trials, in regions implicated in memory retrieval, including the hippocampus
and angular gyrus. Moreover, regions associated with goal-directed shifts of attention and thought substitution supported memory
concealment, and those associated with memory generation supported novelty concealment. Critically, whereas MVPA enabled reliable
classification of memory states when participants reported memory truthfully, the ability to decode memory on individual trials was
compromised, even reversing, during attempts to conceal memory. Together, these findings demonstrate that strategic goal states can be
deployed to mask memory-related neural patterns and foil memory decoding technology, placing a significant boundary condition on
their real-world utility.

Key words: countermeasures; episodic retrieval; functional MRI; neurolaw; pattern classification

Introduction
Growing evidence indicates that it is possible to decode the pres-
ence or absence of memory for a stimulus or event from distrib-
uted patterns of human brain activity, as measured by functional
MRI (fMRI) and multivoxel pattern analysis (MVPA; Johnson et
al., 2009; McDuff et al., 2009; Chadwick et al., 2010; Quamme et
al., 2010; Rissman et al., 2010; Polyn et al., 2012; Poppenk and
Norman, 2012; Rissman and Wagner, 2012). The rapidly emerg-
ing literature on fMRI-based memory decoding not only informs
neurocognitive theories of memory but also has implications for
law, marketing, and beyond (Meegan, 2008). For example, a re-
liable and validated method to detect memory could advance the

forensic ability of the criminal justice system to determine
whether a suspect has guilty knowledge of crime-relevant infor-
mation (Greely, 2011) or whether an eyewitness recognizes a crit-
ical event element. Given the high diagnostic accuracy observed
in some fMRI-based memory decoding studies (up to 70 –90%;
Rissman et al., 2010), it may be tempting to conclude that these
approaches have forensic utility for uncovering an individual’s
memory states and perhaps also their experiential history with
event information.

However, fMRI-based memory detection techniques are still
under development, with many significant challenges remaining
before determining their appropriateness for field use (Brown
and Murphy, 2010; Verschuere et al., 2011). One of the most
significant open questions is whether memory decoding is vul-
nerable to “countermeasures”: strategies deployed to mask mem-
ory signals and “beat” detection tests (Farah et al., 2014). Rissman
et al. (2010) reported indirect evidence suggesting a vulnerability
to strategic goal states, because the ability to detect previously
encountered from novel faces was reduced to near chance when
participants’ memory was implicitly, rather than explicitly,
probed. However, other data suggest that lack of attention to
one’s mnemonic state may not always thwart memory classifica-
tion. For example, Kuhl et al. (2013) were able to decode memory
details even when participants were not instructed to retrieve
those details. Together, these findings reveal a need to identify
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conditions under which strategic goal states alter neural memory
patterns: in particular, can participants willfully conceal their
memory states through the use of countermeasures that appear
cooperative? Addressing this question not only has implications
for delineating the boundary conditions of fMRI methods to de-
tect memory but also for understanding dynamics of goal-
directed retrieval processes.

Here we investigated a situation that resembles eyewitness
identification and required countermeasures that would appear
cooperative on an eyewitness identification test. Participants
viewed a series of faces, and their memory for these faces was then
probed in one of two ways while undergoing fMRI. In the first
test, participants made explicit recognition decisions about pre-
viously encountered and novel faces. In the second test, partici-
pants attempted to conceal their memory for the previously
encountered faces and to feign memory for the novel faces.
Using the explicit memory data, we trained classifiers to dis-
criminate activity patterns associated with the subjective ex-
periences of recognition and novelty. We then tested whether
the classifiers could decode the participants’ memory states
when they engaged in countermeasures.

Materials and Methods
Participants. Twenty-four healthy, right-handed male participants were re-
cruited from Stanford University and its surrounding communities. Partic-
ipants were aged 18–31 years, with a mean � SD age of 23 � 4.29 years, were
native English speakers with no history of neurological complications, and
were either African American (AA; n � 8) or European American (EA; n �
16) according to self-report. Participants gave written informed consent, in
accordance with Stanford University Institutional Review Board procedures,
and were screened for fMRI compatibility.

Experiment. The experiment included two scan sessions conducted
�24 h apart and took approximately 5 h across both scan sessions. Each
participant was compensated $20 for each hour of participation. Data
from two additional participants were collected but omitted from subse-
quent analyses because of inadequate or incomplete performance: one
was omitted because d� was at chance (�0.08) and the other because the
participant withdrew from scanning before completing the experiment.

Stimuli. Face stimuli consisted of 400 color photographs of male faces,
of which half were AA and half were EA (data examining the effects of
race will be reported separately). Face stimuli were standardized for neu-
tral facial expression and background illumination, and included head
and neck only. Stimuli were presented against a gray background with a
black central fixation crosshair. For each participant, face stimuli were
divided into two samples using stratified random sampling by race to
assign stimuli to be presented during the encoding phase (OLD items;
100 AA, 100 EA) or to serve as foil items at retrieval (NEW items; 100 AA,
100 EA).

Day 1: encoding. Participants were scanned while intentionally encod-
ing 200 male faces (100 AA faces and 100 EA faces). Each face was pre-
sented for 2 s, with an 8 s interstimulus interval (ISI) for a total of 10 s per
trial. Each face was shown twice during the course of the encoding phase:
after the full set of 200 stimuli was presented, the same faces were pre-
sented again in a different order. Participants were given an elaborative
encoding strategy to memorize the stimuli, whereby they were instructed
to generate imaginative stories involving the individuals pictured in the
stimuli. To confirm that participants were attending to stimuli and en-
gaging in the task, they were instructed to press the right index finger
button on a response box after each face appeared. Stimuli were pre-
sented across eight runs, with 50 faces per run. The first four runs con-
sisted of first presentation of study stimuli, and the second four runs
consisted of second presentation of study stimuli. At the end of each run
(for both day 1 and day 2), participants were encouraged to take as long
a break as they desired, self-terminating the break via button press.
Breaks ranged between 10 and 55 s across participants.

Day 2: retrieval. Approximately 24 h later, participants returned for a
scanned retrieval phase. In this phase, participants were presented with

all 200 studied faces, interspersed pseudorandomly with 200 novel faces,
and were asked to provide an “old/new” recognition response on each
trial. Each face was presented for 2 s with an 8 s ISI. Thus, participants
were given 10 s to respond to each face but were instructed that both
speed and accuracy were important, with the latter emphasized to ensure
adequate behavioral performance. Stimuli were presented across eight
scanning runs. Runs were split into two tasks, with the first four com-
prising an “explicit memory” task and the second four of a “concealed
memory” task. Each task contained 50 OLD AA faces, 50 OLD EA faces,
50 NEW AA faces, and 50 NEW EA faces. Stratified random sampling of
the stimuli by condition (OLD and NEW) was used to assign faces to each
of the two tasks. Stimuli were balanced for race within each run and
presented pseudorandomly such that no more than three presentations
of the same race or condition (OLD or NEW) appeared consecutively. All
four runs of the explicit memory task were always performed before runs
for the concealed memory task to maintain naivety to the concealed
memory task (for data demonstrating that this run structure did not pose
problems for the decoding findings, see Results). Instructions for the
explicit memory task were given before participants were placed in the
fMRI scanner. Instructions for the concealed memory task were only
given after completion of the explicit memory task, while participants
were in the scanner. Verbal instructions were supplemented by visual,
onscreen instructions. Participants alternated responding with their left
or right hand on each run.

Explicit memory task. In this task, participants made explicit memory
judgments: they depressed a button with their (1) index finger if they
judged a stimulus to be “old,” i.e., previously encountered during the
encoding session, or (2) middle finger if they judged the face to be un-
studied, or “new.”

Concealed memory task. In this task, participants were instructed to try
to prevent computer algorithms from identifying whether or not they
correctly recognized a stimulus. To help conceal the true memory status
for each stimulus, participants were instructed to (1) use instructed cog-
nitive strategies and (2) reverse the response mapping used to indicate
their mnemonic states. We specifically selected countermeasure strate-
gies that required attention to and classification of items based on the
memory signal evoked on each trial to determine whether an ability to
mask the neural correlates of memory is simply a consequence of lack of
attention to memory (a possible interpretation of the preliminary im-
plicit memory findings by Rissman et al., 2010). Requiring attention to
memory not only allowed us to investigate the neurobiological conse-
quences of goal-directed modulation of memory signals but also may
more closely resemble real-world scenarios in which participants feign
cooperativity.

Specifically, for faces thought to be studied previously, participants
were instructed to indicate a “new” response and to rapidly switch to a
cognitive strategy to conceal the neural correlates of their recognition:
they were asked to focus on the technical and/or photographic aspects of
the stimulus to which they had not attended previously, such as the
exposure, lighting, line edges, etc. Here, it was stressed that the computer
algorithm was sensitive enough to pick up memory signals and that, after
determining that it was a studied face, they should—to the best of their
ability—try to keep the memory for the face from coming to mind by
attending to the perceptual aspects of the photographs. Conversely, for
stimuli perceived to be unstudied, participants were instructed to indi-
cate an “old” response and to use cognitive strategies to elicit the neural
correlates of retrieval, i.e., bring to mind a known individual that resem-
bled the face, and relive any memories associated with the individual.
Again, it was stressed that the computer algorithm was sensitive enough
to detect novelty signals, so they should rapidly switch to generating
memories for the face they determined to be novel. For both old and new
faces, participants were instructed to use the appropriate cognitive strat-
egy for the entire duration of the trial (10 s). Experimenters confirmed
that all participants understood the concealed memory task before pro-
ceeding with the experiment.

