
UC San Diego
Technical Reports

Title
Services, SOAs and Integration at Scale

Permalink
https://escholarship.org/uc/item/0ks7796c

Author
Krueger, Ingolf

Publication Date
2012-07-02

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0ks7796c
https://escholarship.org
http://www.cdlib.org/

 1

Services, SOAs and Integration at Scale1

Ingolf Krüger

University of California, San Diego

La Jolla, CA 92093-0404

USA

Abstract After more than a decade of research into and practical application of
service-orientation (SO*) there is still confusion about what services are, and
what their benefit to Software Engineering research and practice is. Nevertheless,
and unfazed by its fuzzy backdrop, SO* has taken hold across industry as the
foundation on which large software systems are built. Clearly, this leaves many
fundamental questions on the table.

This paper focuses on developing the principles and practices for using SO* in
large-scale service integration. We start from a simple premise: services are
functions, service-oriented architectures (SOAs) are dynamic functional programs. We
develop this premise into a semantic foundation for services and SOAs based on
a novel dynamic model of stream processing functions. We introduce Open
Rich Services (ORS), an architecture pattern for SOA that (a) disentangles
infrastructure-concerns cleanly from application-specific concerns, (b) supports
flexible and dynamically changeable service composition, and (c) facilitates
hierarchical service decomposition. We establish the link between ORS and our
basic SOA semantics to yield a comprehensive and scalable SOA foundation. As
a proof of concept we develop a domain specific language (DSL) for specification
of SOAs following this semantic approach.

1 This paper was written to a significant extent while on sabbatical from UCSD, visiting
Technical University of Munich, Saarbrücken University, Technical University of
Aachen, and Paderborn University. The author is grateful to his hosts (Profs. Broy,
Finkbeiner, Rumpe and Schäfer, respectively) and their institutions for providing a
highly stimulating and productive research environment.

 2

Table of Contents

1. Introduction ... 3

1.1. Existing Definitions for Services and SOAs .. 3

1.2. The OASIS Reference Model for Service Oriented Architecture 4

1.3. Approach ... 6

1.4. Contributions and Outline .. 7

2. Streams and Stream Processing Functions .. 8

2.1. Notational conventions .. 8

2.2. System Structure .. 10

2.3. System Behavior .. 10

2.4. Stream Processing Functions .. 11

2.5. Refinement of Stream Processing Functions ... 12

3. Semantics of Services and SOAs ... 13

3.1. Services .. 13

3.2. Components .. 13

3.3. Service-Oriented Architectures (SOAs) .. 13

3.4. Observations and Discussion ... 15

4. Rich Services: SOAs at Scale .. 16

4.1. Rich Service Semantics .. 17

4.2. Semantics of Hierarchical Rich Services ... 18

4.3. Observations and Discussion ... 19

5. Open Rich Services (ORS): A DSL for SOA at Scale 20

5.1. Example: CellSense ... 21

5.2. What makes CellSense Challenging? .. 22

5.3. Open Rich Services DSL in Clojure .. 24

5.4. The ORS Runtime System ... 33

5.5. Observations and Discussion ... 34

6. Discussion and Related Work .. 35

7. Summary & Outlook .. 39

8. Acknowledgments .. 39

9. References .. 40

 3

1. Introduction
Service-Orientation (SO*)2 has become the de-facto industry standard for the
development of Internet-scale systems. Its main value proposition is reduced cost
and risk while facilitating rapid, flexible and dynamic construction, composition,
deployment, quality assurance and maintenance of individual, finely-granular
features into a multitude of systems. The resulting systems typically are “open”
in the sense that they can become services themselves allowing further
composition with yet other services.

While these qualities have always been important, today’s fast innovation cycles
with rapid requirements changes and the need to equally rapidly respond with
changes in existing, or the development of new products, have further amplified
their significance. This has catapulted SO* into being the “go-to” approach for
software and systems integration.

At the same time, no clear consensus on what services and service-oriented
architectures are has so far emerged either in industry or academia. As a
consequence, service-orientation is regarded as a fuzzy field at best, and a hype-
ridden curiosity at worst. This endangers the long-term viability of SO* as a field
within software and systems engineering, despite the significant promise it
holds.

In this paper, we develop a concise definition of services and service-oriented
architectures (SOAs) that can serve as the basis for the use of these terms across
stakeholder groups and their projects.

1.1. Existing Definitions for Services and SOAs

Part of the challenge in arriving at a precise definition for services and SOAs is
that the abundance of standards and concomitant opinions on what SO* should
be or do is legion, each flavored by the needs and concerns of a specific
stakeholder group.

We give three illustrative examples of such definitions:

1. “SOA is an application framework that takes everyday business applications and
breaks them down into individual business functions and processes, called
services. SOA is a conceptual description of the structure of a software system in
terms of its components and the services they provide, without regard for the

2 We use the abbreviation SO* to refer to the conglomerate of terms (or a subset thereof)
that has emerged around service-orientation: services themselves, service-oriented
architectures, design, development, deployment, … From the context, the reader will be
able to deduce what concrete set of terms a particular reference to SO* intends to
capture.

 4

underlying implementation of these components, services and connections
between components.” [1]

2. “Service: A service is an abstract resource that represents a capability of
performing tasks that form a coherent functionality from the point of view of
provider entities and requesters entities. To be used, a service must be realized by
a concrete provider agent. SOA: A set of components which can be invoked, and
whose interface descriptions can be published and discovered.” [2]

3. “SOA: A paradigm for organizing and utilizing distributed capabilities that may
be under the control of different ownership domains. It provides a uniform means
to offer, discover, interact with and use capabilities to produce desired effects
consistent with measurable preconditions and expectations.” [3]

We note that definition 1) comes from an industry-leading provider of consulting
on and products for service-oriented systems, whereas 2) and 3) are taken from
publications of standardization bodies for SO* technologies. There is nothing
inherently wrong with any one of the definitions, taken in isolation. It is striking,
however, how little agreement there is across definitions on the fundamental
notions defining the field of SO*.

With respect to services, definitions 1)-3) say they are “individual business
functions and processes”, “an abstract resource that represents a capability”, and
“a distributed capability“, respectively.

None of the definitions agree on what a SOA is. Definition 1) states that SOA is
both “an application framework” and “a conceptual description”. Definition 2)
says SOA is a set of components, whereas definition 3) says that SOA is a
paradigm. All three definitions complect the terms service and SOA with
properties that even at second sight seem independent of whether the chosen
technology or methodology is service-oriented or not. Definition 1) juxtaposes
services with business functions, but surely component-orientation, structured
design and object-orientation each make the same claim for their units of
granularity and composition (components, modules, and objects, respectively).
Similarly, definition 2) links services with “coherent functionality” between
“provider entities and requestor entities”, which also is a claim that is not unique
to services – and thus not a distinguishing characteristic we can use to better
understand what SO* is and is not. Finally, definition 3) requests that SOAs
support production of “desired effects consistent with measurable preconditions
and expectations”, which again is by no means a desire germane to SO*.

1.2. The OASIS Reference Model for Service Oriented Architecture

Although clear, concise definitions of the terms service and SOA seem elusive,
we need to ground the discussion of our own approach with respect to common
interpretations of these terms. To that end, we look to the OASIS Reference
Model for SOA [3], which identifies core concepts of and terminology
surrounding SOAs:

 5

Concept/Term Informal Meaning

Capability The ability of an entity to perform an action

Needs A necessity for an entity to perform its own actions.

Service “Mechanism by which needs and capabilities are brought
together” (ibid., lines 173-174.)

Visibility “the capacity for those with needs and those with
capabilities to see each other” (ibid., lines 140-141)

Semantics Interpretation of data and actions within a domain of
discourse.

Execution Context “the set of technical and business elements that form a
path between those with needs and those with
capabilities” (ibid., lines 148-150)

Real World Effects Observable state change within the environment of the
SOA.

Service Provider Entity offering a capability.

Service Consumer Entity perusing a service provider to fulfill a need.

Service Description “information necessary to interact with the service … in
such terms as the service inputs, outputs and associated
semantics.” (ibid., lines 188-189)

Interaction “activity of using a capability” (ibid., line 146)

Contract “an agreement by two or more parties” (ibid., lines 658-
659)

Policy “represents some constraint or condition on the use,
deployment or description of an owned entity as defined
by any participant” (ibid., lines 657-658)

Furthermore, [3] requests “any design for a system that adopts the SOA
approach will

• Have entities that can be identified as services as defined by this Reference
Model;

• Be able to identify how visibility is established between service providers
and consumers;

• Be able to identify how interaction is mediated;

 6

• Be able to identify how the effect of using services is understood;
• Have descriptions associated with services;
• Be able to identify the execution context required to support interaction;

and
• It will be possible to identify how policies are handled and how contracts

may be modeled and enforced.” (ibid., lines 765-775)

Although this list does not explicitly mention the terms “scale” and
“composition”, [3] recognizes their significance by stating “The value of SOA is
that it provides a simple scalable paradigm for organizing large networks of
systems that require interoperability to realize the value inherent in the
individual components.” (ibid., lines 284-285)

The approach we present in the remainder of this document explicitly answers
these key characteristics of SOA systems and is precise in their definition.

1.3. Approach

We seek to establish concise definitions for both services and SOAs. Our goal is
to disentangle the notion of service from ancillary concerns such as relationships
to business terminology, specific implementation details, or deployment
concerns, while addressing the main SOA characteristics identified in Section 1.2.

We realize, of course, that some benefits of SO* arise form the interdisciplinary
appeal services have, say, between software developers and managers seeking
flexible code-level system integration, and more flexible product offerings with
shorter time-to-market, respectively. However, contrary to the definitions quoted
in Section 1.1, we advocate working from a simple characterization of services
and SOAs, so that ancillary concerns can be layered on top rather than being part
of the basic definitions.

What, then, are the characteristics germane to a basic yet viable service and SOA
definition?

1.3.1. Behavior, Composition, Encapsulation, Scale

Services are units of behavior and composition in SOAs. Furthermore, for
systems of realistic size, we must have ways to encapsulate services so as to
support hierarchical decomposition; one proven mechanism for accomplishing
this is to supply services with explicit interfaces.

Therefore, key elements of the service notion are

(1) Services themselves as units of behavior,
(2) Service interfaces to support encapsulation,
(3) Service composition to express the interplay among services,
(4) Service decomposition to support hierarchical refinement and abstraction.

Our model needs to be flexible enough such that we can distinguish closed from
open systems. A closed system offers no services to its environment, whereas an
open system does.

