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We study e�e� ! J= c �c by measuring the invariant mass distribution recoiling against fully
reconstructed J= decays, using 124 fb�1 of data collected at a center-of-mass energy of 10.6 GeV
with the BABAR detector. We observe signals for �c�1S�, �c0, and �c�2S� in the recoil mass distribution,
thus confirming previous measurements. We measure 	�e�e� ! J= � c �c�B�c �c! >2 charged� to be
17:6 � 2:8�stat��1:5

�2:1�syst� fb, 10:3 � 2:5�stat��1:4
�1:8�syst� fb, and 16:4 � 3:7�stat��2:4

�3:0�syst� fb with c �c �
�c�1S�, �c0, and �c�2S�, respectively.

DOI: 10.1103/PhysRevD.72.031101 PACS numbers: 13.66.Bc, 12.38.Bx, 12.38.Qk, 14.40.Gx
Prompt J= and  �2S� production in e�e� annihilations
around

���

s
p

� 10:6 GeV has been observed by both the
BABAR [1] and Belle [2] experiments. These interactions
provide an opportunity to study both perturbative and non-
perturbative effects in QCD and to search for new char-
monium states [3,4].

Belle [5] reported the observation of �c�1S�, �c0, and
�c�2S� in the mass distribution of the system recoiling
against a reconstructed J= in e�e� annihilations. The
production cross sections measured by Belle are about one
order of magnitude higher than those predicted by non-
relativistic QCD (NRQCD) calculations [4,6,7] for
e�e� ! 	 ! J= c �c reactions, where c �c is a charmo-
nium state with even C-parity. There have been attempts
[8–12] to reconcile the large discrepancy between the
observed cross section and predictions, and the validity
of NRQCD approximations has been questioned [9,13]. It
has also been suggested that at least part of the double
charmonium production might be due to two virtual-
photon interactions [10], i.e., e�e� ! 		 ! J= c �c,
where oddC-parity states could be produced. Belle updated
its observation and explored the origin of the J= c �c
events [14].

In this paper we present a measurement of the cross
sections for e�e� ! J= 2 �c�1S�, e�e� ! J= 2 �c0,
and e�e� ! J= �c�2S�, and set limits on the yields for
other known charmonium states produced in association
with a J= . We calculate the mass (Mrec) of the system
recoiling against a fully reconstructed J= via:

M2
rec � �

���

s
p

� E	
J= �

2 � p	2
J= ; (1)

where
���

s
p

is the e�e� annihilation energy in the center-of-
mass (CM) system, and E	

J= and p	
J= are the energy and

momentum of the J= candidate in the CM system.
In this paper, we analyze 112 fb�1 of data collected at

the peak of the ��4S� resonance and 12 fb�1 at
���

s
p

�
10:54 GeV, just below the ��4S�, with the BABAR detector
Università di Perugia, Dipartimento di Fisica,
.
Università della Basilicata, Potenza, Italy.

Università della Basilicata, Potenza, Italy.

031101
[15] operating at the asymmetric energy PEP-II e�e�

storage ring. The BABAR detector includes a five-layer,
double-sided silicon vertex tracker (SVT) and a 40-layer
drift chamber (DCH) in a 1.5 T solenoidal magnetic field,
which detects charged particles and measures their mo-
menta and specific ionizations (dE/dx). Photons and elec-
trons are detected with a CsI(Tl)-crystal electromagnetic
calorimeter (EMC). An internally reflecting ring-imaging
Cherenkov (DIRC) is used for particle identification.
Penetrating muons are identified by an array of resistive-
plate chambers (RPC) embedded in the steel of the flux
return (IFR).

We select events with at least five well reconstructed
charged tracks in the DCH, within the fiducial volume
0:41< �< 2:54, where � is the polar angle. Electron
candidates have a pattern of specific ionization (dE/dx) in
the DCH, a Cherenkov cone angle, an EMC shower energy
divided by momentum, and a number of EMC crystals that
are consistent with an electron hypothesis. A muon candi-
date is selected on the basis of energy deposited in the
EMC, the number and distribution of hits in the IFR, and
the match between the IFR hits and the extrapolation of the
DCH track into the IFR. A more detailed explanation of
particle identification is given elsewhere [1].

A pair of oppositely charged lepton candidates originat-
ing from a common vertex is selected as a J= candidate if
its mass (m�‘�‘��) falls within 
�50; 30� MeV=c2 (for
e�e�) or 
�30; 30� MeV=c2 (for ����), of the nominal
J= mass of 3:097 MeV=c2 [16]. In the calculation of
m�e�e��, electron candidates are combined with nearby
photon candidates in order to recover some of the energy
lost through bremsstrahlung radiation. These mass inter-
vals are referred to as the J= mass windows. In order to
improve the p	

J= resolution, we perform a kinematic fit
where the J= candidate is constrained to have the nomi-
nal J= mass.