Functional localizer task. After retrieval, participants performed two
runs of a block design functional localizer experiment (Weiner and Grill-
Spector, 2010). In this task, photographs were presented of intact AA
faces, intact EA faces, scrambled AA faces [wherein facial features (eyes,
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nose, and mouth) were rearranged within the face], and scrambled EA
faces, scenes, abstract objects, and body parts. Each image was presented
for 0.8 s with a 0.2 s ISI in 12 s blocks. Each run consisted of two blocks of
each condition presented in pseudorandom order, interspersed with four
blank blocks. Participants were instructed to respond when two consec-
utive images were identical. The localizer was performed to permit anal-
yses of the encoding data (not reported here) and thus is not relevant to
the present data.

fMRI data acquisition. Whole-brain imaging was performed with a 3.0
T GE (Discovery MR750) MR scanner. A T2-weighted anatomical vol-
ume was collected immediately before the experimental runs, using a
T2-weighted flow-compensated spin-echo pulse sequence. A T1-
weighted whole-brain spoiled gradient recalled high-resolution anatom-
ical image was collected at the end of day 1 (encoding). Each functional
volume, collected with a T2*-weighted echo planar imaging pulse se-
quence, consisted of 36 slices acquired in an interleaved ascending pro-
gression, parallel to the anterior commissure–posterior commissure
plane. Functional volumes were collected as a 64 � 64 matrix using a
repetition time (TR) of 2 s, echo time of 30 ms, and a field of view of 21
cm. In-plane resolution was 3.28 mm 2, and slice thickness was 3.3 mm. A
total of 260 volumes were collected for each of the eight runs, with the
initial four volumes of each run discarded to allow for T1 equilibration.

Univariate fMRI analyses. Statistical Parametric Mapping (SPM8;
Wellcome Department of Cognitive Neurology, London, UK; http://
www.fil.ion.ucl.ac.uk/spm/software/spm8), run in MATLAB 7.7
(R2008b; MathWorks), was used for both data preprocessing and uni-
variate analysis.

Standard preprocessing procedures were applied to the data. All func-
tional volumes were slice-time corrected to account for acquisition time
differences between slices, with the middle slice in time used as a refer-
ence. All functional volumes were motion corrected and spatially re-
aligned to the first volume, followed by realignment to the mean volume
of the session. The T2-weighted anatomical volume from the day 2 (re-
trieval) session was coregistered to the mean functional volume, the T1-
weighted anatomical volume was then coregistered to this coregistered
T2-weighted volume, and then the T1-weighted volume was segmented
into gray matter, white matter, and CSF, with the resulting images nor-
malized to templates in Montreal Neurological Institute (MNI) space.
Functional volumes were normalized into standard space based on the
transformation parameters obtained during segmentation, and resa-
mpled into 4 mm 3 voxels. All images were then spatially smoothed with
an 8 mm full-width at half-maximum (FWHM) Gaussian kernel.

First-level general linear models (GLMs) were computed for each par-
ticipant by modeling each retrieval event as a 2 s epoch and convolving
each event with the canonical hemodynamic response function. Tempo-
ral and dispersion derivatives were additionally modeled to capture vari-
ance associated with onset and duration, respectively. A high-pass filter
of [1/128] Hz was used to eliminate low-frequency noise. An AR(1)
model was used to account for serial autocorrelations. Eight regressors of
interest were included in the GLM: hits, correct rejections (CRs), misses,
and false alarms (FAs), in both the explicit memory and concealed mem-
ory tasks. Other regressors modeled the 8 s lead-out time at the end of
each run and any items for which no response was recorded, as well as six
regressors modeling movement parameters estimated during realign-
ment. GLM parameters were estimated with classical (restricted maxi-
mum likelihood) algorithms. Linear contrasts of the resulting parameter
estimates were used to investigate and test effects of interest.

Second-level analyses, in which participants were treated as a random
effect, were then conducted with the contrast images generated at the first
level for each participant. Contrast effects were examined, thresholded at
p � 0.001 with at least 16 contiguous voxels [to maintain a familywise
error (FWE) rate of p � 0.05, as calculated using fMRIstat http://www.
math.mcgill.ca/keith/fmristat].

Multivariate fMRI analyses. Classification was implemented in
MATLAB using custom code and the framework provided by the Prince-
ton Multi-Voxel Pattern Analysis toolbox (Detre et al., 2006). MVPA was
conducted on spatially smoothed and normalized data, and voxels in
motor and premotor cortex as well as cerebellum were masked out so that
the classifier did not exploit activity differences linked to the motor re-

sponse made in response to different memory decisions. This mask
yielded 23,013 voxels to pass to the classifier. Before classification, addi-
tional preprocessing steps were performed. The time series of each voxel
was high-pass filtered to remove frequencies �0.01 Hz, detrended to
remove linear and quadratic trends, and z-scored so as to normalize the
time series of each voxel to have a mean of zero and a variance of one. For
the main analyses, fMRI time series data from each voxel were reduced to
a single value for each of the 400 test trials by averaging over data acquired
at TR3–TR5. For the TR-specific analyses, six separate classifiers were
trained and tested on each of six 2-s poststimulus time points, again with
one brain activity value per voxel per trial. For the cross-TR analyses, this
latter process was repeated, but the six separate classifiers were trained on
TR3 (for motivation, see Results) and tested on each of the six TRs.

The brain activity pattern associated with each trial was labeled ac-
cording to its objective mnemonic status (OLD or NEW), its subjective
mnemonic status (“old” or “new”), and the task (explicit or concealed
memory), resulting in eight trial types. In each classification analysis, we
assessed how accurately the classifier could discriminate between two
distinct mnemonic conditions, each defined by a single trial type or a
combination of trial types. When training and testing within task, classi-
fication performance was assessed separately on each participant’s data
using a fourfold, leave-one-run-out cross-validation, in which each of
the four subsets consisted of trials from one of the four runs of interest.
Trials from three subsets were used to train the classifier, and trials from
the held-out run were used to test generalization performance. This pro-
cess was repeated iteratively with each of the four subsets of trials held
out, such that unbiased classifier outputs were measured for all of the
selected trials. This within-task decoding procedure was modified in only
one instance: cross-TR analyses did not use cross-validation to test gen-
eralization performance but rather used independent training and test-
ing data. Data were trained within two runs and tested on two held-out
runs in a non-iterative manner. For across-task analyses, training data
were also independent of testing data (e.g., training on explicit trials and
testing on concealed memory trials), and thus cross-validation was also
not needed to test generalization performance.

For all classification schemes, trial counts were balanced across classes
(via random subsampling) within the training and testing bins before
classification to ensure a theoretical null hypothesis classification accu-
racy rate of 50% and an area under the curve (AUC; see below) of 0.50;
analyses with shuffled class labels confirmed that chance classification
performance converged around these levels (“null distribution”). After
balancing, the data from each voxel were z scored again, such that the
mean activity level of each voxel for Class A trials was the inverse of its
mean activity level for Class B trials. For each analysis, the entire
classification process was run 10 times to obtain stable estimates of
performance (independent analyses confirmed that 10 iterations were
sufficient to obtain stable performance estimates).

Regularized logistic regression (RLR) was used for all classification
procedures. This was determined previously to be an advantageous
choice in this classification paradigm by Rissman et al. (2010). This algo-
rithm implemented a multiclass logistic regression function using a soft-
max transformation of linear combinations of the features (Bishop,
2006) with an additional ridge penalty term as a Gaussian prior on the
feature weights. This penalty term provided L2 regularization, enforcing
small weights. During classifier training, the RLR algorithm learned the
set of feature weights that maximized the log likelihood of the data;
feature weights were initialized to zero, and optimization was imple-
mented with Carl Rasmussen’s conjugate gradient minimization func-
tion (http://www.gatsby.ucl.ac.uk/�edward/code/minimize/) using the
gradient of the log likelihood combined with the L2 penalty.

The L2 penalty was set to be half of the additive inverse of a user-
specified parameter �, multiplied by the square of the L2 norm of the
weight vector for each class, added over classes. We elected to set this free
� parameter to a fixed value of 10 for all analyses reported in this study.

Assessing classifier performance. After fitting the RLR model parameters
using the training set data, each brain activity pattern (i.e., trial) from the
test set was then fed into the model and yielded an estimate of the prob-
ability of that example being from Class A or Class B (by construction,
these two values always sum to one). These probability values were con-
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catenated across all cross-validation testing folds and then ranked. The
true positive (hit) rate and false positive (FA) rate of the classifier were
calculated at 80 fixed cutoff thresholds along the probability continuum
to generate receiver operating characteristic (ROC) curves. The AUC
values associated with these curves were computed as described by Faw-
cett (2004) and can be interpreted formally as the probability that a
randomly chosen member of one class has a smaller estimated probabil-
ity of belonging to the other class than has a randomly chosen member of
the other class. Stated another way, the AUC indexes the mean accuracy
with which a randomly chosen pair of Class A and Class B trials could be
assigned to their correct class (0.5 is random performance; 1.0 is perfect
performance). If one’s goal is high specificity in labeling examples of
Class A and is unwilling to tolerate many false positives, one can interro-
gate the most confident guesses of the classifier. Here we arbitrarily set
this threshold to be the top 10% of classification guesses. Note that we
report accuracy rather than AUC values when reporting the most confi-
dent trials of the classifiers.

