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Autonomous vehicles are promised to share the road, sea, and sky alongside human-operated

vehicles. Full autonomy requires an accurate and tamper-proof navigation system that oper-

ates robustly in all settings. To meet this requirement, vehicles must fuse redundant position

information from various sources. The state of the art is to fuse position information from a

suite of diverse and complementary onboard sensors (e.g., a global navigation satellite system

(GNSS) receiver provides stable absolute position information and an inertial measurement

unit (IMU) and other dead reckoning (DR) sensors provide short-term accurate DR-type

information). Relying on GNSS alone to provide absolute positioning poses an alarming

vulnerability: GNSS signals could become unavailable or unreliable in deep urban canyons

or locations experiencing a malicious attack (e.g., jamming or spoofing). After prolonged

GNSS signal unavailability, the position solution degrades to unsafe levels as error-corrupted

DR-type information is integrated without correction from an absolute positioning source.

Recently, ambient radio frequency signals of opportunity (SOPs), such as AM/FM, cellular,

digital television, and low Earth orbit (LEO) satellites, have emerged as an effective backup

or alternative source of absolute positioning information in the absence of GNSS signals.

SOPs posses several desirable characteristics as sources of positioning information: (i) ubiq-

uitous in most environments of interest, (ii) signal diversity in frequency and direction,
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(iii) higher signal reception strength compared to GNSS signals, (iv) they are free to use,

since their infrastructure is already operational and maintained by service providers. How-

ever, SOPs were never intended as sources for positioning information, which gives rise to

a number of challenges. First, unlike GNSS satellites, the positions of SOP emitters may

be unknown. Second, the clocks equipped on different SOP emitters are not tightly syn-

chronized with each other and are driven by lower quality oscillators compared to atomic

oscillators on GNSS satellites. Third, unavailability of navigation architectures for fusing

SOP information with other commonly used navigation sensors, such as IMUs.

This dissertation addresses the aforementioned challenges by developing and studying an in-

ertial radio simultaneous localization and navigation (inertial radio SLAM) architecture, in

which vehicles exploit SOPs to aid their INSs while simultaneously mapping unknown states

of SOPs in space and time. Theoretical and practical questions are addressed. Through-

out the dissertation, simulation and experimental demonstrations evaluate the established

theorems and answers to the practical questions.
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Chapter 1

Introduction

The last decade has seen a dramatic increase in the research and development of fully au-

tonomous navigating vehicles. In 2019 alone, the private sector saw record-breaking funding

numbers to develop self-driving cars, autonomous package delivery, and other autonomous

services of-the-like [1]. Besides the private sector, the U.S. Department of Defense requested

$9.39 billion in 2019 for unmanned systems and associated technologies [2]. As these navi-

gating vehicle’s begin to operate alongside human-operated vehicles, requirements on their

equipped navigation system’s robustness and the accuracy of the produced position solution

are becoming more stringent [3,4]. To meet such stringent requirements, vehicular navigation

systems must draw and fuse information from various sensing modalities.

Today’s navigation systems fuse absolute positioning information from a global navigation

satellite system (GNSS) receiver with dead reckoning information from an inertial navigation

system (INS) [5], and potentially a multitude of other information sources [6] (e.g., lasers

[7,8], cameras [9,10], and maps [11]). Relying on GNSS alone to provide absolute positioning

poses an alarming vulnerability: GNSS signals could become unavailable or unreliable in

environments such as deep urban canyons or environments experiencing a malicious attack

1



(e.g., jamming or spoofing). During prolonged periods without absolute position information

from GNSS, the errors in the INS (and other dead-reckoning type sensors) will inevitably

diverge, compromising the vehicle’s safe operation.

Consumer and small-size applications that use affordable micro-electro-mechanical systems

(MEMS)-based inertial measurement units (IMUs) are particularly susceptible to large error

divergence rates. While adding additional sensors may reduce the rate of error divergence,

they may violate cost, size, weight, and/or power constraints. Moreover, these sensors may

not properly function in all environments (e.g., fog, snow, rain, dust, nighttime, etc.), and

are still susceptible to malicious attacks [12].

1.1 Exploiting Signals of Opportunity for Navigation

Recently, signals of opportunity (SOPs) have been demonstrated as an attractive source of

absolute positioning information in the absence of GNSS signals [13–17]. SOPs are ambi-

ent radio frequency signals that are not intended for navigation or timing purposes, such

as AM/FM radio [18–21], cellular [22–27], digital television [28–30], Wi-Fi [31–33], and low

Earth orbit (LEO) satellite signals [34–42]. These SOPs are illustrated in Fig. 1.1. Even

when GNSS signals are available, SOP observables can be coupled with GNSS observables

to significantly improve the accuracy of the navigation solution [43]. With appropriately

designed receivers and algorithms, they may be exploited for standalone navigation or abso-

lute positioning for an aided INS [24]. In contrast to the aforementioned DR-type sensors,

absolute position information may be extracted from SOPs to provide bounded INS errors.

Moreover, SOPs are practically unaffected by dense smoke, lighting conditions, fog, rain,

snow, and other poor weather conditions. SOPs enjoy several inherently desirable attributes

for navigation purposes:
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• Abundance: SOPs are collectively available in most locales of interest.

• Diversity: SOPs are diverse in both frequency and direction.

• High received power: SOPs are often available in GNSS denied environments and

are received with a carrier-to-noise ratio that is commonly tens of dBs higher than that

of GNSS signals.

• Free to use: with specialized SOP navigation receivers, their signals may be ex-

ploited without network subscriptions and their infrastructure is already operational

and maintained by service providers.

AM/FM Cellular

Wi-Fi LEO Satellites

Digital Television

Figure 1.1: Illustration of example SOPs that may be exploited for absolute positioning.

However, unlike GNSS, whose satellites’ states are known via a transmitted navigation mes-

sage, the states of SOPs, namely their position and clock states, are typically unknown a

priori and must be estimated. Furthermore, the oscillators equipped on SOP transmitters

are lower quality compared to the autonomic clocks equipped on Global Positioning System

(GPS) satellites, which are maintained by the U.S. Air Force. This dissertation tackles these

challenges by developing a simultaneous localization and mapping (SLAM)-type architecture

in order to aid a vehicle’s INS using unknown SOPs in the absence of GNSS signals. This

architecture is termed inertial radio SLAM. Radio SLAM is similar to the traditional SLAM

problem in robotics, however in contrast to the typical SLAM map that consists of static
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landmarks, the radio SLAM map consists of both static states as well as stochastic and

dynamic states, which correspond to the positions of the SOPs and the clock bias and drift,

respectively. This dissertation builds up an architecture that may operate in a standalone

or collaborative fashion and answers a number of theoretical questions and addresses several

practical concerns. The contributions of this dissertation are elaborated next.

1.2 Dissertation Contributions and Relevant Work

To begin, this dissertation first considers the case of known vehicle states and solves the

problem of optimal mapping of unknown SOPs. Optimal mapping is an important objective

that arises in many application domains, such as source localization [44], target tracking [45],

and autonomous vehicle navigation [46]. The mapping problem can be abstracted to that of

estimating desired states in the environment, given information extracted from a sensor or a

sensor network. Map optimality is furnished by considering a desired performance criterion,

such as minimization of uncertainty, convergence time, and computational time.

While increasing the number of mapping sensors typically improves the quality of the pro-

duced maps, introducing additional sensors may be prohibitive due to economical, physical,

or computational constraints. Optimal sensor placement has been studied as an enabling

tool to achieve optimal mapping by using only a subset of available sensors for source local-

ization [47,48] and target tracking [49–52]. In autonomous vehicle navigation, environmental

features are mapped a priori or on-the-fly, and these maps are used to estimate the vehicle’s

motion within the environment. These features could posses (i) a static state space, such

as stationary landmarks (e.g., traffic lights, poles, buildings, etc.) or (ii) a dynamic state

space, such as SOP transmitters. This dissertation considers the problem of optimal collab-

orative mapping of unknown terrestrial SOPs. This problem is important in two contexts:

(1) unknown emitter localization and (2) opportunistic navigation.
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Collaboration generally improves navigation. In collaborative opportunistic navigation, mul-

tiple receivers share their observations of SOPs in the environment to construct and contin-

uously refine a global signal landscape map. Such signal landscape could be cloud-hosted,

such that whenever GNSS signals become inaccessible or untrustworthy, the receivers con-

tinue navigating with the aid of this map [16]. The quality of the constructed map depends

on the quality of the observations and the spatial geometry between the SOPs and receivers.

The quality of the constructed map could be improved by prescribing the receivers’ motion

to minimize the uncertainty about the SOPs’ together with the receivers’ states assuming the

initial states of all receivers to be unknown [53]. This motion planning could be generated

in a greedy [54] or a receding horizon fashion [55].

This dissertation makes two contributions associated with mapping SOPs. First, the optimal

receiver placement problem is extended to environments comprising multiple SOPs. To this

end, a novel optimization criterion, namely, the product of areas maximization is derived.

This optimization criterion is intimately related to the classical geometric dilution of precision

(GDOP) minimization and determinant of the inverse of the GDOP matrix maximization

criteria, making it a good alternative for optimal receiver placement. The proposed opti-

mization criterion yields a family of parallelizable convex programs and is computationally

cheaper compared to the classical optimization criteria, which do not yield convex programs.

Second, the optimal mapping performance in an environment comprising N mobile receivers

estimating the states of one unknown terrestrial SOP is characterized as a function of time

and N . This dissertation presents a rigourous proof for the optimal mapping performance

together with simulation and experimental results illustrating various receiver trajectories

versus the optimal mapping performance. The experimental results demonstrate collabora-

tive mapping of an unknown cellular code division multiple access (CDMA) SOP transmitter

to an unprecedented degree of accuracy. It is important to note that while this dissertation

focuses on mapping SOPs for opportunistic navigation purposes, the developed techniques

are widely applicable to other application domains involving range-type sensors.
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This dissertation considers the following two problems for the mapping problem. The first

problem assumes that multiple receivers with random initial states are dropped in a planar

environment comprising multiple unknown terrestrial SOPs with a random configuration.

Each receiver has a priori knowledge about its own states (e.g., from GNSS observables).

The receivers draw pseudorange observations from each SOP, which are fused through a

centralized estimator that estimates the states of all SOPs. It is desired to reduce the

uncertainty of the produced state estimates. However, in many practical scenarios, the

receivers may be prevented from moving to more favorable locations to achieve the best

reduction in uncertainty, e.g., if their motion is constrained or moving to new locations

would consume a considerable amount of time or energy. Instead, it may be more efficient to

deploy an additional collaborating receiver. Where should this additional receiver be placed

to minimize the uncertainty about the SOPs’ states?

The second problem considers a planar environment comprising N mobile receivers with

knowledge about their own states, making pseudorange observations on one unknown ter-

restrial SOP, and fusing their observations through a centralized estimator. What is the

optimal mapping performance as a function of time and N? The answer to this question

would enable one to determine the minimum number of receivers that must be deployed in

an environment to achieve a desired estimation uncertainty within a specified period of time.

Similar questions to the first problem this dissertation considers have arisen in other contexts,

such as optimal GNSS space vehicle (SV) distribution and selection [56–59] and optimal

sensor placement for target localization and tracking [52, 60, 61]. Common metrics to assess

the quality of the spatial geometry of GNSS SVs and range-based sensors are the geometric

dilution of precision (GDOP) [62] and the determinant of the inverse of the GDOP matrix

[56]. The GDOP is related to the sum of the variances of a position estimate. Therefore,

smaller GDOP values (or larger determinants of the inverse of the GDOP matrix) correspond

to more favorable geometries for localization. It was demonstrated in [57] that the GDOP at
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the center of an N -sided polygon is minimized when the sensors’ locations form the vertices

of a regular polygon. In [63], this sensor configuration was also shown to achieve the upper

bound of the determinant of the Fisher information matrix (FIM), which is proportional

to the inverse of the GDOP matrix. In [64], the area of a polygon inscribed in the unit

circle whose vertices are the line of sight (LOS) vectors from the receiver (target) to the SVs

(sensors) was presented as an alternative optimization function for selecting the best SVs.

While previous work considered optimizing the location of a constellation of SVs or a group

of sensors with respect to a specified criterion, this dissertation assumes that N of the re-

ceivers are arbitrarily placed, and treats the problem of optimal placement of an additional

(N + 1)st receiver to improve the estimate of the SOPs’ states. This introduces two main

challenges when compared to optimizing the location of all available sensors. First, the op-

timal placement of the (N +1)st sensor is dependent on the distribution of the pre-deployed

sensors, whereas the optimal placement of all available sensors is only dependent on the

number of sensors whose optimal configuration is a regular polygon. Second, the optimal

placement of the (N + 1)st sensor is dependent on the optimization criterion employed,

whereas the optimal placement of all available sensors is invariant to the optimization crite-

rion (GDOP minimization, determinant of the inverse of the GDOP matrix maximization,

and area maximization).

A preliminary study comparing the problems of (1) GDOP minimization, (2) determinant

of the inverse of the GDOP matrix maximization, and (3) area maximization, for optimal

placement of an additional (N + 1)st receiver was conducted in [65]. It was demonstrated

that these three optimization problems are comparable and that the area maximization prob-

lem is piecewise-concave with a simple analytical solution. However, only an environment

comprising a single SOP was considered. Optimal sensor placement for multiple target po-

sitioning was considered in [66] by maximizing the determinant of the FIM. However, the

optimization was performed over the entire set of sensors.
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Next, the SOP mapping problem is extended by considering the scenario when the states of

the receiver are also unknown. These states may be simultaneously estimated alongside the

SOPs’ states, which provide a self-contained solution that does not require the installation

of additional infrastructure [17, 54]. Localizing unknown radio frequency (RF) transmitters

in general is important in applications ranging from identifying rogue transmitters, such as

jammers and spoofers [67, 68], to radionavigation via signals of opportunity [13, 16].

This estimation problem is referred to as radio simultaneous localization and mapping (radio

SLAM) and is analogous to the SLAM problem in robotics [69]. However, in contrast to the

static feature map of the typical SLAM problem which consists of static states (e.g., positions

of buildings, walls, poles, trees, etc.), the radio SLAM signal landscape map consists of static

states (e.g., positions of terrestrial transmitters) and dynamic stochastic states (e.g., clock

bias and drift).

Observability of the SLAM problem in robotics has been extensively studied [70–73]. In [74],

observability of the radio SLAM problem was thoroughly analyzed through a linearized de-

terministic observability framework, deriving conditions on the minimal a priori knowledge

about the receivers’ and/or transmitters’ states for observability. In [55], a nonlinear de-

terministic observability framework was utilized to show that receiver-controlled maneuvers

reduce the a priori knowledge needed to establish observability. This dissertation studies

the observability of the radio SLAM problem in a stochastic framework to characterize the

evolution of the estimation error covariance produced by an extended Kalman filter (EKF)

estimating the stochastic dynamic states.

Classic deterministic observability tests do not include the statistics of the: (i) process

noise, (ii) measurement noise, or (iii) initial state estimate. The EKF Riccati equation,

however, which governs the time evolution of the estimation error covariance, is a function

of such statistics. Therefore, a system may pass deterministic observability tests, while there

may exist a combination of system statistics for which an EKF would yield estimates with

8



unbounded estimation error variances [75]. For this reason, studying observability via a

stochastic framework is of considerable importance to characterize the time evolution of the

EKF’s estimation error covariance.

Several stochastic observability notions have been defined in the literature. In [75, 76], a

system was said to be stochastically observable if there exists a time such that an estimator

could produce a finite estimation error covariance, when no prior information about the

system’s state vector is available. In [77], a system was said to be estimable if in estimating its

states from measurements, the posterior estimation error covariance matrix is strictly smaller

than the prior state covariance matrix. In [78] and [79], the stochastic stability of the discrete-

time (DT) and continuous-time EKF were studied and conditions on the initial estimation

error and disturbing noise terms were specified that will guarantee bounded estimation error.

In [80], stochastic observability (or estimability) was defined as an assessment of the “degree

of observability.” Thus, in contrast to Boolean deterministic observability tests, stochastic

observability was defined as a measure to whether an observable system is poorly estimable

due to the gradient vectors comprising the Fisher information matrix being nearly collinear.

In [81], stochastic observability was used to describe the ability of the estimator to reduce

the entropy of any non-trivial function of its initial state by using the measurements.

In this dissertation, the stochastic observability of the radio SLAM problem is studied by

directly analyzing the time evolution of the estimation error covariance through the Riccati

equation. The radio SLAM problem is found to be stochastically unobservable when both the

receiver’s and transmitters’ clock biases are simultaneously estimated by showing divergence

of their individual variances. The stochastic observability analysis in this dissertation allows

for the initial estimation error covariance to be finite, unlike other existing approaches that

assume infinite initial uncertainty [75,76]. This dissertation makes three contributions. First,

a closed-form expression for a lower bound on the time evolution of the estimation error

variances of the stochastically unobservable states is derived. Second, the lower bound’s
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divergence rate is characterized. Third, numerical and experimental results are presented

demonstrating an unmanned aerial vehicle (UAV)-mounted receiver, navigating in a radio

SLAM fashion by fusing pseudoranges made on unknown terrestrial signals of opportunity

transmitters. It is worth noting that for the stochastic observability study, this dissertation

focuses on a planer environment to simplify the analysis. Extensions to three-dimensional

environments is expected to follow straightforwardly.

Next, this dissertation extends the radio SLAM problem that uses a vehicular dynamic model

to the case when the vehicle is equipped with an IMU. Specifically, an EKF-based inertial

radio SLAM architecture is developed, where the states of unknown terrestrial SOPs are

simultaneously estimated along with the states of the navigating vehicle. Terrestrial SOP

pseudoranges are used to aid a vehicle’s INS and simultaneously map unknown SOPs.

Radio SLAM-type frameworks have been adopted to exploit unknown SOPs for navigation

as a standalone alternative to GNSS [82]. However, the unknown SOPs were estimated in a

batch filter over the entire traversed trajectory, which is not suitable for realtime applications.

EKF-based SOP-aided INS frameworks that operate recursively on incoming measurements

were developed and studied in [37, 83]. In contrast to prior work presenting EKF-based

SOP-aided INS frameworks, this dissertation provides a self-contained treatment of an aided

INS, with sufficient details for the interested reader to implement an SOP-aided INS that

operates both when GNSS is available and when GNSS becomes unavailable or unreliable.

To evaluate the performance of the developed SOP-aided INS framework, the dissertation

presents a performance sensitivity study conducted through numerical simulations, by vary-

ing the quantity and quality of exploited SOPs. Moreover, the article presents experimental

results demonstrating an unmanned aerial vehicle (UAV) using terrestrial cellular SOPs to

aid its onboard consumer-grade IMU in the absence of GNSS signals. It is demonstrated

that the final position error of a traditional tightly-coupled GNSS-aided INS after 30 seconds

of GNSS cutoff was 57.30 m, while the final position error of the tightly-coupled SOP-aided
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INS was 9.59 m.

Finally, this dissertation extends the inertial radio SLAM problem to the case when multiple

navigating vehicles are working together as a team. Future navigating vehicles will demand

a reliable and accurate navigation system. To meet such stringent requirements, vehicular

navigation systems must draw and fuse information from various sensing modalities and, if

available, other vehicles in their vicinity. Fortunately, advances of autonomous features on

cars have driven the development of vehicle-to-vehicle (V2V) communication technologies.

These technologies enable current and future navigating vehicles to share information with

other navigating vehicles, which will boost situational awareness and navigation performance

altogether [84, 85].

To address this estimation problem, this dissertation develops a collaborative inertial radio

SLAM (inertial CoRSLAM) architecture, in which multiple vehicles estimate the unknown

states of SOPs along with the states of navigating vehicles using shared SOP and INS

information. Despite the more complex stochastic and dynamic map of radio SLAM, this

architecture provides an absolute position source for INS aiding in the absence of GNSS

signals, preventing INS drift during prolonged GNSS unavailability periods [86].

In EKF-based inertial CoRSLAM, collaborating vehicles can improve their state estimates

over single-vehicle inertial radio SLAM by communicating and fusing mutual measurements

made on SOPs along with all vehicles’ INS information [87]. However, V2V communication

of inertial data comes with a large communication bourdon due to the substantial amount

of IMU data produced by each vehicle, which is required to maintain proper inter-vehicle

correlations for consistent EKF-produced estimates. This dissertation answers three practical

and theoretical questions to determine how to extract the most information from the SOP

measurements and how to deal with the communication bourdon. First, the estimation

uncertainties of two information fusion strategies in a CoRSLAM framework are compared:

(i) time-of-arrival (TOA) and (ii) time-difference-of-arrival (TDOA) taken with reference
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to selected SOPs. Second, an efficient method to package and communicate INS and SOP

information is developed. Third, an event-based communication scheme governing when

information should be communicated is developed.

The use of TOA and TDOA for positioning have been compared in other contexts. In [88],

it was determined that using GPS pseudoranges as TOA and TDOA produced identical

positing results. In [89], the Cramér-Rao lower bound (CRLB) was shown to be identical

for receivers with known states that are using either TOA or TDOA to localize multiple

transmitters. In [90], the same conclusion was found for single emitter localization and was

shown to be independent of the TDOA reference selection when the receivers were station-

ary and time-synchronized, with the measurement noise being independent and identically-

distributed. These conclusions do not extend to the CoRSLAM architecture studied in this

dissertation due to three reasons. The first pertains to the nature of radio SLAM, which

is the unavailability of the SOPs’ states that are simultaneously estimated along with the

navigating vehicles’ states. The second arises because the vehicle-mounted receivers’ and

SOPs’ clocks are practically unsynchronized. The third is because the measurement noise

can not be assumed to be independent and identically-distributed. A preliminary study was

conducted in [91], which determined that TOA produces less than or equal estimation error

covariance compared to TDOA. However, the communication bourdon of sharing the large

amount of IMU data was not addressed.

In [92], transmission of IMU data was avoided by communicating state estimates and covari-

ances between collaborators and then using covariance intersection to fuse estimates with

unknown inter-vehicle correlations. In [93], estimated Euler angles and positions were shared

between collaborators instead of IMU data. Then, computations of estimation error covari-

ances were avoided by fusing estimates using the inverse of the measurement period as a

weight. In contrast to [92,93], this dissertation maintains inter-vehicle correlations and deals

with the communication bourdon by determining the minimal sufficient INS information
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that must be communicated to maintain consistent estimates. Then, an event-based com-

munication scheme is developed, which minimizes the amount of communicated information

by transmitting data only if an event of interest is triggered.

In recent years, a number of studies in other contexts have been reported for event-based

communication; see [94], and references therein. These studies have lead to different event-

triggering tests, such as: level-triggering, which compares the amplitude of a signal versus a

pre-defined threshold [95]; average estimation error covariance, which checks the average of

the time-history of the trace of the estimation error covariance [96]; state difference, which

uses the difference between a vehicle’s current state and the last transmitted state; residual-

based, which checks the difference between the actually and predicted measurement [97]; and

innovation variance-based tests [98]. While several event-triggering tests have been devel-

oped, the development of event-based tests in the context of distributed estimation has not

been adequately addressed. In [99], an event-based scheme was developed for a distributed

filter, however was studied using a simplified linear dynamics model. In this dissertation,

an event-based scheme is developed and studied for inertial CoRSLAM, where vehicles only

exchange information if the norm of the estimation error will violate a threshold with a

user-specified probability. Two norms important for vehicular navigation are considered:

two-norm, which tests absolute positioning error and infinity-norm, which tests the largest

error in any coordinate direction.

The contributions in this dissertations have resulted in the refereed publications: [J2], [J3],

[J5], [J6], [J7], [C1], [C2], [C3], [C4], [C6], [C7], [C9], and [C10], which are listed above in

the Curriculum Vitae.
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1.3 Dissertation Outline

This dissertation is organized as follow:

• Chapter 2: Optimal Receiver Placement for Mapping Terrestrial SOPs.

This chapter introduces the dynamics model of the SOPs and the pseudorange mea-

surement model made on the SOPs by a receiver. A novel computationally efficient

optimization criterion, that is based on area-maximization, to optimally place an ad-

ditional receiver into the environment for mapping unknown SOPs is derived. The

optimal mapping performance as a function of time and number of receivers in the

environment is presented.

• Chapter 3: Optimal Receiver Placement for Mapping Terrestrial SOPs.

This chapter analyzes the stochastic observability of radio SLAM. It is shown that the

receiver’s and transmitters’ clock biases are stochastically unobservable and that their

estimation error variances will diverge. A lower bound on the divergence rate of the

estimation error variances of the receiver’s and transmitters’ clock biases is derived

and demonstrated numerically. Simulation and experimental results are presented for

an unmanned aerial vehicle (UAV) navigating without GPS signals, using pseudor-

anges made on unknown terrestrial transmitters. It is demonstrated that despite the

receiver’s and transmitters’ clock biases being stochastically unobservable, the EKF

produces bounded localization errors.

• Chapter 4: Tightly-Coupled SOP-Aided Inertial Navigation. This chapter

provides a self-contained treatment of an aided INS, with sufficient details for the

interested reader to implement an SOP-aided INS that operates both when GNSS is

available and when GNSS becomes unavailable or unreliable. The SOP-aided INS is

studied by varying the number of available SOPs and the quality of the oscillators

equipped on the SOPs.
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• Chapter 5: Information Fusion and Communication Strategies for Collabo-

rative SOP-Aided Inertial Navigation. This chapter extends the SOP-aided INS

concept to multiple collaborating vehicles and studies communication and information

fusion strategies for collaborators sharing and fusing SOP and INS data to aid their

INSs. This chapter is concerned with answering three questions: what SOP and INS

information should shared between collaborators and when should it be shared?

• Chapter 6: Dissertation Conclusions and Main Takeaways. This chapter

summarizes the contributions of this dissertation and highlights the major discoveries.
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Chapter 2

Optimal Receiver Placement for

Mapping Terrestrial SOPs

This chapter is organized as follows. Section 2.1 describes the SOPs’ dynamics and receivers’

observation model. Section 2.2 formulates the optimal receiver placement problem for an

arbitrary number of SOPs in the environment as GDOP minimization and determinant of

the inverse of the GDOP matrix maximization. The placement problem is reformulated as

an area maximization for the single SOP case and a product of areas maximization for the

multiple SOP case. The area and product of areas optimization problems are compared

against the GDOP optimization problems and their optimal solution is specified. Section

2.3 derives the optimal mapping performance as a function of time and number of receivers.

Section 2.4 presents experimental results for collaboratively mapping an unknown SOP.
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2.1 Model Description

The following nomenclature and conventions will be used throughout this chapter. Vectors

will be column and represented by lower-case, italicized, and bold characters, e.g., x. Ma-

trices will be represented by upper-case bold characters, e.g., A. The following notation is

use only in this chapter.

2.1.1 SOP Dynamics Model

The SOP clock error dynamics will be modeled according to the two-state model composed

of the clock bias δts and clock drift δ̇ts. The clock error states xclk,s evolve according to

ẋclk,s(t) = Aclk xclk,s(t) + w̃clk,s(t),

xclk,s =







δts

˙δts






, w̃clk,s =







w̃δts

w̃δ̇ts






, Aclk =







0 1

0 0






,

where the elements of w̃clk,s are modeled as zero-mean, mutually independent white noise

sequences, and the power spectral density of w̃clk,s is given by Q̃clk,s = diag
[

Sw̃δts
, Sw̃ ˙δts

]

,

where diag [a, b] is an appropriately sized square matrix with diagonal elements a and b

and zeros elsewhere. The power spectra Sw̃δts
and Sw̃ ˙δts

can be related to the power-law

coefficients {hα}2α=−2, which have been shown through laboratory experiments to be adequate

to characterize the power spectral density of the fractional frequency deviation y(t) of an

oscillator from nominal frequency, which takes the form Sy(f) =
∑2

α=−2 hαf
α [100]. It is

common to approximate the clock error dynamics by considering only the frequency random

walk coefficient h−2 and the white frequency coefficient h0, which lead to Sw̃δts
≈ h0

2
and

Sw̃ ˙δts
≈ 2π2h−2 [80].

The SOP will be assumed to emanate from a spatially-stationary terrestrial transmitter, and
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its state vector will consist of its planar position states rs , [xs, ys]
T and cxclk,s, where c is

the speed of light. Hence, the SOP’s dynamics can be described by the state space model

ẋs(t) = As xs(t) +Dsw̃s(t), (2.1)

where xs ,
[

rT

s , cx
T

clk,s

]T

, w̃s , w̃clk,s,

As =







02×2 02×2

02×2 Aclk






, Ds =







02×2

I2×2






.

Discretizing the SOP’s dynamics (2.1) at a constant sampling interval T yields the discrete-

time (DT)-equivalent model

xs (k + 1) = Fs xs(k) +ws(k), k = 1, 2, . . . , (2.2)

where ws ,
[

wxs
, wys, wδts , w ˙δts

]T

is a zero-mean white noise sequence with covariance Qs,

and

Fs = diag [I2×2, Fclk] , Qs = diag
[

02×2, c
2Qclk,s

]

,

Fclk=







1 T

0 1






, Qclk,s=







Sw̃δts
T+Sw̃ ˙δts

T 3

3
Sw̃ ˙δts

T 2

2

Sw̃ ˙δts

T 2

2
Sw̃ ˙δts

T






.

2.1.2 Observation Model

The pseudorange observation made by the nth receiver on the SOP, after discretization and

mild approximations discussed in [74], is related to the SOP’s states by

zn(k) = ‖rrn(k)− rs‖+ c · [δtrn(k)− δts(k)] + vn(k), (2.3)
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where ‖·‖ is the Euclidean norm, rrn , [xrn , yrn]
T and δtrn are the position and clock bias

of the receiver, respectively, and vn is the measurement noise, which is modeled as a DT

zero-mean white Gaussian sequence with variance σ2
n.

2.2 Optimal Receiver Placement

This section answers the question: where to optimally place a receiver in an environment

comprising N randomly pre-deployed receivers and M unknown SOPs with an arbitrary

configuration? The following subsection will formulate and compare three optimization

problems: GDOP minimization, determinant maximization, and area maximization. Subse-

quently, the convexity of these problems is analyzed. Finally, an analytical solution to the

area maximization problem is derived for two cases: single (M = 1) and multiple (M > 1)

SOPs.

2.2.1 Problem Formulation

Consider a planar environment comprising M unknown SOPs and N arbitrarily placed re-

ceivers with knowledge about their own states. The receivers draw pseudorange observations

from each SOP, denoted {mzn}Nn=1, for m = 1, . . . ,M . These observations are fused through

a centralized estimator whose role is to estimate the augmented state vector x′ defined as

x′ ,
[

x′T
s1
, · · · , x′T

sM

]T

, x′
sm , [ rsm, cδtsm ]T .

It is desired to deploy an additional receiver to a location that will result in the maximum

improvement of the estimate of x′, denoted as x̂′. The measurement residual computed by

the centralized estimator has a first-order approximation of its Taylor series expansion about
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x̂′, which is given by

∆z = H′ ∆x′ + v, (2.4)

where ∆z , z − ẑ, i.e., the difference between the observation vector

z ,
[

1z1, . . . ,
1zN+1,

2z1, . . . ,
2zN+1, . . . ,

MzN+1

]T

and its estimate ẑ; ∆x′ , x′ − x̂′, i.e., the difference between x′ and its estimate x̂′;

v ,

[

1v
T
, . . . ,Mv

T
]T

, where mv , [mv1, . . . ,
mvN+1 ]

T; and H′ is the Jacobian matrix

evaluated at the estimate x̂′, which is given by H′ = diag [H′
1, . . . ,H

′
M ], where

H′
m=−













m1̂T

1 1

...
...

m1̂T

N+1 1













=−













cos(mφ1) sin(mφ1) 1

...
...

...

cos(mφN+1) sin(mφN+1) 1













.

Without loss of generality, assume an East-North coordinate frame, denoted {fm}, cen-

tered at the mth SOP’s position estimate r̂sm. The vector m1̂n , [ cos(mφn), sin(
mφn) ]

T =

rrn−r̂sm
‖rrn−r̂sm‖

is geometrically a unit LOS vector expressed in {fm} to the nth receiver position

rrn. The bearing angle mφn will be measured counterclockwise with respect to the East axis

of {fm} and rrn will be expressed in {f1}. The observation noise for the set of measurements

is assumed to be independent and identically-distributed (i.i.d.) across all channels, i.e.,

{σ2
n}

N
n=1 ≡ σ2 and cov (v) = σ2IM(N+1)×M(N+1). The weighted least-squares solution to (2.4)

and associated estimation error covariance P′ are given by

∆x̂′ =
(

H′TH′
)−1

H′T∆z, P′ = σ2
(

H′TH′
)−1

. (2.5)

The matrix
(

H′TH′
)−1

is known as the geometric dilution of precision (GDOP) matrix.

Hence, the quality of the estimate depends on the receiver-to-SOP geometry and the pseu-
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dorange observation noise variance σ2. The GDOP is defined as GDOP ,

√

tr
[

(H′TH′)−1
]

,

where tr [·] is the matrix trace. The GDOP provides a simple scalar characterization of

the receiver-to-SOP geometry– the lower the GDOP, the more favorable the geometry [62].