 7

1.3.2. Dynamic Binding

One feature all service and SOA definitions agree on is dynamic discovery and
binding of service implementations given a form of service specification or
description. This facilitates loose coupling between service providers and
consumers, and is thus responsible for many of the desires of development- and
runtime flexibility and agility stakeholders project on SO*.

1.3.3. A Minimalist Service Model

Based on these observations, we work with the following intuitive
understanding of what services and SOAs are:

Services are functions, and SOAs are dynamic functional programs.

Functions are an immediate choice for the modeling of service behavior; they
come with clearly specified interfaces, function composition is well-understood,
as is function decomposition (as the dual of function composition).

Functional programs, in their pure form, express computation as the composition
of a set of functions. Dynamic functional programs allow the binding between
function identifiers, and the functions they refer to, to change over time.

We conjecture that this minimalist characterization, which we will substantiate
via a correspondingly modest set of formal definitions, captures the essence of
SO*; because it is so concise it can easily be tailored for specific application
domains, or general project needs.

As discussed above, we do not conflate the service notion with a particular
deployment technology. Consequently, we view Web Services as just one of a
family of standards and technologies capable of implementing a SOA. (cf. also
[3], lines 205-209)

1.4. Contributions and Outline

The major contributions of this paper are:

1. A formal semantics for services and dynamic functional programs, giving
rise to a formal semantics for SOAs.

2. Introduction of Open Rich Services (ORS) as a specific architectural
pattern together with its formal semantics, for hierarchically scalable
SOAs disentangling application- from infrastructure concerns.

3. Presentation of a domain specific language (DSL) as a prototyping
environment for ORS – with a specific mapping of services and SOAs to
functions and dynamic functional programs in the programming
language Clojure.

In Section 2 we introduce the semantic model of streams and stream-processing
functions, before we use this model to precisely characterize services and SOAs
in Section 3. In Section 4, we introduce Rich Services as an architectural pattern,
and base its semantics on the definitions from Section 3. In Section 5 we give a
proof of concept for ORS via an embedded DSL implemented in Clojure. In
Section 6 we discuss the presented semantic framework in the context of related
work. We provide a summary and outlook in Section 7.

 8

2. Streams and Stream Processing Functions
We now establish a few conventions and definitions in preparation of the
definitions we give for services and SOAs in Section 3.

We closely follow the model of streams and stream processing functions as
introduced in [4], [5] and [6].

A key benefit of this model is its conciseness while being expressive for a broad
range of systems, including the distributed, reactive systems we are interested in
here.

2.1. Notational conventions

We start with a few notational conventions. By B and ℕ we denote the set of
Booleans (the constants are true and false) and natural numbers (including 0),

respectively. We define

ℕ

∞
≜ ℕ∪ ∞{ } for the set of naturals together with their

supremum ∞ . We use the usual extensions of (binary) operations from ℕ to

ℕ

∞
;

examples are x ≤ ∞ for all

x ∈ℕ

∞ , max(∞, x) = max(x,∞) = ∞ and

min(∞, x) = min(x,∞) = x for all

x ∈ℕ

∞
. To denote function application we often

use an infix dot (“.”) instead of parentheses to increase readability of our
formulae. For Q∈ ∀,∃{ } and predicates r and p we write Qx :r.x : p.x to
denote the respective quantification over all p.x for which x satisfies the
quantification range r.x . If the range is understood from the context, we omit it
from the quantifying formula. As another form of reduced notation we integrate
simple ranges into the specification of the quantified variable; as an example, we
sometimes write

∀x ∈ℕ ::… instead of

∀x : x ∈ℕ :… . ℘(X) denotes the

powerset of any set X . Given sets

Y
1
,Y
2,
… we define for tuples

y = y

1
, y
2
,…()∈Y1 ×Y2 ×… the projection onto the i -th element of the tuple as

π
i
.y ≜ y

i
 for i ≥1 . For the closed interval between

m∈ℕ

∞
 and

n∈ℕ

∞
 we write

m,n[] ; if m > n then

m,n[]≜∅ .

The mathematical model serving below as the basis for our notion of system
behavior is that of streams. Streams and predicates or functions on streams are
an extremely powerful specification mechanism for distributed, interactive
systems (cf. [7] [8] [5] [9] [10]). It serves particularly well for property-oriented
behavior specifications, as well as for the definition of refinement notions and for
the verification of corresponding refinement relationships between
specifications.

Here, we give a concise overview of the major concepts and notations with
respect to streams to the extent required for this document; for a thorough
introduction to the topic, we refer the reader to [5] and [9].

A stream is a finite or infinite sequence of messages. By X* and X∞ we denote

the set of finite and infinite sequences over set X , respectively. X
ω
≜ X

*
∪ X

∞

denotes the set of streams over set X . Note that we may identify X* and X∞

 9

with

0,i[]→ X()
i∈ℕ∪ and ℕ→ X , respectively. This allows us, for x ∈ℕ and

 n∈ℕ , to use function application to write x.n for the n -th element of stream x .
By x we denote the length of stream x . It is equal to some natural number if

x ∈X
* ; for x ∈X∞ , x yields ∞ . Furthermore, for x ∈Xω and n∈ℕ , with x ≥ n ,

we define x↓n to be the prefix of x with length n . By x↑nwe denote the stream

obtained from x by removing the first n elements. x↑∞ yields the empty stream.

We write the concatenation of two streams x, ′x ∈X
ω as x ⋅ ′x . If x = ∞ , then x ⋅ ′x

equals x . By

‹x

1
, x

2
,…, x

n
› we denote the finite stream consisting, in this order, of

the elements x
1

 through x
n

 with x
i
∈X for 1≤ i ≤ n . For

x = ‹x

1
, x

2
,…, x

n
› and

y∈X we define

y∈x ≜ ∃i :1≤ i ≤ n : x

i
= y . As a shorthand, we define

x
1
⋅ x ≜ ‹x

1
›⋅ x for x

1
∈X and x ∈Xω . We denote the empty stream by ‹› . For an

element x
1
∈X and

n∈ℕ

∞
 we define x

1

n to be the stream over X consisting of n

consecutive copies of x
1
. Given a subset Y ⊆ X the projection x

Y
 yields the

stream obtained from x ∈Xω by removing all elements not contained in Y . The

restriction function

x

m,n[]
≜ x↓n()↑m yields the part of stream x that starts at

position m and ends at position n .

We lift the operators introduced above to finite and infinite tuples and sets of
streams by interpreting them in a pointwise and elementwise fashion,

respectively. Given, for instance, the stream tuple x : 1,m[]→ X
ω , with

x = x

1
,…, x

m() for m∈ℕ , we denote by x.n the tuple

x
1
.n,…, x

m
.n() , if n∈ℕ .

Below, we use streams to model the behavior of systems over time. We
emphasize that messages can assume any data type; therefore, we can model
both streams of messages and streams of states, depending on what behavioral
concept we want to highlight. To stress this intuition, we introduce the name
timed streams for infinite streams (time does not halt) whose elements at position

 t ∈ℕ represent the messages transmitted, or the states assumed, at time t . Based
on this intuition, we identify tuples over timed streams with streams over tuples

and call both timed stream tuples. For instance, we identify X ×Y()
∞

 with X∞
×Y

∞

for sets X and Y . Moreover, for finite index sets X , and arbitrary sets Y we

identify elements of the domains X→Y
∞ and X→Y()

∞

. This technical
convention gives us a convenient way of converting streams of functions into
functions, whose ranges are streams and vice versa. If, as an example, we have

z∈ X→Y()
∞

, and x ∈X , then we allow ourselves to write z.x to obtain z ’s

projection onto x . Similarly, if we have z∈ X→Y
∞() and t ∈ℕ , then we consider

z.x.t and z.t.x to be synonyms.

 10

2.2. System Structure

Structurally, a system consists of a set of function identifiers FID and a set C of
names of directed channels. Functions model processes of the system, channels
model the communication histories between functions. The messages exchanged
via channels come from set M of messages.

Channels can be bound to function identifiers. Specifically, we assume two
functions src,dst :C→ FID such that src.c = f or dst.c = f if f is the source or
destination, respectively, of channel c∈C .

2.3. System Behavior

We assume that the functions comprising the system communicate between one
another and their environment by exchanging messages over channels. We
assume further that a discrete global clock drives the system. We model this
clock by the set ℕ . Intuitively, at time t ∈ℕ every function in the system
determines its output based on the messages it has received until time t −1 . It
then writes its output to the corresponding output channels. The delay of at least
one time unit models the processing time between an input and the output it
triggers; more precisely, the delay establishes a strict causality between an output
and its triggering input (cf. [7] [6]).

Formally, with every channel c∈C we associate the histories obtained from
collecting all messages sent along c in the order of their occurrence. Our basic
assumption here is that communication happens asynchronously: the sender of a
message does not have to wait for that message’s receipt by the recipient. This
allows us to model channel histories by means of streams.

channel

role/component

t-1 t t+1time

channel
valuation

<> <a,b,d,b> <c,a>

...

...

...

...

Figure 1: System structure and channel valuations.

 11

2.3.1. Valuations/Histories

For a set X ⊆ C and a set M of messages, we define

ɶX ≜ X→ M
*() as the set of

valuations of the channels in X . By
!
X ≜ ɶX∞ we denote the set of infinite valuations

or histories of the channels in X .

2.3.2. Syntactic Interface

For f ∈FID , I f ⊆ C and O f ⊆ C we define f ’s syntactic interface as the pair

I f ,O f()∈℘ C()×℘ C() iff

I f = c∈C :dst.ch = f{ }

O f = c∈C : src.ch = f{ }

A directed syntactic interface I f ,O f() satisfies I f ∩O f =∅ . We use the shorthand

I f⊳O f for f ’s directed syntactic interface. We omit the subscript f if the

function name is clear from the context.

2.4. Stream Processing Functions

By

!
I →℘

!
O() we denote the set of all set-valued functions that relate a set of

output histories with a given input history. We call elements of

!
I →℘

!
O() stream

processing functions over the syntactic interface I ,O() . Set-valued functions are

relations, hence we can identify

!
I →℘

!
O() with

!
I →

!
O→ B() , i.e. with the

relation’s defining predicate. We exploit this equivalence by selecting the most
appropriate form depending on the style of mathematical formula we write.

2.4.1. Causality

We call

Q :
!
I →℘

!
O() causal if

∀t ∈ℕ, x, y∈

"
I :: x↓t = y↓t⇒ F.x()↓ t +1() = F.y()↓ t +1()

holds. The output at time t ∈ℕ of causal functions depends at most on the input
history seen until strictly before t .