Importance maps. For each classification scheme, importance maps
were constructed following the procedure described in previous MVPA
studies (Johnson et al., 2009; McDuff et al., 2009). The importance value
of a voxel provides an index of how much its signal increases or decreases
influence the predictions of the classifier. After training, the logistic re-
gression classification procedure yields a set of weight values reflecting
the predictive value of each voxel (with positive values indicating that
activity increases are generally associated with a Class A outcome and
negative values indicating that activity increases are generally associated
with a Class B outcome). These weights were then multiplied by the mean
activity level of each voxel for Class A trials (which, because of our trial
balancing and z-scoring procedure, is the additive inverse of its mean
activity level for Class B trials). Voxels with positive values for both
activity and weight were assigned positive importance values, voxels with
negative activity and weight were assigned negative importance values,
and voxels for which the activity and weight had opposite signs were
assigned importance values of zero (Johnson et al., 2009; McDuff et al.,
2009). Group-level summary maps were created by averaging the impor-
tance maps of the individual participants and are displayed in the figures
at arbitrary thresholds: 3D-rendered maps thresholded between �0.02
and �0.5 and 2D-rendered maps between �0.05 and �0.5 (see Fig. 4) or
between �0.15 and �0.5 (see Fig. 7). As a final note, although impor-
tance maps are a useful tool to evaluate which voxels were used by the
classifier, these maps should not be interpreted as providing an exhaus-
tive assessment of which voxels are individually informative about the
distinction of interest.

Searchlight analyses. Importance maps reveal which voxels provide
diagnostic information to the whole-brain classifiers. However, they do
not reveal whether data from individual anatomical regions can be used
on their own to discriminate hits from CRs. We conducted searchlight
analyses to provide local decoding accuracies (Kriegeskorte et al., 2006)
across the brain. Of particular interest was whether the regions in which
mean blood oxygen level-dependent (BOLD; univariate) signal was
modulated significantly by countermeasures (see Fig. 2A) also enabled
trial-by-trial decoding accuracy that significantly departed from chance.
We performed the critical classification (explicit ¡ concealed hits vs
CRs) on local spherical masks centered individually on every voxel in the
whole-brain mask (excluding voxels in the motor cortex and cerebel-
lum). Each spherical mask included any voxel that touched the edge of
the center voxel; thus, the resulting spheres contained 19 voxels, except
when the sphere extended beyond the whole-brain mask. To determine
whether local decoding accuracies evolved across the trial (as would be
expected if participants initially attended to memory signals and then
attempted to conceal such signals), we conducted these searchlights sep-
arately for each of the six TRs.

We evaluated significance in each of our searchlight spheres as in the
prior decoding analyses: AUCs were first computed for 10 classification
iterations, and then a null distribution was simulated by computing 10
additional classification iterations using scrambled regressors. We gen-
erated group-level t maps showing spheres that reliably discriminated
hits from CRs by performing a paired t test of each participant’s mean
scrambled versus unscrambled AUC value at each voxel, across all 10

iterations. These maps were thresholded at p � 0.05 (corrected) by ap-
plying a cluster-size threshold derived from Monte Carlo simulations
(Xiong et al., 1995) as implemented in the AFNI (Automated Functional
Neuro-Imaging) program 3dClustSim. The smoothness for the Monte
Carlo simulation was estimated separately for each participant and each
time point using the AFNI program 3dFWHMx from the average AUCs
achieved across the iterations of scrambled classification. Smoothness
was averaged across participants and time points to compute a single
smoothness value for each dimension. A voxelwise height threshold of
p � 0.01 resulted in a cluster size of 22 voxels to reach a cluster-level
significance of p � 0.05 (FWE) within a given time point. To correct for
multiple comparisons across our six time points, we applied a Bonferro-
ni’s correction, computing the extent threshold necessary to achieve a
cluster-level significance of p � 0.0083 (or 0.05/6; FWE) at each time
point or p � 0.05 (FWE) across space and time. Using this method, we
determined that a cluster extent of 29 voxels was required to achieve a
cluster-level significance of p � 0.05 (FWE) across space and the six time
points.

Results
Behavioral performance
Explicit memory task
When participants truthfully reported their mnemonic experi-
ence elicited by each test face, they achieved a mean � SD hit rate
(rate at which OLD images accurately judged “old”) of 0.73 �
0.12 and an FA rate (rate at which NEW images inaccurately
judged “old”) of 0.27 � 0.10, resulting in a mean d� of 1.27 �
0.56. Mean response times (RTs) were faster for correct an-
swers (hits, 1.74 � 0.60 s; CRs, 2.10 � 0.75 s) than for incor-
rect answers (FAs, 2.30 � 1.01 s; misses: 2.33 � 0.81 s; t(23) �
5.15, p � 3.22 � 10 �5). Hit responses were faster than CR
responses (t(23) � 5.44, p � 1.56 � 10 �5).

Concealed memory task
When participants engaged in countermeasures, during which
they responded contrary to their true mnemonic experience, they
achieved a mean hit rate (rate at which OLD images were re-
ported as “new,” reflecting that the participant accurately be-
lieved the image to be OLD) of 0.65 � 0.12. Participants exhibited
a mean FA rate (rate at which NEW images were reported as
“new” indicating that the participant inaccurately believed the
image to be OLD) of 0.29 � 0.12. Thus, d� in the concealed
memory task was 0.99 � 0.54. Mean RTs were again faster for
correct answers (hits, 2.09 � 1.08 s; CRs, 2.14 � 1.09 s) than for
incorrect answers (FAs, 2.17 � 1.13 s; misses: 2.10 � 1.15 s; t(23)

� 5.85, p � 5.79 � 10�6), but there was no difference between
hits and CRs (t(23) � 0.16, p � 0.87).

Comparing explicit and concealed memory tasks
Mean d� was significantly greater in the explicit memory than in
the concealed memory task (t(23) � 2.99, p � 6.6 � 10�3). There
were no task differences in mean RT for any memory outcome
(all p values 	 0.05). However, there was a significant interaction
between task and memory, in that the average difference in RT for
hits and CRs was greater in the explicit memory than in the con-
cealed memory task (t(23) � 6.25, p � 2.22 � 10�6). This differ-
ential effect of memory on RT as a function of task may follow
from the difference in d� between the explicit and concealed
memory conditions and is likely a consequence of the dual-task
nature of the concealed memory condition: participants were
required to first determine whether faces were old or new and
then rapidly switch to a memory/novelty concealment strategy
while also reversing their motor responses.
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Univariate fMRI analyses
We first investigated the question of whether participants could
engage in strategic countermeasures to modulate memory-
related BOLD signal across trials (i.e., univariate fMRI re-
sponses). To do so, we identified “memory success effects”
(hits 	 CRs) for each task separately and then determined where
memory success effects were common across tasks, as well as
where they were modulated by task. We then investigated
whether the ability to modulate memory success effects was in-
fluenced by memory strength.

Memory success effects by task
Greater activity for hits than CRs in the explicit memory task was
observed in many regions identified previously in fMRI studies of
recognition memory retrieval (for meta-analyses, see McDer-
mott et al., 2009; Spaniol et al., 2009; Kim, 2010; Hutchinson et
al., 2014), including the left intraparietal sulcus (IPS) and ventro-
lateral prefrontal cortex (VLPFC), as well as the left hippocampus
(Fig. 1A). Similarly, memory success effects in the concealed
memory task were identified in the left medial IPS/superior pari-
etal lobule (SPL), with additional clusters in the right IPS and left
ventral temporal cortex (VTC; Fig. 1B, warm colors). Although
no regions showed the reverse effect (CRs 	 hits) in the explicit
task, a number of regions exhibited a reversed effect in the con-
cealed memory task, including the bilateral hippocampus and left
angular gyrus (AnG; Fig. 1B, cool colors).

Activity in the hippocampus and AnG is often associated with
episodic recollection (for meta-analyses, see Kim, 2010; Hutchin-
son et al., 2014); because these regions showed a reverse memory
success effect in the concealed memory task, this pattern offers
initial neural support that participants were able to successfully
execute the instructed countermeasures in the concealed mem-
ory task. In other words, the finding of greater activity for CRs
than hits in the concealed condition suggests that participants
engaged successfully in greater recollection when cued to do so by
faces they determined were novel (concealed memory CRs) rela-
tive to faces they determined were studied (concealed memory
hits), for which they were to disengage from their memories of
the face and attend to the novel aspects of the photograph.

Common memory success effects
Given that participants were required to determine whether a
face was old or new in both tasks, we next sought to determine
whether there were any regions that differentiated hits from CRs
in both tasks. To do so, we inclusively masked the foregoing
memory success contrasts (at p � 0.01 each, to result in a conjoint
threshold of p � 0.001). The outcome of this masking procedure
revealed effects in the left IPS and left VTC (Fig. 1C).

Memory success effects modulated by task
Although common memory success effects were observed in the
left IPS and VTC, the apparent differences in regional activity for
the two tasks reported in Figure 1, A and B, suggests that, at least
in part, participants were able to modulate their memory-related
neural responses between the explicit and concealed memory
tasks. A direct test of whether memory success effects differed
statistically between tasks revealed greater memory success effects
in the explicit than the concealed memory task in many regions,
including the bilateral hippocampus, left AnG, and VLPFC (Fig.
2A). In these regions, the memory success effects observed in the
explicit task were reversed in the concealed task, such that activity
elicited by concealed memory CRs was greater than that elicited
by concealed memory hits. In contrast, the bilateral IPS exhibited
greater memory success effects in the concealed relative to the
explicit memory task (Fig. 2B).