Therefore, the receiver placement problem can be cast as the GDOP minimization problem

minimize
rrN+1

√

tr
[

[

H′T(rrN+1
)H′(rrN+1

)
]−1

]

, (2.6)

where rrN+1
is the location of the (N+1)st receiver. The GDOP is approximately minimized

when the determinant det
(

H′TH′
)

is maximized, since
(

H′TH′
)−1

= adj
(

H′TH′
)

/det
(

H′TH′
)

and the adjoint adj
(

H′TH′
)

varies less with the geometry of the receiver placement than

det
(

H′TH′
)

[62]. Therefore, an alternative optimization problem to (2.6) is

maximize
rrN+1

det
[

H′T(rrN+1
)H′(rrN+1

)
]

. (2.7)

The optimization problems (2.6) and (2.7) are equivalent to the so-called A- and D-optimality

criteria, respectively [101]. In (2.6), the average variance of the estimates are minimized,

whereas (2.7) is equivalent to minimizing the volume of the uncertainty ellipsoid, which has

a useful geometric interpretation for receiver placement. This interpretation gives rise to an

alternative optimization problem to both (2.6) and (2.7), which is formulated and compared

in Subsections 2.2.2 and 2.2.3 for M = 1 and M > 1, respectively.

2.2.2 Case One: Single SOP

For planar environments comprising a single SOP, (2.6) and (2.7) may be reparameterized

over 1φN+1, since H′ is completely determined by the SOP-to-receiver bearing angles. Since

the environment consists of only a single SOP, the superscript will be dropped to simplify no-

tation for the remainder of this subsection, i.e., 1φn ≡ φn. It can be shown that det
(

H′TH′
)
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is related to the area of the polytope inscribed in a unit circle, whose vertices are defined by

the SOP-to-receiver unit LOS vector endpoints [56]. Hence, the optimization problem can

be reformulated as a polytope area maximization problem over φN+1. In a planar scenario

composed of three receivers, the relationship is exact, i.e., maximizing det
(

H′TH′
)

simul-

taneously maximizes the area of the triangle whose vertices are defined by the unit LOS

vectors. This is due to the fact that H′ is now a square matrix. With the exception of the

scenario when all receivers are collinear with an SOP, H′ is an invertible matrix and the

area is A = 1
2

√

det(H′TH′) = 1
2
det(H′). For more than three receivers, the relationship is

exact for regular polygons, but approximate for non-regular polygons. Specifically, a polygon

inscribed in the unit circle that simultaneously maximizes the determinant and maximizes

the area is a regular polygon [64].

For non-regular polygons, the relationship is “almost exact” and the discrepancy is minimal.

To see this, N + 1 receivers were placed randomly around an SOP, where the nth receiver

position was chosen such that φn ∼ U(0, 2π), for n = 2, . . . , N + 1, and φ1 = 0, for a total

of 105 random configurations, where U(a, b) is the uniform distribution over (a, b). For each

configuration, the corresponding GDOP and area were calculated, which are plotted in Fig.

2.1(a)–(d) for N = 2, . . . , 5, respectively. Subsequently, for each of the configurations, the

first N receivers’ positions were fixed and the (N + 1)st receiver was placed so to optimize

the GDOP then to optimize the area. The resulting optimal GDOP versus optimal area are

plotted in Fig. 2.1(e)–(h) for N = 2, . . . , 5, respectively.

The following can be concluded from the plots in Fig. 2.1. First, placing the (N + 1)st

receiver to optimize the area simultaneously optimizes the GDOP only for N = 2. Second,

for N > 2, placing the (N + 1)st receiver to optimize the area approximately optimizes the

GDOP. Third, the voids in the “point cloud” in the optimal area versus optimal GDOP

plot (Fig. 2.1(e)–(h)) compared to the area versus GDOP plot (Fig. 2.1(a)–(d)) are due

to optimizing the placement of the (N + 1)st receiver, which effectively increases the area
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Figure 2.1: N + 1 receivers were randomly placed around an SOP for a total of 105 configu-
rations. Fig. (a)–(d) correspond to N = 2, . . . , 5, respectively, and Fig. (e)–(h) correspond
to N = 2, . . . , 5, respectively. For each configuration, the resulting area and the resulting
GDOP were computed and plotted in Fig. (a)–(d). Each point in the point cloud represents
the area and corresponding GDOP for a particular configuration. Then, for each previous
configuration, the first N receiver locations were fixed and the (N + 1)st receiver was op-
timally placed to optimize the GDOP and then to optimize the area. Each point in the
point cloud plotted in Fig. (e)–(h) represents the optimal area versus optimal GDOP for a
particular configuration. Dotted red line corresponds to the theoretical minimum achievable
GDOP.

23



(decreases the GDOP), pushing the “point cloud” towards the right (bottom). Fourth, when

N + 1 receivers are arranged so that the end-point’s of the unit LOS vectors form a regular

polygon configuration, the theoretical minimum GDOP, given by GDOPmin =
√

5/(N + 1) is

achieved (dotted red line in Fig. 2.1) [57] and the area simultaneously achieves its maximum

value.

Motivated by these results, an alternative optimization problem to (2.6) and (2.7) is pro-

posed, which aims to maximize the area A of the polygon over the angle of the unit LOS

vector of the (N + 1)st receiver, namely

maximize
φN+1

A (φN+1) = AN +∆A (φN+1) , (2.8)

where AN is the total area for N pre-deployed receivers. The area AN can be derived from

the the sum of triangle areas as

AN =

N
∑

n=1

1

2
sin(θn), (2.9)

where θn , φn+1 − φn for n = 1, . . . , N − 1; θN , 2π − φN ; and ∆A (φN+1) is the change in

area resulting from placing the (N + 1)st receiver at φN+1, where φn ≤ φN+1 ≤ φn+1 < 2π.

The change in area ∆A (φN+1) is given by

∆A (φN+1) = (2.10)

1

2
[sin(φN+1 − φn) + sin(θn − φN+1 + φn)− sin(θn)] .

A depiction of A (φN+1) is illustrated in Fig. 2.2.

Next, it will be shown that while the optimization functions in (2.6) and (2.7) are neither
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(a) (b)

1 1

11

Figure 2.2: (a) Polygon inscribed in the unit circle formed by the endpoints of the unit LOS
vectors from the SOP to four randomly-deployed receivers for the configuration depicted in
Fig. 2.3(a). The area AN is highlighted in green. (b) Resulting polygon due to introducing
an additional fifth receiver depicted in Fig. 2.3(a). The change in area ∆A (φN+1) due to
introducing the (N + 1)st receiver is highlighted in red.

convex nor concave, necessitating a general-purpose numerical nonlinear optimization solver,

the optimization function in (2.8) is piecewise-concave with a simple analytical solution.

Convexity Analysis

The term H′TH′ in the optimization problems (2.6) and (2.7) can be readily shown to be

H′TH′ =

N+1
∑

n=1













cos2 φn cosφn sinφn cosφn

sinφn cosφn sin2 φn sin φn

cosφn sinφn 1













.

It is obvious that the optimization functions in (2.6) and (2.7) are neither convex nor concave.

However, while the optimization function (2.8) is neither convex nor concave, it is piecewise-

concave, and the “zero-crossings” occur when the additional receiver is introduced at the

same bearing angle as a pre-deployed receiver. A depiction of these functions is illustrated

in Fig. 2.3.
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Figure 2.3: (a) Four randomly placed receivers (green) with respective angles given by φn ∈
{ 0, 1.892, 2.043, 3.295 } rad estimating the state vector of an unknown SOP (blue). The
optimal receiver placement problem is to place an additional receiver (red) at an angle
φN+1 that will minimize the GDOP (2.6), maximize the determinant of the inverse of the
GDOP matrix (2.7), or maximize the area of the polygon (2.8). The corresponding GDOP,
determinant, and area optimization functions, respectively, due to sweeping 0 ≤ φN+1 ≤ 2π
of the additional receiver, are plotted in (b)–(d).

Optimal Solution to Area Maximization

The special property of piecewise-concavity of the area maximization problem (2.8) allows

for a simple analytical solution for the receiver placement problem. This is summarized in

the following theorem.

Theorem 2.2.1. The optimal placement with respect to the area maximization criterion

(2.8) of a receiver to an environment comprising N arbitrarily placed receivers and one

SOP is anywhere on a LOS vector from the SOP at an angle φ⋆
N+1 = 1

2
max

n
θn, for n =

1, . . . , N − 1, where θn , φn+1 − φn and θN , 2π − φN .

Proof. First, it will be shown that in a particular θn ∈ [0, 2π), the angle that maximizes the

change in area is at φ⋆(n)
N+1, where φ⋆(n)

N+1 , φn + α⋆
n and α⋆

n = 1
2
θn, where αn is defined as

the angle sweeping θn, i.e., αn , φN+1 − φn for 0 ≤ αn ≤ θn.
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Parameterizing ∆A (φN+1) by αn in (2.10) yields

∆A (αn) =
1

2
[sin(αn) + sin(θn − αn)− sin(θn)] , (2.11)

and applying the first-order necessary condition for optimality yields

d∆A (αn)

dαn

=
1

2
cos(αn)−

1

2
cos(θi − αn) ≡ 0

⇒ α⋆
n =

1

2
θn + πk.

Substituting α⋆ into the definition of 0 ≤ αn ≤ θn yields −1
2
θn ≤ πk ≤ 1

2
θn. Since the angle

between any two known receivers is 0 ≤ θn < 2π, k is bounded by −π < πk < π. The only

value of k that satisfies this inequality is k = 0. Therefore, α⋆
n = 1

2
θn is the only critical

angle in θn.

Furthermore, since 0 ≤ θn < 2π, the critical angle is 0 ≤ α⋆
n < π. The second-order necessary

condition for optimality, evaluated at this critical angle is

d2∆An

dα2
n

= −1

2
sin(αn)−

1

2
sin(θn − αn)

= −1

2
sin(α⋆

n)−
1

2
sin(2α∗

n − α∗
n)

= − sin(α⋆
n). (2.12)

Since (2.12) is always negative, the change in area in (2.10) is concave over φn + θn, and α⋆

is the global maximizer. The above analysis holds ∀θn, and the change in area over [0, 2π)

is piecewise-concave with N concave regions, where each region corresponds to {θn}Nn=1.

Next, it will be shown that the largest change in area ∆A (φN+1) is achieved when the

largest region θn is chosen, i.e., the receiver is positioned at φ⋆
N+1 = φnmax

+ α⋆
nmax

, where
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φnmax
= φnmax+1

− θnmax
, θnmax

, max
n

{θn}, α⋆
nmax

= 1
2
θnmax

, where n = 1, . . . , N .

Substituting for α⋆
n = 1

2
θn into (2.11) yields

∆A (α⋆
n) = sin

(

1

2
θn

)

− 1

2
sin (θn) .

Taking the derivative with respect to θn yields

d∆A (αn)

dθn
=

1

2
cos

(

1

2
θn

)

− 1

2
cos(θn). (2.13)

Equation (2.13) is non-negative from
[

0, 4π
3

]

, i.e., increasing the region θn ∈
[

0, 4π
3

]

increases

the resulting area. Hence, choosing θnmax
in this range guarantees the largest change in

area. In
(

4π
3
, 2π

)

, (2.13) is negative; therefore, the change in area begins to decrease as

θn sweeps
(

4π
3
, 2π

)

. To verify that choosing θnmax
is the optimal choice, it is shown that

∆A (θn) < ∆A (θnmax
), when θn ∈ [0, 2π − Γ], where Γ = θnmax

= 4π
3
+ ε, 0 < ε < 2π

3
. Hence,

∆A (θnmax
) > ∆A (θn)

sin

(

1

2
Γ

)

− 1

2
sin(Γ) > sin

[

1

2
(2π − Γ)

]

− 1

2
sin(2π − Γ)

−1

2
sin(Γ) >

1

2
sin(Γ).

Since sin(Γ) < 0, ∀ ε ∈
(

0, 2π
3

)

, the above inequality holds and ∆A (θnmax
) > ∆A (θn).

Theorem 2.2.1 provides a simple recipe for the placement problem, which is summarized in

Algorithm 1.

It is worth noting that several approaches have been developed in the literature specifying

the optimal configuration of all available sensors to map a single target. In contrast, The-

orem 2.2.1 specifies the optimal placement of one additional receiver into an environment

comprising arbitrarily placed, pre-deployed receivers. While these two problems are not di-
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Algorithm 1 Optimal Receiver Placement for One SOP

Given: Positions of all pre-deployed receivers and an estimate of the SOP’s position.
Calculate the angles {θn}Nn=1 sandwiched between every two consecutive receivers.
Halve the largest of these angles.
Place the (N +1)st receiver anywhere on a ray with the angle calculated in the previous
step.

rectly comparable, in what follows, it is easy to verify that the optimal GDOP for the 2D

environments found in [102] and [57] and the maximum logarithm of the FIM determinant

in [66] is achieved by Algorithm 1 when the pre-deployed receivers reside at N of the vertices

of an (N + 1)-sided regular polygon. Specifically, there will be N − 1 angles sandwiched

between consecutive receivers equal to 360/(N +1) and one angle equal to 2× 360/(N +1).

The largest angle 2 × 360/(N + 1) is halved, which places the receiver anywhere on a ray

passing through the remaining vertex of the regular polygon.

2.2.3 Case Two: Multiple SOPs

For planar environments comprising multiple SOPs, it is obvious that (2.6) and (2.7) can not

be reparameterized over 1φN+1 as was done in Subsection 2.2.2. As such, the optimization

functions in (2.6) and (2.7) are over rN+1, and are neither convex nor concave. To see

this, an environment comprising three pre-deployed receivers, a candidate receiver position,

and two terrestrial SOPs is illustrated in Fig. 2.4(a). The resulting GDOP(rrN+1
) and

det
[

H′T(rrN+1
)H′(rrN+1

)
]

for placing an additional receiver at candidate positions on a

grid sampled at one meter intervals in [−1500,−1000]T ≤ rrN+1
≤ [1500, 1500]T are plotted

in Fig. 2.4(b)–(c), respectively. The bounds on the grid [−1500,−1000]T and [1500, 1500]T

were chosen to center the environment for illustration purposes. In general, arbitrary bounds

may be chosen. It is clear from these surfaces that (2.6) and (2.7) do not posses any useful

convexity properties. In the following, the area maximization problem will be generalized

and shown to yield a family of convex programs.
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Figure 2.4: (a) Environment comprised of 3 pre-deployed receivers (green) estimating the
states of 2 unknown SOPs (blue). The optimal receiver placement problem is to place an
additional receiver (red) at a position rrN+1

that will minimize the GDOP (b) or maximize
the determinant (c).

Product of Areas Maximization

Recall the block diagonal structure of the measurement Jacobian H′ = diag [H′
1, . . . ,H

′
M ]

for environments comprising multiple SOPs. From this structure, it is readily seen that

H′TH′ =



















H′T
1H

′
1 03×3 · · · 03×3

03×3 H′T
2H

′
2 · · · 03×3

...
...

. . .
...

03×3 03×3 · · · H′T
MH′

M



















.

By exploiting the block diagonal structure of H′TH′, the optimization problem in (2.7) can

be rewritten as

maximize
rrN+1

M
∏

m=1

det
[

H′T
m(

mφrN+1
)H′

m(
mφrN+1

)
]

. (2.14)
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Note that the optimization problem in (2.7) for the single SOP case generalized to product

of determinants in (2.14) for the multiple SOP case. As such, a natural extension of the

area maximization problem in (2.8) to the multiple SOP case is to consider the product of

each area mA of the polygon formed by the unit LOS vector endpoints pointing from the mth

SOP to each receiver. To compare this optimization criterion with (2.6), N + 1 receivers

were placed randomly around multiple SOPs, where the nth receiver position was chosen

according to rrn ∼ U([−1500,−1500]T, [1500, 1500]T), for n = 1, . . . , N , for a total of 105

random configurations. For each configuration, the first N receivers were fixed. Next, the

(N + 1)st receiver was placed so to first optimize the GDOP then to optimize the product

of areas. The corresponding GDOP and product of areas are plotted for M = 2 in Fig.

2.5(a)–(c) for N = 2, . . . , 4, respectively, and for M = 3 in Fig. 2.5(d)–(f) for N = 2, . . . , 4,

respectively.

The following can be concluded from these plots. First, placing the (N + 1)st receiver to

optimize the product of areas approximately optimizes the GDOP and the loss in optimality

is minimal, which is captured by the thickness of the “point cloud.” The loss in optimality

is defined as the increase incurred in the GDOP from the optimal GDOP value due to

optimizing the product of areas
∏M

m=1
mA. Second, when N +1 receivers are arranged so the

endpoints of the LOS vectors approach the formation of regular polygons for each SOP, the

theoretical minimum GDOP, given by GDOPmin =
√

5M/(N + 1) (dotted red line in Fig.

2.5), and maximum product of areas, given by [(N+1) sin[2π/(N+1)]/2]M are simultaneously

approached. Third, the potential loss in optimality is greater at smaller values of
∏M

m=1
mA,

which is attributed only to cases when all pre-deployed receivers are approximately collinear

with an SOP.

Motivated by these results, an alternative optimization problem to (2.6) and (2.7) is proposed

forM > 1, which aims to maximize the product of areas AM over the position of the (N+1)st
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Figure 2.5: N receivers were randomly placed around M SOPs for a total of 105 configura-
tions. Next, the (N +1)st receiver was optimally placed so to first optimize the GDOP then
to optimize the product of areas. Each point in the point cloud plotted in Fig. (a)–(f) repre-
sent the optimal product of areas versus optimal GDOP for a particular configuration. Fig.
(a)–(c) correspond to N = 2, . . . , 4, respectively, for M = 2, and Fig. (d)–(f) correspond
to N = 2, . . . , 4, respectively, for M = 3. The minimum possible GDOP is plotted for each
case (red dotted line).

receiver, namely

maximize
rrN+1

AM

(

rrN+1

)

=

M
∏

m=1

mA (mφN+1) . (2.15)

Although (2.15) is not a convex optimization problem, it can be re-cast as a family of convex

optimization problems by noting the following. First, by exploiting the preserving property

of the logarithm, an equivalent optimization function is given by
∑M

m=1 log [
mA (mφN+1)].

Second, recall from Fig. 2.2 that mA (mφN+1) is concave over mφN+1 in mφn ≤ mφN+1 ≤
mφn+1, n = 1, . . . , N − 1. Third, the composition of a non-decreasing concave function, the

logarithm, and a concave function, mA (mφN+1), is concave [103]. Fourth, the sum of concave
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functions is concave. Therefore, (2.15) can be re-cast as K convex optimization problems,

each of which is the maximization of a concave function over a polyhedron Sk, specifically,

maximize
rrN+1

Jk

(

rrN+1

)

=
M
∑

m=1

log [mA (mφN+1)]

subject to Sk = {rrN+1
| PkrrN+1

� qk},
(2.16)

for {Sk}Kk=1, where

Pk=













pT

1,k

...

pT

L,k













, qk=













q1,k
...

qL,k













.

It can be shown that K is upper-bounded by a classical equation related to the number

of regions formed by intersecting lines, namely K ≤ ([NM ]2 + [NM ] + 2)/2 [104]. The

polyhedron Sk is formed by the intersection of L halfspaces, where 3 ≤ L ≤ NM , and its

geometry is determined by the positions of the receivers and SOPs [105]. The direction of

the lth halfspace forming Sk is given by −pl,k, whereas ql,k accounts for the halfspace’s offset

from the origin of {f1}. The inequality � denotes vector (componentwise) inequality. Fig.

2.6(a) is an illustration of these relationships for the same environment in Fig. 2.4(a). The

resulting
∑M

m=1 log [
mA (mφN+1)] for this environment is plotted in Fig. 2.6(b). The family

of K convex programs in (2.16) yields K receiver positions that are optimal over each Sk.

Therefore, the global optimal solution J ⋆ is given by

J ⋆
(

r⋆
rN+1

)

= argmax
k

[

J ⋆
k (rr⋆N+1

,k)
]

, (2.17)

where the optimizer r⋆
rN+1

is the global optimal receiver position, and J ⋆
k and rr⋆

N+1
,k are the

optimal value and the corresponding optimizer in the kth set. The above analysis provides

a simple recipe for the optimal placement of an additional receiver into an environment
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comprising multiple, arbitrarily deployed SOPs, which is summarize in Algorithm 2.

Algorithm 2 Optimal Receiver Placement for Multiple SOPs

Given: Positions of N pre-deployed receivers and estimates of M SOPs’ positions
for m = 1, . . . ,M

• Place the origin of a cartesian coordinate frame at the position of the mth SOP.

• Calculate the angles {mθn}Nn=1 sandwiched between vectors pointing from the mth

SOP to each receiver.

• Parameterize the area mA for the mth SOP by the candidate receiver position rN+1

using (A.4) in Appendix A.

end for
Divide the environment into K polyhedra using (A.5) and (A.6) in Appendix B.
for k = 1, . . . , K

• Initialize receiver placement guess anywhere in set k.

• Solve the convex optimization problem (2.16) numerically.

• Save the optimal value J ⋆
k and its optimizer rr⋆

N+1
,k.

end for
Place the additional receiver at r⋆

rN+1
according to (2.17).

(a) (b)

x (m)

y
(m

)

∑M
m=1 log [

mA (mφN+1)]

ql,k pl,k

Sk

{f1}

Figure 2.6: (a) Environment comprising 3 pre-deployed receivers (green) estimating the states
of 2 unknown SOPs (blue). The polyhedron set Sk (gray) is formed by the intersection of
L = 4 halfspaces. The direction of the lth halfspace forming Sk is given by −pl,k. Each
halfspace boundary is the line (purple and red) through each SOP to each receiver. For
SOPs other than the reference frame SOP {f1}, the resulting halfspace may not pass through
the origin, which is captured by ql,k. (b) The resulting

∑M
m=1 log [

mA (mφN+1)] for placing an
additional receiver at positions on a grid sampled at one meter intervals in [−1500,−1000]T ≤
rrN+1

≤ [1500, 1500]T into an environment comprised of 3 pre-deployed receivers and 2 SOPs.
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Convergence Analysis

To solve the GDOP optimization problem, a nonlinear numerical optimization solver must be

relied on. Due to the shape of the GDOP function in (2.6), the solver will often undesirably

converge to a local optimal solution. To demonstrate this behavior, the environment in Fig.

2.4(a) was simulated and Matlab’s numerical nonlinear optimization function fmincon was

used.

The solver’s initial guess was drawn according to rrN+1
∼ U([−1500,−1000]T, [1500, 1500]T)

and the optimization problem was solved 10, 000 times. In addition, the environment was

gridded with a resolution ∆x = ∆y = 1 and the optimazation problem was solved through

exhaustive search to find the global minimum. The solution obtained through the numerical

solver failed to converge to the global minimum 44.1% of the time.

The proposed optimization criterion (2.16)-(2.17), while not directly optimizing GDOP,

posses the following advantages. First, it decomposes the optimization problem into a family

of independent convex programs, which may be executed in parallel. Second, the optimal

solution of the optimization criterion (2.16)-(2.17) is the global optimum to which the solver

would converge in a faster fashion. Third, the obtained solution from (2.16)-(2.17) is very

“close” to the global solution of (2.6).

The global optimizer for the GDOP problem (2.6) turned out to be r⋆
N+1 = [−1500, −630]T,

while the optimizer for (2.16)-(2.17) turned out to be r⋆
N+1 = [−1500, −657]T. The GDOP

associated with the optimizer of (2.6) was 2.5517, while the GDOP evaluated at the optimizer

of (2.16)-(2.17) was 2.5518. It is worth noting that one could use the optimal solution from

(2.16)-(2.17) as a good initial guess that is close to the optimal solution of the GDOP problem

(2.6).
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2.3 Optimal Mapping Performance Characterization

This section characterizes the optimal mapping performance of an SOP as a function of the

number of mobile receivers in the environment and time. The objective of this characteriza-

tion is to prescribe the optimal achievable mapping performance of an SOP within a specified

time and for a certain number of receivers.

2.3.1 Problem Formulation

The following problem is considered. A set of N mobile receivers with knowledge about their

own states are making pseudorange observations on an unknown terrestrial SOP. Assuming

that these observations are fused through a dynamic centralized estimator, specifically an

extended Kalman filter (EKF), to estimate the state vector of the SOP xs with dynamics

(2.1), what is the optimal mapping performance as a function of N and time?

In contrast to Section 2.2, which analyzed the optimal placement of the (N + 1)st receiver,

given a set of N randomly-distributed receivers, the optimal mapping performance for the

problem considered here is a function of the simultaneous placement of all the receivers.

Specifically, the optimization is over all the receiver angles {1φn}Nn=1. This optimization

enables an off-line characterization of the optimal achievable mapping performance, which

is summarized in Theorem 2.3.1.

Theorem 2.3.1. The optimal mapping performance for N mobile receivers with knowledge

of their own states collaboratively estimating the state vector of one terrestrial SOP with

dynamics (2.2) using pseudorange observations (2.3) with independent noise with identical

measurement noise variance σ2 is: (i) independent of the SOP’s state vector estimate and (ii)

solvable off-line. The optimal mapping performance is given by the solution to the discrete-
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time Riccati equation

P(k + 1|k) = Fs

{

P(k|k − 1)−P(k|k − 1)H⋆T

·
[

H⋆P(k|k − 1)H⋆T +R
]−1

·H⋆P(k|k − 1)
}

FT

s +Qs, (2.18)

with initial value P(0| − 1), where P is the prediction error covariance,

H⋆ =



















− cos 2π0
N

− sin 2π0
N

−1 0

− cos 2π
N

− sin 2π
N

−1 0

...
...

...
...

− cos 2π(N−1)
N

− sin 2π(N−1)
N

−1 0



















, (2.19)

the matrix R is the measurement noise covariance, and Fs and Qs are the SOP’s state

dynamics and process noise covariance, respectively, which are defined in Subsection 2.1.1.

Proof. Assuming the receivers’ observation noise to be i.i.d., i.e., {σ2
n}Nn=1 ≡ σ2 and R =

σ2IN×N , the optimal achieved performance is essentially determined by the geometric place-

ment of the receivers. The lowest GDOP is achieved when the unit LOS vectors pointing

from the SOP to the receivers reside at the vertices of a regular polygon [57]. Therefore, an

environment consisting of N optimally-placed receivers, each drawing pseudorange observa-

tions on the same SOP modifies the observation Jacobian matrix for (2.3) to take the form

of (2.19).

Next, consider the estimation error covariance update equation of the EKF in the information

form

P−1(k + 1|k + 1) = P−1(k + 1|k) + 1

σ2
HT(k + 1)H(k + 1),
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where P(k+1|k+1) is the estimation error covariance and P(k+1|k) is the prediction error

covariance. The information associated with the latest observation (at time step k + 1) is

Υ(k+1) , 1
σ2H

T(k+1)H(k+1). If the receivers are placed optimally, plugging (2.19) into

Υ(k + 1) yields

Υ(k + 1) =

1

σ2

N−1
∑

n=0



















cos2 2πn
N

cos2πn
N

sin 2πn
N

cos 2πn
N

0

sin 2πn
N

cos2πn
N

sin2 2πn
N

sin 2πn
N

0

cos 2πn
N

sin 2πn
N

1 0

0 0 0 0



















. (2.20)

By using the Fourier equations

N−1
∑

n=0

cos2
2πn

N
=

N

2
,

N−1
∑

n=0

sin2 2πn

N
=

N

2
,

N−1
∑

n=0

cos
2πn

N
sin

2πn

N
= 0,

and the summation equations

N−1
∑

n=0

cos
2πn

N
= 0,

N−1
∑

n=0

sin
2πn

N
= 0,

the information (2.20) becomes

Υ(k + 1) =
1

σ2
diag

[

N

2
,
N

2
, N, 0

]

,

which is independent of the SOP’s state vector estimate. Noting that the SOP’s dynamics

are linear, the prediction error covariance, given by

P(k + 1|k) = FsP(k|k)FT

s +Qs,
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is also independent of the SOP’s state vector estimate. Therefore, if the receivers maintain

their optimal distribution around the latest SOP’s position estimate r̂s at the time instants

when new observations are taken, the estimation error covariance can be computed without

knowledge of the SOP’s state vector estimates. This allows for solving the Riccati equation

(2.18) governing the evolution of the estimation error covariance off-line, and the resulting

estimation error covariance time history is the optimal mapping performance as a function

of time and number of receivers N .

2.3.2 Simulation Results

This subsection presents simulation results demonstrating the optimal mapping performance

as a function of time and N . Moreover, the estimation error due to random receiver tra-

jectories is compared with the optimal mapping performance. The simulation settings are

summarized in Table 2.1.

Table 2.1: Simulation Settings for Optimal Mapping Performance of an Unknown SOP

Parameter Value

xs(0) [0, 0, 1, 0.1]T

Ps(0| − 1) (103) · diag [1, 1, 3, 0.3]
x̂s(0| − 1) ∼ N [xs(0),Ps(0| − 1)]

{h0,s, h−2,s} {8.0× 10−20, 4.0× 10−23}
σ2 100m2

T 0.1 s

Fig. 2.7 illustrates the logarithm of the determinant of the posterior estimation error covari-

ance, log {det [P⋆(k + 1|k + 1)]}, which is related to the volume of the estimation uncertainty

ellipsoid [53], as a function of time and N . This plot provides the minimum achievable uncer-

tainty of the states of an unknown SOP as a function of time and N . This plot can be utilized

to determine the minimum number of receivers that must be deployed in an environment to
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achieve a desired estimation uncertainty within a specified period of time.
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Figure 2.7: The logarithm of the determinant of the optimal posterior estimation error
covariance log {det [P⋆(k + 1|k + 1)]} expressed as a function of time and N ∈ {3, 4, . . . 15}
receivers.

To compare the optimal mapping performance versus random receiver trajectories that do not

maintain the optimal receiver placement around the SOP’s position estimate, four receivers

were randomly placed around the SOP. The initial state vector of the nth receiver was

set to xrn(0) =
[

rT

rn(0), ṙ
T

rn(0), cδtrn(0), cδ̇trn(0)
]T

, where ṙrn(0) = [0, 0]T, cδtrn(0) = 10,

and cδ̇trn(0) = 1. The receivers’ initial positions rrn(0) are specified in Table 2.2. The

receivers’ initial positions were varied across three simulation runs, by varying an offset

{bj}3j=1 to create varying GDOP quality. Subsequently, the receivers moved according to

a velocity random walk motion with an acceleration process noise power spectral density

q̃x = q̃y = 0.1 (m/s2)2 [17]. The receivers’ trajectories across the three simulation runs

(corresponding to j = 1, 2, 3) were the same in order to analyze the effect of the initial GDOP.

The time history of the resulting log {det [Pj(k + 1|k + 1)]} corresponding to j = 1, 2, 3

versus the optimal log {det [P⋆(k + 1|k + 1)]} are plotted in Fig. 2.8(a) for the trajectories

traversed plotted in Fig. 2.8(b)–(d).

It can be seen from Fig. 2.8 that although the shape of the trajectories were the same between

each run, the initial GDOP quality greatly influenced the resulting estimation uncertainty.

Also note that although the trajectories in (b) corresponded to the lowest initial GDOP out

of all the runs, the resulting estimation uncertainty for these trajectories never violated the
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optimal log {det [P⋆(k + 1|k + 1)]}.

Table 2.2: Simulation Settings for the Receivers’ Initial Position

Parameter Value

rj
r1(0) [−150.8, 169.3]T + bj

rj
r2
(0) [24.6, −13.7]T + bj

rj
r3(0) [−25.6, −45.5]T + bj

rj
r4
(0) [105.7, −29.6]T + bj

b1, b2, b3 [0, 0]T , [125, 0]T , [200, 0]T

(b)

(d)
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Figure 2.8: The logarithm of the determinant of the optimal posterior estimation error
covariance log {det [P⋆(k + 1|k + 1)]} versus the posterior estimation error covariance due
to three simulation runs corresponding to the receiver trajectories in (b)–(d). The receivers’
trajectories in (b)–(d) are the same. The receivers’ initial positions in (b)–(d) were varied
according to an offset bj to yield different initial GDOP quality: (b) low GDOP with b1, (c)
medium GDOP with b2, and (d) high GDOP with b3.

2.4 Experimental Results

This section demonstrates collaborative mapping of a terrestrial SOP emanating from a cel-

lular CDMA base transceiver station (BTS). This section consists of two subsections. In
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the first subsection, the dynamics and observation models presented in Section 2.1 are val-

idated to be suitable models in a real-world setting. Such model validation is crucial, since

these models were used in deriving the optimal collaborative mapping performance of the

EKF in Theorem 2.3.1. In the second subsection, collaborative mapping results demon-

strate the bound derived in Theorem 2.3.1. To this end, three vehicles were equipped with

two antennas each, to acquire and track multiple GPS signals and a cellular BTS whose

signal was modulated through CDMA. The GPS and cellular signals were simultaneously

downmixed and synchronously sampled via two National InstrumentsR© universal software

radio peripherals (USRPs). These front-ends fed their data to the Generalized Radionavi-

gation Interfusion Device (GRID) software-defined radio (SDR) [106] and the Multichannel

Adaptive TRansceiver Information eXtractor (MATRIX) SDR [107], which produced pseu-

dorange observables from all GPS L1 C/A signals in view and the cellular BTS, respectively,

at 1/T = 5Hz. Fig. 2.10 depicts the experimental hardware setup.