Q

!
I

!
O

Figure 2: Syntactic interface and stream processing function

 12

2.4.2. Domain

The domain dom.Q of function

Q :
!
I →

!
O→ B() is defined as

dom.Q ≜ x ∈

"
I : ∃y∈

"
O ::Q.x.y{ }

A function

Q :
!
I →

!
O→ B() is left-total, iff

dom.Q =

!
I .

2.4.3. Composition

Let

F :
!
I
F
→ (
!
O

F
→ B) and

G :
!
I
G
→ (
!
O
G
→ B) be two stream processing functions

with I
F
∪O

F
∪ I

G
∪O

G
⊆ C and O

F
∩O

G
=∅ . We denote the composition of F

andG byF⊗G , and define its syntactic interface I ,O() as

I ≜ I
F
∪ I

G() \ OF
∪O

G()

O ≜ O
F
∪O

G() \ IF ∪ I
G()

with

 F⊗G().x. y
O() ≡ y I

= x ∧ F. y
IF

(). y OF
()∧G. y IG

(). y OG
()

We introduce the sequential composition of F and G , written F;G , as a
shorthand for F⊗G where O

F
= I

G
 and I

F
∩O

G
=∅ .

2.5. Refinement of Stream Processing Functions

We introduce refinement notions for stream processing functions in preparation
of (a) defining “compatibility” between services in a composition of multiple
services, and (b) defining service hierarchies.

2.5.1. Property Refinement

Let

F,G :

!
I →

!
O→ B() be stream processing functions. We call G a property

refinement of F , and write G ≤ p F , if

∀x ∈

!
I , y∈

!
O ::G.x.y⇒ F.x.y

2.5.2. Glass Box/Structural Refinement

Let

F :
!
I →

!
O→ B() be a stream processing function. If there exist stream

processing functions

F
i
:
!
I
F
i

→
!
O

F
i

→ B() for i ∈ 1,n[] for some n∈ℕ , n ≥1 , such

that

F
1
⊗…⊗F

n
≤
p
F

we call

F
1
⊗…⊗F

n
 a glass box (or, alternatively, structural) refinement of F .

 13

2.5.3. Interaction Refinement

Let

F :
!
I
F
→ (
!
O

F
→ B) ,

G :
!
I
G
→ (
!
O
G
→ B) ,

A
1
:
!
I
G
→ (
!
I
F
→ B) , and

A
2
:
!
O
G
→ (
!
O

F
→ B) be stream processing functions with I

G
∩O

F
=∅ and

I
F
∩O

G
=∅ . We call G an interaction refinement of F , and write G ≤

i
F , if

 G;A
2
≤ p A1;F

3. Semantics of Services and SOAs
With the preliminaries of Section 2 in place we now give succinct definitions for
the terms service, component and Service-Oriented Architecture (SOA).

3.1. Services

For a syntactic interface I ,O() we call

Q :
!
I →

!
O→ B() service (cf. [4]), if Q is

causal over dom.Q . This models that a service can be partial – it does not have to
provide a solution for all possible inputs.

3.2. Components

We call a service Q with

dom.Q =

!
I component (cf. [4]). Therefore, components are

left-total, i.e. they provide an output for every possible input.

3.3. Service-Oriented Architectures (SOAs)

In Section 1.3 we have articulated our intuition behind capturing the core of
SOAs as dynamic functional programs. Here, we formalize what dynamic
functional programs are.

To that end, we introduce an environment Σ , which associates with every

function name p∈FID a function

I
p
!"!

→℘(O
p
! "!

) . Thus, Σ describes the environment
under which a given function is interpreted:

∑ ≜ pi , I
pi

" #"
→℘(O pi

" #""
)() : pi ∈FID{ }

A dynamic functional program RS , then, consists of the composition of two
stream processing functions r and f as illustrated in Figure 3. r models both

RS ’s interface to its environment and the manipulation of Σ . f expresses the

remainder of RS ’s behavior. f is subordinate to r in that only r can communicate

directly with RS ’s environment. If f is subordinate to r , then we call r
superordinate to f .

The semantics of a dynamic functional program (or SOA) RS then arises as
follows (with appropriately chosen channel set C):

∃σ ∈∑∞
:∀ϕ ∈

!
C,t ∈ℕ :

RS.ϕ.t ≡ σ .t. f ⊗σ .t.r().(ϕ.t)

 14

Intuitively, this means that at any time point, the behavior of RS is given by the
composition of f and r , as defined in Σ for that time point. The terms σ .t. f and
σ .t.r model service lookup and binding at time t .

One way to articulate explicitly how Σ changes over time is to view Σ as the
data state guarded by a stream-processing function, and to compose it directly
with RS so that r can manipulate Σ via explicit messages to that guarding
function. To that end, we model a stream-processing-function factory

Q∆

Σ
: Σ × O→ M

*()()→
!
I →℘

!
O()()

that produces a stream processing function from a given initial state for Σ , and
initial (typically empty) outputs for its output channels.

ri ro

rf fr

r

f

RS

Figure 3: Structure of Dynamic Functional Programs

ri ro

rf fr

r

f

Q
∆

Σ

RS

Figure 4: Manipulation of the Environment Modeled as Stream Processing Function

 15

For simplicity, we identify Q
∆

Σ with the stream processing function it generates,

and obtain RS⊗Q
∆

Σ as the semantics for a dynamic functional program where the

transformation of Σover time is given by Q
∆

Σ (cf. Figure 4).

3.4. Observations and Discussion

With the definitions in this section we have succinctly captured the essence of
SO*: functions express services with interfaces and behaviors, dynamic
functional programs capture dynamic function binding.

It is intriguing that we inherit all of the refinement notions defined in Section 2.5:
in particular, we can use structural refinement on both f and r to facilitate
service modeling at scale. We elaborate this topic in Section 4, where we
introduce a specific hierarchical pattern for SO* with practical applications.

Furthermore, we note that we have placed very few restrictions on the functions

f , r , and Q
∆

Σ ; specifically, we allow that r (not f !) interact with Q
∆

Σ to
manipulate Σ . This gives r the important role of defining a “policy” by means of

which f interacts with its environment, including Q
∆

Σ .

We leave open how the manipulation of Σ proceeds in detail. We entertain both
of the following scenarios:

(1) r alone manipulates Σ , i.e. Q
∆

Σ is subordinate to RS .

(2) Q
∆

Σ has additional input/output channels, allowing the environment to
manipulate Σ as well.

Each of these scenarios has interesting methodological consequences. (1) gives r
complete control over the structure and behavior of the dynamic functional
program, including over its own fate. (2), on the other hand, gives the
environment control over RS ’s structure and behavior; this includes the
possibility of forcing a replacement of r .

We also observe that the semantics as defined already provides for dynamic
instantiation of services: We can always replace f at time t with f ⊗ ′f at time
t +1 for some suitably chosen ′f to model the dynamic instantiation of the

function associated with ′f . To that end, it is useful to view the set FID as
containing the infinite universe of all function identifiers, including, for instance
structured names3 such as “ f .1.2 ” or “ f .g.h ” to indicate name hierarchies.
Analogously, we expect Σ to contain the infinite universe of all channel names
between all function names from FID . Whether such a channel is significant at
“runtime” is then only determined by the existence of messages on that channel.

Finally, the notion of service lookup and binding we have introduced is
purposely rudimentary. We can easily expand it by replacing, say, σ .t. f with a

3 Note that in these names “.” is only a syntactic separator between parts of a structured
name, and does not reflect function composition as elsewhere in this paper.

 16

function lookup(σ ,t, fspec) such that fspec is a specification of properties we want

the resulting service to have. The name “ f ” is the one and only property we
have exploited in the semantics shown here. However, it is a simple exercise to
identify a property model for service specifications of which the function name is
but one component. This will result in a more structured definition of Σ ’s
domain.

4. Rich Services: SOAs at Scale
We have identified support for scale as one of the key qualities of SO* in Section
1.3. Now, we introduce Rich Services [11], a type of Service Oriented Architecture
(SOA) that models a system as an orchestration of loosely coupled services,
where services themselves can be decomposed into further Rich Services or
implemented as atomic functions. Rich Services form a service hierarchy
conforming to a composite pattern [12]. This gives us a handle at addressing
scale both in practice and in our formal treatment of SO*.

In essence, a Rich Service is a service as defined in Section 3.1: it transforms one
or more streams of input messages into one or more streams of output messages.
The utility of Rich Services comes from the structural refinement (cf. Section 2.5)
we perform to facilitate:

1. Decoupling of cross-cutting or infrastructure services from core
functionality or application services,

2. Loose coupling of its constituent services,
3. Principled control over the interactions among all constituent services,
4. Dynamicity in structure and behavior of the constituent services.

Figure 5 shows the structure of a Rich Service. The Service/Data Connector
(SDC) defines the Rich Service’s input streams and output streams. The message
router transforms the input streams to output streams by orchestrating

S.1

Service/Data
Connector

S.2

Service/Data
Connector

S.n

Service/Data
Connector

...

Messenger

Router/Interceptor

Policy
S/D C

Encryption
S/D C

Logging
S/D C

Failure Mgr
S/D C

...
S/D C

...
Se

rv
ic

e/
D

at
a

C
o
n
n
ec

to
r

Application
Services

Infrastructure
Services

Figure 5: Rich Service

 17

interactions between Rich Application Services (RASs) – it passes messages (via a
message transport) to RASs, receives RAS output messages, and determines
which RAS outputs feed into RAS inputs. Rich Infrastructure Services (RISs)
perform functions that crosscut RAS interactions.

Given that the message router mediates RAS-to-RAS interactions, it can also
enable crosscutting processing by interposing a RIS into the interaction, replacing
the RAS-to-RAS interaction with a RAS-to-RIS-to-RAS interaction. Critically, we
use this interposition to enable injection of policy-based constraints and features
onto simple, basic workflows, responsive to emerging stakeholder requirements.

4.1. Rich Service Semantics

To assign a semantics to a given Rich Service RS , we model each of the
constituent services sdc (the Service/Data Connector), msg (the Messenger), ri

(the Router/Interceptor), and a family is
i{ } of RISs as services in the sense of

Section 3.1, and then find r such that

 r ≤ p sdc⊗msg⊗ ri⊗ ⊗
i
isi()

holds and the channel associations respect the ones shown in Figure 5 (i.e. there
are no connections among services other than the ones indicated in the figure).

Then, we select f such that for a family as
j{ } of RASs (also services in the sense

of Section 3.1) we have

 f ≤ p ⊗
j
as j .