There are two main background sources in this
analysis: events with genuine J= mesons and combina-
torial background. The region 60 MeV=c2 < jM�‘�‘�� �
M�J= �j< 200 MeV=c2, defined as the J= mass side-
bands, where M�J= � is the nominal J= mass, is used to
estimate the combinatorial background due to random
tracks. This background is largely rejected by particle
identification, and by a requirement on the lepton helicity
-4
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TABLE I. Result of the fits to the recoil-mass spectrum. The
errors are statistical only. Where indicated, the value of the
corresponding parameter is fixed to the current world average
[16]. The primary fit is obtained including signals of �c�1S�, �c0,
and �c�2S�. The event yield for the other resonances is deter-
mined by including each resonance in the primary fit.

Recoil
system

Number
of Events

Mass
�MeV=c2�

Total width
�MeV=c2�

�c�1S� 126 � 20 2984:8 � 4:0 fixed
�c0 81 � 20 3420:5 � 4:8 fixed
�c�2S� 121 � 27 3645:0 � 5:5 22 � 14
J= �26 � 13 fixed fixed
�c1 �5 � 16 fixed fixed
�c2 �12 � 16 fixed fixed
 �2S� 30 � 27 fixed fixed
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angle in the J= decay, j cos�lj< 0:9, as shown in
Fig. 1(a) and 1(c).

The largest backgrounds are due to real J= mesons
from QED processes such as J= or  �2S� mesons pro-
duced via initial state radiation (ISR). J= mesons from B
meson decay have p	 < 2 GeV=c and do not constitute a
background for recoil masses below 6:6 GeV=c2. Most
QED backgrounds have low multiplicity, and may have
electrons or photons escaping detection along the beam
line. These backgrounds are suppressed by the requirement
of at least five charged tracks and the following require-
ment: for each event we calculate the energy deposited in
the EMC plus the energy that can be attributed to an
undetected electron or photon,

EQED � EEMC � pmiss; (2)

where EEMC is the total energy deposited in the EMC, and
pmiss is the missing momentum in the lab frame in the
event. We require EQED � Ebeams <�1:0 GeV as shown in
Fig. 1(b) and 1(d), where Ebeams is the sum of the e�e�

beam energies calculated in the lab frame. We reject the
J= background from �2S� events by vetoing events if the
invariant mass of the J= candidates combined with any
pair of oppositely charged tracks with pion mass hypothe-
sis is within 15 MeV=c2 of the  �2S� mass.

The recoil mass distribution for events in the J= mass
window is shown as points with error bars in Fig. 2. The
ISR  �2S� background is estimated using a Monte Carlo
sample of ISR  �2S� events. The  �2S� feeddown back-
ground from continuum production is estimated using
continuum  �2S� events selected in the data.

The spectrum in Fig. 2 is fit to the sum of signal
functions representing the �c�1S�, �c0, and �c�2S� line-
shapes, plus a second-order polynomial background func-
tion. The signal line shapes are obtained by convoluting the
Breit-Wigner line shape of each resonance with a fixed-
width Gaussian representing the recoil mass resolution
031101
function. The widths of the Gaussians are determined
from a Monte Carlo simulation of the momentum of the
reconstructed J= ; the J= momentum resolution is dif-
ferent for the J= ! e�e� and J= ! ���� samples,
but independent of the recoiling system. This shape in turn
is convolved with a long radiative tail that is calculated to
O��2� [17] for ISR photons that carry off an energy greater
than 10 MeV. The free parameters in the data fit are the
coefficients for the background parameterization, the event
yields for each resonance, the masses of the resonances,
and the �c�2S� total width. The total widths for the �c�1S�
and the �c0 are fixed to their world average values [16] of
17:3 MeV=c2 and 10:1 MeV=c2, respectively. The fit is
performed simultaneously to the recoil mass spectra in the
J= ! e�e� and J= ! ���� samples, and the total
event yield for each resonance is given by the sum of the
yields in each mode.

The fit result is given in Table I and is shown as the solid
curve in Fig. 2. Other known charmonium states may also
be produced in association with the J= via two virtual-
-5



TABLE II. Summary of systematic errors: variations of cross sections and masses due to the selection and fitting procedure (Fit),
particle identification (PID) efficiency, and recoil-mass scale uncertainty. #M refers to the mass difference between the �c�2S� and
�c�1S�.

