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ABSTRACT 

LBL - 24489 

The predictions of recent theoretical studies on the effect of inert, 
rigid inclusions on the sintering of ceramic powder matrices are examined 
and compared with experimental data. The densification of glass matr.ix 
composites with inclusion volume fractions of S0.15 can be adequately 
explained by Scherer's theory for viscous sintering with rigid inclusions. 
Inclusions cause a vast reduction in the densification rates of 
polycrystalline matrix composites even at low incl\lSion volume fractions. 
Models put forward to explain the sintering of polycrystalline matrix 
composites are discussed. 

INTRODUCTION 

Ceramic matrix composites are required to meet the demands of many 
advanced technological applications. They include structural composites for 
heat engines or aerospace components and electronic composites for 
dielectric applicat.tons. The presence of second phase inclusions, such as 
particles, whiskers or fibers, however, lead to a vast reduction in the 
densification rate of the matrix. Thus considerable difficulties are often 
encountered in the fabrication of ceramic matrix composites by 
conventional, ~ressureless sintering. Although techniques such as 
hot-pressing, or liquid phase sintering will yield the required high 
density, there are a number of disadvantages involved in their use. 
Hot-pressing can be used to fabricate relatively simple shapes only, and 
sintering aids lead to a deterioration of high temperature mechanical 
properties. The large-scale application of ceramic matrix composites in 
advanced applications requires the fabrication of complex shapes by 
conventional, pressureless sintering. 

Over the past twenty years a number of studies have been made to 
understand the sintering of bimodal and agglomerated powders (1-10). 
However it is only with.in the past five years that progress has been made 
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to understand the effects of heterogeneities and inclusions on the 
densification of ceramic powder compacts. The system of interest for 
ceramic matrix composites generally consists of a rigid, non-sinterable, 
inert phase (e.g. particles, whiskers or fibers) dispersed in a porous 
powder matrix. 

In the following sections, the predictions of recent theoretical 
studies on the effect of inclusions on sintering are first examined, and 
then compared with experimental data. Finally, possible explanations for 
the deviations between theory and experimental data are discussed. 

RECENT THEORETICAL STUDIES 

Transient stresses are developed during sintering when one region of 
the powder compact shrinks differently from its surroundings. Deviatoric 
creep will always seek to relieve the stresses. The calculation of the 
stresses therefore requires a viscoelastic solution to the problem where 
differential shrinkage generates internal stresses in the body and the 
internal stresses are relaxed by creep. 

Several authors (11-18) have attempted to determine analytically the 
transient stresses and their effect on densification. Raj and Bordia (12) 
and Hsueh et al. (13-15) considered a "composite sphere" model consisting 
of a spherical domain (i.e. the inclusion) which can shrink faster or 
slower than the surrounding spherical cladding (i.e. the matrix). The 
viscoelastic stresses developed during sintering were calculated by first 
assessing the elastic stresses and then applying Laplace transforms to the 
solutions. For the case where the domain does not sinter as fast as the 
matrix (e.g. inert, rigid inclusion), a compressive stress,a.,arises within 
the inclusion, and radial compressive and tangential tensile 1 stresses arise 
within the matrix. Raj and Bordia (12) and Hsueh et al (13-15) showed that 
the stresses within the matrix could be resolved into a shear stress, 
dependent on the distance from the inclusion/matrix boundary, and a 
hydrostatic tensile stress,a , independent of position but dependent on the 
volume fraction of inclusion~v .• The stresses a., and a-, shown in Fig. 1, 
satisfy a "force balance" condition and are rellted by !he equation 

a = -v . a . ( 1 - v . ) 
m 1 1 1 

( 1 ) 

The equations for the viscoelastic stresses exhibit the general form 

a (t) =ali (t). k(t-t)dt m mp ( 2) 

where e is the linear densification rate of the matrix of the composite, 
k(t) ismg relaxation function (i.e. the stress response of the matrix to a 
unit displacement) and a is a constant that is defined by the geometry or 
the model. For the composite sphere model, a=4. The ease with which the 
explicit value for the magnitude of a (t) can be obtained will depend on 
the complexity of k(t) and how rapidl~ E varies with respect to k(t). In 
the analysis of Raj and Bordia (12) and ~gueh et al (13-15) an equivalent 
mechanical model based on the Maxwell model was employed to describe the 
viscoelastic deformation of the matrix. The material parameters that define 
e and k(t) then need to be determined from experiment. Gross errors can 
b~Pintro<1uced in the eval'.tation of the viscoelastic stresses if, for 
example, the equivalent mechanical 0i.rc11it is not chosen correctly, or the 
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parameters that determlne i and k(t) are collected from the literature on 
porous materials that are n~€ identical in every respect. 