Then, the semantics of RS is as defined in Section 3.3:

∃σ ∈∑∞
:∀ϕ ∈

!
C,t ∈ℕ :

RS.ϕ.t ≡ σ .t. f ⊗σ .t.r().(ϕ.t)

 18

4.2. Semantics of Hierarchical Rich Services

Both RASs and RISs can, themselves, be Rich Services, thus enabling the

decomposition of the abstractions each represents and completing the composite
pattern. This is illustrated for the case of RAS S.n in Figure 6.

We use structural refinement to express hierarchical decomposition. Specifically,

we can replace S.n with any family S
k{ } such that

 ⊗
k
Sk ≤ p S.n

holds. In particular, this means we can use a decomposition as introduced in

S.1

Service/Data
Connector

S.2

Service/Data
Connector

...

Messenger

Router/Interceptor

Policy
S/D C

Encryption
S/D C

Logging
S/D C

Failure Mgr
S/D C

...
S/D C

...

Se
rv

ic
e/

D
at

a
C

o
n
n
ec

to
r

S.n.1

Service/Data
Connector

S.n.2

Service/Data
Connector

S.n.m

Service/Data
Connector

...

Messenger

Router/Interceptor

Policy

S/D C

Encryption

S/D C

Logging

S/D C

Failure Mgr

S/D C

...

S/D C

...

Se
rv

ic
e/

D
at

a
C

o
n

n
ec

to
r

de of he bs ch d le he

Figure 6: Hierarchical Rich Service

ri ro

rf fr

r

f

Q
∆

Σ

′r ′f ′Q
∆

Σ

Figure 7: Structural Refinement of f in the context of Dynamicity

 19

Section 4.1 to refine S.n into another Rich Service.

It is instructive to look at the decomposition of a Rich Service RS consisting of
functions r and f , such that f gets structurally refined by means of functions

′f and ′r .

Figure 74 illustrates this situation, including the relationship to the environment
Σ . In particular, r and ′r are connected via channels as ′f is subordinate to ′r .

Furthermore, f ’s decomposition can have its own Σ manipulator ′Q
∆

Σ , which
performs dynamic binding changes relating to ′r and ′f only.

This decomposition can, of course, analogously occur for r .

4.3. Observations and Discussion

The chosen formalization for Rich Services is fully generic with respect to the
roles played by sdc , msg , and ri . Together (and with their connected RISs) they
are modeled by r . This leaves a lot of methodological room for interpreting these
roles, and for moving responsibilities between them. Obviously, ri is intended to
support routing and interception of messages communicated via msg . Because
the semantics of Rich Services is dynamic in the interpretation of ri (in
particular), we can use updates to ri to dynamically change the routing of
messages within any and all services subsumed by that Rich Service.

Note that typical Enterprise Service Bus (ESB5) systems rely on a decomposition
similar to what Rich Services provide; hence, the chosen formalization can be
used to articulate a semantics for ESBs as well. In these ESBs it is typically
possible to insert routers and transformers into the message flow between two
services – we can model this very directly by means of corresponding
decompositions and interpositions of ri and the RISs. For instance, by using
relations such as ri ≤ p

ri
1
|| ri

2
 or ri ≤ p

ri
1
;ri

2
 we can model parallel and sequential

flows in ri for appropriately chosen ri
1
 and ri

2
 in addition to the choice that is

inherent in the set-valued nature of stream processing functions. This gives us a
rich language for expressing routes within a Rich Service. Other than most ESBs
we can dynamically change the routing and also even the constituent services in
response to message flow.

The selection and interposition of RISs into regular service conversations
(message exchanges) allows addressing of a vast set of infrastructure concerns.
Obvious, and frequently cited, examples are logging, encryption/decryption, as
well as data transformations. Other examples include failure management and
management of general policies, such as HIPAA. For failure management, the
router might deliver a message to multiple different copies of a service, receive
their responses, and perform a majority-vote on the results. For HIPAA, a policy

4 For better readability, boundaries of services are shown in blue in the figure.
5 ESBs come in a wide variety of implementations with varying feature sets; for two
examples we refer the reader to [36] and [35].

 20

RIS could interpose via ri to ensure personally identifying information is
removed from patient data before its delivery to the environment. Clearly, there
are many more sophisticated scenarios than these, but they help illustrate the
utility of the Rich Services pattern in practice.

The chosen formalization of a Rich Service RS via the composition of r and f
clearly articulates the role of r as the “interposer” between any interactions
generated by (any refinement of) f . This emphasizes r ’s capacity to enforce

policy as it pertains to f (and its refinements). Specifically, we can now formally
define what a policy is and does in a Rich Service. Let f and r be stream

processing functions. We call r a policy with respect to f if r is superordinate to

f .

A nontrivial policy, where r differs from the identity function, modifies f ’s

behavior, i.e. r⊗ f ≠ f . If we have

∀ϕ ∈

!
C :: r⊗ f().ϕ ≠ f .ϕ , then r modifies all

behaviors of f . This may occur if f alone has the potential to harm its
environment, and r expresses a “healing” policy so that f ’s effects are

mitigated. If we have r⊗ f = r , then f is irrelevant, and policy r subsumes f . If

we have r⊗ f ≤ p f , then policy r constrains f ’s freedom in choice of behaviors

– this is the classical role that policies play in programming constructs such as “if
then else”. Clearly, there is significant methodological potential in the interplay
between a policy r and its subordinate function f ; we will discuss this further in
a forthcoming paper.

5. Open Rich Services (ORS): A DSL for SOA at Scale
In the preceding two sections we have introduced a concise formal definition for
services and SOAs, and have shown the utility of these definitions also for
systems that scale hierarchically while decoupling application from
infrastructure concerns. The resulting Rich Service pattern is being applied in a
broad range of software and systems engineering and integration projects, in
domains such as Ocean Sciences [13], Health Sciences [14], and
Automotive/Avionics [15]. In this section, we show the utility of the Rich Service
pattern using a realistic example from the CitiSense6 project currently underway
at UCSD. To that end, we also present a domain specific language (DSL) for Rich
Services, called Open Rich Services (ORS). ORS, in particular, supports late- and
dynamic binding of service names to service functions, and allows service
functions to be specified using the Open Source functional programming
language Clojure. This closes the loop between our formal definitions for services
and SOAs, and the notion of dynamic functional programs.

In Section 5.1 we introduce the example, “CellSense”. In Section 5.2 we briefly
discuss what makes CellSense challenging to design and implement. In Section

6 http://citisense.ucsd.edu

 21

5.3 we introduce the ORS DSL and its runtime system in Clojure. Our
presentation here largely follows [16], where we have first described CellSense
and the Clojure-based DSL; specifically, we add a discussion of the relationship
to the formal semantics throughout this section.

5.1. Example: CellSense

The example we develop in this section crystallizes many concerns of SO*,
ranging from functional separation of concerns, to architectural reuse, to
dynamic service lookup and binding. While the example may seem mundane at
first, it has many intricacies, especially when contemplating multiplicities and
dynamic update of its constituent parts.

Consider a system (“CellSense”, cf. Figure 8) consisting of a cell phone with a
display, a data store, and a processing capability – each internal to the cell phone.
Attached to the cell phone is a sensor, say, for monitoring CO levels.
Furthermore, there is a remote data store, and a remote processing capability.
The basic behavior of the system shall be that sensor values are stored and, in
parallel to storing the value, a derived value is computed and subsequently
displayed. If we informally represent capabilities or “functions” by words,

sequencing by juxtaposition, and parallel execution by a prefix “||”,
respectively, we can describe the basic behavior of the cell phone below (with
parentheses to group elements of the specification). We label it and refer to it
throughout as “(*)”.

(*) sense (|| store (process display))

Assume further that the system is supposed to fulfill a number of additional
requirements, listed as rules in Figure 9. These rules refer to the cell’s and the
sensor’s power level as CPL and SPL, respectively.

Remote
Store

Remote
Compute

Sensor

Display

Local
Store

Local
Compute

Cellphone

Figure 8: CellSense Basic Architecture

 22

Rule
1a CPL high: store locally and remotely, compute locally
1b CPL low: store locally only, compute remotely
1c CPL very low: stop storing, computing and displaying
2a SPL high: provide value every second
2b SPL low: provide value every minute
2c SPL very low: provide value every hour
3 Encrypt/decrypt remote messages

4
Once per day, if CPL is at least low, bulk-transfer all local data to remote
store

5
The location for the remote processing capability can be set at system
startup and changed dynamically.

6
The number of cell phones, and sensors per cell phone, as well as the
numbers of remote stores and compute facilities is unbounded and can
change over time.

Figure 9: CellSense Requirements/Rules

CellSense is representative of a large class of distributed, reactive, and dynamic
systems. This class includes, for instance, sensor/actuator networks,
observatories, and other cyber-physical systems. The specifics of CellSense were
extracted from CitiSense, a system for community-driven behavioral and
environmental health monitoring currently under development at UCSD.
CitiSense presents many challenges that are representative of complex systems of
systems, as well as of SO*-attempts at addressing them. These challenges range
from energy-management to observation of privacy policies, to fault-tolerance, to
highly diverse resource capabilities of devices that participate in the
infrastructure to the need for elasticity and scalability in the number of
participants, sensors/actuators, computation, storage and networking
capabilities. Most of these fall under the requirements categories introduced
above; others, such as resource and deployment diversity deserve additional
attention and are outside the scope of the current paper.

We will refer to CellSense requirements solely by their number – “requirement
(1)” and “(1)” are interchangeable. Furthermore, by (1) and (2) we refer to
requirements (1a) through (1c), and (2a) through (2c), respectively.

We can understand rule (1) as defining a policy for where computation and
storage are to occur relative to available power for the cell phone. Similarly, rule
(2) sets a policy for the frequency by which sensors deliver readings, relative to
available power for the sensor. Rule (3) establishes a security policy. Rule (4)
establishes an information assurance (backup) policy relative to available power
for the cell phone. Rules (5) and (6) together demand dynamicity and scalability.

5.2. What makes CellSense Challenging?

CellSense brings forward a number of concerns worth discussing in more detail.
First, requirements (1) and (2) refer only to the cell phone and the sensor,
respectively. Yet, they constrain all behaviors of each. Solutions that entangle (*),
(1) and (2) will become brittle if any one concern were to change.

 23

What does entanglement mean in this context? Consider where and how you
would implement the logic for (*), (1) and (2), respectively.