The MATRIX SDR produced pseudorange observables to the BTS, modeled according to

(2.3), by exploiting the cellular CDMA signal structure as described in detail in [107]. The

produced pseudoranges are unambiguous in the sense that they were associated with a par-

ticular BTS by decoding the BTS’s identification number from the cellular CDMA paging

channel. For this field experiment, the SOP’s signal structure was known to be cellular

CDMA. If the signal structure is unknown, several SDR modules (e.g., CDMA, LTE, FM,

etc.) may be run in parallel until a LOS signal is acquired and tracked and data association

for the produced pseudorange and the SOP transmitter is performed. If the receiver is in

an environment subject to multipath, one of several multipath mitigation methods can first

be employed to improve the LOS time-of-arrival (TOA) estimate, e.g., estimation of sig-

nal parameters via rotational invariance (ESPRIT) [108] and space-alternating generalized

expectation maximization (SAGE) [109].
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2.4.1 Model Verification

The symbol ρn will be used to denote the nth receiver’s produced pseudorange measurement

(i.e., data by the MATRIX SDR) to contrast the pseudorange model zn in (2.3). Consider

the nth receiver’s clock bias-compensated pseudorange observation model

z′n(k) , zn(k)− cδtr(k) = dn(k)− cδts(k) + vn(k), (2.21)

where dn(k) , ‖rrn(k)−rs‖. According to (2.21), the MATRIX SDR’s clock bias-compensated

pseudorange ρ′n(k) , ρn(k) − cδtrn(k) should consist of dn, cδts, and vn. To analyze this,

a vehicle traversed a trajectory for 28 seconds while producing ρ1 to a single BTS. The re-

ceiver’s states cδtr1 and rr1 were estimated by a least-squares solver using the available GPS

pseudoranges and the position rs was surveyed from the BTS’s true location. The true data

ρ′1 and the distance d1 are plotted in Fig. 2.9(a). The initial value ρ′1(0) was aligned with

d1(0) to compensate for cδts(0).

From Fig. 2.9(a) it can be noted that the profiles of the curves closely match, indicating that

the trend of ρ1 is mainly due to d1. The receiver’s clock bias-compensated observation model

(2.21) suggests that the deviation of ρ′1 from d1 is attributed to vn and the dynamics of cδts.

To verify this deviation, the measurement noise vn and the process noise terms wδts and

wδ̇ts
driving cδts and cδ̇ts are studied next by applying the following steps commonly used

in time-series analysis [110]. First, the data is de-trended by subtracting dn and applying a

transformation to obtain stationary residuals, specifically, a linear combination of wδts , wδ̇ts
,

and vn. Second, the sample autocorrelation function (ACF) is computed for the resulting

sequence. Third, an appropriate model is identified by using key attributes from the sample

ACF and is compared with the model presented in this chapter.

The transformation applied is a double-difference in time defined by λn(k+ 1) , γn(k+1)−

γn(k), where γn(k+ 1) , z̄(k+1)− z̄(k) and z̄(k) , dn(k)− z′n(k). It is shown in appendix
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C that λn(k) has the form

λn(k) = λn,1(k) + λn,2(k) + λn,3(k), (2.22)

where λn,1(k) , wδts(k) − wδts(k− 1), λn,2(k) , −[vn(k) − 2vn(k− 1) + vn(k− 2)], and

λn,3(k) , Twδ̇ts
(k). The sequences λn,1 and λn,2 are first-order and second-order moving

averages (MAs), respectively, which have the form

ξi(k) =

qi
∑

j=0

βje(k − j), β0 = 1,

where βj is a constant, e is a DT zero-mean white noise sequence, and qi is the MA order [111].

The sequence λn,3 is a DT zero-mean white noise sequence, which can be generalized as an

MA with order q3 = 0. It follows that λn itself is an MA, since the sum of MAs is also an

MA with order q ≤ max{q1, q2, q3} = 2, where qi is the order of λn,i [112].

The sample ACF of a qth order MA will have significant values up to lag q, and will be-

come effectively zero thereafter. Effectively zero implies that the sample ACF values should

be approximately zero-mean and obey the 95th percentile confidence bounds (±σ95% ≈

±1.96/
√
L), where L is the total number of samples [111]. To check if the collected data

agrees with this hypothesis, z′n was replaced with ρ′1 to produce λ1, which is plotted in Fig.

2.9(b). The sample ACF of λ1 and the corresponding ±σ95% bounds are plotted in Fig.

2.9(c)-(d) for L = 400 samples.

The following conclusions about the underlying sequences can be noted from Fig. 2.9(c)-(d).

First, since the last significant ACF value is at the second lag, a second order MA model

is appropriate, as hypothesized. Second, since an MA model is appropriate, the driving

process noise wδts and wδ̇ts
and the measurement noise vn are appropriately modeled as

white sequences. Third, since a double-difference in time was required to de-trend the data,

a double-integrator SOP clock model is appropriate. Fourth, since λn is a stationary MA
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Figure 2.9: Measurement analysis. (a) Comparison of the true data produced by the MA-
TRIX SDR, ρ′1, and the distance from the receiver to the BTS, d1. (b) The sequence (2.22)
computed by replacing z′n with the true data ρ′1. (c) Resulting sample ACF of the sequence
in (b) with the corresponding ±σ95% confidence bounds. (d) Zoom of (c) illustrating that
only values up to the first two lags of the sample ACF are significant.

and by invoking a second-order ergodicity assumption, the measurement noise variance σ2
n

can be computed from the data, as is shown in Appendix D, to be

σ2
n =

1

6
varL (λn)−

1

3
c2(Sw̃δts

T+Sw̃ ˙δts

T 3

3
), (2.23)

where varL (λn) is the sample variance of λn using L samples.

2.4.2 Mapping Results

Three separate runs were conducted. In the first run, the vehicle-mounted receivers began

their trajectories in positions that resulted in a low GDOP. The receivers began estimat-

ing the states of the cellular BTS xs by fusing their pseudorange observables through a

centralized EKF. The network implementation to fuse these pseudoranges could be inte-
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grated into developing communication standards, such as the IEEE802.11p Dedicated Short

Range Communication (DSRC), which is designed to support future vehicle-to-vehicle and

vehicle-to-infrastructure communication [113].

The EKF was initialized with an initial estimate given by x̂s(0|−1) ∼ N [xs(0),Ps(0| − 1)],

where xs(0) =
[

rT

s (0), cδts(0), cδ̇ts(0)
]T

, where rs(0) is the projection of the BTS’s true

position in the Earth-Centered Earth-Fixed (ECEF) coordinate frame to a planar sys-

tem, cδts(0) ≡ d1(0) + cδtr1(0) − ρ1(0), cδ̇ts(0) ≡ [cδts(1) − cδts(0)]/T , and Ps(0| − 1) ≡

(104) · diag [1, 1, 3, 0.3]. This initialization scheme is customary in EKFs in which the prior,

uncertain information is utilized. Other initialization schemes are also possible. For exam-

ple, a batch nonlinear least-squares-type approach could be employed in which a batch of

initial measurements are used to produce an initial guess x̂s(0|−1) and associated Ps(0|−1).

Alternatively, a particle filter operating on a batch of measurements could be employed to

produce x̂s(0| − 1) and Ps(0| − 1). The particles could be initialized by drawing positions

from a polar coordinate system fixed at each receiver with an angle drawn uniformly between

0 and 2π and a radius drawn uniformly between 0 and the maximum operating range of the

cellular BTS. The initial clock bias for each particle may be computing using the initial

measurements and the drawn position, while the clock drift for each particle could be initial-

ized to zero. It is worth noting that since three non-collinear receivers were collaboratively

mapping the two-dimensional position of a BTS, there will be no local observability issues

with the EKF and the estimates will be unambiguous.

The process noise covariance for the BTS’s oscillator Qclk,s was assumed to correspond to

a typical oven-controlled crystal oscillator (OCXO), which is usually the case for cellular

CDMA BTSs [15]. Any mismatch between the true Qclk,s and the assumed one will be small

and will be included in the measurement noise variances {σ2
n}3n=1. Alternatively, Qclk,s could

be estimated off-line through a batch estimator or on-line adaptively [114]. The measurement

noise variances {σ2
n}3n=1 were calculated using equation (2.23) as described in Subsection
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2.4.1. These values were found to be very similar, i.e., {σ2
n}3n=1 ≈ σ2. Moreover, the receivers

were placed sufficiently far from each other to assume independent channels between the BTS

and each receiver. Therefore, the measurement noise covariance was set to R ≡ σ2I3×3.

The final two-dimensional estimation error of the BTS’s position was within 3 meters from

the true BTS position after 70 seconds. Fig. 2.11 is an illustration of the receivers’ trajecto-

ries, the true and estimated BTS position, and the initial and final 95th-percentile estimation

uncertainty ellipses of r̂s for the low GDOP run. Note from Fig. 2.11 the significant reduc-

tion in the size of estimation uncertainty ellipse from the initial to the final uncertainty with

only three receivers. The black curve in Fig. 2.12 illustrates the corresponding time history

of log {det [P(k + 1|k + 1)]} plotted against the theoretical lower bound that was found in

Section 2.3. In the second and third runs, the receivers were initialized in positions that

resulted in a medium and high GDOP, respectively. A summary of the mapping errors for

each run are tabulated in Table 2.3. The 3 meter localization is dependent on many factors

(e.g., type of transmitter being mapped, noise statistics, number of receivers and correspond-

ing trajectories, elapsed time, etc.). The resulting time history of log {det [P(k + 1|k + 1)]}

are plotted as the blue and green curves in Fig. 2.12. Comparable results were noted upon

running the EKF with different initial estimates. These experimental results demonstrate

the expected behavior of: (i) a worse quality mapping performance for receiver positions

yielding higher GDOP and (ii) none of the traversed trajectories resulted in an estimation

uncertainty which violated the theoretical optimal mapping performance (lower-bound).

Table 2.3: Final BTS Position Errors

Initial GDOP Low (3.8) Medium (8.5) High (12.4)

Mapping Error (m) 3.0 4.7 6.9
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Figure 2.11: Experimental results for low GDOP run. Image: Google Earth.
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Figure 2.12: The resulting log {det [P(k + 1|k + 1)]} produced by the EKF for each of the
three experimental runs plotted against the theoretical lower bound (red dotted curve), which
was found using Theorem 2.3.1. The black curve corresponds to low GDOP calculated from
the receiver positions illustrated in Fig. 2.11. The blue and green curves correspond to
medium and high GDOP, respectively, which were calculated from the second and third
experimental runs, respectively.
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Chapter 3

Radio SLAM: Stochastic

Observability

Next, this chapter will extend the SOP mapping problem by introducing a layer of com-

plexity. In this chapter, the state of the receiver is also unknown and the problem of simul-

taneously mapping unknown SOP transmitters while navigating using pseudoranges drawn

from their signals is considered. This chapter is organized as follows. Section 3.1 introduces

new notation for the system dynamics and measurement models. Section 3.2 studies the

stochastic observability of the simultaneous receiver and transmitter localization problem.

Section 3.3 presents simulation results to validate the findings of Section 3.2. Section 3.4

provides experimental results.

3.1 Model Description

The notation defined is confined within this chapter.
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3.1.1 RF Transmitter Dynamics Model

Each RF signal will be assumed to emanate from a spatially-stationary terrestrial transmit-

ter, and its state vector will consist of its planar position states rsm , [xsm , ysm]
T and clock

error states xclk,sm , c
[

δtsm, δ̇tsm

]T

, where c is the speed of light, δtsm and δ̇tsm are the

clock bias and drift of the mth RF transmitter, respectively, and m = 1, . . . ,M , where M is

the total number of RF transmitters.

The discretized RF transmitters’ dynamics are given by

xsm (k + 1) = Fs xsm(k) +wsm(k), k = 1, 2, . . . ,

where

xsm =
[

rT

sm, x
T

clk,sm

]T

,

Fs = diag [I2×2, Fclk] , Fclk =







1 T

0 1






,

T is the constant sampling interval and wsm is the process noise, which is modeled as a DT

white noise sequence with covariance Qsm = diag [02×2, c
2Qclk,sm], where

Qclk,sm =







Sw̃δts,m
T+Sw

δ̇ts,m

T 3

3
Sw̃

δ̇ts,m

T 2

2

Sw̃
δ̇ts,m

T 2

2
Sw̃

δ̇ts,m
T






.

The terms Sw̃δts,m
and Sw̃

δ̇ts,m
are the clock bias and drift process noise power spectra,

respectively, which can be related to the power-law coefficients, {hα,sm}2α=−2, which have

been shown through laboratory experiments to characterize the power spectral density of the

fractional frequency deviation of an oscillator from nominal frequency according to Sw̃δts,m
≈

h0,sm

2
and Sw̃

δ̇ts,m
≈ 2π2h−2,sm [100].
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3.1.2 Receiver Dynamics Model

The receiver’s planar position rr , [xr, yr]
T and velocity ṙr will be assumed to evolve

according to an arbitrary, but known, continuous-time dynamics model f̃pv (e.g., velocity

random walk or constant turn rate [115]). The receiver’s state vector xr is defined by

augmenting the receiver’s position and velocity states xpv ,
[

rT

r , ṙ
T

r

]T

with its clock error

states, xclk,r , c
[

δtr, ˙δtr

]T

, i.e., xr ,
[

xT

pv, x
T

clk,r

]T

. Discretizing the receiver’s dynamics at

a constant sampling period T yields

xr (k + 1) = fr[xr(k) ] +wr(k),

fr[xr(k) ] ,
[

fT

pv[xpv(k) ] , [Fclkxclk,r(k)]
T
]T

,

where fpv is a vector-valued function, which is obtained by discretizing f̃pv at a constant

sampling interval T , wr is the process noise vector, which is modeled as a DT zero-mean

white noise sequence with covariance Qr = diag [Qpv, c
2Qclk,r], where Qpv is the position

and velocity process noise covariance and Qclk,r is identical to Qclk,sm, except that Sw̃δts,m

and Sw̃
δ̇ts,m

are now replaced with receiver-specific spectra, Sw̃δtr
and Sw̃

δ̇tr
, respectively. A

summary of the receiver and RF transmitter states are tabulated in Table 3.1.

Table 3.1: Receiver and RF Transmitter States

States Position Velocity Clock bias Clock drift

Receiver rr ṙr δtr δ̇tr

RF Transmitter m rsm - δtsm δ̇tsm
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3.1.3 Measurement Model

The pseudorange measurement made by the receiver on the mth RF transmitter, after dis-

cretization and mild approximations discussed in [74], is related to the receiver’s and RF

transmitter’s states by

zsm(k) = ‖rr(k)− rsm‖+ c · [δtr(k)− δtsm(k)] + vsm(k), (3.1)

where ‖·‖ is the Euclidean norm and vsm is the measurement noise, which is modeled as a

DT zero-mean white Gaussian sequence with variance σ2
sm .

3.1.4 Augmented System

The augmented system of an environment comprising one receiver and M RF transmitters

will be denoted Σ and is given by

Σ :























x (k + 1) = f [x(k) ] +w(k)

z(k) = h [x(k) ] + v(k)

(3.2)

where f [x(k) ] ,
[

fT

r [xr(k) ] , [Φsxs(k)]
T
]T

; x ,
[

xT

r ,x
T

s

]T

; Φs , diag [Fs, . . . ,Fs]; xs =
[

xT

s1, . . . ,x
T

sM

]T

; w ,
[

wT

r ,w
T

s1, . . . ,w
T

sM

]T

; z , [zs1 , . . . , zsM ]T; and v , [vs1 , . . . , vsM ]T,

with covariance cov (v) , R = diag[σ2
s1
, . . . , σ2

sM
].
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3.2 Stochastic Observability Analysis

In this section, an overview of the EKF-based radio SLAM problem is presented, and the

system’s stochastic observability is studied according to the definition [75]:

Definition 3.2.1. A dynamic system is stochastically observable if and only if there exists

a time tb such that the estimation error covariance Pξ(k|k) of the state vector ξ produced by

a dynamic estimator remains upper bounded by σb in the sense that

σmax{Pξ(k|k)} ≤ σb < ∞, ∀ kT ≥ tb.

where σmax{A} denotes the maximum singular value of A.

3.2.1 EKF-based Radio SLAM Overview

The goal of radio SLAM is for a receiver to construct and continuously refine a spatiotemporal

signal landscape map of the environment, within which the receiver localizes itself in space

and time. In the event that GNSS signals become unavailable or untrustworthy, the receiver

continues navigating with the aid of this map. In EKF-based radio SLAM, an EKF produces

an estimate x̂(k|k) , E[x(k)|Zk] of x(k), where E[ · | · ] is the conditional expectation and

Zk denotes all the measurements up to and including time-step k, i.e., Zk , {z(j)}kj=1. In

this chapter, it is assumed that the receiver’s initial state vector xr(0) is known, which could

be obtained from the last instant a reliable GNSS solution was available. The EKF-based

radio SLAM prediction (time update) and correction (measurement update) are given by:
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Prediction

x̂(k + 1|k) = F(k)x̂(k|k),

Px(k + 1|k) = F(k)Px(k|k)FT(k) +Q,

Correction

x̂(k + 1|k + 1) = x̂(k + 1|k) + L(k + 1)S−1ν(k + 1),

Px(k + 1|k + 1) = Px(k + 1|k)− L(k + 1)S−1(k + 1)LT(k + 1),

where, x̂(k + 1|k) and x̂(k + 1|k + 1) are the predicted and corrected state estimates,

respecitively; Px(k + 1|k) and Px(k + 1|k + 1) are the prediction error covariance and

corrected estimation error covariance, respectively; F is the Jacobian of f evalulated at

the current state estimate x̂(k|k); ν(k + 1) , z(k + 1) − ẑ(k + 1|k) is the innovation;

ẑ(k+1|k) , h[x̂(k+1|k)] is the measurement prediction; L(k+1) , Px(k+1|k)HT(k+1);

S(k+1) , H(k+1)L(k+1)+R is the innovation covariance; and H(k+1) is the Jacobian

of h evaluated at x̂(k + 1|k), which has the form

H =













hT

r,s1
hT

s1
· · · 01×4

...
...

. . .
...

hT

r,sM
01×4 · · · hT

sM













,

hT

r,sm(k) =
[

1̂T

m(k), 01×2, h
T

clk

]

,
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hT

sm(k) =
[

−1̂T

m(k), −hT

clk

]

, hclk =







1

0






,

1̂m(k) ,
r̂r(k|k − 1)− r̂sm(k|k − 1)

‖r̂r(k|k − 1)− r̂sm(k|k − 1)‖ , m = 1, . . . ,M.

3.2.2 Stochastically Unobservable Clock Errors

This subsection shows that the EKF estimating the state vector of the system in (3.2)

produces an estimation error covariance matrix Px(k|k) whose time evolution grows un-

boundedly.

Traditional deterministic observability tests provide a necessary, but not sufficient condition

for stochastic observability [75]. They also do not incorporate a priori knowledge of the

uncertainty about the initial state estimate Px(0|0), process noise covariance Q, or measure-

ment noise covariance R. Moreover, since they only provide a Boolean assessment of the

observability of a system, if the system is stochastically unobservable, they do not yield any

characterization or the rate of divergence of unobservable states. In what follows, the time

evolution of the Riccati equation is studied to show that the radio SLAM problem is stochas-

tically unobservable and to derive a lower bound for the rate of divergence of stochastically

unobservable states.

Lemma 3.2.1. If the estimation error covariance matrix Pξ(k|k) is such that

lim
k→∞

eT

i Pξ(k|k)ei = ∞, (3.3)

where ei denotes the ith standard basis vector consisting of a 1 in the ith element and zeros

elsewhere, then the ith state of ξ ∈ Rn is stochastically unobservable, and subsequently the

system is stochastically unobservable.
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Proof. If lim
k→∞

eT

i Pξ(k|k)ei = ∞, then

lim
k→∞

tr [Pξ(k|k)] = lim
k→∞

n
∑

i=1

eT

i Pξ(k|k)ei = ∞,

where tr [A] denotes the trace of A. From the trace properties, tr [Pξ(k|k)] =
n
∑

i=1

λi[Pξ(k|k)],

where λi[A] denotes the ith eigenvalue of A. Since Pξ(k|k) is symmetric positive semi-

definite, its singular values σi[Pξ(k|k)] = λi[Pξ(k|k)]. Therefore

lim
k→∞

tr [Pξ(k|k)] = lim
k→∞

n
∑

i=1

λi[Pξ(k|k)]

= lim
k→∞

n
∑

i=1

σi[Pξ(k|k)] = ∞.

Since n is finite, then at least the largest singular value will grow unboundedly, i.e.,

lim
k→∞

σmax [Pξ(k|k)] = ∞,

where σmax [A] = max
i

{σi[A]}, making the system stochastically unobservable.

Theorem 3.2.1. The radio SLAM problem consisting of one receiver with knowledge of its

initial states and M unknown RF transmitters is stochastically unobservable regardless of

the receiver’s motion. Moreover, δtr and {δtsm}Mm=1 are stochastically unobservable states.

Proof. The proof will proceed in two main steps. First, three simplified systems will be

defined, denoted ΣI, ΣII, and ΣIII, where ΣI is a simplified form of Σ and each subsequent

system is a simplified version of the preceding one. It is shown that if the subsequent system

is stochastically unobservable, then the preceding system must be stochastically unobservable

as well. Second, ΣIII is shown to be stochastically unobservable according to Definition 3.2.1

by invoking lemma 3.2.1.

Step 1: First, define ΣI as a system with (i) known RF transmitter position states {rsm}Mm=1
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and (ii) no process noise driving the receiver’s position and velocity states (i.e., Qpv = 0),

e.g., a receiver moving with a constant velocity. From (i) and (ii), and since rr(0) is known,

it is obvious that {rsm}Mm=1 and rr(k) are known ∀ k and need not be estimated by the EKF,

simplifying the system to be estimated to a linear time-invariant (LTI) system, given by

ΣI :















xclk (k + 1) = Φclk xclk(k) +wclk(k)

zclk(k) = Hclkxclk (k) + v(k),

where

xclk ,
[

xT

clk,r, x
T

clk,s1
, . . . , xT

clk,sM

]T ∈ R(2+2M),

Φclk , diag [Fclk, . . . , Fclk] ∈ R[(2+2M)×(2+2M)],

zclk , [zclk,s1, . . . , zclk,sM ]T ,

Hclk =













hT

clk −hT

clk · · · 01×2

...
...

. . .
...

hT

clk 01×2 · · · −hT

clk













,

where wclk is a DT zero-mean white process noise vector with covariance Qclk = c2 ·

diag [Qclk,r, Qclk,s1, . . . , Qclk,sM ]. The measurements have the form zclk,sm(k) , zm(k) −

‖rr(k)− rsm‖ for m = 1, . . . ,M .

Since system ΣI is LTI, a Kalman filter (KF) may be employed to estimate the state vector

xclk. To incorporate perfect a priori knowledge of xclk,r(0) in the KF, the corresponding

block of the initial estimation error covariance matrix is set to zero. Assuming the initial

estimates of {xclk,sm}Mm=1 to be uncorrelated, the initial estimation error covariance matrix

is given as

IPxclk
(0|0) = diag

[

02×2,
IPxclk,s

(0|0)
]

, (3.4)
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where IPxclk
(0|0) is the initial estimation error covariance of the KF associated with ΣI,

IPxclk,s
(0|0) ,

diag
[

Iσ2
δts1

(0|0), Iσ2
δ̇ts1

(0|0), . . . , Iσ2
δtsM

(0|0), Iσ2
δ̇tsM

(0|0)
]

is the initial estimation error covariance of the state vectors {xclk,sm}Mm=1, and
Iσ2

δtsm
and

Iσ2
δ̇tsm

are the variances of the transmitters’ clock bias and drift, respectively.

Define ΣII to be the same as ΣI with the additional simplifications that Sw̃ ˙δtr
= 0 and

{Sw̃
δ̇ts,m

}Mm=1 = 0. Since ΣII has less process noise than ΣI, it is obvious that
IIPxclk

(k+1|k) ≺
IPxclk

(k + 1|k), ∀ k, where A ≺ B denotes the difference B − A being positive definite.

Therefore, if ΣII is stochastically unobservable, then ΣI must be stochastically unobservable

as well.

Define ΣIII to be the same as ΣII with the additional simplification that R = 0M×M . Since

ΣIII has no measurement noise, it is obvious that IIIPxclk
(k+1|k+1) ≺ IIPxclk

(k+1|k+1), ∀ k.

Therefore, if ΣIII is stochastically unobservable, then ΣII must be stochastically unobservable

as well. Also, since for each k there are M perfect measurements that are linearly related

to 2 + 2M states, the state vector order of ΣIII may be reduced from 2 + 2M to 2 + M

and a reduced-order KF may be used. Reduced-order KFs are used in practice to avoid

potential numerical issues and reduce computational complexity [116]. It turns out that the

reduced-order KF lends itself to a tractable closed-form expression of the time evolution

of the associated estimation error covariance; therefore, is used to evaluate the stochastic

observability of ΣIII for the second part of this proof.

Step 2: An estimate of xclk(k) can be computed though

x̂clk(k|k) = L1zclk(k) + L2x̂ro(k|k), (3.5)
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where x̂ro(k|k) is an estimate produced by a reduced-order KF of the reduced-order state

vector xro(k) , Gxclk(k); (L1|L2) ,
(

Hclk

G

)−1
; (L1|L2) is the matrix formed by augmenting

the columns of L1 and L2;
(

Hclk

G

)

is the matrix formed by augmenting the rows of Hclk and

G; and G is the design matrix which is chosen to be

G ≡



















I2 02×2 . . . 02×2

gT −gT . . . 01×2

...
...

. . .
...

gT 01×2 . . . −gT



















, g ,







0

1






, (3.6)

so that δtr is the first state of xro and
(

Hclk

G

)

is invertible. It is important to note that

although the choice of G and the corresponding reduced-order state vector xro are non-

unique, the remainder of the proof is invariant to any feasible choice of G that makes
(

Hclk

G

)

invertible.

A reduced-order KF produces x̂ro(k + 1|k + 1) and an associated posterior estimation error

covariance given by

Pxro
(k + 1|k + 1)

= [Ψ−Λ(k)Ξ]Pxro
(k|k) [Ψ−Λ(k)Ξ]T

+GQclkG
T −GQclkH

T

clkΛ
T(k)

−Λ(k)HclkQ
T

clkG
T +Λ(k)RroΛ

T(k), (3.7)

where Ψ , GΦclkL2, Ξ , HclkΦclkL2, Rro , HclkQclkH
T

clk, and

Λ(k) =
[

ΨPxro
(k|k)ΞT +GQclkH

T

clk

]

·
[

ΞPxro
(k|k)ΞT +Rro

]−1
. (3.8)
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Note that the matrix ΞPxro
(k|k)ΞT is symmetric positive semi-definite ∀ k and Rro is sym-

metric positive definite and time-invariant; therefore,
[

ΞPxro
(k|k)ΞT +Rro

]

is symmetric

positive definite and invertible ∀ k.

The estimate of x̂clk(k+1|k+1) is then produced through (3.5) and its corresponding posterior

estimation error covariance is

IIIPxclk
(k+1|k+1) = L2Pxro

(k+1|k+1)LT

2 , (3.9)

where L2 = [e1, e2, e1, e2 − e3, . . . , e1, e2 − eM+2]
T. From (3.9) and the structure of L2, the

clock bias estimation error variances of the receiver and the RF transmitters are equal, i.e.,

IIIσ2
δtr (k|k) = {IIIσ2

δtsm
(k|k)}Mm=1. (3.10)

This equality holds for any feasibleG, since there areM perfect measurements; therefore, the

biases of the receiver and RF transmitters are linearly related to each other by a deterministic

quantity, given by δtr = δtsm+zclk,sm, form = 1, . . . ,M . A closed-form expression of the time

evolution of IIIσ2
δtr (k|k) is found through the following two steps. First, (3.7) is recursively

solved using an initial estimation error covariance given by

Pxro
(0|0) = GIIIPxclk

(0|0)GT,

where IIIPxclk
(0|0) has the same structure as (3.4), except I is replaced with III. Second, the

element corresponding to the receiver’s clock bias eT

1
IIIPxclk

(k|k)e1 is found by substituting

the right-hand side of (3.7) into (3.9), yielding

IIIσ2
δtr (k|k) =

kqr
∏M

m=1 Ωm(k)

det [kΞPxro
(0|0)ΞT +Rro]

, k = 1, 2, . . . , (3.11)

where Ωm(k) , qsm+kT 2βm, βm = IIIσ2
δ̇tsm

(0|0), qr , c2Sw̃δtr
T , and qsm , c2Sw̃δtsm

T . Finally,
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to evaluate the limit (3.3) for the first state of IIIPxclk
, the closed-form (3.11) is used, yielding

lim
k→∞

eT

1
IIIPxclk

(k|k)e1

= lim
k→∞

IIIσ2
δtr (k|k)

= lim
k→∞

kqr
∏M

m=1 Ωm(k)

det [kΞPxro
(0|0)ΞT+Rro]

= lim
k→∞

k(M+1)qr
∏M

m=1(
1
k
qsm + T 2βm)

kM det
[

ΞPxro
(0|0)ΞT+ 1

k
Rro

] = ∞. (3.12)

Therefore, stochastic unobservability follows from Lemma 3.2.1.

Theorem 3.2.2. The EKF estimating the receiver’s state simultaneously with the states of

M terrestrial transmitters, with a priori knowledge about the receiver’s initial state, for the

stochastically unobservable system Σ, produces corresponding estimation error variances σ2
δtr

and {σ2
δtsm

}Mm=1, respectively, whose time evolution is lower-bounded by a diverging sequence

with a divergence rate γ(k), where γ(k)
k→∞−−−→ c2Sw̃δtr

T .

Proof. From Theorem 3.2.1, system Σ is stochastically unobservable and the variances σ2
δtr

and {σ2
δtsm

}Mm=1 produced by an EKF will diverge and their time evolutions are lower bounded

by (3.11).

Define the divergence rate of the estimation error variance associated with the ith state of

the vector ξ ∈ Rn as

γ(k) = eT

i [Uξ,inc(k)−Uξ,red(k)] ei, (3.13)

where

Uξ,inc(k) , Pξ(k + 1|k)−Pξ(k|k)
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is the uncertainty increase from the EKF prediction step and

Uξ,red(k) , Pξ(k + 1|k)−Pξ(k + 1|k + 1)

is the uncertainty reduction from the EKF correction step.

Substituting (3.11) into (3.13) for the first state of IIIPxclk
gives

eT

1

[

Uxclk,inc(k)−Uxclk,red(k)
]

e1

=IIIσ2
δtr(k+1|k+1)− IIIσ2

δtr (k|k)

=
(k+1)qr

∏M
m=1 Ωm(k+1)

det [(k+1)ΞPxro
(0|0)ΞT+Rro]

− kqr
∏M

m=1 Ωm(k)

det [kΞPxro
(0|0)ΞT+Rro]

. (3.14)

Evaluating the limit of (3.14) yields

lim
k→∞

eT

1 [Uxclk,inc(k)−Uxclk,red(k)] e1

= lim
k→∞

[k + 1](M+1)qr
∏M

m=1(
1

k+1
qsm + T 2βm)

[k + 1]M det
[

ΞPxro
(0|0)ΞT+ 1

k+1
Rro

]

− lim
k→∞

k(M+1)qr
∏M

m=1(
1
k
qsm + T 2βm)

kM det
[

ΞPxro
(0|0)ΞT+ 1

k
Rro

]

=
qr lim

k→∞
(k + 1)

∏M
m=1(T

2βm)

det [ΞPxro
(0|0)ΞT]

−
qr lim

k→∞
k
∏M

m=1(T
2βm)

det [ΞPxro
(0|0)ΞT]

=
qr
∏M

m=1(T
2βm)

∏M
m=1(T

2βm)
= qr, (3.15)

where qr , c2Sw̃δtr
T .

Theorem 3.2.1 shows that the radio SLAM problem with a priori knowledge about the
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receiver’s states is stochastically unobservable, since the estimation uncertainty associated

with the clock biases of both the receivers and terrestrial transmitters will diverge. Theorem

3.2.2 establishes a lower bound of this divergence, which in the limit, only depends on the

quality of the receiver’s clock, characterized by Sw̃δtr
. The following two sections present

numerical and experimental results demonstrating radio SLAM.

3.3 Simulation Results

In this section, an environment consisting of one UAV-mounted receiver and M = 5 RF

transmitters is simulated to demonstrate that both the receiver’s clock bias δtr and the

transmitters’ clock biases {δtsm}Mm=1 are stochastically unobservable, as was shown in The-

orem 3.2.1 and to demonstrate that the divergence rate γ(k)
k→∞−−−→ qr, as established in

Theorem 3.2.2. To this end, two systems are simulated: (i) system ΣIII to demonstrate the

divergence rate γ(k)
k→∞−−−→ qr (3.15) and (ii) the full system Σ to demonstrate the divergence

of the estimation error variances of the clock biases when the receiver’s position and velocity

and the transmitters’ positions are also estimated.

First, an estimate x̂clk(k|k) of ΣIII’s state vector was computed through (3.5), using the

design matrix (3.6) and the estimate x̂ro(k|k), which was produced by a reduced-order KF.

The reduced-order KF was initialized according to x̂ro(0|0) ∼ N [Gxclk(0),Pxro
(0|0)], where

Pxro
(0|0) = G

[

IIIPxclk
(0|0)

]

GT. The simulation settings are tabulated in Table 3.2. The

non-zero estimation error trajectories x̃ro , xro − x̂ro and their associated ±2σ bounds are

plotted in Figs. 3.1(a)–(b). The time evolution of γ(k) = eT

1 [Uxro,inc(k)−Uxro,red(k)]e1

is plotted in Fig. 3.1(c). The estimation error x̃clk , xclk − x̂clk was reconstructed from

(3.5) and the associated posterior estimation error covariance IIIPxclk
was computed by sub-

stituting the reduced-order KF’s posterior estimation error covariance (3.7) into (3.9). The

estimation error trajectories and corresponding ±2σ bounds for δtr, δts1, and δṫs1 are plotted
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in Figs. 3.1(d)–(f).