An important aspect of the theories of Raj and Bordia (12) and Hsueh 
et al.(13-15) is that they predict large stresses within the matrix. 
Scherer (18) has shown that the large stresses predicted by these authors 
result from incompatible expressions for the shear and bulk viscosities of 
the matrix. In Scherer's theory, two models were considered: a ~composite 
sphere" model, similar to the one considered by Raj and Bordia and by Hsueh 
et al, and a ~self-consistent model" which is related to one !lSed 
previously by Scherer (19) to analyze the sintering of a body containing a 
bimodal pore size distribution. From an analysis of the ~effective moduli" 
of the composite sphere model, Scherer showed that the hydrostatic 
component of the stress in the matrix can be expressed as 

a = -I:vi[v. + 3n b/(4n >r
1 

m 1 m ms 
( 3) 

where I: is the sintering stress (but see eqn. (10) for differences in 
symbolism), and n and n are the bulk and shear viscosities of the 
matrix, respectiv~~y. Themlinear densification rate of the matrix, i , 
defined according to the equation mp 

( 4) 

can be expressed as 

e: = U{n b[1 + 4v.n /(3n b>]} mp m 1 ms m 
(5) 

Thus the stresses and strain rates depend only on n In b" The stress in an 
i 1 i be d 

ms m nc us on,ai, can expresse as 

a.II: .. 2(1 - 2v )/(1 + v ) 
1 m m 

( 6) 

where v is the Poisson's ratio of the matrix. It is seen that a. cannot be 
greatermthan twice the sintering stress unless v < 0. For the 1 

self-consistent model considered by Scherer, themstresses and strain rates 
obey equations similar to eqns. (3)-(6), except that n is replaced by 
n , the shear viscosity of the composite. ms 
cs De Jonghe and Rahaman (17) have reconsidered the equivalent spring and 

dashpot network used by Raj and Bordia (12) to define the relaxation 
function k(t) of eqn. (2). Important in the development of the equivalent 
mechanical network is the distinction between the densification of the 
system and the recoverable, stored strain. The response of a powder compact 
to a loading and unloading stress step (Rahaman et al (20)), has clearly 
shown that the stored anelastic strain has a relaxation time of the order 
of a few minutes. The quasi-steady state deformation due to densification 
is not recoverable. Thus the appropriate equivalent circuit used by De 
Jonghe and Rahaman consists of a Maxwell and a Voigt element in series 
(Fig. 2). The Maxwell element has a relaxation time 1 1 and accounts for the 
steady state creep, while the Voigt element has a relaxation time 1

2 
and 

represents the transient recoverable strain found by Rahaman et al (20). 
The quasi-steady state creep rate of the matrix,€ , can be defined in 
terms of the ~creep viscosity~.n , by the equati~g me 
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Fig. 1. The stresses around a rigid inclusion in a sintering matrix. 
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Fig. 2. Equivalent mechanical model for the densification-deformation 
process during sintering. 
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• e:mc = a I 11 a me 
(7) 

where a is the uniaxial, applied stress. The relaxation time,1
1 

is, at 
most, o? the order of seconds, and thus much shorter than 12 . Thus the 
relaxation function to be used in eqn. (2) is 

k(t) = G .exp(-G tin ) 
m m me (8) 

Since i varies very slowly with time, compared with k(t), it may be put 
outsidem€he integral of eqn. (2), leading to a relatively simple result if 
G is assumed to be approximately constant. Thus 
m 

a (t) = 4n .i m me mp 
( 9) 

where the factor 4 arises from the spherical geometry of the model. The 
analysis therefore shows that the stresses due to the inclusions are only 
viscous in nature. Combining eqns. (1), (4) and (9) gives 