Relationship between memory strength and memory success effects
We hypothesized that it would prove more difficult to modulate
memory signals in the concealed memory task when memory for
the faces was relatively strong. We tested this prediction by ex-
tracting parameter estimates from the left AnG and bilateral hip-
pocampal clusters identified in the previous contrast (memory �
task interaction; Fig. 2) and examining whether they tracked
memory strength across participants. Specifically, for the con-
cealed memory task, we regressed d� against the memory success
effects (hits 	 CRs parameter estimates). As illustrated in Figure
3, the AnG showed a positive predictive relationship between
memory strength and memory success effects, such that partici-
pants with stronger memories in the concealed memory task were

Figure 1. Memory success effects for each task. A, In the explicit memory task, hits elicited greater activity than CRs (Memory Success Effects) in various regions, including those implicated
previously in successful memory retrieval. B, In the concealed memory task, memory success effects (warm colors) were found in a similar region in the IPS, whereas the reverse comparison (CRs 	
hits; cool colors) revealed activity in the left AnG and bilateral hippocampus. C, Memory success effects overlapped in the two tasks in several regions, including the IPS and VTC. Activity is rendered
on 3D Caret inflated brain and 2D mean across-subject brain, both in standardized MNI space; height and extent thresholds: p � 0.001, k � 16. hip, Hippocampus; mIPS/SPL, medial IPS/SPL.
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less likely to show reversed memory success effects in the left AnG
(r � 0.36, p � 0.04). In other words, their memory success effects
persisted despite attempts to conceal their memory. This finding
suggests that participants with stronger memories had greater
difficulty modulating their AnG activity during the concealed
task. Interestingly, neither hippocampal cluster showed a signif-
icant relationship between memory strength and activity (right
hippocampus, r � �0.05, p � 0.82; left hippocampus, r � �0.22,
p � 0.29), and the slopes of the correlations differed between the
AnG and right hippocampus (Williams t(21) � �2.49, p � 0.021)
and marginally differed for the left hippocampus (Williams t(21)

� �1.62, p � 0.12). Together, these findings suggest that partic-
ipants with stronger memories were less able to exert goal-
directed control over memory-related activity in the left AnG, but
this appeared not to be the case in the bilateral hippocampus.

Multivariate fMRI analyses
Our central question is whether use of cognitive (goal-directed)
countermeasure strategies would enable participants to mask
neural patterns related to memory, thus affecting the ability of
multivariate techniques to read out their memory states for indi-

vidual events. Accordingly, we next assessed the ability of MVPA
classifiers to decode the memory status of individual retrieval
trials by (1) first training and testing a classifier on data from the
standard recognition memory task (explicit memory task) and
(2) then assessing whether this classifier could also decode mem-
ory when participants were attempting to conceal their memory
states (concealed memory task). Our process model suggested
three alternative scenarios to test; we begin by explicating our
process model and then describe each hypothesis in turn.

Process model and hypotheses
Given the standard recognition memory instructions in the ex-
plicit task, it is likely that, after encountering each face in this task,
participants evaluated the strength of the memory evidence elic-
ited by the face and endorsed it as “old” if it passed a certain
threshold of “oldness” or “new” if it passed a different threshold
of “novelty” or if it elicited only weak memory evidence [we
remain agnostic as to whether participants adopted a two-high-
threshold model (Ratcliff, 1978; Snodgrass and Corwin, 1988) or
a signal detection model (Green and Swets, 1966) of memory

Figure 2. Memory success effects are modulated by attempts to conceal memory. A, Memory success effects reverse between the explicit and concealed memory tasks in regions associated with
memory retrieval, suggesting that participants were able to successfully deploy countermeasures. B, Memory success effects were greater in the concealed versus explicit memory task in the right
IPS. Activity rendered as described in Figure 1. Graphs depict mean univariate � weights across participants (errors indicate SEM) for clusters in the left hippocampus, AnG, and IPS (B).
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decisions, because it does not change our predictions or
interpretations].

In the concealed task, participants were instructed to make a
memory decision to determine which of the two countermeasure
strategies to deploy (“feign memory” or “feign novelty”). Thus,
participants likely initially followed a similar process as described
for the explicit task, followed by deployment of one of the two
countermeasure strategies. We intentionally required partici-
pants’ decision tree to include attention to memory signals to
maximize the possibility of detecting memory in the face of
countermeasures.

This process model suggested three plausible scenarios re-
garding the ability of a classifier to decode memory during at-
tempts to conceal memory state:

(1) A classifier trained to detect true memory (explicit hits)
from true novelty (explicit CRs) is sensitive enough to detect the
initial memory decision on concealed trials (again, this memory
decision was made to determine which of the two countermea-
sure strategies to deploy). In this scenario, explicit hit patterns
would consistently predict concealed hit trials, and explicit CR
patterns would predict concealed CR trials. Therefore, classifica-
tion performance would be above chance.

(2) The cognitive operations engaged to feign memory and
novelty are qualitatively different than the operations engaged
during true memory and novelty. In this scenario, patterns dis-
criminating hits and CRs in the explicit condition would not help
discriminate hits and CRs in the concealed condition. Here, ex-
plicit hit patterns would not consistently predict either concealed
hit or CR patterns, and thus classification performance would be
at chance.

(3) The cognitive operations engaged to feign memory elicit
patterns that are sufficiently similar to the patterns elicited during
true memory, such that feigned memory patterns (concealed

CRs) are consistently classified as true memory patterns (explicit
hits). Likewise, feigned novelty patterns (concealed hits) are con-
sistently classified as true novelty patterns (explicit CRs). In this
case, the classifier would consistently produce Class B guesses in
response to Class A patterns (and vice versa) and would therefore
exhibit significantly below-chance decoding performance.

To adjudicate between the foregoing scenarios, we trained
classifiers to discriminate hits from CRs on trials when partici-
pants’ responses were representative of their memory decisions
(the explicit task). To first establish baseline decoding perfor-
mance, we tested the ability of this classifier to discriminate hits
from CRs on held-out trials from the explicit task. We next tested
the ability of the classifier to discriminate hits from CRs on trials
when participants were concealing their memory state (con-
cealed task).

Memory decoding during explicit memory judgments
Based on previous findings using a similar explicit memory task
(Rissman et al., 2010), we expected the “explicit ¡ explicit” clas-
sifier to perform well. Consistent with this expectation, the mean
AUC was 0.67 (Fig. 4A, blue; null distribution AUC of 0.50, as
determined by permutation analyses; mean vs null AUCs, t(23) �
8.97, p � 5.74 � 10�9). This performance corresponds to a mean
accuracy of 63% when examining all choices made by the classi-
fier, with mean accuracy reaching 73% on trials when the classi-
fier was most confident (i.e., top 10% of trials with the strongest
classifier-estimated evidence; Fig. 5A, blue).

The foregoing analyses interrogated memory decoding using
data collapsed across multiple peristimulus time points (TR3—
TR5; see Materials and Methods). Because a memory decision
unfolds over time, a set of classifiers trained and tested on each
time point during retrieval may provide additional diagnostic
information (especially on the concealed memory trials; see be-
low). Figure 4B (blue) illustrates that classification performance
on each TR in the explicit ¡ explicit scheme increased until TR4
(6 – 8 s after stimulus onset), when it reached a maximum AUC of
0.66. All but the first two TRs exhibited performance significantly
above chance (TR3, p � 3.64 � 10�6; TR4, p � 9.44 � 10�10;
TR5, p � 2.52 � 10�7; TR6, p � 6.76 � 10�5), surviving Bon-
ferroni’s correction for multiple comparisons (pcrit � 0.0083 for
six TR comparisons).

Maps illustrating the diagnostic value of each voxel to the
classifier (“importance maps”; Fig. 4C) reveal that several prom-
inent foci biased the classifier toward a hit or a CR choice. Among
the regions biasing hit predictions were the bilateral parahip-
pocampal gyrus, bilateral fusiform gyrus, left VTC, left IPS, and
bilateral VLPFC. Such a pattern is consistent with a rich retrieval
literature and suggests that the classifier collectively relied on
signals that represented face information in memory (parahip-
pocampal and fusiform gyri, and VTC), as well as regions thought
to subserve attention to and evaluation of accumulating mne-
monic evidence (IPS and VLPFC). Conversely, regions that bi-
ased CR predictions included the left hippocampus and
supramarginal gyrus (SMG) and bilateral frontal eye fields
(FEFs). Collectively, the signals in these regions likely reflect the
sampling of perceptual space in service of retrieval cue processing
(FEF and SMG) and encoding of novel perceptual information
(hippocampus).