A classic Object-Oriented (OO) design would introduce classes for the various
entities (or actors) in the system. We might end up with classes for the Sensor,
the CellPhone, the Store (LocalStore and RemoteStore might be obvious
subclasses), and the ComputeFacility (LocalCompute and RemoteCompute
might again be obvious subclasses.) We might then identify corresponding
methods, such as “store”, “process”, “display” and “sense”; similarly attributes
and access methods can model the power levels.

This structural and behavioral decomposition has utility until we arrive at the
implementation of the rules; at that point we realize that the rules really are
cross-cutting in nature.

At a high level, (*) describes the cell phone’s behavior overall. (1) and (2) express
that CPLs and SPLs need to be monitored, and depending on the monitored
value, multiple modifications to (*) are necessary. For instance, the CPL has an
influence on all of storing, computing and displaying. Clearly, we could
implement this with conditionals in each of the implementations of store, process,
and display in the respective classes identified above. Similarly, the SPL could
result in conditionals within the implementation of sense – which would be
contained either within the sensor’s or the cell phone’s implementation,
depending on whether sensor readings are pushed or pulled, respectively. Now,
if either one of (*), (1), or (2) were to change, we would have to go back to all of
the implementations separately to effect and validate the proper change. While
this is manageable within this small-scale example, this effort becomes quickly
intractable for any larger scale.

Second, (1) influences the behavior (*); it does not request a change in the general
behavior pattern. Under the entangled implementation described above, the
general behavior pattern is obscured by the conditional logic to support (1) –
even in this small example this becomes distracting, due to the requirements’
simultaneous impact on multiple steps of the behavior pattern.

Third, (2) and (4) both demand a “scheduling” capability, which signifies another
common behavior pattern that repeats across system components, despite the
obvious differences between eventual implementation and deployment
environments.

Fourth, the behavioral influence of (3) is tied to the constraints imposed onto (*)
via (1) and (4). Therefore, neither an entanglement with (*) nor with each of (1) or
(4) is desirable.

Fifth, requirement (5) implies the ability to indicate, and modify at runtime,
where a particular system capability is to be deployed.

Sixth, requirement (6) implies the ability to dynamically instantiate and remove
instances of any one of the system parts shown in Figure 8.

In summary, while there are many different ways to design and implement
CellSense, SO*-based approaches hold promise in addressing the distribution
(logical and physical) and dynamicity adequately and flexibly. In addition,

 24

CellSense benefits from a particular SO*-style in which infrastructure concerns
are cleanly separated from application concerns, which further facilitates reuse.

A broad range of design patterns exists for OO that provide some relief in terms
of the entangling that a naïve design would result in. We mention the Strategy,
Template Method, and Composite patterns [12] explicitly, which can be
fortuitously combined to factor the mentioned concerns in a more manageable
way. Whether any concrete combination of these patterns does provide the
intended benefits largely depends on the individual skill set of the modeler. ORS
institutionalizes the combined benefits of these patterns in a reusable desing.

We will now show how to model these requirements succinctly in ORS.

5.3. Open Rich Services DSL in Clojure

Expressing a system like CellSense using stream processing functions directly is
certainly possible, albeit laborious. Therefore, we have developed an
Architecture Definition Language (ADL) in the form of an embedded domain
specific language (DSL) for ORS. As an embedded DSL, an ORS specification
exists as part of the executable code at runtime within the host language and its
runtime system. This opens significant opportunities for runtime checking and
principled evolution of structure and behavior at runtime.

5.3.1. Clojure

As the host language we have chosen Clojure [17] [18], a new LISP on the Java
Virtual Machine (JVM) with immutable, highly performant data structures [19]
(including lazy lists, key/value maps, vectors and sets). Clojure is a non-pure
functional programming language with explicit in-process concurrency support
via a software-transactional memory. This combination allows us to leverage
Clojure’s functional fragment to model services as functions, and service
composition as the composition of functions. Furthermore, we can use Clojure to
specify structure and behavior to any desired level of detail – we have the full
power of a complete programming language at our disposal when necessary,
while being able to articulate architecture specifications at a high level as well.

Clojure’s code-as-data philosophy inherited from LISP provides significant
flexibility in defining the DSL in anticipation of its use as a tool for model-driven
engineering. Because Clojure embraces the JVM, the DSL inherits excellent
interoperability features with Java libraries. The interoperability goes both ways:
any Clojure module can be compiled such that it can be called from Java
programs.

5.3.2. Basic Concepts: Services as Functions

A basic Open Rich Service (ORS) is a Clojure function taking a message as input
and producing a message as output. The following example shows a “basic-
compute” ORS in Clojure – it simply returns the message it receives.

 (defn basic-compute [rsm] rsm)

 25

In Clojure, we use (defn f [args] bdy) to define function f, whose formal
parameters are denoted by args, via the body bdy. In the example above, basic-
compute is the function name, rsm is the name of the argument, and the body
consists of returning the argument unchanged.

This is clearly a restricted form of the stream processing functions we have
introduced in Section 2.4. Specifically, basic-compute has only access to the
message sent at a given time point instead of the full “channel” history. In this
sense, we can think of basic-compute as a state machine encoded in Clojure,
whose canonical mapping into the realm of stream processing functions would
occur as we have hinted at in Section 3.3 for the environment Σ . In Section 5.5
we discuss how we can expand the pure functional view via persistent message
histories so that Clojure service functions can indeed access their past message
history.

We also note that the DSL has no explicit channel concept; it is implicitly there, of
course, via the Clojure-defined wiring of composite functions.

Furthermore, in this service definition, the type of rsm is left unspecified – any
Clojure type will do. In particular, we can use a Clojure key/value map, and use
the keys to structure the message type we hand to services. For instance, we
could use a map

to indicate a specific message type “basic-message”, and its content value “hello
world”; the basic services could then dispatch further on the message type, or
process the :r-value while constructing their own return message.

The genericity of key/value maps works in our favor here, because we can
augment the messages we pass around according to both infrastructure and
application needs.

5.3.3. Composite Services

A composite ORS also maps input messages to output messages. However, it
does so by coordinating any number of its operand ORSs (which are, in turn,
either basic or composite). Coordination happens by routing messages from one
service to another. Therefore, a composite ORS comes equipped with a
specification of the message flow among its constituent services.

Figure 10 shows an example of a composite ORS. Here, we define cell-phone as a
composite, which coordinates a number of basic services named :compute, :store,
and :display (among others). The actual coordination is specified as the :sense
service. This represents the function to be executed when a new sensor value is
available. When :sense is called, in parallel, the :store function and the sequential
composition of :compute and :display are executed. In ORS, parallel composition

 {:type “basic-message”

 :r-value “hello world”}

 26

is denoted by a prefix “||” operator7; sequential composition is indicated by the
compose function, whose argument is the sequence of function names to be
applied in the given order. ORS specifies bindings between names and an
implementation. For instance, in Figure 10 we specify a binding between the
name :compute and the implementation (the Clojure function from above) basic-
compute. This binding can be specified and changed at a later time – even
dynamically at runtime.

Thus, we use Clojure’s innate ability to bind names to functions, as well as the
explicit bind function to express the initial environment , as well as changes to

 over time. For service lookup we rely on Clojure’s built-in function lookup, as
well as on an explicit registry, which we describe in more detail in Section 5.4
This is an implementation strategy for the binding as required by the semantics
given in Sections 3.3, 4.1 and 4.2.

The services of a composite RS each fall into one of two categories: application and
infrastructure services. Application services define the application logic.
Infrastructure services, on the other hand, manipulate application and data flow,
or provide supporting tasks to that flow. The example in Figure 10 introduces
multiple infrastructure services including :encrypt, :decrypt, and :transfer. The first
two infrastructure services are again modeled as basic services specified
elsewhere. :transfer uses a predefined infrastructure service schedule, which takes
a frequency as its first argument, and a service to be executed according to that
frequency as its second argument. The meaning of this specification is that when
the cell-phone ORS is instantiated (see next subsection), the :transfer-data function
is scheduled to execute once per day (at the discretion of the system’s scheduler.
This addresses requirement (4).

The final element to specifying a composite RS is to declare how the
infrastructure services manipulate or support the application services. To that
end, we introduce the notion of transforms. A transform takes a given service
(application or infrastructure), and places it in relation with another
infrastructure service.

The use of transforms is an implementation strategy for the routing and
interception mechanism as defined by the composition

from Section 4.1. Specifically, as we will see, below, transforms express bindings
(i.e. updates to the environment) as well as routing of messages among across

 and the family of infrastructure services.

7 In LISPs, we denote a call to function f with argument list a1 through an by prefix
notation within parens as (f a1 … an)

Σ

Σ

sdc⊗msg⊗ ri⊗ ⊗
i
isi()

Σ

msg is
i{ }

 27

 Following the introduction of Rich Services in Section 4, we have to specify:

1. Rich Services (the container)
2. Application Services
3. Infrastructure Services & The Router/Interceptor
4. The Messenger

(def cell-phone
 (rich-service

 (app-services

 :sense
 (|| :store

 (compose :compute :display)),

 :ls local-store,

 :lc local-compute,

 :display display,

 :power-high high-power-test,

 :power-low low-power-test,

 :power-vlow vlow-power-test,

 :store basic-store,

 :compute basic-compute,

 :rs remote-store,
 :rc remote-compute,

 :transfer-data transfer-data)

 (infra-services

 :encrypt encrypt,

 :decrypt decrypt)

 (transforms

 :rs (pre :encrypt),

 :rc (pre-post :encrypt :decrypt),

 :store (bind

 (cond-flow
 :power-high (|| :ls :rs),

 :power-low :ls,

 :power-vlow :skip)),

 :compute (bind

 (cond-flow

 :power-high :lc,

 :power-low :rc,

 :power-vlow :skip)))

 (schedules

 :transfer (every :Day

 (cond-flow

 (not :power-vlow)
 :transfer-data)))))

Figure 10: CellPhone Rich Service in ORS DSL

 28

5. The Service/Data Connector.

We will now introduce the DSL concepts for each of these elements, in turn.

Rich Services

In ORS we define Rich Services via a call to the (rich-service …) function.
Its result is a Clojure map storing the infrastructure and application services
defined within this Rich Service.

In Figure 10 we define a Rich Service for the cell phone as follows:

(def cell-phone
 (rich-service

 (app-services …)

 (infra-services …)

 (transforms …)

 (schedules …)))

Each of the app-services, infra-services, transforms and schedules
functions return a correspondingly labeled Clojure map capturing the service
definitions given as arguments to the respective function.

Application Services

In ORS we define Application Services via the (app-services …)function. Its
argument sequence consists of pairs of the form keyword service-

definition. The service definition is either a reference to a service function
(basic or Rich Service), or an expression defining the flow among multiple
existing services. The keyword defines how that service definition is know
within the enclosing Rich Service.