Table 3.2: Simulation Settings: System ΣIII

Parameter Value

xclkr(0) [100, 10]T

{xclksm (0)}5m=1 [10, 1]T

xclk(0)
[

xT

clkr(0), x
T

clks1
(0), . . . , xT

clks5
(0)

]T

IIIPxclk
(0|0) (102) · diag [0, 0, 3, 0.3, . . . , 3, 0.3]

{h0,r, h−2,r} {9.4× 10−20, 0}
{h0,sm , h−2,sm}5m=1 {8.0× 10−20, 0}
T 0.01 s
{

σ2
sm

}5

m=1
0 m2

~x
ro
1
(m

)

c
~ δt
r
(m

)
c
~ δt
s
1
(m

)

~x
ro
3
(m

/s
)

c
~ δ
_ t s
1
(m

/s
)

Time (s)Time (s)

γ
(k
)

×10−13 + C

(a)

(b)

(c) (f)

(d)

(e)

qr

Estimation error ±2σ

Figure 3.1: Estimation error trajectories (red) and corresponding ±2σ bounds (black
dashed). Figs. (a) and (b) correspond to a reduced-order KF estimating xro using set-
tings from Table 3.2, where xroi , eT

i xro. Fig. (c) illustrates the time evolution of
γ(k) = eT

1 [Uxclk,inc(k)−Uxclk,red(k)] e1 (black) and the value of its limit qr (blue dotted),
where C = 4.2241493×10−5. Figs. (d)–(f) correspond to the clock errors of the receiver and
transmitter 1, which were reconstructed through (3.5), and their corresponding ±2σ bounds,
which were computed using (3.7) and (3.9).

The following can be concluded from these plots. First, IIIσ2
δtr
(k|k) = IIIσ2

δts
(k|k) ∀ k, as
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expected from (3.10). Second, IIIσ2
δtr

and IIIσ2
δts1

are diverging, implying δtr and δts1 are

stochastically unobservable. The same behavior was observed for the variances associated

with {δtsm}5m=2. Third, Fig. 3.1(c) illustrates that their divergence rate converges to a

constant, γ(k)
k→∞−−−→ qr, as established in Theorem 3.2.2. The diverging errors were noted to

be consistent with their ±2σ bounds when the simulator was ran using different realizations

of process noise and initial state estimates.

Next, the full system Σ was simulated and an EKF was employed to estimate x(k). The

purpose of this simulation is to illustrate that δtr and {δtsm}5m=1 are stochastically unob-

servable in the full system Σ and to demonstrate the behavior of the estimation errors of

the receiver’s position and velocity and the RF transmitters’ positions, along with their

corresponding variances. The receiver moved in a favorable trajectory around the RF trans-

mitters. Specifically, the receiver’s position and velocity states were set to evolve according

to a constant turn rate model as described in [115], i.e.,

fpv[xpv(k) ] ≡



















1 0 s(ωT )
ω

−1−c(ωT )
ω

0 1 1−c(ωT )
ω

s(ωT )
ω

0 0 c(ωT ) −s(ωT )

0 0 s(ωT ) c(ωT )



















xpv(k),

Qpv ≡

Sw



















2ωT−s(ωT )
ω3 0 1−c(ωT )

ω2

ωT−s(ωT )
ω2

0 2ωT−s(ωT )
ω3 −ωT−s(ωT )

ω2

1−c(ωT )
ω2

1−c(ωT )
ω2 −ωT−s(ωT )

ω2 T 0

ωT−s(ωT )
ω2

1−c(ωT )
ω2 0 T



















,

where s(·) and c(·) denote sin(·) and cos(·), respectively, ω is a known constant turn rate,

and Sw is the process noise power spectral density. This type of open-loop trajectory has
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been demonstrated to produce better estimates than an open-loop velocity random walk

trajectory [54]. The EKF initialization settings and receiver and RF transmitters’ initial

states are tabulated in Table 3.3. The environment layout and UAV trajectory is illustrated

in Fig. 3.2. The estimation error trajectories and associated ±2σ bounds are plotted in Figs.

3.3(a)–(f) and Fig. 3.3(g)–(j) for the receiver and RF transmitter 1, respectively.

Table 3.3: Simulation Settings: System Σ

Parameter Value

xr(0) [0, 0, 10, 10, 100, 10]T

Pr(0|0) diag [0, 0, 0, 0, 0, 0]

{h0,r, h−2,r} {9.4× 10−20, 3.8× 10−21}
rs1(0) [−110, 240]T

rs2(0) [−150, 340]T

rs3(0) [−215, −60]T

rs4(0) [−75, 105]T

rs5(0) [−5, 80]T

xsm(0)
[

rT

sm, 10, 1
]T

Psm(0|0) (102) · diag [1, 1, 30, 3]
x̂sm(0|0) ∼ N [xsm(0),Psm(0|0)]
{h0,sm, h−2,sm}5m=1 {8.0× 10−20, 4.0× 10−23}
T 0.01 s

ω 0.1 rad/s

Sw 0.01 m2.rad2/s3
{

σ2
sm

}5

m=1
20 m2

The following can be concluded from the full system simulation plots in Fig. 3.3. First, while

the variance of cδ̃ts1 decreases, at some point in time, it begins to diverge unboundedly. On

the other hand, the variance of cδ̃tr starts from zero (due to the prior knowledge about the

receiver’s clock bias) and diverges unboundedly with time. Second, although the errors cδ̃tr

and cδ̃ts are relatively small, their variances will continue to increase and cause the estima-
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Figure 3.2: Simulated environment consisting of M = 5 RF transmitters (Tx) (orange) and
one UAV-mounted receiver traversing a circular orbit (black).
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Figure 3.3: Estimation error trajectories (red) and corresponding ±2σ bounds (black) for
EKF-based radio SLAM with settings from Table 3.3.

tion error covariance matrix to become ill-conditioned. Note that an extended information

filter (EIF) will not resolve this issue, and a similar problem will be encountered. This is

because as the uncertainties of the clock states become larger, the corresponding elements
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in the information matrix become smaller, causing the information matrix to also become

ill-conditioned. This is evident from the fact that the condition number of the estimation

error covariance matrix P is equal to the condition number of the corresponding informa-

tion matrix Y = P−1. Since the pseudorange measurements are a nonlinear function of the

receivers’ and the RF transmitters’ positions, a conversion from the information space to

the state space is required in order to compute the measurement residual and the measure-

ment Jacobians, which are necessary for the EIF update step. This conversion requires the

inversion of the information matrix which becomes ill-conditioned at the same rate as the

covariance matrix. Third, despite the stochastically unobservable clock biases, the estima-

tion error variances appear to have a finite bound for x̃r, ỹr, ˜̇xr, ˜̇yr, c
˜̇
δtr, x̃s1 , ỹs1, and c

˜̇
δts1 .

Similar behavior was noted for the estimates associated with the other four RF transmitters.

3.4 Experimental Demonstration

A field experiment was conducted in Riverside, California, U.S.A., using a UAV to demon-

strate the stochastically unobservable clock biases of both a UAV-mounted receiver and

multiple cellular transmitters when an EKF-based radio SLAM framework is employed.

To this end, a UAV was equipped with a two-channel EttusR© E312 universal software radio

peripheral (USRP). Two antennas were mounted to the UAV and connected to the USRP:

(i) a consumer-grade patch GPS antenna and (ii) a consumer-grade omni-directional cellular

antenna. The USRP was tuned to (i) 1575.42 MHz to sample GPS L1 C/A signals and

(ii) 882.75 MHz to sample cellular signals which were modulated through code division

multiple access (CDMA) and were transmitted from nearby cellular towers. The E312 fed the

sampled data to the Multichannel Adaptive TRansceiver Information eXtractor (MATRIX)

software-defined receiver (SDR) [107, 117], which produced pseudorange observables to all

available GPS SVs and to four cellular towers of the U.S. cellular provider Verizon. The
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GPS pseudoranges were only used to estimate the UAV-mounted receiver’s initial position

and clock error states. Such estimates were used to initialize the EKF, which simultaneously

estimated the UAV’s and the four unknown transmitters’ state before navigation via radio

SLAM began, while cellular pseudoranges were used exclusively thereafter as measurements

in the EKF. The experimental setup is illustrated in Fig. 3.4.

GPS
antenna

CDMA
antenna

Ettus E312

USRP

GPS
antenna

MATLAB-based

Filter

MATRIX

LabVIEW-based SDR

Figure 3.4: Experiment hardware setup.

The UAV traversed a commanded trajectory for 130 seconds. The “ground truth” traversed

trajectory was obtained from the UAV’s onboard integrated navigation system, which used

a GPS, an inertial navigation system (INS), and other sensors. The UAV’s trajectory was

also estimated via the radio SLAM framework described in this chapter. The UAV’s and

cellular towers’ heights were assumed to be known for the entire duration of the experi-

ment; therefore, this is a two-dimensional radio SLAM problem which is consistent with

the stochastic observability analysis conducted in Section 3.2. The EKF-based radio SLAM

filter was initialized with a state estimate given by

x̂(0|0) =
[

x̂T

r (0|0), x̂T

s1
(0|0), . . . , x̂T

s4
(0|0)

]T

and a corresponding estimation error covariance

P(0|0) = diag [Pr(0|0),Ps1(0|0), . . . ,Ps4(0|0)] .

The UAV-mounted receiver’s initial estimate x̂r(0|0) was set to the solution provided by

69



the UAV’s onboard GPS-INS solution at the beginning of the trajectory, and was assumed

to be perfectly known, i.e., Pr(0|0) ≡ 06×6. The transmitters’ initial state estimates were

drawn according to x̂sm(0|0) ∼ N
([

rT

sm,x
T

clk,sm
(0)

]T

,Psm(0|0)
)

. The true transmitters’ po-

sitions {rsm}4m=1 were surveyed beforehand according to the framework described in [118]

and verified using Google Earth. The initial clock bias and drift

xclk,sm(0) = c
[

δtsm(0), δ̇tsm(0)
]T

m = 1, . . . , 4,

were solved for by using the initial set of cellular transmitter pseudoranges (3.1) according

to

cδtsm(0) = ‖rr(0)− rsm‖+ cδtr1(0)− zsm(0),

cδ̇ts(0) = [cδts(1)− cδts(0)]/T,

where cδtsm(1) = ‖rr(1)− rsm‖+ cδtr1(1)− zsm(1). The initial uncertainty associated with

the transmitters’ states was set to Psm(0|0) ≡ 103 · diag [1, 1, 3, 0.3] for m = 1, . . . , 4.

The process noise covariance of the receiver’s clock Qclk,r was set to correspond to a typical

temperature-compensated crystal oscillator (TCXO) with h0,r = 9.4 × 10−20 and h−2,r =

3.8 × 10−21. The process noise covariances of the cellular transmitters’ clocks were set to

correspond to a typical oven-controlled crystal oscillator (OCXO) with h0,sm = 8 × 10−20

and h−2,sm = 4 × 10−23, which is usually the case for cellular transmitters [15, 114]. The

UAV’s position and velocity states were assumed to evolve according to velocity random

walk dynamics with

fpv[xpv(k)] =







I2×2 T I2×2

02×2 I2×2






xpv(k),
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Qpv =







T 3

3
Spv

T 2

2
Spv

T 2

2
Spv TSpv






,

where T = 0.0267 s and Spv = diag [0.02, 0.2] is the process noise power spectral density

matrix, whose value was found empirically. The measurement noise variances {σ2
sm}4m=1

were computed beforehand according to the method described in [118], and were found to

be σ2
s1

= 0.7, σ2
s2

= 0.2, σ2
s3

= 0.7, and σ2
s4

= 0.1. The trajectory produced by the UAV’s

onboard integrated GPS-INS and the one estimated by the radio SLAM framework are

plotted in Fig. 3.5 along with the initial uncertainty ellipses of the 4 transmitters and the

final east-north 99th-percentile estimation uncertainty ellipses for tower 1. Similar reduction

in the final uncertainty ellipses corresponding to the 3 other towers was noted.

The root mean squared error (RMSE) of the UAV’s estimated trajectory was 9.5 meters and

the final error was 7.9 meters. These errors were computed with respect to the GPS-INS

trajectory. The resulting estimation errors and corresponding ±2σ bounds of the vehicle’s

east and north position and the ±2σ bounds of the clock bias of both the receiver and tower

1 are plotted in Fig. 3.6. Only the ±2σ bounds are shown for the clock biases of both

the receiver and tower 1, since the true biases are unknown; therefore, the estimation error

trajectories cannot be plotted. Note that while the estimation error variances of the UAV’s

east and north position remained bounded, the estimation error variances of the receiver and

tower 1 grew unboundedly, indicating their stochastic unobservability, which is consistent

with the simulation results presented in Section 3.3 and Theorem 3.2.1.
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Figure 3.5: Environment layout and experimental results showing the estimated UAV tra-
jectories from (i) its onboard GPS-INS integrated navigation system (white) and (ii) radio
SLAM (green), the initial position uncertainty of each unknown tower, and tower 1 final
position estimate and corresponding uncertainty ellipse. Image: Google Earth.
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Figure 3.6: Radio SLAM experimental results: north and east errors of the UAV-mounted
receiver and corresponding estimation error variances and the estimation error variances of
the clock bias for both the receiver and transmitter 1.
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Chapter 4

Tightly-Coupled SOP-Aided Inertial

Navigation

This chapter expands on the radio SLAM problem by introducing a more complex dynamic

model for the navigating vehicle. Specifically, an INS is employed and SOP pseudoranges

are used to aid the INS in the absence of GNSS signals. This chapter is organized as follows.

Section 4.1 provides a high-level description of the SOP-aided INS framework developed

in this chapter. Section 4.2 overviews the main components of an aided INS. Section 4.3

describes the radio SLAM SOP-aided INS framework. Section 4.4 presents simulation results

comparing the estimation performance of the SOP-aided INS using a consumer-grade IMU

with a traditional GNSS-aided INS using a tactical-grade IMU. It also presents a performance

sensitivity analysis of the SOP-aided INS framework over varying quantity and quality of

exploited SOPs. Section 4.5 presents experimental results demonstrating a UAV navigating

with cellular SOPs using the SOP-aided INS framework.
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4.1 Problem Description

A high-level block diagram of the developed EKF-based radio SLAM framework to aid a

navigating vehicle’s INS with SOP pseudoranges is illustrated in Fig. 4.1(a). When GNSS

signals are available, both GNSS and SOP receivers produce pseudoranges that are sent to

an EKF update step to simultaneously aid the INS and estimate the unknown SOPs’ states.

When GNSS signals become unavailable, SOP pseudoranges are used exclusively to continue

aiding the INS and refine the SOPs’ state estimates. Fig. 4.1(b) is a conceptual illustration

comparing the resulting position errors for a: traditional GNSS-aided INS (green), SOP-

aided INS (blue), and unaided INS (red). Note that when GNSS signals are available, the

SOP-aided INS is expected to produce lower position estimation errors compared to a tra-

ditional GNSS-aided INS. This is primarily due to a reduction in the vertical dilution of

precision (VDOP) over using GNSS alone when terrestrial SOP pseudoranges, which have

small elevation angles, are used with GNSS pseudoranges, which inherently have larger eleva-

tion angles [43]. In [24], experimental results show a UAV’s position estimation uncertainty

ellipsoid reduce by 84% compared to using Global Positioning System (GPS) pseudoranges

alone when seven GPS satellites’ and five SOPs’ pseudoranges were used together to estimate

the position of the UAV. When GNSS signals become unavailable, a bound can be estab-

lished on the SOP-aided INS position errors, whereas the unaided INS errors expectedly

diverge.

4.2 Overview of Aided Inertial Navigation

An aided inertial navigation system consists of three main components: (i) IMU, (ii) INS

processor, and (iii) aiding sensors and corresponding fusion filter. This section overviews

these components.
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Figure 4.1: (a) A High-level diagram of an EKF-based tightly-coupled INS aided by GNSS
(when available) and different SOP types, denoted SOP i, i = I, II, . . . (b) Conceptual illus-
tration comparing the resulting position errors for a: traditional GNSS-aided INS (green),
SOP-aided INS (blue), and unaided INS (red).

4.2.1 Inertial Measurement Unit

An IMU typically consist of a triad-gyroscope and triad-accelerometer, which produce rota-

tion rate and specific force measurements, respectively, along three coordinate axes. These

measurements are corrupted by noise as well as static and dynamic stochastic errors (e.g.,

biases, scale factors, cross-coupling, and cross-axis sensitivity). A DR-based navigation solu-

tion integrates these corrupted measurements over time, which causes the navigation solution

to undesirable drift. Therefore, it is important to “clean up” these measurements, as much as

possible, before they get integrated through an INS. The IMU’s onboard processor removes

factory-calibrated static errors; however, dynamic and stochastic error components (known

as in-run errors), should be modeled and estimated online. It is within the discretion of the

navigation filter designer to determine which errors should be modeled and estimated by

considering the navigation system’s processing power, IMU’s quality, and maneuvers that
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the IMU is expected to undertake. To avoid convoluting the forthcoming discussion, only

random noise and the gyroscope’s and accelerometer’s biases are modeled. Additional de-

tails of IMU errors and methods to determine which states should be estimated are discussed

in [5, 119, 120]. It is also important to mention that different INS architectures are used de-

pending on the grade of the IMU. When navigation-grade IMUs are used, it is common that

an aiding source, such is GPS, is used in order to constrain the INS error growth. In this

case, INS errors are typically directly estimated. When lower quality IMUs are used, it is

more common that the IMU is used to coast or interpolate between GPS updates, in which

case absolute states are estimated. In this chapter, absolute states will be modeled, since

lower quality IMUs are considered.

Noise-corrupted and bias-corrupted IMU measurements can be modeled in discrete-time as

bωimu(k) =
bωi(k) + bgyr(k) + ngyr(k), k = 1, 2, . . . (4.1)

baimu(k) =
b
iR(k)

[

iab(k)− ig(k, irb(k))
]

+ bacc(k)

+ nacc(k), (4.2)

where bωi ∈ R3 is the true rotation rate of a coordinate frame {b} fixed to the body of the

IMU with respect to an inertial frame {i}, such as the Earth-centered inertial (ECI) frame;

bgyr ∈ R3 is the gyroscope’s three-dimensional (3-D) bias; ngyr ∈ R3 is a measurement noise

vector, which is modeled as a white noise sequence with covariance Qngyr
; b
iR ∈ R3×3 is the

rotation matrix, which rotates the coordinates of a vector expressed in frame {i} into frame

{b}; iab ∈ R3 is the true acceleration of {b} expressed in {i}; ig ∈ R3 is the acceleration due to

gravity in the inertial frame, which depends on the position of the IMU irb ∈ R3; bacc ∈ R3 is

the accelerometer’s 3-D bias; and nacc ∈ R3 is a measurement noise vector, which is modeled

as a white noise sequence with covariance Qnacc
. Fig. 4.2 illustrates the relationships of the

76



position and orientation of {b} with respect to {i} for an aerial vehicle-mounted IMU. The

evolution of the gyroscope and accelerometer biases are modeled as random walks according

to

bgyr(k + 1) = bgyr(k) +wgyr(k), (4.3)

bacc(k + 1) = bacc(k) +wacc(k), (4.4)

where wgyr and wacc are process noise vectors that drive the in-run bias variation (or bias

instability) and are modeled as white noise sequences with covariance Qwgyr
and Qwacc

, re-

spectively. Note that other models may be used in place of (4.3) and (4.4), e.g., a common

model is to use a Gauss-Markov process to model the slow varying bias, which is parame-

terized by a time constant and is driven by white noise [119, 120].The measurements (4.1)

and (4.2) are sent to the INS to produce an orientation, velocity, and position solution, as

discussed next.

irb

{i}

{b}

x̄i

ȳi

z̄i x̄b

ȳb

z̄b
b

i
R =





x̄i ·x̄b ȳi ·x̄b z̄i ·x̄b

x̄i ·ȳb ȳi ·ȳb z̄i ·ȳb

x̄i ·z̄b ȳi ·z̄b z̄i ·z̄b





a·b � aTb

Figure 4.2: Position irb of the origin of coordinate frame {b} expressed in coordinate frame
{i}. The rotation matrix b

iR rotates the coordinates of a vector expressed in frame {i}
into frame {b}. The notation a ·b denotes the inner product of vectors a and b. The
principal directions of {i} and {b} are represented by the unit vectors x̄i, ȳi, z̄i and x̄b, ȳb, z̄b,
respectively. Note that the describing frame leading superscript on these unit vectors has
been omitted, since the frame used to describe these vectors is arbitrary when computing
b
iR, as long as they are all described in the same frame.
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4.2.2 Inertial Navigation System

There are two main INS architectures: stable platform (i.e., gimballed) and strapdown. On

one hand, a stable platform INS uses a complex bulky physical structure to mechanically

isolate the IMU’s sensing axes from the rotational motion of the navigating vehicle. This iso-

lation allows for direct extraction and integration of the IMU’s acceleration measurements.

On the other hand, a strapdown INS omits the complex bulky structure and instead uses a

smaller size and lighter weight IMU, whose sensing axes are fixed to the navigating vehicle.

The smaller size and lighter weight comes at the cost of additional computational complexity,

which is used to resolve the IMU’s sensing axes into an inertial frame before the acceleration

measurements are integrated. With advances in computational power, most current navi-

gation systems, especially those that require smaller and lighter weight sensors (e.g., small

unmanned aerial vehicles (UAVs)), employ a strapdown architecture. For this reason, all

subsequent equations and discussions pertain to a strapdown INS; however, the SOP-aided

INS developed in this chapter can be readily applied to a stable platform architecture by

replacing strapdown mechanization equations with stable platform ones.

An INS can be used as a standalone DR system or as part of an integrated navigation

system, e.g., an EKF-based aided INS, as in Fig. 4.1(a). The role of the INS in the context

of an EKF-based aided INS is to take the sequence of sampled IMU measurements (4.1)

and (4.2), extract bωi and
iab, and perform successive integrations to propagate an estimate

of an IMU state vector between aiding measurement updates. It is common to directly

estimate the orientation, position, and velocity of the IMU in an Earth-centered Earth-fixed

(ECEF) frame {e}, since aiding sources (e.g., GPS satellites and SOP emitters) are typically

represented in {e}. To this end, this chapter develops an EKF to estimate the IMU state

vector ximu ∈ R16, given by

ximu =
[

b
eq̄

T, erT

b ,
eṙT

b , bTgyr, bTacc
]T

, (4.5)
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where b
eq̄ =

[

b
eq

T, b
eq4

]T

=
[

b
eq1,

b
eq2,

b
eq3,

b
eq4

]T ∈ R4 is a four-dimensional (4-D) unit quater-

nion, representing the IMU’s orientation (i.e., rotation from frame {e} to {b}), and eṙb ∈ R3

is the IMU’s velocity. Out of several orientation representations, the unit quaternion is

selected because it provides a minimal orientation state representation and avoids singular-

ities that Euler angles are subject to. This quaternion is related to the rotation matrix b
eR

through,

b
eR = I3×3 − b

eq4⌊ebq×⌋ + 2⌊ebq×⌋2,

where I3×3 denotes a 3 × 3 identity matrix and ⌊ebq×⌋ is the skew-symmetric form of e
bq,

which is given by

⌊ebq×⌋ =













0 −b
eq3

b
eq2

b
eq3 0 −b

eq1

−b
eq2

b
eq1 0













.

A block diagram of the one-step EKF time update that propagates the estimate x̂imu(k|j)

to x̂imu(k + 1|j) is illustrated in Fig. 4.3, where x̂imu(k|j) , E[ximu(k)|Zj], E[ · | · ] is the

conditional expectation operator, Zj , {z(i)}ji=1, z is a vector of INS-aiding measurements

(e.g., from GNSS or SOPs), and k ≥ j. GNSS aiding is discussed in the next subsection and

SOP-aiding is discussed in the following section. The strapdown INS equations pertaining to

each block are provided in Appendix A.5. Upon receiving an aiding measurement z(k + 1),

the EKF performs a measurement update to produce ximu(k + 1|k + 1), as discussed in the

following subsection. If z(k + 1) is not available then ximu(k + L − 1|j) is recursively fed

back to the INS to produce ximu(k+L|j), where L = 2, 3, . . ., until a measurement becomes

available.
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Figure 4.3: Block diagram of an INS within an EKF-based aided INS. The inputs to the
INS are the current state estimate x̂imu(k|j) and IMU measurements baimu(k) and

bωimu(k).
The output is the one-step time update x̂imu(k + 1|j). The internal signals bω̂, eâ, and bâ,
are the bias-compensated rotation rate, bias-compensated transformed specific force, and
bias-compensated untransformed specific force, respectively, which are computed according
to (A.12), (A.14), and (A.15), respectively.

4.2.3 Traditional GNSS-Aided INS

A traditional EKF-based GNSS-aided INS couples the INS and GNSS through either: (i)

loose coupling, which fuses the INS and GNSS position and velocity solutions; (ii) tight

coupling, which fuses the INS solution with GNSS pseudoranges; or (iii) deep coupling,

which uses the INS solution to aid the GNSS receiver’s tracking-loops [121]. This dissertation

considers tight coupling for four main reasons. First, in the event that less than four GNSS

pseudoranges are available, tightly-coupled systems can still provide an EKF aiding update,

which is not the case in a loosely-coupled system. Second, a tightly-coupled system can

be implemented with most commercial off-the-shelf (COTS) components, which is not the

case in a deeply coupled system, since internal GNSS tracking loops are typically required.

Third, the filter will optimally deal with the geometry of the aiding measurements. Forth, the

aiding source output does not have to be decimated in time in order to maintain statistical

independence due to any internal filtering conducted by the aiding sensor.

To use GNSS pseudoranges in an EKF measurement update, the receiver’s clock state vector

xclk,r ,

[

cδtr, cδ̇tr

]T

∈ R2 must be estimated, where δtr is the receiver’s clock bias, δ̇tr is
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the receiver’s clock drift, and c is the speed of light. The clock dynamics is modeled as [122]

xclk,r(k + 1) = Fclkxclk,r(k) +wclk,r(k), Fclk =







1 T

0 1






, (4.6)

where T is the sampling interval and wclk,r is the process noise, which is modeled as a

discrete-time white noise sequence with covariance

Qclk,r = c2 ·







Sw̃δt,r
T + Sw̃

δ̇t,r

T 3

3
Sw̃

δ̇t,r

T 2

2

Sw̃
δ̇t,r

T 2

2
Sw̃

δ̇t,r
T






, (4.7)

where Sw̃δt,r
and Sw̃

δ̇t,r
are the power spectra of the continuous-time process noise w̃clk,r ,

[

w̃δt,r, w̃δ̇t,r

]T

, respectively [74], which can be related to the power-law coefficients, {hα,r}2α=−2,

which have been shown through laboratory experiments to characterize the power spectral

density of the fractional frequency deviation of an oscillator from nominal frequency accord-

ing to Sw̃δt,r
≈ h0,r

2
and Sw̃

δ̇t,r
≈ 2π2h−2,r. Augmenting xclk,r with ximu gives the GNSS-aided

INS state vector xgnss,ins ∈ R18 that the EKF estimates, namely

xgnss,ins ,
[

xT

imu, x
T

clk,r

]T

. (4.8)

The GNSS receiver makes pseudorange measurements {z′gnss,n}Nn=1 at discrete-time instants

to all N available GNSS satellites. After compensating for ionospheric and tropospheric

delays {z′gnss,n}Nn=1 is given by

zgnss,n(j) =‖erb(j)− ergnss,n(j)‖2

+ c · [δtr(j)− δtgnss,n(j)] + vgnss,n(j), (4.9)

where zgnss,n , z′gnss,n − cδtiono,n − cδttropo,n; δtiono,n and δttropo,n are the ionospheric and
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tropospheric delays, respectively; z′gnss,n is the uncompensated pseudorange; ergnss,n is the

position of the nth GNSS satellite; δtgnss,n is the clock bias of the nth GNSS satellite; vgnss,n

is the measurement noise, which is modeled as a discrete-time zero-mean white Gaussian

sequence with variance σ2
gnss,n; and j ∈ N represents the time index at which {zgnss,n}Nn=1 is

available, which could be aperiodic. These pseudoranges {zgnss,n}Nn=1 are used to filter x̂gnss,ins

through an EKF measurement update step to produce the updated estimate x̂gnss,ins(j|j).

Note that, to simplify the forthcoming discussion, it is assumed that the number of GNSS

satellites available is constant and that the ionospheric and tropospheric errors are perfectly

accounted for. In practice, so-called “range bias” states may be added to the state vector

x̂gnss,ins. Such states serve two purposes. One is to estimate any residual atmospheric and

multipath error for each pseudorange measurement. Second, and typically more importantly,

when new or reacquired GNSS satellite measurements are added to the measurement vector,

these states (along with a reset of the corresponding rows/columns of the prediction error

covariance matrix) can be used to absorb the “jump” in x̂gnss,ins that would otherwise occur.

Whenever GNSS pseudoranges become unavailable, the INS continues to propagate in an

open-loop fashion (i.e., performing only EKF time updates). This causes the position and

velocity errors to grow unboundedly with time. This is largely due to integrating the esti-

mation errors of bgyr and bacc, denoted b̃gyr and b̃acc, respectively. The time evolution of the

velocity estimation error e ˜̇rb and position estimation error er̃b after t seconds of open-loop

propagation due to a constant 3-D accelerometer bias error b̃acc are given by [119]

e ˜̇rb(t) ≈ e
bRb̃acct,

er̃b(t) ≈
1

2
e
bRb̃acct

2.

The increase of e ˜̇rb and er̃b with time due to a constant gyroscope bias error b̃gyr is even

more significant– it is squared and cubic with time, respectively. This is caused by linearly

increasing orientation errors with time due to integrating b̃gyr. Assuming the IMU moves at

a constant velocity and is level with respect to the Earth’s surface, the time evolution of e ˜̇rb
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and er̃b are given by [119]

e ˜̇rb(t) ≈
1

2
e
bR

[

b̃gyr×
]

lgt2, er̃b(t) ≈
1

6
e
bR

[

b̃gyr×
]

lgt3,

where lg = [ 0, 0, −‖eg ‖2]T is a local-level frame gravity vector. It is important to note that

these relationships are approximate, since additional errors can integrate into the position

and velocity due to gravity model approximations, timing errors, and orientation errors.

Even if the biases are perfectly estimated before GNSS becomes unavailable, i.e., b̃gyr = 03×1

and b̃acc = 03×1, the integration of the white noise ngyr and nacc will cause the standard

deviation of the position error in the ith coordinate direction σ (er̃b,i) to grow according to

σ (er̃b,i) =

√

1

5
Sgyrt5, σ (er̃b,i) =

√

1

3
Sacct3, i = x, y, z,

respectively, where Sgyr and Sacc are the one-sided power spectral density (PSD) of ngyr and

nacc, respectively.

From the above relationships, it is obvious that without INS aiding corrections, the position

errors and position error standard deviations grow unboundedly. The next section develops

an SOP-aided INS framework, which uses pseudoranges drawn from unknown terrestrial

SOPs to provide INS aiding corrections. The following sections demonstrate through sim-

ulations and an experiment that the SOP-aided INS reduces er̃b compared to a traditional

GNSS-aided INS while GNSS is available and bounds er̃b when GNSS becomes unavailable.

4.3 SOP-Aided Inertial Navigation

The SOP-aided INS framework provides both accurate and robust navigation with and with-

out GNSS signals by using pseudoranges drawn from ambient terrestrial SOPs to correct INS

errors. This section formulates the SOP-aided INS, which operates in two modes:
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• Mapping mode: GNSS pseudoranges are available. Here, GNSS and SOP pseudo-

ranges are fused in the EKF to aid the INS, producing a more accurate estimate of

xgnss,ins while mapping the SOP radio environment (i.e., estimating the unknown states

of the SOPs).

• Radio SLAM mode: GNSS pseudoranges are unavailable. Here, SOP pseudoranges

aid the INS to simultaneously localize the vehicle-mounted INS (estimate ximu) while

mapping the unknown states of the SOPs.

4.3.1 SOP Dynamics and Pseudorange Measurement Model

Each of theM SOPs will be assumed to emanate from a spatially-stationary terrestrial trans-

mitter. The state vector of the mth SOP xsop,m is defined as xsop,m ,
[

erT

sop,m, x
T

clk,sop,m

]T ∈

R5, where ersop,m ∈ R3 is its 3-D position state and xclk,sop,m ,

[

cδtsop,m, cδ̇tsop,m

]T

∈ R2

is its clock states, where δtsop,m is the clock bias and δ̇tsop,m is the clock drift. The SOP’s

discrete-time dynamics are modeled as

xsop,m (k + 1) = Fsop xsop,m(k) +wsop,m(k), k = 1, 2, . . . , (4.10)

xsop,m =
[

erT

sop,m, x
T

clk,sop,m

]T

, Fsop = diag [I3×3, Fclk] ,

where wsop,m is the process noise, which is modeled as a discrete-time zero-mean white

noise sequence with covariance Qsop,m = diag [03×3, Qclk,sop,m], with Qclk,sop,m having iden-

tical structure to Qclk,r in (4.7), except that Sw̃δtr
and Sw̃

δ̇tr
are replaced with SOP clock-

specific spectra Sw̃δtsop,m
and Sw̃

δ̇tsop,m
, respectively, where Sw̃δtsop,m

≈ h0,sop,m

2
and Sw̃

δ̇tsop,m
≈

2π2h−2,sop,m.

The pseudorange observation made by the vehicle-mounted receiver on the mth SOP, after

discretization and mild approximations discussed in [74], is related to the receiver’s and
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SOP’s states by

zsop,m(j) =‖erb(j)− ersop,m‖2

+ c · [δtr(j)− δtsop,m(j)] + vsop,m(j), (4.11)

where vsop,m is the measurement noise, which is modeled as a discrete-time zero-mean white

Gaussian sequence with variance σ2
sop,m.