Memory decoding during attempts to conceal
Although the univariate findings demonstrated that participants
were able to successfully modulate their mean signal during the
concealed task in regions traditionally associated with retrieval

Figure 3. Memory strength in the concealed memory task predicts whether participants can
modulate retrieval success effects in the left AnG. Clusterwise � values were extracted from a
left AnG (L AnG) cluster identified in the univariate task � memory interaction (Fig. 2A), and d�
in the concealed memory task was regressed against � values in the concealed memory task
(hits	CRs). This regression reveals that participants with superior memory performance in the
concealed memory task were less likely to show inverse retrieval success effects (CRs 	 hits) in
the AnG, suggesting that participants with stronger memories were less able to exert goal-
directed control over memory-related activity in the left AnG.
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(Fig. 2), this does not necessitate that trial-by-trial decoding ac-
curacy will be affected by attempts to conceal memory and nov-
elty. We next determined whether a classifier trained on data
from the explicit memory test could be used to discriminate hits
from CRs when participants attempted to conceal memory status
(i.e., explicit ¡ concealed). Again, whether classification perfor-
mance is revealed to be above, at, or below chance may provide
insight into the relationship between true and feigned memory/
novelty patterns (see hypotheses above). We found that the
explicit-trained classifier performed no differently from chance
in the discrimination of hits versus CRs in the concealed memory
task (mean AUC of 0.51 vs null distribution AUC of 0.50, as
determined by permutation analyses; t(23) � 0.33, p � 0.75; Fig.
4A, green). Given this poor performance, it was particularly im-
portant to determine whether the most confident guesses of the
classifier could reliably distinguish the two classes. To identify the
upper bound of performance, we considered the 10% of trials
with the strongest classifier evidence. In this case, accuracy was

again no different from chance (mean of 52%; Fig. 5A, green
circles). These findings suggest that feigned memory and novelty
mostly elicit patterns qualitatively different from true memory
and novelty.

However, time course analysis (TR-specific classifiers) dem-
onstrated a slight elevation in performance above chance at one
time point. Classification based on TR3 (4 – 6 s after stimulus
onset) was modest but significantly above chance (AUC of 0.55 vs
null AUC of 0.50; t(23) � 3.35, p � 0.003, surviving Bonferroni’s
correction; Fig. 4B, green) and the top 10% of classifier evidence
trials, based on TR3, resulted in a mean accuracy of 59% (Fig. 5A,
green triangles). This finding indicates that some memory-
related signal may have been present even when countermeasures
are in use but that this signal is transient.

Classification performance on TR3 trials is preliminarily sug-
gestive that the classifier may be able to detect transient memory
patterns in the concealed task (i.e., offering preliminary support
for hypothesis 1 above). Such an interpretation would further

Figure 4. Memory decoding trained on the explicit recognition memory task. A, Performance of memory classifiers (hits vs CRs) trained on standard recognition memory data and tested on
held-out trials from the same condition (explicit memory trials, EX¡EX; blue) or on trials when they were attempting to conceal their true memory state (concealed memory trials, EX¡CM; green).
Violin plots depict the mean AUC for ROC curves (for description of this metric, see text). Plots demonstrate that memory decoding was above chance during a standard recognition memory test
(EX¡EX, blue) but reduced to chance levels when participants attempted to conceal memory (EX¡CM, green). AUC values are plotted for each participant’s data using unique color identifiers, with
lines connecting each participant’s classification performance, and plot-width depicting participant density in that performance range. B, Classifiers trained and tested on each time point (2 s volume
acquisition, TR) revealed similar results as in A, with above-chance decoding on standard memory trials (blue) and chance decoding on concealed memory trials (time point 4 – 6 s was slightly above
chance). C, Maps indicating the diagnostic value that each voxel provides the classifier (importance maps) in biasing a hit choice (warm colors) or a CR choice (cool colors). Error bars in B indicate SEM.
EX, Explicit memory task; CM, concealed memory task; EX¡EX, classifier trained on explicit trials, tested on held-out explicit trials (4-fold cross-validation); EX¡CM, classifier trained on explicit
trials, tested on concealed trials.

Figure 5. Classification by confidence, memory strength, and time point. A, Classifier accuracy at different levels of confidence, ranging from all trials (top 100%) to the top 10% most confident
classifier responses. Values in blue represent classifier performance from the whole-brain explicit¡ explicit classifier (EX¡EX) for late TRs (TR3–TR5), which reveal better performance than the
explicit¡ concealed classifier (EX¡CM) for late TRs (green circles), as well as the explicit¡ concealed classifier for TR3 (green triangles). B, Individual differences in classification performance on
TR3 for concealed trials correlated with memory strength (d�) in the concealed trials suggests that the classifier may have detected transient memory signals that emerged before participants’
attempts to conceal the signals. C, Classifier trained on memory patterns from TR3 in the explicit task detect novelty patterns on TR5 and TR6 in the concealed condition (green), suggesting that
feigned memory can indeed fool a classifier into reliably predicting the opposite response, at later TRs (i.e., when countermeasures have been deployed, after memory state has been determined).
EX¡EX, Classifier trained on explicit trials, tested on held-out explicit trials (4-fold cross-validation); EX¡CM, classifier trained on explicit trials, tested on concealed trials.
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predict that classification performance should scale as partici-
pants’ memory strength increases. To test this prediction, we
examined whether individual differences in classification perfor-
mance on TR3 for concealed trials correlated with memory
strength (d�) in the concealed trials. Indeed, classification tended
to be better for participants with the strongest memory (r � 0.46,
p � 0.025; Fig. 5B), suggesting that the slight and transient above-
chance decoding at TR3 may reflect the detection of transient
memory signals that emerged before participants’ attempts to
conceal these signals (bringing the classifier back down to chance
levels).

Our process model posits that concealed trials contain true
memory/novelty patterns followed by feigned memory/novelty
patterns, because participants first attended to their mnemonic
state before determining which countermeasure to deploy. To the
extent that these feigned memory/novelty patterns emerge only
after true memory/novelty patterns, we predict that a classifier
trained to detect the emergence of true memory patterns but
tested at the emergence of feigned memory patterns would dis-
play below-chance performance (i.e., hypothesis 3 above; note:
analogous predictions hold for true novelty patterns). To test this
prediction, we trained classifiers on TR3 of explicit trials and
tested them separately at each of TR4 –TR6 on concealed trials.
This enabled us to determine whether early memory signals
would be detectable during later feigned memory attempts. Note
this is different from the TR-specific classifier reported in Figure
4B, because those data reflect classifiers trained and tested on the
same TR. Also, although our predictions are relevant to TR4 –
TR6, we report all six TRs in Figure 5C to provide a full temporal
profile of classification performance.

Strikingly, these explicit¡ concealed cross-TR classifiers per-
formed slightly but significantly below chance on TR5 (Fig. 5C,
green; AUC of 0.43 vs null AUC of 0.50; t(23) � �3.74, p � 0.001)
and performed slightly below chance at TR6 (AUC of 0.44 vs null
AUC of 0.50; t(23) � �2.19, p � 0.038). Performance on TR5 but
not TR6 survived Bonferroni’s correction. The finding of signif-
icantly below-chance decoding on TR5 suggests that (1) early
emerging true memory patterns in the concealed condition can
be subsequently (i.e., at later TRs) masked by attending to nov-
elty, “fooling” a classifier into guessing that the pattern elicited by
a recognized item is from the novelty class, and (2) early emerging
true novelty patterns can be subsequently masked by feigning
memory, “fooling” a classifier into guessing that the pattern elic-
ited by a new item is from the recognized class. The pattern of
findings informs our mechanistic predictions by indicating that
the classifier exposed some (transient) shared neural patterns
between feigned and true memory/novelty. However, it is worth
noting that they place a significant boundary condition on the
field use of fMRI-based memory decoders, because they suggest
that participants are indeed able to willfully and consistently con-
fuse a memory decoder.

Potential issues affecting memory decoding
We next sought to determine whether the overall pattern of
findings—that hits and CRs from concealed memory trials
could not be differentiated robustly by a classifier trained on
explicitly reported hits and CRs— could be explained by (1)
differences in memory performance between tasks, (2) poor
memory on the explicit task, (3) poor classification of hits
versus CRs even in the training data (i.e., explicit trials), or (4)
temporal or motor confounds.

First, it is possible the poor performance on the explicit ¡
concealed classifier was attributable to the subset of participants

whose memory performance differed markedly between the ex-
plicit and concealed memory tasks. To test this possibility, we
repeated all analyses on the median split of participants showing
the best matched d� between explicit and concealed memory tasks
(mean d� difference of best matched participants � 0.17, ranging
from 0.02 to 0.29). These analyses revealed that the overall pat-
tern of findings held when examining these 12 participants (mean
AUCs: explicit ¡ explicit, 0.66; explicit ¡ concealed, 0.52).

Likewise, it is important to rule out that the low mean accu-
racy on the explicit ¡ concealed classifier was attributable to
poor classification for those participants with poor memory. Ac-
cordingly, we recomputed all analyses on a median split of par-
ticipants with the best memory performance on the explicit task
(mean d� of the top 12 participants � 1.74, ranging from 1.26 to
2.31). Again, the overall pattern of findings held on this subset of
participants (mean AUCs: explicit ¡ explicit, 0.69; explicit ¡
concealed, 0.48).

It is also conceivable that the explicit ¡ concealed classifier
performed poorly because the distinction between hits and CRs
in the training data (i.e., explicit trials) was not well learned by the
classifier. We tested this possibility by rerunning analyses on a
median split of participants, using the 12 participants in whom
the explicit ¡ explicit classifier performed the best (mean AUC
of top 12 participants, 0.74; ranging from 0.69 to 0.82). The over-
all pattern of findings held on this subset of participants, in that
explicit¡ concealed performance still did not differ from chance
in these participants (mean AUC of 0.48).