In the example of Figure 10 the application services definition begins as follows:

(app-services
 :sense

 (|| :store

 (compose :compute :display)),

 :ls local-store,

 :lc local-compute,

 :display display, …)

This introduces the name (i.e. Clojure keyword) :sense for the expression (||
:store (compose :compute :display)). As explained above, this definition
expresses the parallel composition of the function known as :store, and the
expression (compose :compute :display). The latter indicates the sequential
composition of the services known as :compute and :display, respectively.

Therefore, :sense defines a service function that routes an incoming message, in
parallel, to :store and the implicitly defined service function for (compose
:compute :display). Its result is a message that contains the return values
from both of its operand services.

 29

The keywords :ls, :lc, and :display refer directly to (i.e. introduce
shorthand notation for) the service functions local-store, local-compute
and display, respectively. These keywords can occur in service expressions.

Infrastructure Services & The Router/Interceptor

Rich Services, as introduced above, articulate two layers of service interactions.
First, they express interactions among the application services as direct calls
among them, or via service expressions as demonstrated for application services
in the previous paragraph. Second, they express infrastructure workflows that
capture cross-cutting aspects that are imposed upon the interactions among the
application services.

In essence, the interactions among application services define message routes;
the interceptor establishes bindings between triggering messages (or message
patterns) and resulting behaviors (services to be executed when the trigger has
occurred.) Often, this will include execution of an infrastructure service before a
(modified) message is relayed to the intended (or a substitute) recipient. This
establishes a tight interplay between the router/interceptor, and the
infrastructure services.

In the following, we address how we specify routes, triggers and responses in
ORS; this captures a significant subset of the generic form of intercepted service
routing discussed for Rich Services in general.

In ORS we capture these infrastructure workflows by (a) listing the infrastructure
services, and (b) by specifying the interplay between the infrastructure services
and the application-level workflows. To accommodate (a) we introduce an
(infra-services …) call into the (rich-service …) specification, which
defines keyword-shorthands for service names. To accommodate (b), we
introduce a corresponding (transforms …) call, which specifies how calls to
services, or results of service calls shall be modified via other interposed service
calls.

In the Example of Figure 10, we introduce the infrastructure services via a call to

(infra-services
 :encrypt encrypt,

 :decrypt decrypt)

Furthermore, we specify routing and interception via the (transforms …) call:

(transforms
 :rs (pre :encrypt),

 :rc (pre-post :encrypt :decrypt),

 :store (bind

 (cond-flow
 :power-high (|| :ls :rs),

 :power-low :ls,

 :power-vlow :skip)),

 :compute (bind

 (cond-flow

 :power-high :lc,

 30

 :power-low :rc,

 :power-vlow :skip)))

The transforms specification consists of pairs of the form keyword/binding-
transform. The keyword indicates a service name, the binding-transform
determines what should happen if and when that service is called (or, in other
words, when a message is routed to that service).

The pair :s1 (pre :s2) determines that whenever a message m is routed to
:s1, it is actually first routed to :s2, and the result of :s2 is then routed into
:s1.

Similarly, the pair :s1 (post :s2) determines that whenever a message m is
routed to :s1, the result of :s1 is then routed to :s2.

The pair :s1 (pre-post :s2 :s3) determines that whenever a message m is
routed to :s1, it is actually first routed to :s2, and the result of :s2 is then
routed into :s1. In turn, the result of :s1 is then routed to :s3.

We use the pre-binding to ensure that any calls to the remote store (:rs) are
encrypted prior to a message leaving for :rs. We use the pre-post-binding to
ensure that messages for the remote compute-facility are encrypted before they
hit :rc, and the response from :rc is decrypted before it arrives at the cell-
phone.

Using the router/interceptor mechanism we accomplish a disentanglement of
the calls relating to encryption and decryption from the application-level
workflow specified by the :sense service.

Another powerful routing specification tool ORS provides is the :keyword
(bind …) pair. It allows us to replace the existing binding of a service name
with another, for instance one that reroutes the message from one service to any
other.

In Figure 10 we use this to dynamically bind the :store service, depending on
the state of the system, or on the content of messages received prior:

:store (bind
 (cond-flow

 :power-high (|| :ls :rs)

 :power-low :ls

 :power-vlow :skip))

In this example, we use the (cond-flow …) function ORS provides to
substitute the appropriate service expression for the call to the :store service.
(cond-flow :s11 exp12, :s21 exp22, …, :si1 expi2 …) routes the
incoming message first to the service :s11; if the result of that service is true, the
original message will be routed to the service expression exp12, and its result is
the result of the (cond-flow …) call. Otherwise, i.e. if :s11’s result is false, the
message is routed to :s21, repeating the pattern. In general, a message is routed
to the first expi2 for which :si1 evaluates to true; the result of (cond-flow
…) is then the result of that expression expi2. If none of the :si1 evaluate to

 31

true, (cond-flow …) is equivalent to the special service :skip, which simply
returns any incoming message.

In the example, we dispatch the incoming message based on the power-state of
the cell-phone as determined by the service calls to :power-high, :power-low
and :power-vlow, respectively.

Additionally, an ORS (rich-service …) specification can contain
(schedules …) calls, which accept pairs of the form keyword (every …).
The keyword denotes a service, and the (every …) call determines the
frequency with which the specified service is being called.

In Figure 10, this call looks as follows:

(schedules
 :transfer (every :Day

 (cond-flow

 (not :power-vlow)

 :transfer-data)))))

Here, the :transfer service is bound to the

(cond-flow
 (not :power-vlow)

 :transfer-data))

expression, and executed daily at the time the cell-phone service was deployed
and started.

The functions we have introduced in the previous paragraphs significantly help
in specifying the routing and interception of messages, and thus provide one way
to express these key elements of the Rich Services pattern. Clearly, this is not the
only way, nor complete relative to what the general Rich Services pattern
enables. However, the combination of pre/post and bind transforms,
conditional, sequential and parallel flows, and schedules covers a broad
spectrum of desirable dynamic bindings.

The Messenger

In Rich Services in general, the role of the messenger is to provide a
communication mechanism among the constituent services. In ORS we use
Clojure function calls as the main internal conveyance of messages among
services. Specifically, within the same JVM, messages travel via a sequence of
function calls from one service to the next. Externally, i.e. between services
deployed among multiple JVMs, we use http coupled with corresponding web
servers as the transport for ORS messages. We discuss the details of this
mechanism in Section 5.4.

The Service/Data Connector

The service/data connector is a Rich Service’s external interface. In ORS this
interface is determined by the application services defined for a given (rich-
service …) call. Its enforcement is described, in detail, in Section 5.4.

 32

5.3.4. Service Invocation

So far we have shown how to define basic and composite services, and how to
invoke basic services from within composite ones. Now we demonstrate how to
invoke another composite service. To that end, consider the following segment of
the sensor Rich Service:

(def sensor
 (rich-service

 (app-services

 :val (fn [rsm] ...)

 :push (compose :val :cell-phone/sense))

 (schedules
 :delivery-second

 (every :Second (cond-flow (:s-power-high) :push))

 :delivery-minute

 (every :Minute (cond-flow (:s-power-low) :push))

 :delivery-hour

 (every :Hour (cond-flow (:s-power-vlow) :push)))))

The call :cell-phone/sense indicates the service name (:cell-phone) before
the “/”, followed by the application service to be called (sense). Recall that ORS
uses late binding: resolution of the call to sense will be attempted, at runtime,
first on the node on which sensor is deployed (see Section 5.3.5); if an instance
of the cell-phone Rich Service is deployed there, it will receive the call.
Otherwise, the call will be forwarded to another node (see Section 5.3.5) housing
such an instance. If the call cannot be resolved, an exception occurs. This
example addresses requirement (2), analogous to cell-phone’s conditional
flow.

5.3.5. Deployment Architecture

The deployment architecture determines (a) how many separate nodes (locations
of computation) exist in the system, (b) what instances of an ORS will be created,
and (c) on which nodes these instances will run.

The following example shows how we deploy the cell-phone and sensor
services. Of each service we deploy a separate instance on each of the two nodes.

(rs-start)

(let [[n1 n2] (launch-nodes 2)]
 (deploy-instance n1 :cell-phone1 "examples.adl1/cell-phone")

 (deploy-instance n1 :sensor1 "examples.adl1/sensor")

 (deploy-instance n2 :cell-phone2 "examples.adl1/cell-phone")

 (deploy-instance n2 :sensor2 "examples.adl1/sensor"))

The built-in rs-start DSL command starts the ORS system on the node on
which it is executed. We describe the details of this startup process in Section 5.4.
The launch-nodes DSL command starts additional nodes – two in this case,
bound to the variables n1 and n2, respectively. Finally, deploy-instance
addresses requirement (5) by creating service instances and deploying them on a
given node. To that end, we specify the node on which to deploy, the name of the

 33

new instance, and the service specification relative to the Clojure namespace in
which it is defined.

The ORS facilities for specifying a deployment architecture help establish the
initial state of the environment Σ in the sense of Section 3.3, and thus form the

starting point for the dynamic bindings expressed via Σ∞ . In the semantics
definition of Sections 3 and 4 we do not model deployment concepts explicitly;
they become relevant only in settings where ORSs get executed, which is the
topic of the next section.

5.4. The ORS Runtime System

In the following subsections, we highlight the direct relationship between
services and functions, and the use of dynamic binding to yield SOAs via the
ORS DSL. Furthermore, the embedding of the DSL within Clojure makes the DSL
specification part of the executing system, as an artifact that can be inspected and
modified even at runtime. While we do not exploit this directly in this paper, this
is of significance in building introspective analysis and modification of the
executing architecture, which we will address in forthcoming papers.

The ORS Runtime system forms an execution context in the sense of Section 1.2.

The basic deployment environment for ORS is the Java Virtual Machine (JVM),
with Clojure as the actual execution environment. We refer to the physical
machine on which the JVM runs as the host computer, or host for short (cf. Figure
11). We refer to an instance of the Clojure system running on a specific JVM as a
node. The node from which the system is launched is referred to as the root-node.
Launching the system consists of loading a file containing an ORS DSL
specification.

Each DSL specification is executed in the context of a Run Time System (RTS)
implemented in Clojure. This RTS provides implementations of all the built-in
services, such as skip, schedule, cond-flow, ||, and bind, as well as the other
transforms. It also provides the facilities for registering/binding and rebinding
services to names. Each node has its own registrar, which is a data structure and

Host

JVM 1

Clojure

DSL-Spec

RTS

JVM n

Clojure

DSL-Spec

RTS

...