4.3.2 Framework Overview

The SOP-aided INS framework illustrated in Fig. 4.1 operates both with and without GNSS

signals. To this end, the framework operates in one of two modes: (i) mapping mode when

GNSS pseudoranges are available and (ii) radio SLAM mode when GNSS pseudoranges are

unavailable. This subsection describes why special care must be taken when transitioning

between GNSS-available and GNSS-unavailable modes and how the transition is performed.

In contrast to a traditional tightly-coupled GNSS-aided INS, the SOP-aided INS has the

added complexity of having to deal with the unknown, dynamic, and stochastic states of

SOPs. These states are estimated simultaneously with xgnss,ins, i.e., the EKF estimates the

augmented state vector x ∈ R18+5M , defined as

x ,
[

xT

gnss,ins, x
T

sop,1, . . . , x
T

sop,M

]T

. (4.12)

Note that the EKF estimates absolute state values instead of state errors, which is another

common approach when formulating an EKF for an INS [119]. While GNSS signals are

available, x is estimated by the EKF in the mapping mode using the measurement set

z =
[

zT

gnss, z
T

sop

]T

, zgnss = [zgnss,1, . . . , zgnss,N ]
T ,
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zsop = [zsop,1, . . . , zsop,M ]T .

When GNSS signals become unavailable, the measurement set reduces to

z′ = zsop.

In [123], it was shown that x is stochastically unobservable during GNSS-unavailable modes;

specifically, the EKF simultaneously estimating xclk,r and xclk,sop,m using z′ produces un-

bounded clock error estimation uncertainties. For this reason, the SOP-aided INS frame-

work transitions from the mapping mode to the radio SLAM mode, by modifying the state

vector to resolve observability issues. The transition between the mapping and the radio

SLAM modes is developed next to properly initialize the estimates, corresponding estima-

tion uncertainties, and cross-correlations, so that a seamless transition takes place between

GNSS-available and GNSS-unavailable modes.

To develop this transition, first note that during the radio SLAM mode, zgnss is no longer

available. Therefore, instead of estimating xclk,r and {xclk,sop,m}Mm=1 individually, the relative

clock states between the receiver and each SOP, denoted ∆x̂clk,m , xclk,r − xclk,sop,m, m =

1, 2, . . . ,M , will be estimated. As such, the state vector to be estimated is modified from

(4.12) to become

x′ =
[

xT

imu, x
′
sop,1

T
, . . . , x′

sop,M
T

]T

, (4.13)

where x′
sop,m ,

[

erT

sop,m, ∆xT

clk,m

]T

, m = 1, 2, . . . ,M . At the moment of transition from

GNSS-available to GNSS-unavailable, an estimate of the new state vector x′ and the corre-

sponding estimation error covariance P′ are initialized from the latest produced estimate x̂

and its corresponding estimation error covariance P using

x̂′ = Tx̂, P′ = MPMT,
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T =



















Tgnss,ins 016×5 · · · 016×5

Tclk,r Tsop · · · 05×5

...
...

. . .
...

Tclk,r 05×5 · · · Tsop



















,

M =



















Mgnss,ins 015×5 · · · 015×5

Mclk,r Tsop · · · 05×5

...
...

. . .
...

Mclk,r 05×5 · · · Tsop



















,

Tgnss,ins , [I16×16, 016×2] , Tclk,r ,







03×16 03×2

02×16 I2×2






,

Tsop ,







03×3 03×2

02×3 −I2×2






,

Mgnss,ins , [I15×15, 015×2] , Mclk,r ,







03×15 03×2

02×15 I2×2






.

Notice that P and P′ has one less dimension than x̂ and x̂′, respectively. This is due to

the IMU’s orientation estimation error being represented by a three-axis error angle vector,

denoted θ̃ ∈ R3, which has one less dimension than the estimate of b
eq̄, denoted

b
e
ˆ̄q ∈ R4.

The vector θ̃ is related to b
eq̄, and

b
e
ˆ̄q through

b
eq̄ = b

e
ˆ̄q ⊗ ˜̄q, ˜̄q =

[

1

2
θ̃T,

√

1− 1

4
θ̃Tθ̃

]T

, (4.14)

where ⊗ denotes quaternion product. This error representation is common when estimating

quaternions, since ˜̄q is an over-determined representation of the orientation error. Hence,

the estimation error covariance associated with ˜̄q would be singular. To avoid singularity,

the covariance associated with θ̃ is maintained instead.
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To summarize, the two modes of operation are:

• Mapping mode: estimates x using the measurement set z.

• Radio SLAM mode: estimates x′ using the measurement set z′.

The EKF time update and measurement update for each mode are provided next.

4.3.3 EKF Time Update

The time update should be adjusted according to the current operation mode to account for

the state transformation from (4.12) to (4.13).

Time Update Equations for Mapping mode

During the mapping mode, the EKF produces the time update estimate of x(k+1), denoted

x̂(k+1|j) , E[x(k+1)|{z(i)}ji=1], and an associated prediction error covariance P(k+1|j),

where k ≥ j, and j is the last time-step an INS-aiding source was available. The time

update equations for each component of (4.12) are provided next. The time update of ximu

is produced using zimu through the INS illustrated in Fig. 4.3. The discrete-time linearized

equations to produce the one-step time update x̂imu are provided in Appendix A.5. The

receiver’s one-step clock state time update follows from (4.6) and is given by

x̂clk,r(k + 1|j) = Fclkx̂clk,r(k|j). (4.15)

The SOPs’ one-step state time update follows from (4.10) and is given by

x̂sop,m (k+1|j) = Fsopx̂sop,m(k|j), m = 1, . . . ,M. (4.16)
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Next, the one-step prediction error covariance is produced according to

P(k + 1|j) = F(k)P(k|j)FT(k) +Q(k), (4.17)

F(k) , diag [Φimu(k + 1, k), Fclk, Fsop, . . . , Fsop] ,

Q(k) , diag [Qimu(k), Qclk,r, Qsop, . . . , Qsop] ,

where Φimu and Qimu are the discrete-time linearized INS state transition matrix and process

noise covariance, respectively, which are provided in Appendix A.6.

Time Update Equations for Radio SLAM Mode

During the radio SLAM mode, the state time update has the same form as the mapping

mode, except that (4.15) is omitted and the SOP state time update (4.16) is replaced with

the SOP position and relative clock state time update, which is given by

x̂′
sop,m (k+1|j) = Fsopx̂

′
sop,m(k|j), m = 1, . . . ,M.

The prediction error covariance P′(k + 1|j) has the same form as (4.17), except that F is

replaced with F′ , diag [Φimu, Fsop, . . . , Fsop] and Q is replaced with Q′ , MQMT.

4.3.4 EKF Measurement Update

The measurement update should be adjusted according to the current operation mode to

account for the change of measurement availability from z to z′.
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Measurement Update Equations for Mapping Mode

Assuming z(k+1) is available, the EKF measurement update step will produce x̂(k+1|k+1).

The standard EKF measurement update equations are slightly modified to map the 3-D

orientation error correction to the 4-D quaternion state estimate. To avoid convoluting this

section, the full set of EKF state measurement update equations to procude x̂(k+1|k+1) are

provided in Appendix A.7. Given a prediction error covariance P(k+1|j), the corresponding

corrected error covariance is given by

P(k+1|k+1) = P(k+1|j)−K(k+1)S(k+1)KT(k+1),

K(k+1) , P(k+1|j)HT(k+1)S−1(k+1), (4.18)

S(k+1) , H(k+1)P(k+1)HT(k+1) +R(k+1), (4.19)

where H is the measurement Jacobian and R is the measurement noise covariance of z. In

the mapping mode, i.e., z ,
[

zT

gnss, z
T

sop

]T

, the measurement Jacobian H is

H =
[

HT

gnss, H
T

sop

]T

,

Hgnss =













01×3 l̂Tgnss,1 01×9 hT

clk 01×5M

...
...

...
...

...

01×3 l̂Tgnss,N 01×9 hT

clk 01×5M













,

Hsop=













01×3 l̂Tsop,1 01×9 hT

clk ĥT

sop,1 · · · 0

...
...

...
...

...
. . .

...

01×3 l̂Tsop,M 01×9 hT

clk 0 · · · ĥT

sop,M













,

where l̂gnss,n ,
er̂b−

ergnss,n

‖er̂b−ergnss,n‖
, hclk , [1, 0]T, l̂sop,m ,

er̂b−
er̂sop,m

‖er̂b−er̂sop,m‖
, and hsop,m ,

[

−l̂Tsop,m, −hT

clk

]T

.
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Measurement Update Equations for Radio SLAM Mode

During the radio SLAM mode, the state and covariance update equations have the same

form, except the measurement Jacobian is adjusted from H to H′ to account for only SOP

pseudoranges being available, i.e., z′ = zsop and R is replaced with R′, which is the mea-

surement noise covariance of z′. The adjusted measurement Jacobian is

H′=













01×3 l̂Tsop,1 01×9 vT

sop,1 · · · 0

...
...

...
...

. . .
...

01×3 l̂Tsop,M 01×9 0 · · · vT

sop,M













,

where vsop,m ,

[

−l̂Tsop,m, h
T

clk

]T

.

4.4 Simulation Study

This section presents simulation results demonstrating a UAV navigating via the tightly-

coupled SOP-aided INS framework developed in Section 4.3. The SOP-aided INS is first

compared against a traditional tightly-coupled GNSS-aided INS. Then, the performance of

the SOP-aided INS is studied by varying the quantity and quality of exploited terrestrial

SOPs.

4.4.1 Numerical Simulator Description

A numerical simulator was developed to generate:

• “Ground truth” trajectory of the UAV: The trajectory was generated using

a six degrees of freedom (6DoF) kinematic model [119], which included a straight
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segment with linear acceleration, a 5 degree pitching climb, a straight segment without

acceleration, and four 60 degree banking turns, performed over a 200 second period.

During the first 100 seconds of the trajectory, the UAV completes all maneuvers except

for the last three banking turns, which are then completed during the remaining 100

seconds. This particular trajectory was chosen because it excites all 6DoF of the UAV,

i.e., both horizontal and vertical directions and all three angles (roll, pitch, and yaw),

allowing the SOP-aided INS to be studied under various maneuvers. The trajectory

that the UAV traversed is illustrated in Fig. 4.4.

• Gyroscope and accelerometer data: This data was generated at 100 Hz according

to (4.1) and (4.2), respectively, for a tactical-grade and a consumer-grade IMU. The

random noise for each of the axes of the tactical-grade IMU was set to have a PSD

of 10 deg /
√
hr and 1000 µg/

√
Hz for the gyroscope and accelerometer, respectively.

The random noise for consumer-grade IMUs are typically stated in terms of total

accumulated noise at the output of the sensor. Each axis of the consumer-grade IMU

was set to have an accumulated noise of 0.3 deg /s and 2.5 mg for the gyroscope and

accelerometer, respectively. The evolution of the biases were generated according to

(4.3) and (4.4) using driving process noise with spectra set to Swgyr
≡ 10−8 · I3×3 and

Swacc
≡ 10−8 · I3×3, respectively. These spectra are mapped online to the discrete-time

noise covariances Qngyr
, Qnacc

, Qwgyr
, and Qwacc

through the equations provided in

Appendix A.6.

• GPS L1 C/A pseudoranges: These pseudoranges were generated at 1 Hz ac-

cording to (4.9), using satellite orbits produced from Receiver Independent Exchange

(RINEX) files downloaded from a Continuously Operating Reference Station (CORS)

server [124]. The GPS pseudorange measurement noise {vgnss,n(j)}Nn=1 were set to be
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independent with a measurement noise variance computed according to [125]

σ2
gnss,n,j=

c2temlBDLLT
2
c σ

2
s

2(C/N0)n,j

[

1+
1

TCO(C/N0)n,j

]

, (4.20)

where teml ≡ 0.5 chips is the early-minus-late correlator spacing, BDLL ≡ 0.05 Hz is the

delay lock loop (DLL) bandwidth, Tc ≡ 1/(1.023×106) s is the chip duration, (C/N0)n,j

(in Hz) is the time-varying received carrier-to-noise ratio, which was derived from the

RINEX files, σs ≡ 17 is a scaling parameter to account for unmodeled errors, and

TCO ≡ 10 ms is the coherent integration time. Another common model often employed

is the scaled C/N0 - elevation model [126]. The receiver was set to be equipped with

a typical temperature-compensated crystal oscillator (TCXO), with values specified in

Table 4.1.

• SOP pseudoranges: These pseudoranges were generated at 5 Hz according to (4.11).

The SOP pseudorange measurement noise {vsop,m(j)}Mm=1 were set to be independent

with a time-varying measurement noise variance which corresponds to code division

multiple access (CDMA) signals, computed according to (4.20), except that teml ≡ 1,

σ2
gnss,n,j is replaced with σ2

sop,m,j, Tc ≡ 1/(1.2288× 106), σs ≡ 22, TCO ≡ 1/37.5 s, and

the carrier-to-noise ratio (C/N0)n,j is replaced with a time-varying log-distance path

loss model [127]

(C/N0)
′
m,j = P0 − 10γ · log10(d(j)/D0),

(C/N0)m,j = 10[(C/N0)′m,j/10],

where P0 ≡ 56 dB-Hz is a calibration carrier-to-noise ratio at a distance D0 ≡ 1400

m, d(j) , ‖erb(j) − ersop,m‖2, and γ ≡ 2 is the path loss exponent. The calibration

values P0 and D0 are values commonly observed by the authors during experimental

campaigns [25]. The SOP pseudorange measurement noise variance computation as-
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sumes that the correlation function within the DLL is equivalent to GPS. This is a

reasonable assumption for cellular CDMA signals when teml is between 0.8 and 1.25

chips. More sophisticated models are discussed in [128]. The SOP dynamics evolved

according to (4.10). Each SOP was set to be equipped with a typical oven-controlled

crystal oscillator (OCXO), with values specified in Table 4.1. The SOP transmitters’

positions {ersop,m}4m=1 were surveyed from cellular tower locations in downtown Los

Angeles, California, USA.

4.4.2 Simulation Results: Tightly-coupled SOP-Aided INS vs. GNSS-

Aided INS

To study the navigation performance of the tightly-coupled SOP-aided INS, it is compared

against a tightly-coupled GNSS-aided INS during GNSS-available and GNSS-unavailable

modes. The SOP-aided INS framework was assumed to be equipped with a consumer-

grade IMU, while the GNSS-aided INS framework was assumed to be equipped with a

tactical-grade IMU. For both frameworks, GPS pseudoranges were set to be available for

t ∈ [0, 100) seconds and unavailable for t ∈ [100, 200] seconds. During the first 100 seconds,

the inertial radio SLAM framework is in the mapping mode, which causes the estate estimates

to begin to converge. This will be illustrated later in the results. The initial estimates (at

t = 0 seconds) of the UAV’s states were initialized with a random error drawn according to

x̃gnss,ins(0|0) ∼ N
[

017×1, Pxgnss,ins
(0|0)

]

, where

Pxgnss,ins
(0|0) , diag

[

Pximu
(0|0), Pxclk,r

(0|0)
]

Pximu
(0|0)≡diag

[

(10−2)·I3×3, 9·I3×3, I3×3, (10
−4)·I6×6

]

Pxclk,r
(0|0) ≡ diag [9, 1] .
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For the SOP-aided INS framework, the SOPs’ state estimates were initialized according to

x̂sop,m(0|0) ∼ N [xsop,m(0),Psop(0|0)], for m = 1, . . . ,M , with initial values xsop,m(0) ≡
[

erT

sop,m, 10
4, 10

]T

, Psop(0|0) ≡ (104) · diag [I3×3, 0.1, 0.01]. Note that the estimate of the

SOPs’ states are initialized by drawing from a Gaussian distribution with a mean equal to

the true states and a covariance to capture uncertainty. This initialization scheme is used

in simulation to ensure consistent initial priors in the EKF. In practice, if the initial SOPs’

states are completely unknown, then a small time-history of pseudoranges from the beginning

of the run can be saved and processed through a batch filter to estimate these states. Then,

the estimate and associated covariance of the batch filter can be used to initialize the EKF.

As long as the vehicle is moving and has access to GPS, the position and clock states of

the SOPs are observable [74,123]. The simulated trajectory, SOP positions, the GPS cutoff

location are illustrated in Fig. 4.4.

UAV's trajectory SOP locations GPS cutoff location

SOP 4

SOP 3 SOP 2

SOP 1

0km0km 1km1km

Figure 4.4: True trajectory the UAV traversed (yellow) and SOP locations (orange trans-
mitters). The GPS cutoff location is marked with X.

Before the simulation results are presented, it is worth discussing the feasibility of the simula-

tion scenario illustrated in Fig. 4.4. Notice that at some points during the UAV’s trajectory,

some of the SOPs are around 5 km from the UAV and have overlapping coverage areas with

each other. In practice, towers typically transmit in all directions from three sets of antennas
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that are spaced 120 degrees apart. Since SOP navigation receivers are not subscribers to the

network (e.g., as a cell phone user is), the receiver is not limited to the artificial coverage

areas that service provider user equipment impose to ensure that the device has optimal

reception. A universal software radio peripheral (USRP) mounted to a vehicle can certainly

sample and receive powerful signals from overlapping coverage areas, especially if they are

flying in the air over the buildings. During several experiments conducted by the authors,

powerful signals from more than 10 towers were simultaneously received, some of which were

more than 6 km away from the receiver [129].

The resulting estimation error trajectories and corresponding ±three-standard deviation

bounds (±3σ) for the position of the UAV and SOP 1 are plotted in Fig. 4.5 and Fig. 4.6,

respectively. The following may be concluded from Fig. 4.5 and Fig. 4.6. First, when

GPS pseudoranges became unavailable at t = 100 seconds, the UAV’s north, east, and down

estimation error variance associated with the traditional GPS-aided INS begin to diverge

unboundedly, as expected, whereas a bound can be established for the errors associated

with the SOP-aided INS. Second, before GPS cutoff, the SOP-aided INS with a consumer-

grade IMU yielded lower estimation error variances when compared to the traditional GPS-

aided INS with a tactical-grade IMU; therefore, including SOP pseudoranges along with GPS

pseudoranges to aid an INS may relax requirements on IMU quality. Third, the SOPs’ north,

east, and down estimation error variances suddenly reduce at approximately 65 seconds due

to the UAV’s left banking turn, causing a rapid change in the angle of the line-of-sight

vector from the UAV to the SOP, which improves the estimability of the SOP’s position.

The uncertainty continues to reduce after GPS is cut off, indicating the SOPs’ position states

are stochastically observable in the radio SLAM mode. Fourth, the SOPs’ position errors are

consistent with the ±3σ bounds, i.e., the produced error variances are correctly representing

the estimation uncertainty. This can be seen visually in Fig. 4.7, which illustrates that

the true position of SOP 1 is contained within the final 99th–percentile uncertainty ellipsoid,

which is centered at the final estimated position. Similar behavior was observed for SOPs 2, 3,
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and 4 and after simulation runs using different realizations of process noise and measurement

noise.

During these simulations it was assumed that pseudorange measurements from all four SOPs

were available at 5 Hz, without interruption. If at any point in time pseudoranges become

faulty from any of the SOPs, then the fault can be detected and the pseudoranges associ-

ated with that SOP should be temporarily excluded using a receiver autonomous integrity

monitoring (RAIM) framework for SOPs [130]. The UAV’s position errors and associated

estimation uncertainty will increase when an SOP is excluded, since less measurements are

available. The degradation in performance due to excluding a varying number of SOP’s

pseudoranges is studied in the next subsection.

The plots in Fig. 4.8(a)-(b) correspond to the estimation errors of the receiver’s clock bias

cδtr and clock drift cδ̇tr, respectively, when GPS was available and the plots in Fig. 4.8(c)-

(d) correspond to the estimation errors of SOP 1’s clock bias cδtsop,1 and clock drift cδ̇tsop,1,

respectively, while GPS was available. Fig. 4.8(e)-(f) correspond to the estimation errors

of the relative bias c∆δt1 and drift c∆δ̇t1 between the UAV-mounted receiver and SOP 1

that were initialized when GPS pseudoranges became unavailable, as was described in Sub-

section 4.3.2. Note from Fig. 4.8(a)-(b) that including SOP pseudoranges along with GPS

pseudoranges reduces the estimation uncertainty associated with cδtr and cδ̇tr compared

to using GPS pseudoranges alone. Also note from Fig. 4.8(e)-(f), that the initialization

scheme discussed in Subsection 4.3.2 produces consistent estimates of c∆δt1 and drift c∆δ̇t1

the moment GPS gets cut off and that these states are estimable during the GPS cut off

period. Similar behavior has been observed through extensive experimental campaigns con-

ducted by the authors [37,83,87]. In contrast, if cδtr, cδ̇tr and cδtsop,1, cδ̇tsop,1 were estimated

individually, their estimation errors would have diverged unboundedly [123].
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Figure 4.5: The resulting north, east, and down position errors for the UAV are illustrated
for two frameworks. In both frameworks, the UAV had access to GPS pseudoranges for
only the first 100 seconds while traversing the trajectory illustrated in Fig. 4.4, after which
GPS pseudoranges were cut off. The GPS cutoff time is marked with a red dashed vertical
line. The first framework used a tightly-coupled GPS-aided INS with a tactical-grade IMU
(orange). In the second framework used an SOP-aided INS (black).

4.4.3 Performance Analysis

Several important factors affect the navigation performance when exploiting SOP pseudo-

ranges to aid an INS. The main factors are: quantity of SOPs, quality of SOP-equipped

oscillators, quality of receiver-equipped oscillator, receiver-to-SOP geometry, channel (e.g.,

line of sight conditions and multipath), and outliers due to unmodeled effects. In what fol-

lows, the performance sensitivity of the SOP-aided INS is studied by varying the quantity of

SOPs and quality of their equipped oscillators using the environment illustrated in Fig. 4.4.
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Figure 4.6: The resulting north, east, and down position errors and corresponding ±3σ
bounds (black) for SOP 1. The GPS cutoff time is marked with a red dashed vertical line.

true tower location

estimated tower location

estimation uncertainty ellipsoid

Figure 4.7: True position, final position estimate, and final 99th–percentile uncertainty ellip-
soid for SOP 1.
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Figure 4.8: Estimation error trajectories and ±3σ bounds for the clock states of the SOP-
aided INS framework (black) and traditional GPS-aided INS (orange). (a) and (b) cor-
respond to the receiver’s clock bias cδtr and clock drift cδ̇tr, respectively, while GPS was
available and (c) and (d) correspond to SOP 1’s clock bias cδtsop,1 and clock drift cδ̇tsop,1,
respectively while GPS was available. (e) and (f) correspond to the relative bias c∆δt1 and
drift c∆δ̇t1 between the UAV-mounted receiver and SOP 1 during the radio SLAM mode.

Varying Quantity of SOPs

To study the performance sensitivity of the SOP-aided INS framework for a varying number

of SOPs, six separate simulation runs were conducted. The first four runs employed the

SOP-aided INS with a consumer-grade IMU and M = 1, . . . , 4 SOPs. The last two runs

employed a traditional tightly-coupled GPS-INS and no SOPs (M = 0) with (i) a tactical-

grade IMU and (ii) a consumer-grade IMU. Fig. 4.9 illustrates the resulting logarithm of
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the determinant of the position estimation error covariance log {det [Prb(k|j)]} for each run,

which is related to the volume of the estimation uncertainty ellipsoid [54].

Figure 4.9: The logarithm of the determinant of the estimation error covariance of the UAV’s
position states log {det [Prb(k|j)]}. The two curves for M = 0 correspond to a tightly-
coupled GPS-aided INS equipped with a tactical-grade IMU (purple) and consumer-grade
IMU (green). The curves for M = 1, 2, 3, 4 correspond to the tightly-coupled SOP-aided INS
with a consumer-grade IMU for a varying number of SOPs. The GPS cutoff time is marked
with a red dashed vertical line.

The following may be concluded from Fig. 4.9. First, the estimation uncertainties produced

by the SOP-aided INS are reduced when M is increased, and the sensitivity of the estimation

uncertainty to varying M is captured by the distance between the log {det [Prb]} trajectories.

Second, although the SOP-aided INS used a consumer-grade IMU, the position estimation

uncertainty for M = 1, . . . , 4 was always lower than the position estimation uncertainty

produced by a traditional tightly-coupled GPS-aided INS using a tactical-grade IMU. Third,

the estimation uncertainties produced by the GPS-aided INS began to diverge unboundedly

when GPS was cut off, whereas a bound may be specified for the uncertainties produced by

the SOP-aided INS for M = 1, . . . , 4.
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Varying Quality of SOP Clocks

To study the performance sensitivity of the SOP-aided INS framework for a varying quality

of SOP clocks, four simulation runs were conducted, where in each run all four SOPs were

assumed to be equipped with the same clock quality: (i) worst TCXO, (ii) typical TCXO,

(iii) typical OCXO, and (iv) best OCXO. In all runs, the UAV-mounted receiver was assumed

to be equipped with a typical TCXO. The characterizing parameters of the four oscillator

grades are tabulated in Table 4.1. The resulting 3σ bounds for exploiting four SOPs, which

were assumed to all be equipped with a worst TCXO (black), typical TCXO (green), typical

OCXO (blue), and best OCXO (purple), are plotted in Fig. 4.10. The four grades of

oscillators considered and their characterizing parameters are tabulated in Table 4.1.

Table 4.1: Quality of SOP Clocks

Quality parameters {h0,sop,m, h
−2,sop,m}

Worst TCXO {2.0× 10−19, 2.0× 10−20}
Typical TCXO {9.4× 10−20, 3.8× 10−21}
Typical OCXO {8.0× 10−20, 4.0× 10−23}
Best OCXO {2.6× 10−22, 4.0× 10−26}

From Fig. 4.10 it may be concluded that while GPS was available, the sensitivity of the

estimation performance to SOP clock quality was minimal. When GPS pseudoranges become

unavailable, the estimation performance was significantly more sensitive to the SOP clock

quality, and the sensitivity is captured by the distance between the 3σ trajectories. Although

the uncertainty in the estimates were larger when SOPs were equipped with a worst TCXO,

a bound may still be established.
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Figure 4.10: Estimation error trajectories and ±3σ bounds for the UAV’s north, east, and
down position states with the tightly-coupled SOP-aided INS assuming all SOPs to be
equipped with (i) worst TCXO (black), (ii) Typical TCXO (green), (iii) typical OCXO
(blue), and (iv) best OCXO (purple). The GPS cutoff time is marked with a red dashed
vertical line.

4.5 Experimental Demonstration

This section presents experimental results demonstrating a UAV navigating with the tightly-

coupled SOP-aided INS framework using real IMU data, signals from three cellular SOP

transmitters, and signals from 11 GPS satellites (when available). For a comparative analysis,

results are also presented of the UAV navigating with a traditional tightly-coupled GPS-aided

INS using the same IMU data and GPS signals. The following experiment was conducted by

collecting data and then postprocessing the data in the lab. The experiment used an Autel

Robotics UAV [131] equipped with:

103



• Tri-band (144/400/1200MHz) cellular omnidirectional antenna from Ettus Research

[132].

• Consumer-grade L1 GPS active patch antenna from QGP Supply [133].

• Dual-channel USRP from Ettus Research [134], which was used to simultaneously

downmix and sample cellular CDMA signals at 3.2 mega-samples per second (MSPS).

Pseudoranges to three cellular SOPs were extracted from these samples at 5 Hz by pro-

cessing them through the Multichannel Adaptive TRansceiver Information eXtractor

(MATRIX) software-defined radio (SDR) [24,128], developed by the Autonomous Sys-

tems Perception, Intelligence, and Navigation (ASPIN) Laboratory at the University

of California, Irvine.

• Proprietary consumer-grade IMU, developed by Autel Robotics. The Autel Robotics

UAV allows access to raw IMU data, which were used for the time update at 100 Hz of

the orientation, position, and velocity of the UAV as illustrated in Fig. 4.3. The IMU

data is also coupled with altimeter and GPS data in the UAV’s onboard navigation

system to produce an integrated navigation solution. The UAV allows access to this

navigation solution, which was used as the ground truth result with which the proposed

tightly-coupled SOP-aided INS framework was compared.

Fig. 4.11 depicts the experimental software and hardware setup.

The UAV was commanded to traverse the trajectory plotted in Fig. 4.13(a), in which GPS

was available for the first 50 seconds, then unavailable for the last 30 seconds. The SOP-aided

INS framework was initialized with a state estimate given by

x̂(0|0) =
[

x̂T

gnss,ins(0|0), x̂T

sop,1(0|0), . . . , x̂T

sop,3(0|0)
]T

,

where the estimates of orientation b
e
ˆ̄q(0|0), position er̂b(0|0), and velocity e ˆ̇rb(0|0) were set
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to values parsed from the beginning of the UAV’s navigation system log files, which were

recorded during the trajectory, and the IMU biases b̂gyr and b̂acc were initialized by averag-

ing 5 seconds of gravity-compensated IMU measurements while the vehicle was stationary

and after the IMU had warmed up. The cellular SOP transmitters’ initial state estimates

were drawn according to x̂sop,m(0|0) ∼ N
([

erT

sop,m,x
T

clk,sop,m(0)
]T

,Psop,m(0|0)
)

. The true

transmitters’ positions {ersop,m}3m=1 were surveyed beforehand according to the framework

described in [118] and verified using Google Earth. The initial clock bias and drift

xclk,sop,m(0) = c
[

δtsop,m(0), δ̇tsop,m(0)
]T

m = 1, . . . , 3,

were solved for by using the initial set of cellular transmitter pseudoranges (4.11) according

to

cδtsop,m(0) = ‖erb(0)− ersop,m‖+ cδtr(0)− zsop,m(0),

cδ̇tsop,m(0) = [δtsop,m(1)− δtsop,m(0)]/T,

where cδtsop,m(1) = ‖erb(1)−ersop,m‖+cδtr(1)−zsop,m(1) and the receiver’s clock bias cδtr(0)

was provided by the GPS receiver while GPS was available.

The corresponding estimation error covariance was initialized according to

P(0|0) = diag [Pgnss,ins(0|0),Psop,1(0|0), . . . ,Psop,3(0|0)] ,

Pxgnss,ins
(0|0) , diag

[

Pximu
(0|0), Pxclk,r

(0|0)
]

Pximu
(0|0)≡diag

[

(10−1)·I3×3, 9·I3×3, I3×3, (10
−4)·I6×6

]

Pxclk,r
(0|0) ≡ diag [0.1, 0.01]

Psop,m(0|0) ≡ 104 · diag [I3×3, 0.3, 0.03] , m = 1, 2, 3.

Signals may be acquired later in the run from SOPs that were not initialized in the EKF
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while the receiver had access to GPS. Although this case is not considered in this experiment,

it is worth mentioning here that a batch filter that uses pseudoranges collected over a short

window of time may be used to initialize the estimates of the newly acquired SOP’s in the

absence of GPS [80]. To incorporate the uncertainty of the vehicle’s position states, they

may be added to the estimated vector and the INS-produced vehicle’s position may be fed

as measurements along with the SOP pseudoranges.

The process noise covariance of the receiver’s clock Qclk,r was set to correspond to a typical

TCXO. The process noise covariances of the cellular transmitters’ clocks were set to corre-

spond to a typical OCXO, which is usually the case for cellular transmitters [15, 114]. The

power spectral density matrices associated with the gyroscope and accelerometer noise were

set to Sngyr
≡ (7×10−4)2 ·I3×3 and Snacc

≡ (5×10−4)2 ·I3×3, respectively. The power spectral

density matrices associated with the gyroscope and accelerometer bias variations were set

to Swgyr
≡ (1 × 10−4)2 · I3×3 Swacc

≡ (1 × 10−4)2 · I3×3, whose values were found empiri-

cally using raw IMU data. These spectra are mapped to the discrete-time noise covariances

Qngyr
, Qnacc

, Qwgyr
, and Qwacc

online through the equations provided in Appendix A.6. The

measurement noise variances {σ2
sop,m}3m=1 were computed according to (4.20), except that

σ2
gnss,n,j is replaced with σ2

sop,m,j, Tc ≡ 1/(1.2288 × 106), σs ≡ 10, TCO ≡ 1/37.5 s, and the

carrier-to-noise ratio C/N0 produced by the MATRIX SDR for each SOP was used. The

time history of C/N0 for each SOP is illustrated in Fig. 4.12.

The UAV flew in the vicinity of three cellular SOPs with an initial uncertainty ellipsoid

illustrated in Fig. 4.13(a). It can be seen in Fig. 4.13(b) that after the GPS cutoff point, the

INS only solution (red) began to drift from the truth, resulting in a large final error. On the

other hand, the tightly-coupled SOP-aided INS solution (green) prevented this drift by using

the pseudoranges drawn from the three cellular SOPs, resulting in a significantly reduced

final error. The north-east root mean squared error (RMSE) and final error for (i) GPS-

aided INS framework after GPS cutoff (i.e., INS only) and (ii) SOP-aided INS framework
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after GPS cutoff are summarized in Table. 4.2. The final estimated transmitter location and

corresponding 95th–percentile uncertainty ellipse for two of the SOP transmitters are shown

in Fig. 4.13(c)-(d). The final localization errors for the three SOPs were 26.6, 19.6, and 59.1

m, respectively.

Note the following two points from these results. First, the final error of the UAV’s position

is smaller than the SOPs’ position errors. Since the SOP-aided INS is EKF-based and the

UAV has a prior knowledge of its state, the UAV’s final position error can be smaller than

the aiding sources’ final position errors. The UAV’s position error and uncertainty may grow

in this time-window and the growth rate is dependent on IMU quality, the uncertainty in

the SOPs’ positions and clock states, and measurement quality. However, the pseudorange

measurements from the SOPs are still significantly decreasing the error and uncertainty

growth rate compared to an INS alone. Second, the relatively large estimation error of the

third SOP is mostly attributed to a lower carrier-to-noise ratio compared to the other SOPs,

which results in a higher measurement noise variance. Also, there were a small number

of outliers in the pseudorange measurements that were not removed. To further enhance

performance, these outliers may be detected and the SOP responsible for the outliers may

be temporarily excluded using a RAIM approach for SOPs [130]. Despite not removing the

small number of outlier pseudorange measurements, the final position error was smaller than

the initial uncertainty and the position estimate was captured within the final estimation

uncertainty ellipse.