An additional concern about the poor performance on the
explicit ¡ concealed classifier is the possibility of temporal con-
founds. Temporal confounds may have arisen because the con-
cealed memory task runs always followed the explicit memory
task runs, and thus the classifier may have suffered as a result of
factors that drifted or differed simply as a function of time. For
instance, participants may have experienced cognitive fatigue or
interference from previous trials that served to reduce classifica-
tion performance on later (concealed memory) trials. Cognitive
fatigue or interference could serve to (1) introduce stochastic
noise to the later trials or (2) reduce participants’ ability to dif-
ferentiate old and new items on later trials. Both possibilities
would reduce the ability of classifiers to identify consistent pat-
terns associated with hits and CRs on these later trials. However,
as reported below, we instead found that classifiers trained and
tested on the later (concealed) trials yielded very high perfor-
mance, in fact, better than that of classifiers trained and tested
on the earlier (explicit) trials. Moreover, participants reported
that the concealed memory task was more cognitively engag-
ing than the earlier explicit memory task, because participants
felt they were trying to “beat” a computer algorithm. These
observations partially mitigate the concern that these later
trials comprised cognitively fatigued—and therefore noisy or
more variable—trials that reduce the overall ability to classify
trials.

To further address this concern, we next directly tested
whether the ability of classifiers to discriminate hits from CRs
varied according to explicit task run. To do so, we trained a clas-
sifier to discriminate hits from CRs on the first run of the explicit
task and tested on each successive run (runs 2– 4). Importantly,
we observed no effect of run on classification performance (p �
0.48, with all individual AUCs greater than null distributions, p
values � 0.05). To rule out a temporal distance effect, we then
implemented the reverse scheme, training on the last explicit run,
and testing on the previous runs (runs 1–3). Here again, there was
no effect of run on classification performance (p � 0.80, with all
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individual AUCs greater than null distributions, p values � 0.05).
These analyses suggest that fatigue or interference is not likely to
be driving the low explicit ¡ concealed classification perfor-
mance. Thus, we have objective metrics (high concealed ¡ con-
cealed classification performance and no effect of run on explicit
¡ explicit classification performance) and subjective report data
that together suggest that cognitive fatigue or interference is un-
likely to be driving the poor explicit ¡ concealed classification
performance.

As a final comment on this concern, it is worth noting that, in
our previous study (Rissman et al., 2010, their Experiment 2),
participants encountered an overall design that paralleled the
present, but with the first four scan runs consisting of an implicit
memory test and the latter four scan runs consisting of an explicit
old/new test analogous to that used in the present study. Thus,
the potential concerns of fatigue and interference in the later
(concealed) task here would have been present in the later (ex-
plicit) task in the study by Rissman et al. (2010). Importantly,
Rissman et al. observed that classification of hits versus CRs (ex-
plicit ¡ explicit) yielded a mean AUC of 0.71 (later trials), which
is comparable with the AUC of 0.67 observed in the present ex-
plicit ¡ explicit classifications (earlier trials). Together with
the objective and subjective metrics reported above, multiple
lines of evidence strongly argue that fatigue and interference
effects are unlikely to account for the poor explicit ¡ con-
cealed performance.

As an additional control analysis, it is important to ensure that
the classifiers were not simply decoding participants’ motor re-
sponses. To test this possibility, we trained a set of classifiers to
detect left hand versus right hand responses within motor-related
voxels (i.e., motor and premotor cortices and cerebellum), across
different runs. A motor classifier trained on the first two explicit
runs and tested on the last two explicit runs (runs 3 and 4) per-
formed no differently than if tested on the last two concealed runs
(runs 7 and 8; mean AUCs of 0.64 and 0.64, respectively, for late
TRs). This suggests that fatigue was not driving the reduced per-
formance on the memory-related explicit ¡ concealed classifier.
Furthermore, given that index versus middle finger responses
mapped to hits versus CRs responses, we trained a set of classifiers
to detect left index finger versus middle finger responses in these
same motor-related voxels. Interestingly, we found that index
versus middle finger responses were difficult to decode, whether
within-task (trained on first explicit left hand run, tested on sec-
ond explicit left hand run: mean AUC of 0.54) or across task
(trained on all explicit, tested on all concealed: mean AUC of
0.51). This poor classification performance allows us to be con-
fident that hits versus CRs classifications are not simply decoding
motor responses. Together, these tests, which rule out temporal
and motor confounds, additionally help mitigate concerns that
noncognitive factors (such as scanner drift or scanner noise) may
have caused the poor explicit ¡ concealed performance.

It is additionally worth noting that performance of the fore-
going classification schemes (explicit ¡ explicit and explicit ¡
concealed) was uncorrelated (r � 0.30, p � 0.15), further lending
weight to the conclusion that decodable memory signals in a
traditional retrieval task were essentially undetectable when cog-
nitive countermeasures were deployed.

Finally, it is important to note that poor explicit ¡ concealed
decoding performance was not attributable to weak univariate
memory signals in the concealed task, particularly in regions as-
sociated with memory retrieval, such as hippocampus and AnG
(Fig. 1B, cool colors).

Searchlight analyses
Whole-brain decoding accuracy can be complemented by search-
light approaches that provide local decoding accuracies (Krieges-
korte et al., 2006). Of particular interest was whether the regions
in which mean BOLD (univariate) signal was modulated signifi-
cantly by countermeasures (Fig. 2A) also showed trial-by-trial
decoding accuracy that significantly departed from chance.
Therefore, we performed the critical classification (explicit ¡
concealed hits vs CRs) on local spherical masks centered individ-
ually on every voxel in the whole-brain mask (excluding voxels in
motor and premotor cortex and cerebellum). Each spherical
mask included any voxel that touched the edge of the center
voxel; thus, the resulting spheres contained 19 voxels, except
when the sphere extended beyond the whole-brain mask. To de-
termine whether local decoding accuracies evolved across the
trial (as would be expected if participants initially attended to
memory signals and then attempted to conceal such signals), we
conducted these searchlights separately for each of the six TRs.

These searchlight analyses revealed several regions in the me-
dial frontal and parietal cortices that demonstrated slight but
significantly above-chance decoding at early time points (0 – 4 s;
Fig. 6), when participants were presumably making their initial
memory judgment. The medial parietal cortex is implicated
strongly in episodic memory tasks, whether considering univar-
iate data (for meta-analyses, see McDermott et al., 2009; Spaniol
et al., 2009; Kim, 2010; Hutchinson et al., 2014), multivariate data
(Fig. 4C; Rissman et al., 2010), or intracranial EEG data (Foster et
al., 2015). Thus, this above-chance decoding demonstrates that
some regional activity patterns may be transiently detectable and
likely reflects the requirement for participants to first retrieve
mnemonic information before deploying countermeasures.

Several clusters yielded below-chance decoding at later time
points, when participants were presumably attempting to deploy
countermeasures, including clusters centered on the left AnG
(Fig. 6) and right FEF. These clusters exhibited below-chance
decoding at 6 – 8 s after stimulus that was robust to multiple
comparisons correction across space but did not survive Bonfer-
roni’s correction across time points. The AnG finding, while fall-
ing one voxel under the 29-voxel extent threshold required to
surpass a stringent spatiotemporal correction, aligns well with the
univariate data showing that mean BOLD signal in the left AnG
was significantly modulated by countermeasures (reversing the
typical retrieval success effects; Fig. 2A). The finding is also con-
sistent with the importance maps in Figure 4C, indicating that the
left AnG provided high diagnostic value in influencing the pre-
dictions of the whole-brain classifier. By taking a searchlight ap-
proach, we determined that local patterns of activity in the left
AnG may confuse the classifier at later time points, when partic-
ipants are attempting to conceal their memory state.

These findings may help adjudicate between potentially con-
flicting previous data on the decodability of memory under var-
ious goal states. On the one hand, Kuhl et al. (2013) showed that
mnemonic information could be decoded when participants
were not instructed to attend to their mnemonic state but may
have been doing so incidentally. On the other hand, when partic-
ipants were instructed explicitly to perform a task orthogonal to a
memory task (make an attractiveness rating on the old and new
faces instead of an explicit memory judgment), memory decod-
ing was reduced to at- or near-chance levels (Rissman et al.,
2010). Furthermore, recent data suggest that participants can be
taught to adopt a global strategy wherein they avoid attending to
memory signals elicited by salient, mock crime-related retrieval
cues, therefore obscuring event-related potential indices of guilty

8540 • J. Neurosci., June 3, 2015 • 35(22):8531– 8545 Uncapher, Boyd-Meredith et al. • Countermeasures Hinder Memory Decoding



knowledge (Bergström et al., 2013). The aim of the present study
was to determine whether memory signals can be rendered un-
detectable even after initially attending to them, which may be
inevitable in real-world scenarios that use highly salient retrieval
cues, such as depictions of a crime scene. The searchlights show-
ing below-chance performance extend the findings of Bergström
et al. by showing that, when memory is attended, memory detec-
tion can still be obscured at later time points through goal-
directed modulation of regions related to memory retrieval and
perception (see AnG and occipital clusters in Fig. 6).

The full pattern of results observed in the searchlight analysis
provides information at a fine-grained spatial scale that can aid
the interpretation of the observed performance in our previous
(whole-brain) attempt to decode memory during countermea-
sures. The above-chance searchlight performance reveals that it is
possible to decode memory across tasks given an appropriate
choice of voxels and time points. It is important to note that our
whole-brain classification analyses that averaged across late time
points included voxels that contributed to above-, below-, and
at-chance performance on searchlight analyses. Thus, the whole-

brain, late-TR classifier was trained on a combination of regions
that, individually, exhibited reliably similar, reliably reversed, or
unreliable patterns across tasks. Together, this pattern of findings
may explain why the whole-brain, late-TR classifier performed
no differently from chance.