Variations(%) in cross section Variations �MeV=c2� in mass
Source �c�1S� �c0 �c�2S� �c�1S� �c0 �c�2S� #M

Selection �3:5
�8:3

�0:3
�9:2

�12:6
�15:6

�3:0
�0:2

�1:2
�0:7

�1:0
�5:1 �7:2

Fit �6:7
�8:1

�13:5
�14:2

�6:8
�8:3

�0:1
�3:4

�9:9
�8:0

�3:3
�3:7

�7:1
�2:3

PID �3:5 �3:5 �3:5            

Mass scale          �1:5 �1:5 �1:5 0

Sum �8
�12

�14
�17

�15
�18

�4:5
�5:0

�11:5
�9:5

�4:9
�7:8

�7:1
�7:6
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photon interactions. We therefore attempt to include in our
primary fit each one of the other known charmonium
resonances in turn to determine their event yields, which
are presented in Table I. We find no evidence for J= , �c1,
�c2, or  �2S� in the mass spectrum of the system recoiling
against a J= .

The topological branching fraction is unknown for the
�c�1S�, �c0, and �c�2S�, so we report the product of the
branching fraction for final states with more than two
charged tracks (B>2�c �c! >2 charged�) times the double
charmonium production cross section. In order to include
the effect of ISR, the yields reported in Table I are calcu-
lated with a line shape based on a model of the

���

s
p

depen-
dence of double charmonium production model. To allow a
direct comparison of experimental results, we follow the
same method used by Belle [14] to remove this model
dependence by determining cross section values that cor-
respond to the non-tail fraction of the fit shape (frad �
0:61) [17] where no ISR photon with an energy greater
than 10 MeV is radiated. We use

	�e�e� ! J= c �c�B>2 �
Nc �cfrad

B�J= ! ‘�‘��L"
; (3)

whereNc �c is the event yield, L is the integrated luminosity,
B�J= ! ‘�‘�� is the J= branching fraction, and " is
the detection efficiency. The value of " is determined using
a Monte Carlo simulation with the assumption that exclu-
sive J= �c�nS� production is P wave and that exclusive
J= �c0 production is S wave, as expected for a single
virtual-photon process. The efficiency is determined to be
TABLE III. Comparison of cross sections (	�B>2 in fb) with B
include the B>2 factor.

J= c �c �c�1S�

BABAR 17:6 � 2:8�1:5
�2:1

Belle [14] 25:6 � 2:8 � 3:4
NRQCD [6] 2:31 � 1:09
NRQCD [4] 5.5
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�28:8 � 0:7�% for the �c�1S�, �31:5 � 0:7�% for the �c0,
and �28:9 � 0:8�% for the �c�2S�.

The systematic error is estimated taking into account
contributions from the event selection, the fitting proce-
dure, the particle identification efficiency, and the recoil-
mass scale uncertainty. The contributions from uncertain-
ties in the integrated luminosity and the J= branching
fraction are negligible. The contributions from individual
sources (listed in Table II) are added in quadrature, except
for the systematic errors due to the mass-scale uncertainty,
which are added linearly, to determine the total systematic
errors.

We obtain 	�e�e� ! J= c �c�B�c �c! >2 charged� to
be 17:6 � 2:8�1:5

�2:1 fb for J= �c�1S�, 10:3 � 2:5�1:4
�1:8 fb for

J= �c0, and 16:4 � 3:7�2:4
�3:0 fb for J= �c�2S�. Throughout

this paper, the first error is statistical and the second
systematic. Our values of the cross sections are consistent
with Belle’s measurements [14] for all three resonances.
The cross sections measured by both experiments are much
larger than those predicted by many NRQCD calculations.

From the fit to the recoil mass spectrum we determine
the �c�2S� mass to be 3645:0 � 5:5�4:9

�7:8 MeV=c2, and the
total width to be 22 � 14 MeV=c2. The systematic errors
are mainly due to the uncertainty on the J= momentum
measurement. We use ISR J= and ISR  �2S� data
samples to determine the momentum shifts away from
the expectations for ISR events. Assuming a constant
momentum shift, we obtain the recoil mass uncertainty
for J= c �c processes due to the J= momentum uncer-
tainty. The mass difference (#M) between the �c�2S� and
�c�1S� does not significantly depend on the absolute mo-
elle’s results [14], and with theoretical expectations that do not

�c0 �c�2S�

10:3 � 2:5�1:4
�1:8 16:4 � 3:7�2:4

�3:0
6:4 � 1:7 � 1:0 16:5 � 3:0 � 2:4

2:28 � 1:03 0:96 � 0:45
6.9 3.7
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mentum scale and common systematic errors mostly can-
cel. We measure #M � 660:2 � 6:8�7:1

�7:6 MeV=c2, which
is in good agreement with the mass difference previously
reported by this experiment [18] and by other experiments
[14,19].

In summary, we have measured the cross section
for double charmonium production 	�e�e� !
J= c �c�B�c �c! >2 charged� for J= �c�1S�, J= �c0,
and J= �c�2S�. We confirm the unexpectedly large cross
sections previously reported by the Belle experiment for
these processes. No evidence is found for e�e� ! J= ,
J= �c1, J= �c2, or J=  �2S�. We also measure the
mass difference between the �c�2S� and the �c�1S�.
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