Table 4.2: Experimental Estimation Errors after GPS cutoff

Estimation framework RMSE [m] Final error [m]

INS only 18.94 57.30

SOP-aided INS 5.84 9.59
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Figure 4.11: Experiment software and hardware setup.
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Figure 4.12: Time history of C/N0 for SOP 1,2, and 3, produced by the MATRIX SDR.
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Figure 4.13: (a) Experimental environment showing the UAV’s trajectory, cellular SOPs’
locations, initial SOPs’ position uncertainties, and final position uncertainties. (b) UAV’s
trajectory before and after GPS cutoff: (i) white: ground truth, (ii) green: SOP-aided INS
before GPS cutoff, (iii) blue: SOP-aided INS after GPS cutoff, and (iv) red: GPS aided
INS after GPS cutoff, i.e., INS only. (c) and (d) True and estimated SOP locations and
corresponding final uncertainty ellipses.
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Chapter 5

Information Fusion and

Communication Strategies for

Collaborative SOP-Aided Inertial

Navigation

This chapter expands the radio SLAM concept that was used for SOP-aided INS developed

and studied in the previous chapter by introducing collaboration and deals with the inherent

burdens of communication between collaborators. Specifically, information and communi-

cation strategies are presented and studied for collaborating vehicles aiding their INSs with

shared INS data and SOP pseudoranges. This chapter is organized as follows. Section 5.1

provides a high-level description of the communication and information fusion strategies

that this chapter studies. Section 5.2 introduces new notation for the dynamics model of

the SOPs and navigating vehicles as well as the receivers’ measurement model. Section 5.3

describes the EKF-based CoRSLAM framework, an efficient method to communicate INS

and SOP information between collaborators, and the TOA and TDOA information fusion
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strategies. Section 5.4 compares the estimation performance of each fusion strategy. Section

5.7 develops an event-based communication scheme.

5.1 Problem Description

A high-level block diagram of the developed inertial CoRSLAM framework that enables a

team of navigating vehicles to share INS data, GNSS pseudoranges, and SOP observables

is illustrated in Fig. 5.1(a). During the time between measurement epochs, each vehicle

uses its IMU data and clock models to perform an EKF time update and then packages INS

information into Λn to share it with the other navigating vehicles. At each measurement

epoch, receivers equipped on each vehicle produce pseudoranges to GNSS satellites (when

GNSS signals are available) and observables to SOP emitters. This information is then

sent to a local EKF measurement update step and is packaged into Λn along with the INS

information. This chapter answers three questions regarding how the INS, GNSS, and SOP

information should be shared between the navigating vehicles and fused in their navigation

filters: 1) how should SOP observables be fused: (i) TOA or (ii) TDOA? 2) What INS

information should be packed into Λn and communicated, so that consistent vehicle position

estimates are produced while maintaining minimal communicated data? 3) When should Λn

be transmitted: at a fixed-rate, i.e., at each measurement epoch, or using an event-based

scheme, which closes τ only if a user-specified position estimation error constraint would be

violated if τ remains open?

5.2 Model Description

In this section, the dynamics model of the SOP transmitters and the vehicles’ states as well as

the measurement models are provided. These models are used in the subsequent sections for
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Figure 5.1: (a) A High-level diagram of an EKF-based collaborative INS aided by GNSS
(when available) and SOP pseudoranges. The SOP pseudoranges are fused as either: (i)
TOA or (ii) TDOA. This fusion takes place by packaging information into {Λn}Nn=1 and
broadcasting them: (i) during every measurement epoch (i.e., at a fixed rate) or (ii) using
an event-based strategy, which employs a mechanism to close τ only when needed.

the development of the EKF-based inertial CoRSLAM framework. New notation is defined

in this chapter to deal with multiple navigating vehicles.

5.2.1 SOP Dynamics Model

Each SOP will be assumed to emanate from a spatially-stationary terrestrial transmitter,

and its state vector will consist of its position states rsop,m , [xsop,m, ysop,m, zsop,m]
T ∈ R3

and clock error states xclk,sop,m , [cδtsop,m, cδ̇tsop,m]
T ∈ R2, where c is the speed of light,

δtsop,m is the clock bias, δ̇tsop,m is the clock drift, m = 1, . . . ,M , and M is the total number

of SOPs.
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The SOP’s discretized dynamics are given by

xsop,m (k+1) = Fsop xsop,m(k) +wsop,m(k), k = 1, 2, . . . ,

Fsop =







I3×3 03×2

02×3 Fclk






, Fclk=







1 T

0 1






, (5.1)

where T is the constant sampling interval, xsop,m =
[

rT

sop,m, x
T

clk,sop,m

]T ∈ R5, wsop,m ∈ R5 is

the process noise, which is modeled as a discrete-time zero-mean white noise sequence with

covariance Qsop,m = diag [03×3, c
2Qclk,sop,m], and

Qclk,sop,m =







Swδtsop,m
T + Sw

δ̇tsop,m

T 3

3
Sw

δ̇tsop,m

T 2

2

Sw
δ̇tsop,m

T 2

2
Sw

δ̇tsop,m
T






.

The terms Swδtsop,m
and Sw

δ̇tsop,m
are the clock bias and drift process noise power spectra,

respectively.

5.2.2 Vehicle Dynamics Model

The nth navigating vehicle’s state vector is xr,n =
[

xT

ins,n, x
T

clk,r,n

]T ∈ R18, where xins,n ∈ R16

is the INS’s state vector, xclk,r,n ∈ R2 is the navigating vehicle-mounted receiver’s clock state

vector, n = 1, . . . , N , and N is the total number of navigating vehicles.

The INS 16-state vector is

xins,n =

[

bn
g q̄

T
, rT

bn
, ṙT

bn
, bTgyr,n, bTacc,n

]T

,

where bn
g q̄ ∈ R4 is the 4-D unit quaternion vector, which represents the orientation of a body

frame {bn} fixed at the nth navigating vehicle with respect to a global frame {g}, e.g., the
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Earth-centered Earth-inertial (ECI) frame [135]; rbn ∈ R3 and ṙbn ∈ R3 are the 3-D position

and velocity, respectively, of the navigating vehicle expressed in {g}; and bgyr,n ∈ R3 and

bacc,n ∈ R3 are the gyroscope and accelerometer biases, respectively.

Receiver Clock State Dynamics

The nth vehicle-mounted receiver’s clock states will evolve according to

xclk,rn(k + 1) = Fclkxclk,r,n(k) +wclk,r,n(k), (5.2)

where wclk,r,n ∈ R2 is the process noise vector, which is modeled as a discrete-time zero-mean

white noise sequence with covariance Qclk,r,n, which has an identical form toQclk,sop,m, except

that Swδtsop,m
and Sw

δ̇tsop,m
are now replaced with receiver-specific spectra Swδtr,n

and Sw
δ̇tr,n

,

respectively.

INS State Kinematics

The INS states will evolve in time according to

xins,n (k + 1) = fins
[

xins,n(k),
bnω(k), gabn(k)

]

,

where fins is a vector-valued function of standard strapdown kinematic equations, which

integrates the true 3-D rotational rate vector bnω in the body frame and the 3-D acceleration

of the IMU gabn in the global frame to produce bn
g q̄(k + 1), rbn(k + 1), and ṙbn(k + 1) and

uses a velocity random walk model for the biases, which is given by

bgyr,n(k + 1) = bgyr,n(k) +wgyr,n(k), (5.3)

bacc,n(k + 1) = bacc,n(k) +wacc,n(k), (5.4)
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where wgyr,n and wacc,n are process noise vectors that drive the in-run bias variation (or bias

instability) and are modeled as white noise sequences with covariance Qwgyr,n and Qwacc,n,

respectively. In general, the function fins my take several forms, which depend on the chosen

navigation frame and the INS error models employed. To simplify notation and the discussion

throughout the chapter, this chapter develops an aided INS using an inertial frame (e.g., the

ECI frame).

IMU Measurement Model

The IMU on the nth navigating vehicle contains a triad-gyroscope and a triad-accelerometer,

which produce measurements nzimu ,
[

nωT

imu,
naT

imu

]T

of the angular rate and specific force,

which are modeled as

nωimu(k) =
bnω(k) + bgyr,n(k) + ngyr,n(k) (5.5)

naimu(k) =R
[

bn
g q̄(k)

]

(gabn(k)− ggn(k)) + bacc,n(k)

+ nacc,n(k), (5.6)

where R
[

bn
g q̄

]

is the equivalent rotation matrix of bn
g q̄, ggn is the acceleration due to gravity

acting on the nth navigating vehicle in the global frame, and ngyr,n and nacc,n are measure-

ment noise vectors, which are modeled as zero-mean white noise sequences with covariances

Qvgyr,n and Qvacc,n, respectively.
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5.2.3 Pseudorange Measurement Model

The pseudorange measurements made by the nth receiver on themth SOP, after discretization

and mild approximations discussed in [74], are modeled as

nzsop,m(j) = ‖rbn(j)− rsop,m‖2

+ c · [δtr,n(j)− δtsop,m(j)] +
nvsop,m(j), (5.7)

where nvsop,m is the measurement noise, which is modeled as a discrete-time zero-mean

white Gaussian sequence with variance nσ2
sop,m and j ∈ N represents the time index at which

{nzsop,m}Nn=1 is available, which could be aperiodic. The pseudorange measurement made by

the nth receiver on the lth GNSS SV, after compensating for ionospheric and tropospheric

delays, is related to the navigating vehicle’s states by

nzsv,l(j) = ‖rbn(j)− rsv,l(j)‖2

+ c · [δtr,n(j)− δtsv,l(j)] +
nvsv,l(j), (5.8)

where nzsv,l ,
nz′sv,l − cδtiono − cδttropo, δtiono and δttropo are the ionospheric and tropospheric

delays, respectively; nz′sv,l is the uncorrected pseudorange; nvsv,l is the measurement noise,

which is modeled as a discrete-time zero-mean white Gaussian sequence with variance nσ2
sv,l;

and l = 1, . . . , L, where L is the total number of GNSS SVs.

5.3 Collaborative Inertial Radio SLAM

In this section, the extended Kalman filter (EKF)-based inertial CoRSLAM framework illus-

trated in Fig. 5.1, that fuses either TOA or TDOA measurements from unknown SOPs and

GNSS pseudoranges (if available) to aid each navigating vehicle’s INS is presented and de-
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scribed in detail. A method to efficiently share INS data between collaborators is discussed.

The EKF time and measurement update equations are provided for the TOA and TDOA

fusion strategies.

5.3.1 EKF-Based CoRSLAM Framework

In a CoRSLAM framework, the states of the SOPs are simultaneously estimated along with

the states of the navigating vehicles. This can be achieved through an EKF with state vector

x ,
[

xT

r,1, . . . ,x
T

r,N , x
T

sop,1, . . . ,x
T

sop,M

]T

.

The EKF produces an estimate, given by x̂(k|j) , E[x(k)|Zj] of x(k), where E[ · | · ] is the

conditional expectation operator, Zj , {z(i)}ji=1, z is a vector of INS-aiding measurements

(e.g., from GNSS or SOPs), k ≥ j, and j is the last time-step an INS-aiding measurement

was available.

Collaborating navigating vehicles that estimate common states using mutual observations

traditionally fuse information (state estimates and/or observations) from each collaborator

using one of two main architectures:

• Centralized: Each vehicle sends raw sensor data to a central fusion center, which

estimates a common state vector and periodically sends the estimate to each vehi-

cle. Centralized architectures produce the most consistent estimates, i.e., the EKF-

produced estimation error covariance matches the covariance of the actual estimation

error, since all inter-vehicle correlations are properly maintained. The drawback is in

the large amount of raw sensor data that must be communicated to the central fusion

center. Furthermore, the central fusion center is a single point of failure for the system.

• Distributed: Each vehicle estimates a copy of the state vector using its own sensor
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data and then each vehicle shares and fuses these copies using covariance intersection

(or one of its variants). Distributed architectures typically require less data transmis-

sion between collaborators, since raw sensor data is filtered locally at each vehicle. The

drawback is in the difficulty of reaching consensus, i.e., in reaching agreement between

the estimate copies, when inter-vehicle correlations are unknown. While covariance

intersection techniques are used to fuse estimates with unknown inter-vehicle corre-

lations, they typically produce overly conservative estimates, i.e., the EKF-produced

estimation error covariance is larger than the actual covariance of the estimation error.

In contrast to traditional centralized and distributed approaches, the approach of the dis-

tributed CoRSLAM framework illustrated in Fig. 5.1 is for each navigating vehicle to monitor

the entire state vector x, but to distribute the INSs (the EKF time update step) amongst

the navigating vehicles and to optimize what information is shared in Λn (TOA or TDOA

from SOPs and what INS data) and how often Λn is transmitted for aiding corrections (the

EKF update step). This approach eliminates a single point of failure, reduces the amount of

transmitted data, and with the appropriate transmitted information in Λn, the entire state

vector x that is monitored at any particular vehicle will be brought into consensus with

the state vector monitored at all other vehicles. The distributed CoRSLAM framework’s

operation is summarized in algorithm 3.

Algorithm 3 Distributed CoRSLAM Framework

Given: x̂(j|j) and Px(j|j), each of the N vehicles conducts the following:
for n = 1, . . . , N

• Local Prediction: Locally produce x̂r,n(k|j) using an INS and clock models and
{x̂sop,m(k|j)}Mm=1 using SOP dynamics model.

• Communication: Package x̂rn(k|j), TOA (or TDOA) measurements, and INS
data into Λn and transmit Λn if τ is closed.

• Assimilation: Unpackage {Λi}Ni=1\n, assemble x̂(k|j), and produce Px(k|j).
• Correction: Perform EKF measurement update to produce x̂(k|k), and Px(k|k).

end for
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In the following sections, the TOA and TDOA information fusion strategies are developed

and compared. Both strategies have a common prediction (time update) step, which uses the

on-board INS of each vehicle and clock models. Both strategies use GNSS pseudoranges as

TOA measurements if they are available during the correction (measurement update) step.

The distinction between these strategies is in how the SOP pseudoranges are fused to aid the

navigating vehicles’ on-board INSs: either TOA or TDOA with reference to selected SOPs.

5.3.2 Local Prediction

Each vehicle only locally produces a prediction of its own state vector x̂r,n(k|j) and of the

SOPs’ {x̂sop,m(k|j)}Mm=1. The full state prediction x̂(k|j) and the corresponding prediction

error covariance Px(k|j) become available locally during the assimilation step, which is

described in Subsection 5.3.4.

State Prediction

To produce x̂r,n(k|j) =
[

x̂T

ins,n(k|j), x̂T

clk,r,n(k|j)
]T

, the INS on-board the nth navigating ve-

hicle integrates nzimu between aiding updates to produce a prediction of xins,n. The one-step

prediction is given by

x̂ins,n(j + 1|j) = fins[ x̂ins,n(j|j), nzimu(j + 1) ] , (5.9)

where the function fins contains standard INS equations, which depend on the navigation

frame used, the mechanization type, and the INS error model used. which are described

in [119,136]. Assuming there are κ time-steps between aiding updates, the navigating vehicle

uses IMU data {nzimu(i)}ki=j to recursively solve (5.9) to produce x̂insn(k|j), where k ≡ j+κ.

The vehicle-mounted receiver’s κ-step clock state prediction follows from (5.2) and is given
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by

x̂clk,r,n(k|j) = Fκ
clkx̂clk,r,n(j|j),

where

Fκ
clk ,















I2×2 κ = 0

∏κ
i=1Fclk κ > 0.

The SOPs’ κ-step state prediction, which follows from (5.1), is given by

x̂sop,m (k|j) = Fκ
sop x̂sop,m(j|j), m = 1, . . . ,M.

The location prediction for vehicle n is illustrated in Fig. 5.2.

IMU

INS

EKF time up date

x̂ins,n(j|j) x̂clk,r,n(j|j)

{nzimu(i)}
k
i=j

x̂r,n(j|j) {

f ins ( · )

{x̂sop,m(j|j)}
M
m=1

Receiver and
SOP clock
models

x̂ins,n(k|j)

x̂clk,r,n(k|j)

x̂r,n(k|j)

Vehicle n

{x̂sop,m(j|j)}
M
m=1

Φins,n(k, j)

Figure 5.2: Local prediction for vehicle n. The inputs are IMU data {nzimu(i)}ki=j and the
current state estimates x̂r,n(j|j) and {x̂sop,m(j|j)}Mm=1. The outputs are the time updates
x̂r,n(k|j) and {x̂sop,m(k|j)}Mm=1 and the Jacobian Φins,n(k, j).

Prediction Error Covariance

Although the prediction error covariance is not produced at this point in the algorithm,

its computation is presented here to explain why it can not be produced until assimilation,
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which is discussed in Subsection 5.3.4. The κ-step covariance prediction is given by

Px(k|j) = F(k, j)Px(j|j)FT(k, j) +Q+(k, j), (5.10)

F(k, j),diag
[

Fr,1(k, j), . . . , Fr,N(k, j), F
κ
sop, . . . , F

κ
sop

]

,

Fr,n(k, j) , diag [Φins,n(k, j), F
κ
clk] ,

Φins,n(k, j) ,
k
∏

i=j

Φins,n(i), (5.11)

where Φins,n(i) is the Jacobian of fins evaluated at x̂ins,n(i|j). The structure of Φins,n(i) is

provided in Appendix A.6. The matrix Q+(k, j) is the propagated process noise covariance,

which has the form

Q+(k, j) , diag
[

Q+
r,1(k, j), . . . ,Q

+
r,N(k, j),

Q+
sop,1(k, j), . . . , Q

+
sop,M(k, j)

]

,

Q+
r,n(k, j) ,

k
∑

i=j

Fr,n(i, j)Qr,n(i)F
T

r,n(i, j),

Q+
sop,m(k, j) ,

k
∑

i=j

F(i−j)
sop Qsop,m[F

T

sop]
(i−j),

where Qr,n(i) , diag [Qins,n(i), c
2Qclk,r,n] and Qins,n is the nth navigating vehicle’s discrete-

time linearized INS process noise covariance. The structure of Qins,n(i) is provided in Ap-

pendix A.6.

Note that, at this point in the algorithm the prediction error covariance (5.10) can not

be computed at vehicle n, ∀n ∈ {1, . . . , N}, since all matrices {Φins,n(k, j)}Nn=1 are not

available at each vehicle. In the next subsection, it is shown what INS information each

vehicle transmits, so that (5.10) may be computed at each vehicle during the assimilation
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step.

5.3.3 Vehicle-to-Vehicle Communication

To produce the prediction error covariance (5.10) at each vehicle, the state transition matrices

{Φins,n(k, j)}Nn=1 must be available. It can been seen in Appendix A.6 that the components of

these matrices are a function of IMU data from each respective navigating vehicle. Therefore,

two possible approaches to make {Φins,n(k, j)}Nn=1 available to each vehicle are: 1) each

vehicle communicates its raw IMU data or 2) each vehicle communicates the full matrix

(5.11). On one hand, IMU data rates are typically between 100 Hz to 400 Hz, with 6

floating-point values per data sample. On the other hand, the matrix (5.11) is in R15×15,

requiring the transmission of 225 floating-point values every EKF measurement update,

which typically take place between 5 Hz to 10 Hz. These data rates make the transmission of

raw accelerometer and gyroscope data or the matrix (5.11) undesirable for several reasons: (i)

large communication bandwidth requirement, (ii) packet drops due to lossy communication

channels, and (iii) privacy concerns.

To address this communication burden, instead of transmitting raw IMU data or the full

matrix (5.11), a packet Λins,n containing minimal sufficient INS information to reconstruct

an approximation of (5.11) with minimal degradation in performance is transmitted once

per κ-step propagation. To derive the sufficient INS information to be communicated, the

structure of (5.11) after a κ-step propagation is investigated. After carrying out κ successive
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multiplications, the form of matrix (5.11) becomes approximately

Φins,n(k, j) ≈
























I3 03 03 κTR[q̄1,n] 03

⌊v1,n×⌋ I3 I3T Φ1,n
κT 2

2
R[q̄2,n]

⌊v2,n×⌋ 03 I3 Φ2,n κTR[q̄1,n]

03 03 03 I3 03

03 03 03 03 I3

























, (5.12)

where κ = k − j; ⌊v1,n×⌋ ∈ R3×3 and ⌊v2,n×⌋ ∈ R3×3 are skew symmetric matrices whose

elements are defined from the vectors v1,n ∈ R3 and v2,n ∈ R3, respectively; the matrices

R[q̄1,n] ∈ R3×3 and R[q̄2,n] ∈ R3×3 are rotation matrices; and Φ1,n ∈ R3×3 and Φ1,n ∈ R3×3

are arbitrarily structured matrices.

Note the following two properties of the structure (5.12). First, since ⌊v1,n×⌋ and ⌊v2,n×⌋

maintain a skew symmetric form, they can be transmitted using only three elements each.

Second, the scaling pre-multiplying the matrices R[q̄1,n] andR[q̄2,n] is deterministic and only

dependent on the IMU sampling period T and the number of iterations κ, therefore these

matrices can be converted to quaternions q̄1,n and q̄2,n and then transmitted using only four

elements each. From these properties, the sufficient INS information is found to be

Λins,n , {v1,n, v2,n, q̄1,n, q̄2,n,Φ1,n,Φ2,n} ,

which only requires the transmission of 32 floating-point values every EKF measurement

update. When EKF updates happen at the rate of SOP measurements Tsop, transmitting

Λins,n instead of IMU data or the matrix (5.11) reduces the number of transmitted floating-
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point values by at least

[

1− 32

min(6× Tsop

Timu
, 225)

]

× 100%,

where min(a, b) returns the smallest value between a and b. The tradeoff for significantly

reducing the amount of communicated data is in positioning performance. Specifically, the

vehicles’ position estimation errors increase due to the approximation in (5.12), which arises

due to the rotation matrices R[q̄1,n] and R[q̄2,n] deviating from true rotation matrices as

Tsop increases. The increase in position error was shown to be minimal for typical values of

Tsop and moderate probability of packet loss [37].

The INS information Λins,n is packaged inside of Λn, along with other necessary information

for each vehicle to produce an EKF update, and then is broadcasted by the nth vehicle at

the fixed rate of measurement epochs. The packet Λn is given by

Λn(k),{x̂ins,n(k|j),Λins,n(k, j),
nzsv(k),

nzsop(k)} , (5.13)

where nzsv and nzsop are GNSS and SOP pseudoranges, respectively, which are discussed

further for each strategy in the following subsections.

5.3.4 Assimilation

Assuming a fully-connected graph, as in Fig. 5.1, the packets {Λn(k)}Nn=1 contain all com-

ponents of the state prediction to assemble x̂(k|j) and compute (5.10). To compute (5.10),

the matrix F(k, j) is first assembled by using the information in {Λins,n}Nn=1. The vectors

v1,n and v2,n are used to reconstruct the skew-symmetric matrices ⌊v1,n×⌋ and ⌊v2,n×⌋ in
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(5.12) through

⌊a×⌋ =













0 −a3 a2

a3 0 −a1

−a2 a1 0













, a =













a1

a2

a3













.

The quaternions q̄1,n and q̄2,n are converted to rotation matrices through

R[q̄] = I3×3 − q4⌊q×⌋ + 2⌊q×⌋2,

where q̄ , [q, q4, ]
T = [q1, q2, q3, q4, ]

T and q4 is the real component of the quaternion. Each

vehicle may now compute the EKF measurement update and the corresponding corrected

estimation error covariance. In the following two subsections, the correction equations are

developed for two information fusion strategies: (1) TOA and (2) TDOA with SOP refer-

encing.

5.3.5 TOA Information Fusion Strategy

In this subsection, the EKF-based CoRSLAM measurement update for fusing TOA mea-

surements from SOPs is described. Specifically, the correction to the estimation error x̃(k|k)

is provided, since it will be compared with the estimation error of the TDOA fusion strategy,

denoted ˜̄x(k|k), in Section 5.4.
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TOA Measurements

The EKF measurement update will correct the navigating vehicles’ INS and clock errors

given the measurement vector

z ,
[

zT

sv, z
T

sop

]T

, (5.14)

zsv ,

[

1z
T

sv, . . . ,
Nz

T

sv

]T

, zsop ,

[

1z
T

sop, . . . ,
Nz

T

sop

]T

,

nzsv=[nzsv,1, . . . ,
nzsv,L]

T , nzsop=[nzsop,1, . . . ,
nzsop,M ]T .

The correction equations are described next for: GNSS availability (L > 0) and GNSS

unavailability (L = 0).

TOA Correction Equations

Given a prediction error x̃(k|j), the error correction and corresponding corrected error co-

variance are given by

x̃(k|k) = x̃(k|j)− L(k)S−1(k)ν(k),

Px(k|k) = Px(k|j)− L(k)S−1(k)LT(k), (5.15)

L(k) , Px(k|j)HT(k), (5.16)

S(k) , H(k)L(k) +R(k), (5.17)

ν(k) , z(k)− ẑ(k|j), (5.18)
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where ẑ(k|j) is a vector containing the predicted GNSS pseudoranges and the predicted SOP

TOA measurement set. The matrix H is the measurement Jacobian and has the form

H =







Hsv,r 0NL×5M

Hsop,r Hsop






, Hsv,r , diag

[

1Hsv,r, . . . ,
NHsv,r

]

,

nHsv,r =













01×3
n1̂T

sv,1 01×9 hT

clk

...
...

...
...

01×3
n1̂T

sv,L 01×9 hT

clk













,

Hsop,r , diag
[

1Hsop,r, . . . ,
NHsop,r

]

,

where nHsop,r has the same structure as nHsv,r, except
n1̂T

sv,l is replaced with n1̂T

sop,m,

Hsop ,
[

1HT

sop, . . . ,
NHT

sop

]T

,

nHsop = diag [nHsop,1, . . . ,
nHsop,M ] ,

n1̂sv,l ,
r̂bn − rsv,l

‖r̂bn − rsv,l‖
, n1̂sop,m ,

r̂bn − r̂sop,m

‖r̂bn − r̂sop,m‖
,

nHsop,m ,
[

−n1̂T

sop,m, −hT

clk

]

, hclk , [1, 0]T ,

and R is the measurement noise covariance. Note that R is not necessarily diagonal, since

there are no assumptions made on the measurement noise statistics, except that R ≻ 0.

Note that if GNSS pseudoranges become completely unavailable, i.e., L = 0 and z ≡ zsop,

the state and covariance correction are identical, except that the Jacobian is adjusted to

account for GNSS SV pseudoranges no longer being available, specifically

H ≡ [Hsop,r, Hsop] . (5.19)
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5.3.6 TDOA with SOP Referencing Information Fusion Strategy

In this information fusion strategy, TDOA measurements are computed at each vehicle-

mounted receiver by differencing the drawn pseudoranges with a selected reference SOP.

The produced estimation error and covariance of x when TDOA measurements are used will

be denoted ˜̄x, and Px̄, respectively.

TDOA Measurements

Each navigating vehicle is free to select an arbitrary reference SOP, i.e., the SOP measure-

ment set computed by the nth navigating vehicle becomes

nz̄T

sop , [nz̄sop,1, . . . ,
nz̄sop,M ]T ,

nz̄sop,m ,nzsop,m − nzsop,ιn (5.20)

=‖rbn(j)− rsop,m‖2 − ‖rbn(j)− rsop,ιn‖2

+ c · [δtsop,m(j)− δtsop,ιn(j)]

+ nvsop,m(j)− nvsop,ιn(j),

where ιn is the reference SOP number used by the nth navigating vehicle and the SOP number

m ∈ {1, . . . ,M}\ιn. Each navigating vehicle replaces the SOP TOA measurements zsop with

the SOP TDOA measurements z̄sop in the transmitted packet (5.13). Note that since the

SOP transmitters are not synchronized, the TDOA measurements (5.20) are parameterized

by the clock biases of both transmitters; therefore, both of these biases must be estimated.

This differs from traditional TDOA-based localization approaches that assume synchronized

transmitters, which allow for these biases to cancel and to be removed from the estimator.

The measurement set available to each vehicle-mounted receiver in the TDOA fusion strategy
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may be written in terms of the measurement set (5.14) of the TOA fusion strategy as

z̄ ,







zsv

z̄sop






=







INL×NL 0NL×NM

0NM×NL T













zsv

zsop






, Ξz (5.21)

where INL×NL is an NL×NL identity matrix and T is the difference operator matrix that

maps zsop to z̄sop, which has the form

T = diag [Tι1 , . . .TιN ] , (5.22)

Tιn =

































1 . . . 0 −1 0 . . . 0

...
. . .

...
...

...
. . .

...

0 . . . 1 −1 0 . . . 0

0 . . . 0 −1 1 . . . 0

...
. . .

...
...

...
. . .

...

0 . . . 0 −1 0 . . . 1

































, (5.23)

where the column of “−1” resides in column ιn. The structure of the prediction error

covariance Px̄(k|j) is not dependent on the fusion strategy; therefore, has the same form as

(5.10). The correction equations are summarized next.
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TDOA Correction Equations

Given a prediction error ˜̄x(k|j), the error correction and corresponding corrected error co-

variance are given by:

˜̄x(k|k) = ˜̄x(k|j)− L̄(k)S̄−1ν̄(k), (5.24)

Px̄(k|k) = Px̄(k|j)− L̄(k)S̄−1(k)L̄T(k), (5.25)

L̄(k) , Px̄(k|j)H̄T(k) (5.26)

S̄(k) , H̄(k)L̄(k) + R̄(k) (5.27)

ν̄(k) , z̄(k)− ˆ̄z(k|j), (5.28)

where ˆ̄z(k|j) is the predicted GNSS pseudoranges and SOP TDOA measurement set and H̄

is the corresponding measurement Jacobian, which is related to H through

H̄ ,







INL×NL 0NL×NM

0NM×NL T













Hsv,r 0NL×5M

Hsop,r Hsop






.

The measurement noise covariance is given by R̄ = ΞRΞT.

Note that if GNSS pseudoranges become completely unavailable (L = 0), i.e., z̄ ≡ z̄sop, the

state and covariance corrections are identical to when L > 0, except that the dimension of

INL×NL reduces to zero, modifying the measurement Jacobian to take the form

H̄ = TH, (5.29)

where H is the measurement Jacobian (5.19) from the TOA fusion strategy when L = 0.
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5.4 Strategy Performance Comparison

In this section, the estimation performance of the two information fusion strategies presented

in Section 5.3 are studied. First, it is shown that the TDOA estimation performance is

invariant to the SOP reference selection. Then, it is shown that the TOA strategy yields less

than or equal estimation error covariance corresponding to the navigating vehicles’ positions

than the TDOA strategy.

5.4.1 TDOA SOP Reference Selection

In this subsection, it is shown that the estimation error and error covariance are invariant

to the choice of the SOP reference, which is summarized in Theorem 5.4.1.

Theorem 5.4.1. Consider an environment comprising N receivers and M unknown SOPs

with arbitrary: (i) receiver and SOP clock qualities (i.e., arbitrary process noise covariances

{Qclk,r,n}Nn=1 and {Qclk,sop,m}Mm=1 ), (ii) geometric configurations, and (iii) measurement noise

covariance (i.e., R ≻ 0, but not necessarily diagonal). The EKF-based CoRSLAM yields an

estimation error and corresponding estimation error covariance that are invariant to each

receiver’s SOP reference selection.

Proof. The proof will only consider GNSS unavailability periods (L = 0), i.e., z̄ ≡ z̄sop. The

proof can be straightforwardly extended to GNSS availability (L > 0). Given ˜̄x(k|j), the
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correction ˜̄x(k|k) can be computed from (5.24). Substituting (5.29) into (5.26)-(5.28) gives

L̄(k) = Px(k|j)HT(k)TT

= L(k)TT, (5.30)

S̄(k) = TH(k)L(k)TT +TR(k)TT

= TS(k)TT, (5.31)

ν̄(k) = Tz(k)−Tẑ(k|j)

= Tν(k). (5.32)

Substituting (5.30)-(5.32) into (5.24) yields

˜̄x(k|k) = ˜̄x(k|j)− L(k)TT

· [TS(k)TT]−1Tν(k). (5.33)

Recall that T is the difference operator, which computes the TDOA measurements when the

nth receiver references the drawn pseudoranges with respect to an arbitrary SOP number ιn

and has the block diagonal structure (5.22).

Next, consider the block of T that corresponds to the nth receiver, which can be written as

Tιn = Jιn − veT

ιn , (5.34)

where Jιn ∈ R[(M−1)×M ] is formed by removing the ιthn row from an identity matrix,

v , [1, . . . , 1]T ∈ R(M−1),

and eιn denotes the ιthn standard basis vector of appropriate dimension consisting of a 1 in

the ιthn element and zeros elsewhere. From (5.34), it is easy to verify that Tιn ∈ R[(M−1)×M ]
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is full row-rank and that 1 ,
[

vT, 1
]T

is a basis for the null space of Tιn; therefore,

0 = Tιn1 =
M
∑

i=1

Tιnei

⇒ −
M
∑

i=1
i 6=q

tιn,i = tιn,q, ∀ q ∈ [1, . . . ,M ], (5.35)

where tιn,i , Tιnei and tιn,q , Tιneq denote the ith and qth column of Tιn , respectively.