An alternative interpretation of the chance performance on
the explicit¡ concealed whole-brain, late-TR classifier is that the
model was overfit to cognitive processes or stochastic noise that
varied over time or that differed according to task. For instance, a
cognitive process that likely differed by task was the retrieval
orientation adopted by participants during explicit versus con-
cealed tasks. To the extent that retrieval orientation was driving
performance on the whole-brain, late-TR classifier, differing re-
trieval orientations would give rise to very low across-task per-
formance. However, by using more fine-grained searchlight
analyses, we were able to show that regions thought to represent,
bind, or subjectively process recollected information (particu-
larly the left AnG) were able to be modulated dynamically by
attempts to conceal memory on a trial-by-trial basis. Thus, it is
unlikely that differing retrieval orientations drove searchlight

Figure 6. Searchlight analysis of memory decoding during use of countermeasures. Maps of group-average searchlight accuracy indicated voxels that exhibited above- or below-chance accuracy
(warm and cool colors, respectively) on the critical explicit¡concealed classification of hits versus CRs. Searchlights were performed separately on each time point, revealing local information that
demonstrated above-chance decoding in medial frontoparietal regions at early time points (0 – 4 s) when participants were presumably making memory decisions and below-chance decoding at
later time points (6 – 8 s), including the left AnG (circled), when participants were presumably attempting to conceal memory state. Maps are thresholded at p � 0.05 (corrected for multiple
comparisons, FWE). Clusters outlined in black additionally survive Bonferroni’s correction for the six temporal comparisons. Color map represents AUC values (with 0.5 representing chance).
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performance, although they may have played a role in the at-
chance whole-brain analyses.

Several other lines of research further support the conclusion
that the observed chance performance resulted from the success-
ful deployment of countermeasures and not simply a failure of
the classifier to generalize to slightly different task sets. First, we
have observed previously that comparable classifiers—also
trained to discriminate hits from CRs on laboratory-based face
stimuli— can reliably decode hits from CRs on photo sequences
from cameras worn by participants (and vice versa), achieving
well above chance classification performance (Rissman et al.,
2011). Notably, the training and testing data differed along mul-
tiple domains, including participants (independent samples), re-
trieval cues (photo sequences vs single faces), memory content
(memory for rich, real-world autobiographical episodes vs
laboratory-based memory for single faces), retrieval responses
(eight-option responses made with two hands vs five-option re-
sponses made with one hand), and study-test interval (1– 4 weeks
vs �1 h). Thus, very different training and testing data can give
rise to robust memory decoding using our approach. Second, in
our previous study, we found robust generalization across partic-
ipants, in that training on 15 participants’ data produced reliable
classification of the left-out participant’s patterns, with accura-
cies similar to within-participant decoding (Rissman et al., 2010;
note that, in the present dataset, we replicated this robust across-
participant classification; data are available on request). Together
with the above-chance searchlight classifications, these observa-
tions suggest that there is sufficient consistency in hits versus CRs

memory patterns across tasks and participants to allow for gen-
eralization, again suggesting that the poor explicit ¡ concealed
classification should be at least partially attributed to the success-
ful deployment of countermeasures, not stochastic or cognitive
sources of noise.

Strategic goal states associated with countermeasures
To gain insights about the strategic goals states that modulated
memory-related patterns, we next sought to elucidate the neuro-
cognitive mechanisms associated with the two countermeasure
tasks (one for old items, another for new items). To do so, we first
investigated the mean (univariate) BOLD signal engaged by each
countermeasure task and then explored how well a classifier
could discriminate between the tasks.

When participants identified a face as studied on concealed
runs, they were to attempt to conceal their memory state by shift-
ing attention to novel aspects of the photograph. Therefore, we
predicted that a univariate comparison of trials on which they
performed this “attend” task (hits and FAs) would elicit greater
mean signal in regions implicated in top-down visual attention
relative to trials in which they performed the “generate” task
(misses and CRs). Because this comparison amounts to a contrast
of subjective oldness versus newness (as all conditions were
equally weighted), an additional question is whether this com-
parison would also reveal neural correlates of the subjective
experience of memory or whether engagement of strategic coun-
termeasures would override the subjective memory signal, ren-
dering it undetectable with univariate measures. Interestingly,

Figure 7. Strategic goal states associated with countermeasures. A, Left, Univariate contrast reveals brain regions engaged during attempts to conceal memory by shifting attention to novel
perceptual aspects of the face stimuli. Right, Complementary contrast reveals brain regions involved in concealing novelty, by generating memories in response to novel faces. B, Plots of memory
decoding for classifiers trained on patterns from concealed memory trials. Green plots reveal above-chance decoding when tested on concealed trials (CM¡CM, green) but reduced to chance levels
when tested on explicit recognition data (EX¡CM, blue). AUC values are plotted for each participant’s data using unique color identifiers, with lines connecting each participant’s classification
performance and plot-width depicting participant density in that performance range. C, Maps indicating the diagnostic value that each voxel provides the concealed memory-trained classifier
(importance maps) in biasing a hit choice (warm colors) or a CR choice (cool colors). CM¡CM, Classifier trained on concealed trials, tested on held-out concealed trials (4-fold cross-validation);
CM¡EX, classifier trained on concealed trials, tested on explicit trials.
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this contrast (illustrated in Fig. 7A, left) revealed robust activity in
the left medial IPS/SPL, an area reliably engaged during goal-
directed shifts of visual attention (Corbetta et al., 2008), and the
lateral occipital complex, an area implicated in object-based pro-
cessing (Grill-Spector et al., 2001), but no medial temporal activ-
ity. Interestingly, this contrast also revealed a cluster in the left
inferior frontal junction (IFJ), a region implicated in task-
switching related cognitive control demands (Derrfuss et al.,
2005), as well as retrieval suppression strategies that require
“thought substitution” (i.e., attention to thoughts other than the
cued memory; Benoit and Anderson, 2012). Together, these pat-
terns lend support to the idea that participants were able to stra-
tegically engage cognitive control mechanisms to disengage from
their subjective experience of memory to attend to novel features
of the stimulus.

When participants identified a face as novel in the concealed
task, they were to conceal their cognitive state by generating
memories in response to the novel face. Therefore, we predicted
that trials for which participants attempted to generate memories
would engage regions implicated in mnemonic retrieval. As
shown in Figure 7A (right), this contrast (generate 	 attend)
revealed regions associated consistently with episodic remember-
ing: hippocampus and parahippocampal gyrus, AnG, and retro-
splenial gyrus (McDermott et al., 2009; Spaniol et al., 2009; Kim,
2010; Hutchinson et al., 2014), lending additional support for the
idea that participants were able to generate other memories in
response to novel faces. Again, it is notable that neural correlates
of novelty were not observed, suggesting that strategic control
measures were able to override initial cognitive states, at least at
the level of mean signal. This finding further highlights the im-
portance of using multivariate analyses to attempt to decode
transient, trial-by-trial signals that may be undetectable in uni-
variate contrasts.

Given that the subjective experience of oldness and novelty
cued highly distinct strategic goal states (as evidenced by the en-
gagement of distinct univariate patterns), we predicted that
MVPA-based classification of hits versus CRs in the concealed
task would be more robust than that observed in the explicit task.
That is, the foregoing explicit ¡ explicit multivariate analyses
demonstrated that hits versus CRs in the explicit task were dis-
criminable because of their separable mnemonic experiences,
and we reasoned that these conditions would be even more dis-
criminable in the concealed task given that each trial type addi-
tionally cued a qualitatively different goal-directed task (attend vs
generate, respectively). In line with this prediction, a classifier
trained to discriminate hits from CRs in the concealed task (i.e.,
concealed ¡ concealed) performed well above chance (AUC of
0.78 vs null AUC of 0.49; t(23) � 12.74, p � 6.5 � 10�12; Fig. 7B,
green) and performed better than the analogous classifier from
the explicit task (i.e., explicit ¡ explicit, mean AUC of 0.67; t(23)

� 4.42, p � 0.0002). As can be seen in Figure 7C, the regions
providing the most diagnostic information in favor of hit predic-
tions were those associated with the attend task (i.e., univariate
attend 	 generate; Fig. 7A, left); likewise, the regions providing
information in favor of CR predictions were primarily those as-
sociated with the generate task (i.e., univariate generate 	 attend;
Fig. 7A, right). Thus, the classifier appears to be using task-
related, and perhaps also memory-related, signals to discriminate
hits from CRs in the concealed task.

Finally, we sought to determine whether the cognitive opera-
tions elicited during feigned memory and novelty were similar
enough to those during veridical memory and novelty as to detect
across-task memory and novelty patterns. Although the overall

poor performance on the explicit ¡ concealed classifier suggests
that veridical memory and novelty patterns could not be used to
identify feigned memory and novelty operations, it does not ne-
cessitate the reverse to be true. However, the concealed¡ explicit
classifier performance was at chance (AUC of 0.52 vs null AUC of
0.50; t(23) � 1.17, p � 0.25; Fig. 7B, blue), additionally bolstering
the idea that the operations engaged to feign memory and novelty
are primarily distinct from those elicited during veridical mem-
ory and novelty.

In summary, it is clear that strategic goal states were engaged
to allow memory status to be concealed at the level of mean
activity, as well as on a trial-by-trial basis. To conceal memory,
participants were able to use frontoparietal cognitive control
mechanisms to reorient attention from a mnemonic representa-
tion and toward novel perceptual features represented in the
VTC. To conceal novelty, participants were able to use face cues
to generate medial temporal lobe (MTL)-mediated mnemonic
representations and hold those representations online for the
duration of the trial (likely supported by AnG mechanisms).