Host

Host

JVM 1

Clojure

DSL-Spec

RTS

JVM n

Clojure

DSL-Spec

RTS

...

Host

JVM 1 JVM nJVM 1

ClojureClojure

DSL-SpecDSL-Spec

RTSRTS

JVM n

ClojureClojure

DSL-SpecDSL-Spec

RTSRTS

Host

JVM 1

Clojure

DSL-Spec

RTS

JVM n

Clojure

DSL-Spec

RTS

...

Figure 11: ORS Deployment on Multiple Hosts

 34

associated functionality to store bindings between service names and the Clojure
functions to be executed when that service is called. The root-node, by default,
houses the master registrar, which serves to resolve cross-node service calls. All
service names within the RTS are represented as Universal Resource Identifiers
(URIs). Furthermore, the RTS maintains data structures that keep track of the
launched nodes so they can be safely shut down when no longer needed.

The startup sequence for an ORS system is as follows:

1. The Clojure system is brought up on the host as a Clojure Read-Eval-Print-
Loop (REPL).

2. The Clojure system loads the DSL specification. At this point, the RTS is
instantiated, and it proceeds to parse the DSL specification, identifying all
application and infrastructure services, transforms, and scheduled
services. Each service definition is wrapped with a service controller, a
Clojure function that performs pre-/post-processing of incoming and
outgoing messages, via supplied hooks (plugin-points) for adding pre and
post transforms (see Section 5.3). Then, the transforms are applied to the
functions representing the application services and the resulting functions
are registered with the node’s registrar.

3. The deployment information in the ORS specification is parsed and
executed. On the root node, all services contained in the specification are
registered with the master registrar. If the ORS specification starts
additional nodes, the same startup sequence is executed on these nodes,
with the exception that their registrars, in addition, register with the
master registrar of the root-node. Each node is started with a JAR file
containing the RTS, including the DSL specification.

4. Fourth, scheduled tasks are launched on the respective nodes. At this
point, all services defined by an ORS specification are accessible to the
node’s environment.

5.5. Observations and Discussion

The presented executable ORS DSL operates with the same abstractions as we
have introduced them for services and SOAs in Section 3. Directly, we
implement services as functions, and SOAs (in the form of Rich Services) as
dynamic functional programs.

The ORS DSL clearly makes design decisions to facilitate realizability of the DSL
specifications: individual services receive only one message at a time, so that
each service specification is akin to a state machine implemented in Clojure.
However, because Clojure is a general purpose programming language, service
implementations can keep a history of the messages they have received and sent
so far, allowing service-implementing functions to act as full stream processing
functions (at least on finite prefixes of their in- and output streams).

Also, we model channel names only implicitly via the parameter positions in
service functions, and rely on Clojure’s function wiring and our own service
registrars together with the message transport to play the role of channels from
our semantics definition. This could easily be expanded via an explicit modeling
of a distributed messaging capability with explicit channel names. Of course, this

 35

would have a design impact also on how the base services receive and access
their messages, and how they can send their responses.

The bind, pre- and post-transforms cover a significant set of routing and policy
definition scenarios, but are by no means as comprehensive as the completely
general router/interceptor concept of our semantics definition for Rich Services.
Expanding the set of transforms in that direction is future work.

Clearly, there are many other possible ways to implement the presented DSL,
and yet more ways for refining the DSL itself – however, even in its current form,
the ORS DSL shows how to use SOA concepts to express dynamic architectures,
and to exploit reuse across a broad range of subsystems in a SOA. As shown, the
ORS DSL code covers all of the requirements specified for Cell Sense in Section
5.1 – while factoring out cross-cutting concerns and avoiding repetitive
architecture specifications across sensors and cell phones.

We have yet to fully exploit the possibilities arising from having the DSL
specification as an executable part of the runtime system – this, too, is an area of
future work.

6. Discussion and Related Work
In the preceding sections we have introduced a concise mathematical model for
services and SOAs, and have shown its utility as an underpinning for a DSL that
captures key concepts of the scalable Rich Services architecture pattern. Here, we
discuss its benefits in the context of related work, and potentials for further
improvement.

Rich Services and the OASIS Reference Model Our introduction of Rich
Services and their semantics in this document directly addresses and makes
precise the key concepts of the OASIS Reference Model for SOAs [3] as
articulated in Section 1.2. Services are functions with both syntactic and semantic
interfaces. Visibility is explicitly controlled through both the service interface and
through the service registry (called environment in Section 3.3). The semantics of
services, messages and SOAs is explicitly defined in Sections 3 and 4, including
the real world effects on component states and channel contents. These sections
also define the abstract execution context, whereas Section 5 articulates a concrete
execution context in the form of a prototypical DSL implementation for Rich
Services. Functions are service providers and service consumers, interacting via
messages. Service interfaces act as service descriptions. Contracts and policies are
handled via the decoupling of the functional and cross-cutting aspects of a Rich
Service, expressed via the decomposition into functions f and r , respectively.
Therefore, Rich Services as presented do constitute a SOA according to the
OASIS Reference Model.

Concise Semantics for Rich Services The semantics definition is concise
because of our choice of streams and stream processing functions as the formal
underpinning. While we share the static notions of services and components
with our preliminary work in [4], we have focused here on modeling dynamic
binding as the core SOA concept besides the service notion itself. We modeled

 36

service bindings via an environment that evolves over time. As a consequence,
manipulation of this environment becomes a necessity worthy of explicit
modeling – we chose to let the SOA manipulate its binding environment, but
other choices are conceivable as well.

Clearly, there are other options we could have chosen as the basis of our
semantics. Principal alternatives to streams and stream processing functions as
underlying semantic foundation are, for instance, process algebras such as CSP
[20] and CCS [21], or temporal logics [22]. However, neither directly deals with
the combination of services, hierarchical service composition, dynamic binding
and policy-constraints via similarly simple mappings as we have established for
stream-processing functions and their composition and refinement operators.
The same is true for state-machine based service semantics as they are found, for
instance, in [23], which do provide clear definitions of services and their
assume/guarantee interfaces, but omit the notions of dynamic binding and scale
that are crucial for addressing the full SOA context.

Recently, several approaches have been proposed to orchestrate services. One
example is WS-BPEL [24] [25]. Another one is the Orc [26] [27] orchestration
language. Compared to WS-BPEL, Orc is inspiring in its concise yet semantically
deep expression of a broad range of workflow patterns. Other approaches, such
as Live Sequence Charts [28] and Executable UML [29], support specifying
interactions and workflows using graphical notations. The use of a graphical
version of the interaction specification language for ORS is an area of future
work.

None of the mentioned techniques has explicit support for service definition,
composition, hierarchical decomposition, separation of concerns and dynamicity
within a single semantic framework, let alone modeling language.

ORS introduces this combination and also provides an Architecture Definition
Language as an embedded DSL within Clojure.

While this semantics and ORS language captures the essence of services and
SOAs, there is plenty of room left for further refinement. We have left the
channels within the system model untyped, for instance; explicit typing would
allow us to further explicate the role of the Service/Data connector of a Rich
Service (or, analogously, the function r in the definition of a SOA). For instance,
we could distinguish between channels that carry application data from those
that carry messages controlling the system’s topology.

The semantics currently rests on a simple model of causality, modeled via
streams whose domain is the set of natural numbers, and whose range consists of
finite message sequences. Clearly, this can be refined further into streams that
reflect the needs of real-time systems. One such refinement would use the set of
real numbers as the domain, and have also infinite message sequences as the
range (again using the real numbers as the domain of these sequences).

Rich Services and Aspects. The Rich Services and ORS both support separation
of concerns – infrastructure services are injected into the composition of
application services. A similar capability is available in AspectJ [30]. While both
ORS and AspectJ target Java virtual machines, ORS has an architecture view and

 37

injects behavior at the service interaction level while AspectJ injects functionality
at the Java method level.

Services and feature composition. The complex issue of composing services or
features has been addressed in the seminal Distributed Feature Composition
(DFC) [31] [32] and Feature Oriented Model Driven Development (FOMDD) [33].
ORS extends the functional feature composition approach of DFC and FOMDD
by addressing both dynamic service binding and explicit treatment of
crosscutting concerns.

Scale We introduced Rich Services as a hierarchical pattern for decomposing
services while at the same time disentangling application and infrastructure
concerns within the Rich Service. We showed that this decomposition maps
directly to a service function decomposition into a superordinate and a
subordinate function such that the superordinate function caters to the
infrastructure concerns, while the subordinate function represents the
application-level concerns. Exploiting function composition (with explicit
interfaces via channel histories) is a powerful mechanism to express hierarchy.

The relationship between the super- and subordinate functions in describing
SOAs in general, and Rich Services in particular, holds significant
methodological potential. One interesting question is how to decide on the
tradeoff between the responsibilities of the super- and the subordinate function
in implementing the overall behavior of the SOA. A second one is how
responsibilities of a superordinate function propagate through a hierarchically
decomposed service.

Several frameworks and APIs have the ability to load, remove, and rewire
services during runtime (such as OSGi [34] Java-based frameworks). In addition,
ORS has the ability to deploy services across JVMs and comes with a dedicated
DSL for modeling interaction patterns. Existing ESB implementations, such as
Mule [35] and ServiceMix [36], come with DSLs to specify service interaction and
deployment. ORS advances the state of the art by providing an interaction
language. Furthermore, ORS can specify the topology of distributed systems in a
single model. Finally, ORS comes with a Java based runtime system that can
reuse connectors and components implemented in previous Java-based ESBs.

Fit for Realistic Systems The notion of Rich Services emerged from a number
of systems engineering projects where we had to design and implement large-
scale SOA integration projects [37]. There, Rich Services have proven its value in
transparently decoupling application from infrastructure concerns across
multiple layers of hierarchy, and have been key to quality assurance and
principled evolution of the systems they were used on.

The semantics in this document was designed to allow us to capture the essence
of systems built using Rich Services. We have yet to explore opportunities for
reasoning about the resulting systems; however, the present semantics does lay
the foundation for making headway in that direction.

Relationship to MDD Model-Driven Development (MDD) promises
primarily lifting the granularity of discourse in designing and reasoning about
complex systems to the level of a family of well-chosen abstractions (models) that

 38

individually give a more tractable view of the overall system. In addition, MDD
advocates the use of transformations from abstract to concrete models so as to
automate as much as possible on the way from abstract specifications to concrete
code.