Partitioning Tιn into columns yields

Tιn = [tιn,1, . . . , tιn,M ]

= [Tιn,1:M−1, tιn,M ] , (5.36)

where Tιn,1:M−1 denotes the matrix consisting of the columns tιn,1 through tιn,M−1. Substi-

tuting the left side of (5.35) for q ≡ M into the last column of (5.36) gives

Tιn =

[

Tιn,1:M−1,−
M−1
∑

i=1

tιn,i

]

. (5.37)

Next, consider the difference operator matrix

T′ = diag
[

Tι′1
, . . .Tι′

N

]

, (5.38)

which forms the set of TDOA measurements when the nth receiver uses SOP ι′n as its refer-

ence, where ι′n ∈ [1, . . . ,M ]. Proceeding in a similar manner that was used to write Tιn as

(5.37), it is straight forward to show that Tι′n can be written as

Tι′n =

[

Tι′n,1:M−1,−
M−1
∑

i=1

tι′n,i

]

. (5.39)

Note that since Tιn and Tι′n are full row-rank, the matrices Tιn,1:M−1 and Tι′n,1:M−1 are
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square and invertible; therefore, there exists a matrix En, such that

Tι′n,1:M−1 = E−1
n Tιn,1:M−1. (5.40)

From (5.40), the columns of Tι′n,1:M−1 are related to the columns of Tιn,1:M−1 through

tι′n,i = E−1
n tιn,i, i = 1, . . . ,M − 1. (5.41)

Substituting the right side of (5.40) and (5.41) into the right side of (5.39) yields

Tι′n =

[

E−1
n Tιn,1:M−1,−E−1

n

M−1
∑

i=1

tιn,i

]

= E−1
n Tιn. (5.42)

The relationship between T′ and T can be found by substituting (5.42) into (5.38) for

n = 1, . . . , N , which gives

T′ = diag
[

E−1
1 Tι1, . . . ,E

−1
N TιN

]

= E−1T, (5.43)

where E−1 , diag
[

E−1
1 , . . . ,E−1

N

]

. Solving (5.43) for T and substituting into (5.33) gives

˜̄x(k|k) = ˜̄x(k|j)− L(k)T′TET

· [ET′S(k)T′TET]−1ET′ν(k)

= ˜̄x(k|j)− L(k)T′TET

· E−T[T′S(k)T′T]−1E−1ET′ν(k)

= ˜̄x′(k|k), (5.44)

where ˜̄x′(k|k) is the estimation error correction when the difference operator matrix T′ is
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used. The last step in (5.44) follows from ˜̄x(k|j) = ˜̄x′(k|j), since they only depend on IMU

data, making (5.44) take the same form as (5.33), except that T is replaced with T′.

Next, consider the EKF Riccati equation, which governs the time-evolution of the estimation

error covariance

Px̄(j + κ|j) =F
{

Px̄(j|j − κ)−Px̄(j|j − κ)H̄T(j)

·
[

H̄(j)Px̄(j|j − κ)H̄T(j) + R̄(j)
]−1

· H̄(j)Px̄(j|j − κ)
}

FT +Q+(j + κ, j),

where the time arguments (j + κ, j) have been dropped from F to simplify the notation.

Substituting (5.29) into H̄ and using the relationship found in (5.42) gives

Px̄(j + κ|j)

=F
{

Px̄(j|j − κ)−Px̄(j|j − κ)HT(j)TT

·
[

TH(j)Px̄(j|j − κ)HT(j)TT +TR(j)TT
]−1

·TH(j)Px̄(j|j − κ)
}

FT +Q+(j + κ, j)

=F
{

Px̄(j|j − κ)−Px̄(j|j − κ)HT(j)T′TET

· E−T
[

T′H(j)Px̄(j|j−κ)HT(j)T′T+T′R(j)T′T
]−1

E−1

· ET′H(j)Px̄(j|j − κ)
}

FT +Q+(j + κ, j)

=Px̄′(j + κ|j),

where Px̄′(j+ κ|j) is the prediction error covariance when the difference operator matrix T′

is used.
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5.4.2 TOA Versus TDOA

In this subsection, it is shown that fusing TOA measurements from unknown SOPs produces

a less than or equal (in a positive semi-definite sense) position estimation error covariance

matrix for each navigating vehicle than fusing TDOA.

Theorem 5.4.2. Consider an environment comprising N receivers and M unknown SOPs

with arbitrary: (i) receiver and SOP clock qualities (i.e., arbitrary clock process noise covari-

ances {Qclk,r,n}Nn=1 and {Qclk,sop,m}Mm=1), (ii) geometric configurations, and (iii) measurement

noise covariance (i.e., R ≻ 0, but not necessarily diagonal). The EKF-based CoRSLAM that

fuses pseudoranges with a TOA fashion yields a less than or equal (in a positive semi-definite

sense) position estimation error covariance for each of the navigating vehicles than a TDOA

fashion.

Proof. Define the correction (measurement update) estimation error covariance associated

with the nth receiver’s position for fusing TOA measurements at time-step k as

Prbn
(k|k) , ΥnPx(k|k)ΥT

n (5.45)

and the correction (measurement update) estimation error covariance associated with the

nth receiver’s position for fusing TDOA measurements at time-step k as

Pr̄bn
(k|k) , ΥnPx̄(k|k)ΥT

n , (5.46)

where

Υn ,
[

03×γn,1
, I3×3, 03×γn,2

]

,

γn,1 , 17n−14, and γn,2 , 17(N−n)+5M−11. Substituting (5.15) and (5.25) into Px(k|k)
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and Px̄(k|k) in (5.45) and (5.46), respectively, and differencing yields

Pr̄bn
(k|k)−Prbn

(k|k)

= Υn

[

L(k)S−1(k)LT(k)− L̄(k)S̄−1(k)L̄T(k)
]

ΥT

n . (5.47)

Note that the prediction error covariances Px(k|j) and Px̄(k|j) are only a function of the

IMU data, making them independent of the information fusion type, i.e., Px(k|j) = Px̄(k|j);

therefore, they have canceled and did not appear in (5.47). Substituting (5.30) and (5.31)

into (5.47) gives

Pr̄bn
(k|k)−Prbn

(k|k)

=Υn

[

L(k)S−1(k)LT(k)

− L(k)TT
(

TS(k)TT
)−1

TTLT(k)
]

ΥT

n

=ΥnL(k)
[

S−1(k)−T
(

TS(k)TT
)−1

TT
]

LT(k)ΥT

n . (5.48)

Define the matrices

A(k) , Sc(k)T
T ∈ RNM×N(M−1), (5.49)

Bn(k) , ΥnL(k)S
−1
c (k) ∈ R3×NM , n = 1, . . . , N, (5.50)

where Sc is the Cholesky decomposition of S, i.e., S = ScS
T

c . Since S is symmetric positive

definite, Sc is unique and invertible. Substituting (5.49) and (5.50) into (5.48) yields

Pr̄bn
(k|k)−Prbn

(k|k)

=Bn(k)
[

INM×NM −A(k)
[

AT(k)A(k)
]−1

AT(k)
]

BT

n(k), (5.51)
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where INM×NM is a NM ×NM identity matrix. Define the matrix

Ω(k) , A(k)
[

AT(k)A(k)
]−1

AT(k). (5.52)

Substituting (5.52) into (5.51) gives

Pr̄bn
(k|k)−Prbn

(k|k) = Bn(k)M(k)BT

n(k), (5.53)

where M(k) , INM×NM −Ω(k). Note that,

(i) The matrix Ω ∈ RNM×NM is an orthogonal projection matrix, since it satisfies Ω2 =

Ω = ΩT. It has N(M − 1) eigenvalues of ones and N eigenvalues of zeros, since

rank(Ω) = rank(A) = N(M − 1). Therefore, Ω is positive semi-definite.

(ii) The matrix M is also an orthogonal projection matrix, and its eigenvalues consist of

N ones and N(M − 1) zeros [137]; therefore, it is positive semi-definite.

It follows from (ii) that

Bn(k)M(k)BT

n(k) � 0. (5.54)

From (5.53) and (5.54), it can be concluded that

Pr̄bn
(k|k) � Prbn

(k|k). (5.55)
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5.5 Simulation Results: TOA Versus TDOA

This section presents simulation results evaluating Theorem and Theorem established above.

5.5.1 Simulation Environment and Settings

The simulation environment consists of N = 4 UAV-mounted receivers and M = 6 SOP

transmitters. The receiver’s were set to have GPS available for the first 50 seconds of their

trajectory and then unavailable for the remaining portion of the trajectory. SOP pseudo-

ranges were available for their entire trajectories. The simulated UAV trajectories, SOP

emitters’ positions, and the UAVs’ positions at the time GPS was set to become unavail-

able are illustrated in Fig. 5.3. The following describes the methods used to produce the

simulated data.

UAVs’ Trajectories

The UAVs’ simulated trajectories were generated using a standard six degree of freedom

(6DoF) kinematic model for airplanes [119]. Each vehicle performed the same maneuvers,

which included the following segments conducted in succession over a 200 second period: 10

second straight and level linear acceleration along the direction of travel; 5 degree pitching

climb for 30 seconds; 22 second straight and level linear velocity, while rolling to 60 degrees;

five 60 degree left-banking turns. These trajectory segments were chosen because they collec-

tively excite all 6DoF of the UAVs, i.e., both horizontal and vertical directions and all three

angles (roll, pitch, and yaw), allowing the TOA and TDOA information fusion strategies to

be studied under various maneuvers.
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IMU Data

The gyroscope and accelerometer data were generated at 100 Hz using the simulated vehi-

cles’ accelerations and rotation rates through equations (5.6) and (5.5), respectively. The

evolution of each vehicle’s gyroscope and accelerometer biases were generated according to

equations (5.3) and (5.4), using driving process noise with spectra Swgyr,n ≡ 10−8 · I3×3 and

Swacc,n ≡ 10−8 · I3×3, respectively. The power of the corrupting white noise was set to cor-

respond to a consumer-grade IMU. IMUs of this quality typically state the noise values in

terms of accumulated noise. Each axis of the IMU was set to have an accumulated noise

of 0.3 deg /s and 2.5 milligravities for the gyroscope and accelerometer, respectively. These

spectra are mapped online to the discrete-time noise covariances Qngyr,n, Qnacc,n, Qwgyr,n,

and Qwacc,n through the equations provided in Appendix A.6.

Receiver Clock

Each UAV-mounted receiver was set to be equipped with a TCXO, with clock process noise

parameters {h0,rn, h−2,rn}4n=1 = {9.4× 10−20, 3.8× 10−21}.

GPS Pseudoranges

GPS L1 C/A pseudoranges were generated at 1 Hz according to equation (5.8). The posi-

tion of each GPS SV was generated by producing their orbits using Receiver Independent

Exchange (RINEX) files downloaded on October 22, 2016 from a Continuously Operating

Reference Station (CORS) server [124]. Eleven satellites were set to be available (L = 11) for

t ∈ [0, 50) seconds, and unavailable (L = 0) for t ∈ [50, 200] seconds. The GPS pseudorange

measurement noise terms were set to be independent from each other with measurement
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noise variance computed according to [125]

nσ2
sv,l=

c2temlBDLLT
2
c

2n(C/N0)l

[

1− 1

TCO
n(C/N0)l

]

, (5.56)

where teml ≡ 1 chip, which is the early-minus-late correlator spacing, BDLL ≡ 0.05 Hz is

the delay lock loop bandwidth, Tc ≡ 1/(1.023× 106) s is the chip duration and n(C/N0)l ≡

2.512× 104 Hz (equivalent to 44 dB-Hz) is the received carrier-to-noise ratio. The point at

which GPS was cut off is illustrated as a red ’X’ in Fig. 5.3.

SOP Pseudoranges

Pseudoranges were generated to the SOPs at 5 Hz according to equation (5.7). The evolution

of each SOPs clock bias was modeled according to the dynamics discussed in Subsection 5.2.1,

using parameters that correspond to a typical oven-controlled crystal oscillator (OCXO), with

{h0,sop,m, h−2,sop,m}6m=1 = {8 × 10−20, 4 × 10−23}. The SOP emitters’ positions {rsop,m}6m=1

were surveyed from cellular tower locations in downtown Los Angeles, California, USA. The

SOP pseudorange measurement noise terms were set to be independent with a time-vary

measurement noise variance using (5.56), except that nσ2
sv,l was replaced with nσ2

sv,m(j),

Tc ≡ 1/(1.2288× 106) s and n(C/N0)l is replaced with a time-varying log-distance path loss

model [127]

n(C/N0)
′
m(j) = P0 − 10 · log10(d(j)/D0),

n(C/N0)m(j) = 10[
n(C/N0)′m(j)/10],

where P0 ≡ 56 dB-Hz is a calibration carrier-to-noise ratio at a distance D0 ≡ 1400 m and

d(j) , ‖rbn(j)−rsop,m(j)‖2. The calibration values P0 and D0 are values commonly observed

by the authors during experimental campaigns [25].
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Figure 5.3: True trajectories the UAVs traversed (yellow), SOP emitters’ positions (blue
pins), and the UAVs’ positions at the time GPS was cut off (red).

5.5.2 EKF-based CoRSLAM Filter Initialization

The initial estimates (at t = 0 seconds) of the UAVs’ states were initialized by drawing a

random error vector from a multivariate normal distribution and then applying the error

to the “ground truth” state at t = 0. This initialization method is used instead of directly

drawing the state estimate to deal with the quaternion initialization, which requires special

handling. This method is described in the next three steps. First, the random error for each

UAV was drawn according to

x̃r,n(0|0) ∼ N
[

017×1, Pxr,n
(0|0)

]

Pxr,n(0|0) , diag
[

Pxins,n(0|0), Pxclk,r
(0|0)

]

Pxins,n(0|0)≡diag
[

(10−2)·I3×3, 9·I3×3, I3×3, (10
−4)·I6×6

]

Pxclk,r,n
(0|0) ≡ diag [9, 1] ,

were a ∼ N
(

µ,C
)

indicates that a is normally distributed with mean µ and covariance C.

Second, to produce the initial quaternion estimate, the angle error θ ∈ R3, which are the first

three elements of x̃r,n, are mapped to the error quaternion q̃n ∈ R4, which are then applied

to the true state according to the equations shown in equation 4.14. Third, to produce initial
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estimates of the remaining states, the remaining error components of x̃r,n are applied to the

true states as standard additive error.

The SOPs’ state estimates were initialized according to x̂sop,m(0|0) ∼ N [xsop,m(0),Psop(0|0)],

form = 1, . . . ,M , where xsop,m(0) ≡
[

rT

sop,m, 10
4, 10

]T

, Psop(0|0) ≡ (104)·diag [I3×3 0.1, 0.01].

This initialization scheme is used in simulation to ensure consistent initial priors in the EKF.

In practice, if the initial SOPs’ states are completely unknown, then a random position for

each SOP may be drawn in the vicinity of the UAVs with a large enough uncertainty to

encompass all possible points that a signal could be received from. The clock states may

be initialized to zero with a large uncertainty. As long as there are enough vehicle’s or the

vehicles are moving, the position and clock states of the SOPs are observable [74].

5.5.3 TOA Versus TDOA Performance Comparison

This subsection evaluates the information fusion strategies (i) TOA and (ii) TDOA with

SOP referencing, by comparing the resulting position estimation uncertainty of the UAVs

produced by the EKF for each strategy. Errors for a traditional tightly-coupled GPS-aided

INS are also provided for a comparative analysis. Fig. 5.4 shows the resulting estimation

error trajectories and corresponding ±3 times the EKF-produced estimation error standard

deviations (±3σ) for both strategies for the north, east, and down position states for UAV

1 and SOP 1. Fig. 5.5 illustrates the logarithm of the determinant of the estimation error

covariance of the same UAV’s position states, log
{

det
[

Prb1

]}

, which is related to the

volume of the uncertainty ellipsoid. Note that, TDOA measurements were produced using

SOP 2 as the reference selection. The results were identical for choosing any other SOP as

a reference, as expected from Theorem 5.4.1.

The following performance comparison may be concluded from these plots. First, the errors

associated with the collaborative SOP-aided INS, regardless of the CoRSLAM information
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Figure 5.4: Estimation error trajectories and ±3σ bounds for the (1) TOA and (2) TDOA
with SOP referencing information fusion strategies for the environment depicted in Fig. 5.3.
(a)-(c) Correspond to UAV 1 north, east, and down position errors, respectively. (d)-(f)
Correspond to SOP 1 north, east, and down position errors, respectively. The red dotted
line marks the time GPS pseudoranges were set to become unavailable (L = 0).

fusion strategy, remained bounded after GPS was cut off, whereas the errors associated

with an unaided INS began to expectedly diverge. This indicates that if navigating vehicles

are sharing and fusing INS information and pseudoranges drawn from SOPs with uncertain

states, requirements on their INSs may be relaxed. That is, the cost of the navigation system

can be reduced, since lower grade IMUs may still meet positioning accuracy requirements.
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Figure 5.5: The logarithm of the determinant of the position estimation error covariance of
UAV 1 for the environment depicted in Fig. 5.3.

Second, the TOA information fusion strategy consistently produced lower estimation error

variances compared to the TDOA information fusion strategy in all coordinate directions.

This indicates that the UAV’s position uncertainty in any coordinate direction at any given

time is less when SOP TOA measurements are shared and fused. Equivalently, the size of

the uncertainty ellipsoid of the UAV’s position states will be smaller if TOA is used and the

difference in size is captured by the distance between in the log
{

det
[

Prb1
(k|k)

]}

curves

illustrated in Fig. 5.5. Note that these are representative results. Similar behavior of the

estimation error uncertainties in the position states was reported for the other UAVs and

SOPs and during simulation runs with different realizations of measurement and process

noise. These findings support Theorem 5.4.2 established above.

5.6 Event-Based Information Fusion

In this section, an event-based information transmission scheme, which aims to minimize

the amount of communicated data between collaborators, subject to a specified constraint

on the vehicles’ position estimation errors is developed.
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5.6.1 Problem Formulation

Objective

The objective of the event-based information fusion scheme is to minimize the rate at which

the data packets {Λn}Nn=1 are broadcasted by the navigating vehicles, while maintaining a

specified estimation performance constraint. The performance constraint is defined such that

the norm of any vehicle’s position estimation error r̃bn remain below a specified maximum

threshold ξmax with probability p. Two norms are considered: ‖r̃bn‖2 and ‖r̃bn‖∞, where

‖a‖q is the q-norm of vector a. Formally, the performance constraint to be maintained is

Pr [‖r̃bn‖q ≤ ξmax] ≥ p, n = 1, . . . , N, (5.57)

where Pr [A] denotes the probability of event A and q is user-specified to be q ≡ 2 or q ≡ ∞.

Approach

In contrast to all vehicles transmitting {Λn}Nn=1 at a fixed rate, which is the rate at which

measurements are made; in the event-based scheme, {Λn}Nn=1 are transmitted only if (5.57)

would be violated, if transmission of {Λn}Nn=1 does not occur. Since the position estimation

error is not available to the navigating vehicles, an online test is formulated using each

vehicle’s position estimation error covariance Prbn
, which is available to each vehicle via the

EKF estimator, to check if (5.57) would be violated if transmission does not occur. In the

next two subsections two separate tests are formulated: one corresponding to ‖r̃bn‖2 and one

corresponding to ‖r̃bn‖∞.
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5.6.2 Two-Norm Test Formulation

Lemma 5.6.1. Consider the performance constraint (5.57) with q ≡ 2 and a user specified

p and ξmax. Testing if (5.57) is violated is equivalent to checking if

‖Prrn
‖2 ≤

ξ2max

ηn
, n = 1, . . . , N, (5.58)

is violated, where Prrn
is the estimation error covariance associated with the nth navigat-

ing vehicle, and ηn is the value of the inverse cumulative distribution function (cdf) of the

Mahalanobis norm-squared of the estimation error ‖r̃bn‖2M evaluated at p.

Proof. To formulate the test for (5.57) corresponding to ‖r̃bn‖2, the Mahalanobis norm (or

Mahalanobis distance) of the position estimation error for vehicle n, denoted ‖r̃bn‖M, is used,

which is given by

‖r̃bn‖M(k) =
√

[rbn(k)− r̂bn(k|k)]TP−1
rbn

(k|k)[rbn(k)− r̂bn(k|k)]. (5.59)

In this context, the Mahalanobis norm provides a measure of how many standard deviations

the true position is away from the estimated position. In what follows, it will be shown how

‖r̃bn‖M is related to the performance constraint (5.57), and how it leads to a simple test that

each vehicle may perform to determine if {Λn}Nn=1 should be transmitted. Time dependency

will be dropped in the sequel to simplify the notation.

Since the covariance Prbn
is a real-valued, symmetric, positive definite matrix, it has an
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eigendecomposition given by

Prbn
= UnDnU

T

n , (5.60)

D = diag [λn,1, λn,2, λn,3] ,

where λn,i is the ith eigenvalue of Prbn
and Un is an orthogonal matrix whose ith column is

the ith eigenvector of Prbn
. Substituting (5.60) into (5.59) and squaring both sides yields

‖r̃bn‖2M = ξT

nD
−1
n ξn, (5.61)

ξn , UT(rbn − r̂bn). (5.62)

The vector ξn = [ξn,1, ξn,2, ξn,3]
T is the position estimation error r̃bn expressed in frame {g},

rotated by the orthogonal (rotation) matrix UT into a coordinate frame {f}, whose axes

coincide with the principal axes of an ellipsoid. This ellipsoid is known as the probability

concentration ellipsoid E , which represents the probability p of the error ξn lying on or within

the ellipsoid [80], where

p = Pr
(

‖r̃bn‖2M ≤ ηn
)

. (5.63)

Given p and the distribution of ‖r̃bn‖2M, the value ηn can be determined [138].

The principal axes of the confidence ellipsoid E are found by expanding the right side of

(5.61) and substituting the expansion into the inequality ‖r̃bn‖2M ≤ ηn from (5.63), which

gives

ξ2n,1
ηnλn,1

+
ξ2n,2

ηnλn,2
+

ξ2n,3
ηnλn,3

≤ 1, (5.64)
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which is the equation of an ellipsoid with radii
√

ηnλn,i, for i = 1, 2, 3. The ellipsoid and the

bounding constraint corresponding to ‖r̃bn‖2 ≤ ξmax are illustrated as a 2-D example in Fig.

5.6.

r̂bn

ξn

rbn

√

ηnλn,1

√

ηnλn,2

ξn,1

ξn,2

xg

yg

ξmax

{f}
E

{g}

Figure 5.6: Probability concentration ellipse E with origin r̂rn and radii
√

ηnλn,i, i = 1, 2.

Note that, although the value of ξn is not available to the navigating vehicle, the eigenvalues

{λn,i}3i=1 and the specified probability p governing the size and shape of the ellipsoid E are

available and upper-bound the “size” of ξn. Specifically, ‖ξn‖2 is bounded by the major axis

of E , which is given by

max
E

‖ξn‖2 = max
E

‖r̃bn‖2 =
√

ηnλmax[Prbn
], (5.65)

where max
E

d denotes the maximum value of d in set E , λmax[X] denotes the maximum

eigenvalue of X, and ‖r̃bn‖2 = ‖ξ‖2 has been used, which holds since the 2-norm is invariant

under coordinate frame rotation. Since the error constraint ξmax is also invariant under

coordinate frame rotation, the problem boils down to checking if the major axis of the
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ellipsoid E is less than ξmax, i.e.,

√

ηnλmax[Prbn
] ≤ ξmax. (5.66)

Finally, noting that λmax[Prbn
] = ‖Prbn

‖2 for covariance matrices and by solving (5.66) in

terms of the specified constraints, the test simplifies to checking the violation of

‖Prrn
‖2 ≤

ξ2max

ηn
.

5.6.3 Infinity-Norm Test Formulation

Lemma 5.6.2. Consider the performance constraint (5.57) with q ≡ ∞ and a user specified

coordinate frame {g}, probability p, and maximum error ξmax. Testing if (5.57) is violated

is equivalent to checking if

‖Prrn
‖max ≤

ξ2max

ηn
, n = 1, . . . , N, (5.67)

is violated, where ‖X‖max denotes the maximum norm of a matrix X ∈ Rd1×d2, which is

given by

‖X‖max , max{|Xij| |i = 1, . . . , d1, j = 1, . . . , d2},

the matrix Prrn
is the position estimation error covariance associated with the nth navigat-

ing vehicle, and ηn is the value of the inverse cdf of the Mahalanobis norm-squared of the

estimation error ‖r̃bn‖2M evaluated at p.
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Proof. The test formulation and the ∞-norm error constraint are coordinate frame depen-

dent, since the ∞-norm is not invariant under coordinate frame rotations. Therefore, the

coordinate frame {g} in which the test is conducted is specified by the user along with ξmax

and p, (e.g., test if p is less than the probability that the maximum of the north, east, and

down (NED) errors is less than ξmax). In contrast to the bounding circle (sphere in 3-D)

associated with the constraint ‖r̃bn‖2 ≤ ξmax in Fig. 5.6, the constraint ‖r̃bn‖∞ ≤ ξmax is

geometrically interpreted as a square (cube in 3-D), which is symmetric about the origin,

with each of its sides a distance of ξmax from the origin. Since the probability concentration

ellipsoid E provides a bounding surface for which the estimation error is contained within

for a specified probability p, a test will be formulated to check if E is contained within the

cube corresponding to ‖r̃bn‖∞ ≤ ξmax.

The ellipsoid E expressed in {g} is found by substituting (5.59) into the inequality ‖r̃bn‖2M ≤

ηn from (5.63), which gives

1

ηn
r̃T

bnP
−1
r̃bn

r̃bn ≤ 1. (5.68)

The bounding cube is represented as a collection of six planes, defined by normal vectors

±ni, i = 1, 2, 3, each of which is parallel to the corresponding unit vectors that define the

coordinate frame {g}, e.g., n2 corresponds to the yg direction and is parallel to e2, where

ei ∈ R3 is the standard unit basis vector, containing a one in the ith position and zeros

elsewhere. Given the constraint ξmax, the ith plane, denoted Pi, is given by

nT

i r̃bn − ξmax = 0. (5.69)

If the ellipsoid E extends beyond the plane Pi, an intersecting ellipse Ei , E ∩ Pα will exist.

The relationship between E , Pi, and Ei for i = 2 are illustrated in Fig. 5.7.

Since E and the bounding cube are both symmetric about the origin of {g}, it suffices to
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xg

yg

zg
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n2

Figure 5.7: Probability concentration ellipsoid E with radii sα ,
√

ηnλn,α, α = 1, 2, 3, and
plane P2, representing one of six surfaces of the cube constraint. If E intersects the cube
constraint at plane P2, then the ellipse E2 exists.

test if ∃Ei, for only the three positive directions to determine if E is contained within the

bounding cube. In what follows, the test for a general ith plane is formulated. The points on

and within the intersecting ellipse Ei represents the solution space that satisfies both (5.68)

and (5.69). The expression for this solution space is found using the next steps. First, the

ith parallel vectors are set equal to each other, i.e., ni ≡ ei, which gives

eT

i r̃bn = ξmax, (5.70)

which equates the ith element of r̃bn to ξmax. Second, (5.70) is substituted into (5.68). For

convenience in the remainder of the test formulation, r̃bn will be arranged to place ξmax

to the first element of a vector and the remaining elements will follow in ui. The matrix

P−1
r̃bn

is modified accordingly, so that the ith diagonal element is placed into the top-left
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element, denoted βi and the corresponding cross-correlation elements are permutated into

vector bi ∈ R2, and the remaining elements are placed into A ∈ R2×2. These permutations

are performed using a permutation matrix Ni through

yi , Nir̃bn =







ξmax

ui






, Yi , NiP

−1
r̃bn

NT

i =







βi bTi

bi Ai






,

Ni ,







eT

i

Gi






, Gi =







eT

α\i

eT

α+1\i






, α = 1, 2, 3.

Noting the properties of permutation matrices

NiN
T

i = NT

i Ni = I3×3,

the ellipsoid equation in (5.68) may be rewritten as

yT

i Yiyi =







ξmax

ui







T 





βi bTi

bi Ai













ξmax

ui






≤ ηn. (5.71)

To check if there is a feasible solution to (5.71), the left side of the inequality is minimized

over the remaining variables ui and then the optimal value is compared with the right side of

the inequality. Since P−1
rbn

≻ 0, thenA = GαP
−1
rbn

GT ≻ 0, making this a convex optimization

problem with a known optimal value, which is given by [103]

inf
u







ξmax

ui







T 





βi bTi

bi Ai













ξmax

ui






= ξ2maxSi, (5.72)

where Si is the Schur complement of Ai, which is equal to

Si = βi − bTi A
−1
i bi. (5.73)
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Checking if ∃Ei for i = 1, 2, 3 to determine if E is intersecting the bounding cube is equivalent

to checking if S−1
i ≥ ξ2max/ηn. Conversely, checking if ∄Ei for i = 1, 2, 3 to determine if E is

contained within the bounding cube is equivalent to checking if

S−1
i <

ξ2max

ηn
for i = 1, 2, 3. (5.74)

Note that the Schur complement Si is non-singular, since P−1
rbn

≻ 0 [103].

The number of tests in (5.74) can be reduced from three to one by testing only max
i

S−1
i .

Conveniently, this value is equal to the maximum entry of Prbn
. To see this, consider the

matrix block inversion property of the Schur complement [103]







βi bTi

bi Ai







−1

=







S−1
i −S−1

i bTi A
−1
i

−A−1
i biS

−1
i A−1

i +A−1
i biS

−1
i bTi A

−1
i






. (5.75)

The left side of (5.75) is

Y−1
i = NiPr̃bn

NT

i . (5.76)

From (5.75) one can deduce that S−1
i is equal to the top-left element of Y−1

i . From (5.76)

one can conclude that the top-left element of Y−1
i is equal to the ith diagonal element of

Pr̃bn
, since permutations conducted on the inverse of a matrix correspond to permutations

conducted on the matrix itself. Finally, since the largest elements of a symmetric positive

definite matrix are the diagonal elements, it suffices to check the largest element of the

matrix. Therefore, the test to determine if the performance constraint (5.57) with q ≡ ∞

will be violated, boils down to each vehicle checking

‖Prrn
‖max ≤

ξ2max

ηn
.
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5.7 Simulation Results: Event-Based Information Fu-

sion

In this section, simulation results are presented demonstrating the event-based information

transmission scheme.

If the test (5.58) or (5.67) fails for any vehicle, the vehicle whose test fails requests all vehicles

to transmit their {Λn}Nn=1, and subsequently all vehicles perform an EKF correction upon

receiving the communicated packets from other vehicles. An event-trigger threshold on the

EKF-produced 3σ error standard deviations of the vehicles’ position states, over which the

transmission of {Λn}Nn=1 is requested, can be found by taking the square root of (5.58), which

yields

3σ ≤ 3
ξmax√
ηn

. (5.77)

In the next subsection, the pdf of ‖r̃bn‖2M is characterized in order to compute ηn using the

inverse cumulative distribution function (cdf) on (5.63).

5.7.1 Mahalanobis Norm-Squared Distribution Characterization

To determine the pdf of ‖r̃bn‖2M, 5×104 Monte Carlo runs were conducted using the environ-

ment illustrated in Fig 4.4. The value of ‖r̃bn‖2M was recorded for each run for n = 1, . . . , N .

The same simulation settings described in Subsection 5.5.1 were used, except each run used

a different initial state estimate and different realizations of process and measurement noise.
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GPS was set to be available for t ∈ [0, 50) seconds with L = 11 and unavailable (L = 0) for

t ∈ [50, 200] seconds. Fig. 5.8 illustrates the Monte Carlo runs histogram of ‖r̃bn‖2M for UAV

1, from which it is deduced that the pdf follows a gamma distribution given by

p(‖r̃bn‖2M; s, θ) =
1

Γ(s)θs
(‖r̃bn‖2M)s−1e

−‖r̃bn
‖2
M

θ ,

where s and θ are the shape and scale parameter of the gamma distribution, respectively,

and Γ is the complete gamma function, which is given by

Γ(z) =

∫ ∞

0

xz−1e−xdx.

A maximum likelihood estimator was employed to find the parameters s and θ [139]. During

GPS availability (L = 11), the parameters were found to be {s, θ} ≈ {3/2, 2}, which is

equivalent to a Chi-squared distribution, with three DoF. During GPS unavailability (L = 0),

the parameters were found to be {s, θ} ≈ {3/2, 2.63}. The estimated pdf for the GPS

availability period is also plotted in Fig. 5.8(b) to show the shift in the pdf’s scale parameter

when GPS becomes unavailable.

It is important to note that during GPS unavailability the shape and scale parameters {s, θ}

depend on the environment (e.g., number of SOPs and geometric distribution of SOPs).

However, in a practical scenario the parameters {s, θ} may be determined online when GPS

is still available. To do this, the following procedure may be used. First, in addition to

the EKF running that has access to GPS, a parallel EKF is run with GPS fictitiously

cut off. Second, the estimated UAVs’ positions using SOPs only (GPS unavailability) are

differenced with the GPS produced position estimates in order to calculate a time history

of r̃bn , n = 1, . . . , N . Third, the time history r̃bn is downsampled to make the signal white.

Forth, the distribution of ‖r̃bn‖2M is characterized by passing the downsampled signal through

a maximum likelihood estimator for a gamma distribution [139].
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Figure 5.8: (a) Histogram of ‖r̃b1‖2M during GPS availability (L = 11) and gamma distri-
bution with parameters s1 = 3/2 and θ1 = 2 and (b) histogram of ‖r̃b1‖2M during GPS
unavailability (L = 0) and gamma distribution with parameters s2 = 3/2 and θ2 = 2.63.