Discussion
Recent advances in neuroimaging methods show promise in aid-
ing the detection of individual memories. The present study
tested whether an fMRI-based memory detection technique
would be able to decode memory even when participants attempt
to conceal their memory states, while appearing cooperative. We
report several key findings. First, univariate analyses demon-
strated that countermeasures modulated neural activity, such
that memory success effects in a standard retrieval task reversed
when participants deployed countermeasures. Notably, partici-
pants exhibiting stronger memories had more difficulty reversing
the univariate memory success effects. Second, MVPA classifiers
reliably decoded individual memories when participants truth-
fully reported their memory. Third, this ability to decode mem-
ory mostly failed, and even slightly reversed, when participants
used simple cognitive strategies to thwart classifiers trained on
truthful memory responses. Finally, strategic goal states were en-
gaged to allow memory status to be concealed in the mean signal,
as well as on a trial-by-trial basis. Frontoparietal control mecha-
nisms enabled memory to be concealed by reorienting attention
away from cued memories and toward novel perceptual features,
whereas MTL–AnG mechanisms allowed novelty to be concealed
by generating and holding online previous memories. Together,
these findings demonstrate the power that strategic goal states
exert over brain patterns, because they can mostly mask individ-
ual memories from detection.

The first clue revealing the profound influence that counter-
measures exert over mnemonic operations was revealed in the
univariate findings. Here we observed memory success effects
(hits 	 CRs) when participants truthfully reported their memory
states, which reversed (CRs 	 hits) when participants generated
memories in response to novel faces or focused on novel aspects
of studied faces. Notably, these reversals of activity occurred in
regions implicated consistently in memory retrieval, specifically
the bilateral hippocampus and left AnG (for meta-analyses, see
McDermott et al., 2009; Spaniol et al., 2009; Kim, 2010; Hutchin-
son et al., 2014). To the extent that hippocampal and AnG BOLD
signal reflects retrieved mnemonic content, the finding that the
effects reversed between tasks suggests that participants were in-
deed able to willfully engage the instructed countermeasure strat-
egies across trials. Indeed, univariate comparisons of the two
countermeasure tasks revealed the regions that likely mediated
this strategic modulation of memory-related activity (Fig. 7A):
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(1) for memory concealment—requiring reorienting attention
from mnemonic information and toward novel perceptual as-
pects of the stimuli—regions associated with goal-directed allo-
cation of attention and perceptual representations were engaged;
and (2) for novelty concealment—requiring generation of mem-
ories in response to novel faces—retrieval-related regions were
engaged.

It is notable that the memory concealment strategy used here
is similar to the “thought substitution” strategy of Benoit and
Anderson (2012), whereby retrieval suppression is induced when
participants attend to event features other than cued memories.
At the neural level, our IFJ cluster overlapped their mid-VLPFC
region [surviving small-volume correction, pFWE � 0.011, 6 mm
sphere centered on their mid-VLPFC cluster; Benoit and Ander-
son, 2012, their Table S3 (�51, 8, 31)]. In their paradigm, the
thought substitution strategy did not modulate hippocampal ac-
tivity, but here it appeared to (in analogous conditions: explicit vs
concealed hits). This discrepancy may be attributable to differ-
ences in the substitution strategies between studies: here, the sub-
stitution consisted of perceptual analysis of the stimuli, which
may drive hippocampal activity less than the substitution strategy
of Benoit and Anderson, which required explicit retrieval of an
alternate learned association. This highlights an opportunity for
additional investigations to determine when and how strategic
goal states modulate hippocampal activity.

Participants’ ability to reverse univariate retrieval success ef-
fects appeared contingent on overall memory strength, suggest-
ing that participants with stronger memories found it more
difficult (1) to direct attention away from (strong) memories or
(2) to generate memories cued by novel faces. Interestingly, this
relationship between memory strength and memory signal in the
concealed memory condition was only found in the AnG and not
in the hippocampus. This regional dissociation bolsters the pro-
posal that AnG activity is not simply a reflection of hippocampal
output, but rather the two regions subserve different functional
roles (Vilberg and Rugg, 2012). In such proposals, the hippocam-
pus reinstates neural activity elicited during the initial experience,
whereas the AnG may contribute to the online representation of
recollected information in service of a memory decision (see also
Shimamura, 2011). Beyond providing support for differing roles
of the AnG and hippocampus, this regional dissociation may
address preliminarily why participants with stronger memories
were less likely to show reversed univariate retrieval success ef-
fects. To the extent that AnG activity reflects the active mainte-
nance of a memory representation, the finding that AnG, and not
hippocampal, activity varies with memory strength provides pre-
liminary support for the idea that participants whose memories
were maintained in the AnG with greater fidelity found it more
difficult to direct attention away from strong memories. Memory
strength also influenced classification performance, in that par-
ticipants’ ability to mask their memory signal from the classifier
was contingent on memory strength (albeit only transiently, on
TR3 only). As such, our data suggest that cognitive countermea-
sures may be more difficult to deploy or may be less effective
when stronger memories are at play, which has clear implications
for memory decoding applications and neurobiological theories
of retrieval.

When participants truthfully reported memory, MVPA clas-
sifiers reliably decoded the memory state each participant pos-
sessed for each test face. Regions that provided diagnostic signal
to this classifier were similar to those reported in our previous
study (Rissman et al., 2010), with PFC and posterior cingulate
cortex biasing hit classifications and the anterior hippocampus

biasing CR classifications. Unlike the present study, which re-
quired simple “old” or “new” responses (to match responses on
the concealed memory task), Rissman et al. required explicit de-
cisions about whether any detail of the previous encounter with
the face was recollected or, in the absence of recollected detail,
whether the face was retrieved with high or low confidence. Thus,
the similarity in importance maps across experiments prelimi-
narily suggests that classifiers rely on similar neural signals to
discriminate correctly identified old from new faces when mem-
ory judgments are made, regardless of the precise nature of the
memory judgment. However, it is important to note that decod-
ing accuracy dramatically diminishes to chance when memory
judgments are not made (Rissman et al., 2010, their Implicit task
in Experiment 2) or, as revealed by the present findings, when
participants attend to their memory states but then deploy coun-
termeasures to conceal them.

This latter finding has implications for neurobiological theo-
ries of memory and recommendations regarding readiness for
field use. Specifically, the finding that mnemonic information
could be decoded even when participants are not instructed to
attend to that information (Kuhl et al., 2013) raises the question
as to whether memory signals can be rendered undetectable even
after initially attending to them, as may be the case in real-world
scenarios with highly salient retrieval cues, such as a crime
scene. We found this to mostly be the case, thus imposing a
significant boundary condition on the validity of fMRI-based
memory decoders and suggesting that the method is not yet
ready for field use.

The finding that cognitive countermeasures can thwart or
even reverse the ability of a classifier to accurately detect individ-
ual memories even when memory is attended raises the question
of whether transient memory signals may be detectable in the face
of countermeasures. Here, in the concealed memory data, we
were able to weakly decode hits from CRs at only one time point
(Figs. 4B, 5A), and hits were reliably confused with CRs at a later
time point (Fig. 5C). In particular, the finding that classification
performance at this time point varied according to memory
strength warrants additional investigation. This finding prelimi-
narily suggests that, for example, individuals with strong memo-
ries of relevant information may have difficulty concealing their
memory. The whole-brain classifications were complemented by
searchlights showing that early above-chance classification was
possible using data from medial frontal and parietal cortical re-
gions and that left AnG patterns may reliably confuse memory
classifiers (resulting in significantly below-chance decoding) at
later time points when participants were presumably deploying
countermeasures. Future studies using more temporally resolved
data (electroencephalography, EEG, or simultaneous fMRI–
EEG) may further inform whether transient memory signals can
be detected in the presence of cognitive countermeasures. Such
investigations may reveal that attention to memory representa-
tions necessarily gives rise to detectable memory signals, although
we note that extant EEG-based memory detection methods also
appear vulnerable to countermeasures (Rosenfeld et al., 2004,
2013).

Together, our data demonstrate that cognitive strategies can
dramatically compromise the ability of fMRI-based classifiers to
detect memory. These findings extend those of a previous fMRI
investigation using physical countermeasures to compromise
fMRI-based “lie detection” (Ganis et al., 2011) to the domain of
memory and further demonstrate that covert measures, which
may not be physically detectable, can nevertheless foil fMRI-
based memory detection. Furthermore, given previous findings
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that memory was not decodable when probed implicitly (Riss-
man et al., 2010), our findings further reveal that, even when
memories are attended to, neural signatures of memory states can
still be rendered difficult to detect. It is also important to note that
concealed information, mnemonic or otherwise, can be detected
using a variety of different methods (outlined in Introduction),
including those that have been designed to be relatively
countermeasure-resistant (such as the complex trial protocol of
the Concealed Information Test; for review, see Rosenfeld et al.,
2013). Future studies are needed to understand the effects of
ecologically valid factors, such as the passage of time, rehearsal,
and the richer mnemonic information held in real-world (rather
than laboratory-presented, list-based) memories, as well as the
influence of false memory on memory detection techniques. Al-
though there may exist great promise for these techniques, it is
clear that there are important boundary conditions that may ren-
der their real-world potential uncertain.
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