In [38], we have shown how Message Sequence Charts (MSCs) and state
machines can be mapped to a static version of the semantics presented here.
Specifically, we have shown how to convert MSCs into state machines as a
concrete model transformation example. This transformation could be expanded
to the dynamic semantic model described here, and would thus directly capture
the notions of creation and destruction of services at runtime. Clearly this would
require changes to the syntax and semantics of both MSCs and state machines,
but this does hold promise in reducing the amount of manual specification effort
using the bare stream-based semantic model.

In general, it would be interesting to identify a set of description techniques that
together concisely specify services and SOAs. It is not clear upfront what this set
will include. Clearly, it will contain mechanisms for specifying functions, as well
as function bindings – but what concrete shape these description techniques will
take, and to what degree they will overlap is not immediately obvious.

Layered Augmentation We have chosen the semantics deliberately in a
generic (one could argue: barren) form so as to avoid cluttering the notions of
service and SOA with concerns that are not germane to the core of either.

With this generic service/SOA model in place we can now ask ourselves how we
can augment it to cater to more refined service notions. This is easily possible.
Consider, for instance, the three service/SOA notions introduced in Section 1.1.
Our notion of service and SOA is compatible with each one of them. However,
each adds terminology to capture a different aspect of what they consider
essential: “business function”, “conceptual framework”, “abstract resource”,
“provider entities”, “requestor entities”, “provider agent”, “ownership
domains”, etc.

We argue that these terms can adequately layer on top of the core terms of
services as functions, and SOAs as dynamic functional programs. As just one
example, consider the term “business function”. Clearly, business functions can
also be expressed as mathematical functions. The key difference to our generic
semantic model is that it does not carry with it a domain model of entities and
relationships that are of significance in the business domain within which the
SOA is to be constructed. In this sense, the notion of business functions to define
services emerges from our generic semantics for services and SOAs, augmented
with a domain model that articulates the context within which the services and
SOAs under consideration exist.

An interesting extension of the presented model is, therefore, one that embeds
the given service/SOA notions within specific domain models.

 39

7. Summary & Outlook
In this article, we have introduced a concise mathematical model for services and
Service-Oriented Architectures (SOAs). Our premise was to map services to
functions and SOAs to dynamic functional programs.

To that end, we have given a model for services as stream processing functions,
and have shown how to model dynamic functional programs via a function
binding environment for an initial pair of super- and subordinate stream
processing functions.

We further exploited this semantics for dynamic functional programs to model
hierarchical decomposition and separation of concerns as introduced in the
context of Rich Services. This yielded a precise semantics definition for service
integration at scale.

In addition, we showed how the presented service/SOA notion can be
implemented using a domain specific language (DSL) for Rich Services, and have
indicated how the syntactic and operational concepts of the DSL map to the
semantic model – with “CellSense” as our running example.

There is plenty of opportunity for future work. Specifically, the relationship
between super- and subordinate functions warrants further methodological
treatment, with an eye towards a theory and calculus for policy specifications
and enforcement in dynamic systems. Modeling notations for the transitions
from one environment binding to another are also an interesting area for further
research. Last, but not least, typing concepts for the channel valuations might
lead to further structuring opportunities of service/data connectors in Rich
Services.

8. Acknowledgments
The author is grateful to Manfred Broy, Barry Demchak, Bernd Finkbeiner, Bill
Griswold, Markus Kaltenbach, Massimiliano Menarini and Bernhard Rumpe for
stimulating discussions on this topic. This work was funded under the
“PALMS” project funding from the Genes, Environment and Health Initiative
NIH/NCI Grant U01 CA130771, under the “iDASH” project funding from NIH
Grant U54 HL108460, under the “CitiSense” project from NSF Grant CNS-
0932403, under the “MRI: Development of Instrumentation for Project
GreenLight” project from NSF Grant CNS-0821155, under the “Foundations,
Architectures, and Methodologies for Secure and Private Cyber-physical
Vehicles” project from NSF Grant CNS-0963702, and by the California Institute
for Telecommunications and Information Technology (Calit2).

 40

9. References

1. IBM: WebSphere Process Server for Multiplatforms, Version 6.0.x. In:
Introduction to WebSphere Process Server. Available at:
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp
?topic=/com.ibm.wsps.ovw.doc/doc/covw_intro_server.html

2. Web Services Glossary. In: W3C Working Group Note. (Accessed February
11, 2004) Available at: http://www.w3.org/TR/ws-gloss/

3. OASIS: OASIS Reference Model for Service Oriented Architecture 1.0. In:
OASIS Standard. (Accessed October 12, 2006) Available at:
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html

4. Broy, M., Krüger, I., Meisinger, M.: A Formal Model of Service. ACM
Transactions on Software Engineering and Methodology (TOSEM) 16(1), 5
(2007)

5. Broy, M., Stølen, K.: Specification and Development of Interactive Systems.
Springer (2001)

6. Broy, M., Krüger, I.: Interaction Interfaces - Towards a scientific foundation
of a methodological usage of Message Sequence Charts. In Staples, J.,
Hinchey, M. G., Liu, S., eds. : Formal Engineering Methods (ICFEM'98),
pp.2-15 (1998)

7. Broy, M.: A Logical Basis for Modular Systems Engineering. In Broy, M.,
Steinbrüggen, R., eds. : Calculational System Design. IOS Press (1999) 101-
130

8. Möller, B.: Algebraic Structures for Program Calculation. In Broy, M.,
Steinbrüggen, R., eds. : Calculational System Design. IOS Press (1999) 25-
97

9. Stephens, R.: A Survey of Stream Processing. Acta Informatica 34(7), 491-
541 (1997)

10. Rumpe, B.: Formale Methodik des Entwurfs verteilter objektorientierter
Systeme. TU München (1996) Dissertation (in German).

11. Arrott, M., Demchak, B., Ermagan, V., Farcas, C., Farcas, E., Krüger, I.,
Menarini, M.: Rich Services: The Integration Piece of the SOA Puzzle. In :
Proceedings of the IEEE International Conference on Web Services (ICWS),

 41

Washington, DC, pp.176-183 (2007)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley (1995)

13. Farcas, C., Farcas, E., Krüger, I.: Requirements for Service Composition in
Ultra-Large Scale Software-Intensive Systems. In Choppy, C., Sokolsky, O.,
eds. : Foundations of Computer Software: Future Trends and Techniques
for Development, vol. 6028, pp.93-115 (2010)

14. Demchak, B., Kerr, J., Raab, F., Patrick, K., Krüger, I.: PALMS: A Modern
Coevolution of Community and Computing Using Policy Driven
Development. In : 45th Hawaii International Conference on System
Sciences (HICSS) (2012)

15. Farcas, C., Farcas, E., Krüger, I., Menarini, M.: Addressing the Integration
Challenge for Avionics and Automotive Systems - From Components to
Rich Services. The Proceedings of the IEEE Special Issue on Aerospace and
Automotive Software 98(4) (April 2010)

16. Krüger, I., Demchak, B., Menarini, M.: Services for all! In Heisel, M., ed. :
Essays Dedicated to Bernd Krämer on the Occasion of His 65th Birthday
7365. Springer, Lecture Notes in Computer Science (2012)

17. Hickey, R.: Clojure. In: Clojure Website. (Accessed 2010) Available at:
http://clojure.org/

18. Halloway, S.: Programming Clojure. Pragmatic Bookshelf (2009)

19. Noël, C.: Extensible software transactional memory. In : Proceedings of the
Third C* Conference on Computer Science and Software Engineering,
Montréal, Quebec, Canada, pp.23-34 (2010)

20. Hoare, C. A. R.: Communicating Sequential Processes. Prentice Hall, New
York (1985)

21. Milner, R.: Communication and Concurrency. Prentice Hall, New York
(1989)

22. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer Verlag, New York (1992)

23. Can, A., Halle, S., Bultan, T.: Modular Verification of Asynchronous
Service Interactions Using Behavioral Interfaces. IEEE Transactions on
Services Computing PP(99) (2012)

 42

24. OASIS Web Services Business Process Execution Lang: Web Services
Business Process Execution Language Version 2.0. In: OASIS Standard.
(Accessed April 11, 2007) Available at: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

25. Rosenberg, F., Dustdar, S.: Business Rules Integration in BPEL - A Service-
Oriented Approach. In : Seventh IEEE International Conference on E-
Commerce Technology, Munich, pp.476-479 (2005)

26. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc Programming
Language. In Lee, D., Lopes, A., Poetzsch-Heffter, A., eds. : Proceedings of
FMOODS/FORTE 2009, Lisbon, Portugal, vol. LNCS 5522, pp.1-25 (2009)

27. Kitchin, D., Cook, W., Misra, J.: A Language for Task Orchestration and its
Semantic Properties. In : Proceedings of Concur'06, Bonn, Germany,
pp.477-491 (2006)

28. Harel, D., Marell, R.: Come, Let's Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer, Berlin, Germany (2003)

29. Mellor, S., Balcer, M.: Executable UML. Addison-Wesley Pearson
Education, Indianapolis, IN, USA (2002)

30. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.:
Getting started with ASPECTJ. Communications of the ACM 44(10), 59-65
(October 2001)

31. Jackson, M., Zave, P.: Distributed feature composition: A virtual
architecture for telecommunications services. IEEE Transactions on
Software Engineering 24(10), 831-847 (October 1998)

32. Zave, P.: Modularity in Distributed Feature Composition. In : Software
Requirements and Design: The Work of Michael Jackson. Good Friends
Publishing Company, Chatham, New Jersey (2010) 267

33. Trujillo, S., Batory, D., Diaz, O.: Feature Oriented Model Driven
Development: A Case Study for Portlets. In : Proceedings of the 29th
International Conference on Software Engineering (ICSE2007),
Minneapolis, MN, pp.44-53 (2007)

34. OSGi Alliance: OSGi Service Platform Core Specification. In: OSGi
Alliance. (Accessed June 2009) Available at:
http://www.osgi.org/download/r4v42/r4.core.pdf

35. mulesoft.org: Mule ESB. In: mulesoft.org. Available at:
http://www.mulesoft.org/

 43

36. apache.org: ServiceMix 4. In: apache.org servicemix site. Available at:
http://servicemix.apache.org/

37. Demchak, B., Ermagan, V., Farcas, E., Huang, T.-J., Krüger, I., Menarini,
M.: A Rich Services Approach to CoCoME. In Rausch, A., Reussner, R.,
Mirandola, R., Plášil, F., eds. : The Common Component Modeling
Example, Comparing Software Component Models LNCS 5153. Springer
(2008) 85-115

38. Krüger, I.: Distributed System Design with Message Sequence Charts.
Technische Universität München (2000)