5.7.2 Event-Based Versus Fixed-Rate

In this subsection, simulation results are presented to demonstrate the event-based communi-

cation scheme discussed in this section and to compare its resulting estimation performance

and corresponding communication rate with a fixed-rate communication scheme.

To this end, the same environment illustrated in Fig. 4.4 was simulated using the settings

described in subsection 5.5.1. GPS was set to be available for t ∈ [0, 50) seconds, and un-

available for t ∈ [50, 200] seconds. Two EKF-CoRSLAM estimators were run to estimate

the UAVs’ trajectories. The only difference between the estimators is in when the communi-

cation and correction step is performed: (i) fixed-rate, when measurements are made or (ii)

event-based, when any UAV violates (5.58) or (5.67).

Each estimator was initialized according to the procedure discussed in subsection 5.5.2.

For the event-based run, the two-norm (q = 2) test in (5.58) was employed, where the

constraints specified on the UAVs’ position estimates were set to be ξmax ≡ 10 m with a

confidence probability p ≡ 0.999. Using this p and the shape and scale parameters found in

Subsection 5.7.1, the inverse cdf of (5.63) evaluated to η1 ≈ 16.27 and η1 ≈ 21.37 for the GPS

availability and unavailability periods, respectively. Plugging these values into (5.58) yields
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‖Prb1
(k|j)‖2 ≤ 6.15 and ‖Prb1

(k|j)‖2 ≤ 4.68 for the GPS available and unavailable periods,

respectively. The infinity-norm (q = ∞) test in (5.67) was also employed on the UAVs’ east,

north, and down position covariance during a separate run. Plugging the above values into

(5.67) yields ‖Prb1
(k|j)‖max ≤ 6.15 and ‖Prb1

(k|j)‖max ≤ 4.68 for the GPS available and

unavailable periods, respectively.

To visualize the reduction of the transmitted data, the accumulation of transmitted data was

recorded for each scheme by summing the number of transmitted bits each time a packet

transmit occurred. The size of the packet in bits was found by summing the number of

values in (5.13) and setting each value to be a 32-bit float data type, as described in [37].

For a comparative analysis, the accumulation of transmitted data for transmitting raw IMU

data was also recorded.

Fig. 5.9 shows the resulting east, north, and down errors and corresponding ±3σ bounds of

UAV 1 along with the ±3σ bound event-trigger thresholds (5.77) during GPS unavailability.

To avoid convoluting the plot, only results for the test in (5.58) are shown in Fig. 5.9,

since it was found that the resulting EKF plots were very similar to using the two-norm

(q = ∞) test in (5.67). This is due to the dominate vertical uncertainties, which make

‖Prb1
(k|j)‖2 ≅ ‖Prb1

(k|j)‖max. Fig. 5.10 shows the resulting log
{

det
[

Prb1
(k|j)

]}

for

using the fixed rate and event-based communication schemes. The resulting accumulation

of transmitted data for each scheme is illustrated in Fig. 5.11. Similar plots were noted for

the other three UAVs.

The following may be concluded from these plots. First, note from Fig. 5.9 that the estima-

tion uncertainties associated with the event-based communication scheme are consistently

larger than the ones produced by the fixed-rate scheme. This is due to skipped measurement

updates when the test (5.58) is satisfied. Second, it can be seen that the UAV’s position

uncertainties reduce when the errors approach the trigger threshold, which causes all UAVs

to transmit their data packets and perform an EKF update. The threshold is triggered only
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Figure 5.9: Resulting north, east, and down errors and corresponding ±3σ bounds for UAV
1 for the event-based and fixed-rate communication schemes.
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Figure 5.10: The resulting logarithm of the determinant of the estimation error covariance
for the position states of UAV 1 for the event-based and fixed-rate communication schemes,
as well as the event-trigger threshold.

by the UAVs’ vertical uncertainty, which is expected due to the large vertical dilution of

precision due to all of the SOPs residing under the UAVs. Third, the degradation in esti-

mation performance by skipping these measurements is captured by the distance between
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Figure 5.11: Accumulation of the communicated data for transmitting IMU data, trans-
mitting the packet Λ at a fixed-rate, and transmitting the packet Λ using the event-based
communication scheme.

the corresponding ±3σ bounds in Fig. 5.9 and by log
{

det
[

Prb1
(k|j)

]}

curves in Fig. 5.10.

Fourth, the similarity between using (5.58) and (5.67) for event triggering is seen by com-

paring the log
{

det
[

Prb1
(k|j)

]}

curves in Fig. 5.10. Finally, from Fig. 5.11, the following

accumulation of transmitted data for each communication strategy was determined: 6.46

MB for transmitting Λ at a fixed rate and 3.06 MB for transmitting Λ using the event-based

scheme. Therefore, although using the event-based strategy to transmit Λ causes a small

increase in position uncertainty, the accumulated transmitted data is reduced by 52.6% com-

pared to transmitting Λ using fixed-rate scheme. Transmitting raw IMU data at a fixed-rate

accumulated 18.6 MB of transmitted data. The event-based communication strategy reduces

the required amount of transmitted data by 83.6% compared to transmitting raw IMU data.

5.8 Experimental Demonstration

This section presents an experimental demonstration of the TOA and TDOA information fu-

sion strategies discussed in Section 5.3 and the event-based communication scheme developed

in Section 5.7 using two UAVs equipped with consumer-grade IMUs and software-defined

radios (SDRs).
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5.8.1 Hardware and Software Setup

The hardware and software setup was identical for the results presented in Subsection 5.8.3

and Subsection 5.8.4. A Consumer-grade L1 GPS active patch antenna [133] and a an

omnidirectional cellular antenna [132] were mounted on each UAV to acquire and track

GPS signals and multiple cellular transmitters, respectively, whose signals were modulated

through code division multiple access (CDMA). The GPS and cellular signals were simul-

taneously downmixed and synchronously sampled via two-channel EttusR© E312 universal

software radio peripherals (USRPs). These front-ends fed their data to the Multichannel

Adaptive TRansceiver Information eXtractor (MATRIX) SDR, which produced pseudorange

measurements from all GPS L1 C/A signals in view and three cellular transmitters [128].

The IMU data was sampled from the UAVs’ on-board proprietary navigation system, which

was developed by Autel RoboticsR©. Fig. 5.12 depicts the hardware and software setup.

MATLAB-based
CoRSLAM

MATRIX SDR
LabVIEW-based

Universal software

IMU data

PseudorangesCDMA

radio peripheral
(USRP)

Signals

Cellular and GPS antennas

Figure 5.12: Experiment hardware setup.

5.8.2 CoRSLAM Initialization and Settings

The CoRSLAM framework was initialized using the same following procedure for each of the

two results presented in the subsequent subsections. The state vector estimate was initialized

according to

x̂(0|0)=
[

x̂T

r,1(0|0), x̂T

r,2(0|0), x̂T

sop,1(0|0), . . . , x̂T

sop,3(0|0)
]T

,
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where the estimates of each UAV’s orientation bn
g
ˆ̄q(0|0), position r̂bn(0|0), and velocity

ˆ̇rbn(0|0) were set to values parsed from the beginning of the UAV’s navigation system log

files, which were recorded during the trajectory, and the IMU biases b̂gyr,n and b̂acc,n were ini-

tialized by averaging 5 seconds of gravity-compensated IMU measurements while the vehicles

were stationary and after their IMUs had warmed up. The cellular SOP transmitters’ initial

state estimates were drawn according to x̂sop,m(0|0) ∼ N
([

rT

sop,m,x
T

clk,sop,m(0)
]T

,Psop,m(0|0)
)

.

The true transmitters’ positions {rsop,m}3m=1 were surveyed beforehand according to the

framework described in [118] and verified using Google Earth. The initial clock bias and

drift

xclk,sop,m(0) = c
[

δtsop,m(0), δ̇tsop,m(0)
]T

m = 1, . . . , 3,

were solved for by using the initial set of cellular transmitter pseudoranges using equation

(5.7) according to

cδtsop,m(0) = ‖rbn(0)− rsop,m‖+ cδtr,n(0)− zsop,m(0),

cδ̇tsop,m(0) = [cδtsop,m(1)− cδtsop,m(0)]/T,

where cδtsop,m(1) = ‖rbn(1) − rsop,m‖ + cδtr,n(1) − nzsop,m(1) and the receiver’s clock bias

cδtr,n(0) and cδtr,n(1) was provided by the GPS receiver while GPS was available.

162



The corresponding estimation error covariance was initialized according to

Px(0|0) = diag
[

Pxr
(0|0),Pxsop,1

(0|0), . . . ,Pxsop,3
(0|0)

]

,

Pxr
(0|0) = diag

[

Pxr,1
(0|0),Pxr,2

(0|0)
]

,

Pxr,n
(0|0) , diag

[

Pximu,n
(0|0), Pxclk,r,n

(0|0)
]

Pximu,n
(0|0)≡diag

[

(0.1)·I3×3, 9·I3×3, I3×3, (10
−4)·I6×6

]

Pxclk,r,n
(0|0) ≡ diag [0.1, 0.01] n = 1, 2,

Psop,m(0|0) ≡ 103 · diag [I3×3, 0.3, 0.03] , m = 1, 2, 3.

The process noise covariance of the receiver’s clock Qclk,r,n was set to correspond to a typical

TCXO. The process noise covariances of the cellular transmitters’ clocks were set to corre-

spond to a typical OCXO, which is usually the case for cellular transmitters [15, 114]. The

power spectral density matrices associated with the gyroscope and accelerometer noise were

set to Sngyr
≡ (7×10−4)2 ·I3×3 and Snacc

≡ (5×10−4)2 ·I3×3, respectively. The power spectral

density matrices associated with the gyroscope and accelerometer bias variations were set

to Swgyr
≡ (1× 10−4)2 · I3×3 Swacc

≡ (1× 10−4)2 · I3×3, whose values were found empirically

using raw IMU data. The measurement noise variances {nσ2
sop,m}3m=1 for UAV n = 1 and

n = 2 were time-varying, and calculated according to (5.56) , except that teml ≡ 1, nσ2
sv,l,j is

replaced with nσ2
sop,m,j , Tc ≡ 1/(1.2288× 106), σs ≡ 10, TCO ≡ 1/37.5 s, and the carrier-to-

noise ratios {n(C/N0)m,j}3m=1, n = 1, 2, are replaced with the received carrier-to-noise ratio

estimated by the MATRIX SDR, which are plotted in Fig. 5.13.

5.8.3 Experimental Results: TOA Versus TDOA

Experimental results are presented for three frameworks: (i) CoRSLAM with TOA infor-

mation fusion, (ii) CoRSLAM with TDOA information fusion, and (iii) for comparative
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analysis, a traditional GPS-aided INS. The UAVs traversed the white trajectories plotted

in Figs. 5.14(c)–(d), in which GPS was available for the first 50 seconds then unavailable

for the last 30 seconds. The north-east root mean squared errors (RMSE) and final errors

for all three frameworks for the UAVs are summarized in Table. 5.1. The final estimated

transmitter location and corresponding 99th-percentile north-east uncertainty ellipse for two

of the transmitters are shown in Fig. 5.14(b) and Fig. 5.14(e). The final localization errors

for the three transmitters were 9.0, 7.9, and 52.8 m, respectively. Note that the relatively

large estimation error of SOP 3 is primarily attributed to relatively large measurement noise

compared to the measurement noise associated with SOP 1 and SOP 2. Upon investigation

of Fig. 5.13, it can be seen that the received C/N0 from SOP 3 at UAV 1 and UAV 2 was

lower compared to the C/N0 from SOP 1 and 2, most of the time. The lower C/N0 maps

to larger estimation error variance, according to (5.56). The larger measurement variance

resulted in a larger final estimation error ellipse, which contained the true position of SOP

3.
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Figure 5.13: Time history of received C/N0 for UAV 1 and UAV 2 from SOP 1,2, and 3,
produced by the MATRIX SDR.
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Table 5.1: Estimation Errors: TOA Versus TDOA

Framework GPS-aided INS CoRSLAM-TOA CoRSLAM-TDOA

Vehicle UAV 1 UAV 2 UAV 1 UAV 2 UAV 1 UAV 2

RMSE (m) 21.5 18.9 3.1 4.2 3.3 4.4

Final Error (m) 57.3 54.7 4.3 6.0 4.4 6.2

TrueTrueTrueTrue

Estimated Tx location True Tx location Estimated Tx locationTrue Tx location

Trajectories

True
SOP-aided INS
(with GPS)

CoRSLAM with
TOA

INS only

(b) (c) (d) (e)

(a)

GPS cutoff point

Tx 2

Tx 1

Tx 3

UAV 1

UAV 2

Initial uncertainty

Final uncertainty

Figure 5.14: (a) Experimental environment with three cellular SOPs and two UAVs. (b)-(e)
Mapping and navigation results for CoRSLAM with TOA information fusion.

5.8.4 Experimental Results: Event-Based Communication

Two transmission strategies were studied: (i) event-based using (5.58) with ξmax ≡ 20 m and

p ≡ 0.95, and for a comparative analysis, (ii) fixed-rate where τ is closed periodically with

a period of 0.2 s. For each of the two transmission schemes, the traversed UAV trajectories

were estimated using the TOA information fusion strategy. The estimated trajectories using

each transmission scheme for UAV 1 and UAV 2 are plotted in Fig. 5.15 (a) and (b),

respectively. The north-east final errors for each communication scheme for the UAVs are

summarized in Table. 5.2. The final estimated transmitter location and corresponding

99th-percentile north-east uncertainty ellipse of SOP 1 for each communication strategy are
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plotted in Fig. 5.15 (c). From the plots in Fig. 5.15, one can note a slight degradation in

UAV localization performance, however the specified constraints p and ξmax were maintained.

Moreover, the fixed-rate communication strategy required the transmission of 8.38 Mbits,

whereas the event-based reduced the transmission to 1.90 Mbits, a 77.3% reduction.

Table 5.2: Estimation Errors: Fixed-rate Versus Event-based Communication

Scheme Fixed-rate Event-based

Vehicle UAV 1 UAV 2 UAV 1 UAV 2

Final Error (m) 4.3 6.0 6.71 8.01

(a) (b) (c)

Trajectories

Tx Mapping

Fixed-rate Event-basedTrue

GPS cutoff point

Figure 5.15: (a)-(b) UAV navigation results for fixed-rate (blue solid) and event-based (yellow
dashed) information fusion. (c) Mapping results for Tx 1 using fixed-rate (blue) and event-
based (yellow) information fusion.
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Chapter 6

Dissertation Conclusions and Main

Takeaways

This dissertation studied optimal mapping of SOPs and the exploitation of SOPs for aided

inertial navigation.

In chapter 2, where optimal collaborative mapping of terrestrial SOPs was studied. First, the

optimal placement of a receiver to an environment comprising one SOP and N pre-deployed

receivers with a random initial distribution was considered. Three optimization problems

were formulated and compared: minimizing the GDOP, maximizing the determinant of the

inverse of the GDOP matrix, and maximizing the area of a polygon inscribed in the unit

circle whose vertices are the endpoints of unit LOS vectors from the SOP to the receivers. It

was shown that the area maximization problem is piecewise-concave with a simple analyti-

cal solution. Next, the optimal receiver placement problem was extended to an environment

comprising an arbitrary number of SOPs. A novel optimization criterion was proposed for

this scenario, namely, the sum of logarithms of polygon areas. It was demonstrated that

while the classical GDOP and determinant optimization problems do not posses any useful
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convexity properties, the proposed optimization criterion (i) yields a family of convex pro-

grams and guarantees a global optimal solution and (ii) allows for executing the solver of the

family of convex programs in parallel. This chapter also derived the optimal mapping perfor-

mance of a single SOP as a function of time and number of receivers in the environment and

demonstrated the theoretical optimal mapping performance numerically and experimentally.

Next, this dissertation considered simultaneously mapping and navigating with SOPs. In

chapter 3, the stochastic observability of a simultaneous receiver localization and transmit-

ter mapping problem was studied. It was demonstrated that the system is stochastically

unobservable when the clock biases of both a receiver and unknown transmitters are si-

multaneously estimated and that their associated estimation error variances will diverge.

The divergence rate of a sequence lower-bounding the diverging variances was derived and

shown to reach a steady-state that only depends on the receiver’s clock quality. Despite the

stochastically unobservable clock biases, simulation and experimental results demonstrated

bounded localization errors of a UAV navigating via radio SLAM for 130 seconds without

GPS.

Chapter 4 developed and studied an SOP-aided INS framework. The performance of the

framework was compared against a traditional tightly-coupled GNSS-aided INS integration

strategy and the performance sensitivity was studied by varying the quantity and quality

of exploited SOPs. The SOP-aided INS was shown to possess several advantages over the

GNSS-aided INS. When GNSS signals are available, incorporating ambient terrestrial SOPs

produces a more accurate navigation solution compared to using GNSS alone. A bound could

be established on the estimation errors in the absence of GNSS. The SOP-aided INS may

relax requirements on IMU quality. For example, using a consumer-grade IMU was shown to

produced estimation uncertainties lower than a traditional tightly-coupled GNSS-aided INS

using a tactical-grade IMU when two, three, or four SOPs were exploited. Furthermore, it

was shown that SOPs equipped with low-quality oscillators may serve as effective INS-aiding
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sources to establish a bound on INS errors in the absence of GNSS. Moreover, experimental

results demonstrated a vehicle navigating with the SOP-aided INS framework in the absence

of GNSS, which yielded an RMSE reduction of 59.9% when compared to an unaided INS.

Chapter 5 developed and studied two information fusion strategies for navigating vehicle’s

to collaboratively aid their INS’s with SOPs: TOA measurements and TDOA measurements

with SOP referencing. It was proven analytically that using TOA measurements from SOPs

with unknown positions and unknown and unsynchronized clock biases results in a smaller or

equal navigating vehicle’s position estimation error covariance than using TDOA measure-

ments, regardless of the selected SOP reference. An approach to share INS data between

navigating vehicles in a distributed fashion was discussed, which significantly reduces the

amount of data that is required to be transmitted to perform the EKF measurement update.

Simulation and experimental results were presented to demonstrate these fusion strategies.

Moreover, an event-based communication scheme using each vehicles’ position estimation

error covariance was developed, which aims to reduces the accumulated shared data between

collaborators while maintaining a specified constraint on each vehicle’s positioning error. The

inequalities (5.58) and (5.67) provide simple tests to determine if the specified constraints

will be violated and trigger communication. Given the probability density function (pdf) of

‖r̃bn‖2M, the inverse cdf of (5.63) may be used to find the ηn that satisfies a specified p. The

pdf of ‖r̃bn‖2M is characterized, leading to a simple online test that each navigating vehicle

could perform independently to determine whether Λn should be transmitted. Simulation

and experimental results were presented to compare the event-based scheme with a fixed-rate

scheme.
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Appendix A

Appendices

A.1 Derivation of the Area Optimization Function (2.16)

The resulting area mA (mφN+1) for the mth SOP after placing the (N + 1)st is

mA (mφN+1) =
mAN +∆mA (mφN+1) , (A.1)

where mAN is the area created by the pre-deployed receivers and ∆mA (mφN+1) is the change

in area from introducing the (N + 1)st receiver, and is given by

∆mA (mφN+1) =

1

2
[sin(mφN+1 − mφn) + sin(mθn − mφN+1 +

mφn)

− sin(mθn)] . (A.2)
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Using the angle difference identity for the sine function, sin(α−β) = sinα cos β−cosα sin β,

(A.2) can be rewritten as

∆mA (mφN+1) =

1

2
{[sin(mφN+1) cos(

mφn)− cos(mφN+1) sin(
mφn)]

+ [sin(mθn +
mφn) cos(

mφN+1)

− cos(mθn +
mφn) sin(

mφN+1)]− sin(mθn)} . (A.3)

The optimization function (A.1) can be parameterized by the candidate additional receiver

position rN+1 by substituting the equality [ cos(mφn), sin(
mφn) ]

T = rrn−r̂sm
‖rrn−r̂sm‖

into (A.3) and

substituting the result into (A.1), giving

mA (rN+1) =

1

2

{

(xrN+1
− x̂sm)

‖rrn − r̂sm‖
[sin(mθn +

mφn)− sin(mφn)]

+
(yrN+1

− ŷsm)

‖rrn − r̂sm‖
[cos(mφn)− cos(mθn +

mφn)]

− sin(mθn)}+ mAN . (A.4)

Note that since mAN is independent of rN+1, it may be omitted from the optimization

problem. Its values can be computed off-line if desired.

182



A.2 Equations of the Polyhedra Constraints (2.16)

The direction of the lth halfspace forming the polyhedron Sk is defined by the outward normal

vector −pl,k, which is determined by the position of the nth pre-deployed receiver and the

position estimate of the mth SOP, specifically

pl,k = ±
[

−(yrN+1
− ŷsm)

‖rrn − r̂sm‖
,
(xrN+1

− x̂sm)

‖rrn − r̂sm‖

]T

. (A.5)

The corresponding halfspace’s offset from the origin of {f1} is

ql,k = yrn − (ŷsm − yrn)

(x̂sm − xrn)
· xrn. (A.6)

A.3 Derivation of Equation (2.22)

Given the pseudorange observations zn defined in (2.3), define

z̄n(k) , ‖rrn(k)− rs‖+ cδtrn(k)− zn(k)

= cδts(k)− vn(k). (A.7)

The clock bias δts can be removed by a single difference of (A.7) in time and substituting

for the SOP’s DT clock bias dynamics cδts(k+1) = cδts(k) + cT ˙δts(k) + wδts(k), yielding

γn(k+1) , z̄n(k+1)− z̄n(k)

= cδts(k+1)− cδts(k)− [vn(k+1)− vn(k)]

= cT ˙δts(k) + wδts(k)− [vn(k+1)− vn(k)]. (A.8)
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The clock drift ˙δts can be removed by a single difference of (A.8) in time and substituting

for the SOP’s clock drift dynamics c ˙δts(k) = c ˙δts(k−1) + wδ̇ts
(k−1), which yields

λn(k+1), γn(k+1)− γn(k)

= cT [ ˙δts(k)− ˙δts(k−1)] + [wδts(k)− wδts(k−1)]

− [vn(k+1)− 2vn(k) + vn(k−1)]

= Twδ̇ts
(k−1) + wδts(k)− wδts(k−1)

− [vn(k+1)− 2vn(k) + vn(k−1)].

Note that λn is the sum of three stationary sequences. For the sample ACF analysis con-

ducted in this paper, each stationary sequence can be shifted to start with index k, giving

λn(k) = λn,1(k) + λn,2(k) + λn,3(k), (A.9)

where λn,1(k) , wδts(k) − wδts(k− 1), λn,2(k) , −[vn(k) − 2vn(k− 1) + vn(k− 2)], and

λn,3(k) , Twδ̇ts
(k).

A.4 Derivation of Equation (2.23)

Equation (A.9) can be written as λn(k) = κTy(k) where

κ , [ 1, T, −1, −1, 2, −1, ]T ,

y(k) ,

[

wδts(k), wδ̇ts
(k), wδts(k−1), vn(k), vn(k−1), vn(k−2)

]T

.
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Assuming second-order ergodicity, i.e., for a sufficiently large number of samples L, the

sample variance of λn, denoted varL (λn), is equal to the ensemble variance and is given by

varL (λn) = κTΣκ, (A.10)

where Σ , cov (y) = diag [c2Qclk,s, c
2b, σ2

nI3×3] and b , Sw̃δts
T+Sw̃ ˙δts

T 3

3
is the top left element

of Qclk,s. Finally, using (A.10) to solve for σ2
rn gives

6σ2
rn = varL (λn)− c2

(

2TSw̃δts
+

2

3
T 3Sw̃ ˙δts

)

⇒ σ2
rn =

1

6
varL (λn)−

1

3
c2b.

A.5 Time Update of the IMU State Vector (4.5)

The time update of ximu is performed using ECEF strapdown mechanization equations.

A.5.1 Orientation Time Update

The orientation time update is given by

b
e
ˆ̄q(k + 1|j) = bk+1

bk
ˆ̄q ⊗ b

e
ˆ̄q(k|j), (A.11)

where
bk+1

bk
ˆ̄q represents an estimate of the rotation quaternion between the IMU’s body frame

at time k and k + 1. The quaternion
bk+1

bk
ˆ̄q is computed by integrating gyroscope rotation

rate data ωimu(k) and ωimu(k + 1) using a fourth order Runge-Kutta according to

bk+1

bk
ˆ̄q = q̄0 +

T

6
(d1 + 2d2 + 2d3 + d4) ,
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where

d1 =
1

2
Ω
[

bω̂(k)
]

q̄0, d2 =
1

2
Ω [ω̄] ·

(

q̄0 +
1

2
Td1

)

,

d3 =
1

2
Ω [ω̄] ·

(

q̄0 +
1

2
Td2

)

,

d4 =
1

2
Ω
[

bω̂(k + 1)
]

· (q̄0 + Td3) , q̄0 , [ 0, 0, 0, 1 ]T ,

ω̄ ,
1

2

[

bω̂(k) + bω̂(k + 1)
]

− e
bR

T(k)eiω,

where Ω [ · ] ∈ R4×4 is given by

Ω [a] ,







−⌊a×⌋ a

−aT 0






, a , [a1, a2, a3]

T ,

bω̂(k) is the bias-compensated rotation rate measurement, which is computed according to

bω̂(k) = ωimu(k)− b̂gyr(k|j), (A.12)

and e
iω , [0, 0, e

iω]
T is the rotation rate of the Earth, i.e., the rotation rate of the ECEF

frame {e} with respect to the ECI frame {i}. The value of e
iω, according to the latest version

of the world geodetic system (WGS 84), is e
iω = 7.292115× 10−5 rad/s.

A.5.2 Position and Velocity Time Update

Integrating IMU specific force data to perform a time update of the position and velocity

in an ECEF coordinate frame introduces a centrifugal and Coriolis term due to the rotation

rate of the Earth e
iω [119]. Assuming that the variation of the Coriolis force is negligible
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over the integration interval, the velocity time update is performed according to

e ˆ̇rb(k + 1|j) =e ˆ̇rb(k|j) +
T

2
[eâ(k) + eâ(k + 1)] (A.13)

+ eg(k, erb(k))T − 2T ⌊ieω×⌋e ˆ̇rb(k|j),

where eâ and ba are the transformed bias-compensated specific force and untransformed

bias-compensated specific force, respectively, which are given by

eâ(k) , R̂T(k)bâ(k), (A.14)

ba(k) = âimu(k)− b̂acc(k|j), (A.15)

and R̂(k) , R
[

b
e
ˆ̄q(k|j)

]

.

The position time update is performed according to

er̂b(k + 1|j) =er̂b(k|j) +
T

2

[

e ˆ̇rb(k + 1|j) + b ˆ̇r(k|j)
]

(A.16)

− T 2⌊ieω×⌋e ˆ̇rb(k|j).

A.5.3 Accelerometer and Gyroscope Bias Time Update

The time update of the biases bgyr and bacc follow from (4.1) and (4.2), respectively, giving

b̂gyr(k + 1|j) = b̂gyr(k|j),

b̂acc(k + 1|j) = b̂acc(k|j).
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A.6 INS State Transition and Process Noise Covari-

ance Matrices

The calculation of the discrete-time linearized INS state transition matrix Φimu and process

noise covarianceQimu are performed using strapdown INS equations as described in [119,136].

The discrete-time linearized INS state transition matrix Φimu is given by

Φimu =

























Φqq 03×3 03×3 Φqbgyr 03×3

Φrq I3×3 T I3×3 Φrbgyr Φrbacc

Φṙq 03×3 Φṙṙ Φṙbgyr Φṙbacc

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 I3×3

























,

where

Φqq = I3×3 − T ⌊eiω×⌋, Φṙṙ = I3×3 − 2T ⌊eiω×⌋

Φqbgyr = −T

2

[

R̂T(k + 1) + R̂T(k)
]

,

Φṙq = −T

2
⌊[eâ(k) + eâ(k + 1)]×⌋ , Φrq=

T

2
Φṙq,

Φṙbgyr =−T

2
⌊eâ(k)×⌋Φqbgyr , Φṙbacc = Φqbgyr ,

Φrbgyr =
T

2
Φṙbgyr, Φrbacc =

T

2
Φṙbacc .

The discrete-time linearized INS process noise covariance Qimu is given by

Qimu =
T

2
ΦT

imuNcΦimu +Nc,
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where

Nc = diag
[

Sngyr
, 03×3, Snacc

, Swgyr
, Swacc

]

,

where Sngyr
= TQngyr

and Snacc
= TQnacc

are the PSD matrices of the gyroscope’s and

accelerometer’s random noise, respectively, and Swgyr
= Qnwgyr

/T and Swacc
= Qwacc

/T are

the PSD matrices of the gyroscope’s and accelerometer’s bias variation, respectively.

A.7 EKF State Measurement Update Equations

The standard EKF equations are modified to deal with the 3-D orientation error correction,

which contains one less dimension than the 4-D orientation quaternion estimate, as described

in Subsection 4.3.2. To this end, the state estimate is separated into two parts according to

x̂ ,

[

b
e
ˆ̄q
T

, ŷT

]T

, where b
e
ˆ̄q ∈ R4 is the orientation quaternion estimate and ŷ ∈ R14+5M is a

vector containing the remaining estimates of x. Next, the EKF correction vector x̆(k + 1),

which is to be applied to the current state prediction x̂(k + 1|j) to produce the EKF state

measurement update x̂(k + 1|k + 1), is computed according to

x̆(k+1) ,







θ̆(k+1)

y̆(k+1)






=







ΛθK(k+1)ν(k+1|j)

ΛyK(k+1)ν(k+1|j)






,

where θ̆ ∈ R3 is the orientation correction, y̆ ∈ R14+5M is a vector containing the remaining

corrections,

Λθ ,
[

I3×3, 03×(14+5M)

]

,

Λy ,
[

0(14+5M)×3, I(14+5M)×(14+5M)

]

,
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ν(k + 1|j) , z(k+ 1)− ẑ(k+ 1|j) is the measurement residual, and K and S are defined in

(4.18) and (4.19), respectively. Finally, the EKF state measurement update x(k + 1|k + 1)

is computed by applying θ̆(k + 1) to b
e
ˆ̄q(k+1|j) through (4.14), and applying y̆(k + 1) to

y(k + 1|j) using the standard EKF additive update equation, giving

x̂(k + 1|k + 1) =






b
e
ˆ̄q(k+1|j)⊗

[

1
2
θ̆T(k+1),

√

1− 1
4
θ̆T(k+1)θ̆(k+1)

]T

ŷ(k+1|j) + y̆(k+1)






.

190


	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Exploiting Signals of Opportunity for Navigation
	Dissertation Contributions and Relevant Work
	Dissertation Outline

	Optimal Receiver Placement for Mapping Terrestrial SOPs
	Model Description
	SOP Dynamics Model
	Observation Model

	Optimal Receiver Placement
	Problem Formulation
	Case One: Single SOP
	Case Two: Multiple SOPs

	Optimal Mapping Performance Characterization
	Problem Formulation
	Simulation Results

	Experimental Results
	Model Verification
	Mapping Results


	Radio SLAM: Stochastic Observability
	Model Description
	RF Transmitter Dynamics Model
	Receiver Dynamics Model
	Measurement Model
	Augmented System

	Stochastic Observability Analysis
	EKF-based Radio SLAM Overview
	Stochastically Unobservable Clock Errors

	Simulation Results
	Experimental Demonstration

	Tightly-Coupled SOP-Aided Inertial Navigation
	Problem Description
	Overview of Aided Inertial Navigation
	Inertial Measurement Unit
	Inertial Navigation System
	Traditional GNSS-Aided INS

	SOP-Aided Inertial Navigation
	SOP Dynamics and Pseudorange Measurement Model
	Framework Overview
	EKF Time Update
	EKF Measurement Update

	Simulation Study
	Numerical Simulator Description
	Simulation Results: Tightly-coupled SOP-Aided INS vs. GNSS-Aided INS
	Performance Analysis

	Experimental Demonstration

	Information Fusion and Communication Strategies for Collaborative SOP-Aided Inertial Navigation
	Problem Description
	Model Description
	SOP Dynamics Model
	Vehicle Dynamics Model
	Pseudorange Measurement Model

	Collaborative Inertial Radio SLAM
	EKF-Based CoRSLAM Framework
	Local Prediction
	Vehicle-to-Vehicle Communication
	Assimilation
	TOA Information Fusion Strategy
	TDOA with SOP Referencing Information Fusion Strategy

	Strategy Performance Comparison
	TDOA SOP Reference Selection
	TOA Versus TDOA

	Simulation Results: TOA Versus TDOA
	Simulation Environment and Settings
	EKF-based CoRSLAM Filter Initialization
	TOA Versus TDOA Performance Comparison

	Event-Based Information Fusion
	Problem Formulation
	Two-Norm Test Formulation
	Infinity-Norm Test Formulation

	Simulation Results: Event-Based Information Fusion
	Mahalanobis Norm-Squared Distribution Characterization
	Event-Based Versus Fixed-Rate

	Experimental Demonstration
	Hardware and Software Setup
	CoRSLAM Initialization and Settings
	Experimental Results: TOA Versus TDOA
	Experimental Results: Event-Based Communication


	Dissertation Conclusions and Main Takeaways
	Bibliography
	Appendices
	Derivation of the Area Optimization Function (2.16)
	Equations of the Polyhedra Constraints (2.16)
	Derivation of Equation (2.22)
	Derivation of Equation (2.23)
	Time Update of the IMU State Vector (4.5)
	Orientation Time Update
	Position and Velocity Time Update
	Accelerometer and Gyroscope Bias Time Update

	INS State Transition and Process Noise Covariance Matrices
	EKF State Measurement Update Equations