€ = (U<P)I{n [1 + 4(n In )v./(1 - v.)]) (10) mp mp me mp 1 1 

In eqn. (10), the sintering stress was defined as an equivalent applied 
stress,EI<P, that would produce the same densification rate for the 
system,at identical geometry, but with surface tension effects absent (17). 
The term <P is a structure sensitive factor, usually called the "stress 
intensification factor", and is of the form (21-23) 

cp = exp ( aP) ( 1 1 ) 

where a is a constant that depends on the dihedral angle and P is the 
porosity. Thus E in eqn. (3) is equivalent to EI<P defined here. Equation 
(10) predicts that the matrix densification rates depend only on n /n me mp 

COMPARISON OF THEORY WITH EXPERIMENTAL DATA 

Glass Matrix Composites 

Rahaman and De Jonghe (24) recently reported data for the 
densification of soda-lime glass powder compacts containing different 
volume fractions of inert SiC inclusions. The average size of the glass and 
SiC particles was 4 and 35~m respectively. After mixing, the composite 
powders were consolidated by die-pressing to give compacts having 
approximately the same matrix density (-0.55 of the theoretical density of 
the glass). Shrink age was recorded contin•1ously at 605°C using a 
dilatometer.Figure (3) shows data for the density of the composite vs time 
for different volume fractions of inclusions,vf. The quantity vf was 
calculated on the basis of the fully dense composite, and is re ated to v. 

l by the equation 

v. "' p [ p + ( 1 - v ) /v r, 
1 m m f f 

( 1 2) 

In Fig. (4) data for the densification rate of the composite,£ , relative 
to the value calculated on the basis of the rule of mixtures.~~(rm), are 
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Fig. 3. Density of the glass matrix composite vs time for indicated volume 
fractions of SiC inclusions 
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Fig. 4. Comparison of experimental data for the den~ification rate of the 
glass matrix composite normalized to the densification rate from the rule 
of mixtures vs relative density of the matrix with the predictions of 
Scherer's model. 
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Fig. 5. Stress in the inclusion of the glass matrix composite, normalized 
to the sintering stress vs relative density of the matrix. 

compared with the predictions of Scherer's theory (eqn. (5)) for values of 
vf of 0.09 and 0.17. It is seen that the data are in excellent agreement 
w1th Scherer's theory for v =o.09. For vf=0.17, there is initially good 
agreement, but significant ~eviations are evident above p =0.7.At this 

m value of p , the inclusion volume fraction,vi=0.12. Figure (5) shows data 
for o./r f~r vf=0.09. It is seen that there Is excellent agreement with 
Scher~r's theory (eqns. (1) and (3)), and that a lr is much smaller than 
the theoretical predictions of Raj and Bordia (1~) and Hsueh et al (13-15). 
As for Fig. 4, deviations from the theory become significant for v.>0.12. 
Devia~ions from the theory above vi-0.12 might be due to interacti6ns 
between the inclusion particles. Scherer's model does not allow for the 
fact that the inclusions will initially interfere, and later will come into 
contact, eventually leading to a hard skeleton structure that densifies 
with difficulty. Thus for v.>0.12, impingement effects rather than the 

1 viscoelastic backstresses can dominate the behavior. 

Polycrystalline Matrix Composites 

De Jonghe and Rahaman (25) have also reported data for the 
densification of polycrystalline ZnO powder compacts containing different 
volume fractions of inert SiC inclusions. In these experiments the average 
size of the ZnO and SiC particles was 0.4 and 12um respectively. The method 
of fabricating the green composite bodies was similar to that used for the 
glass/SiC composites. Shrinkage was recorded continuously at 725°C using a 
dilatometer. The data for the density of the composite vs time for 
different vf are shown in Fig. 6. The inclusions cause a dramatic reduction 
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in densification, compared with the glass/SiC compo~ite~. and it is seen 
that above vf-0.3,densification is almost totally inhibited. 

The vast reduction in the densification rates of the ZnO/SiC 
composites might, at first sight, be viewed as a confirmation of the large 
viscoelastic backstresses predicted by the theories of Raj and Bordia (12) 
and Hsueh et al (13-15), in contra~t to Scherer's analysi~. which predicts 
considerably lower stresses. 

Lange (16) has proposed a constrained network model to describe the 
densification of composites in which the inclusion particles form a sparse, 
contiguous network. The model contains one adjustable parameter, the 
inclusion spacing, and by varying this, Lange was able to obtain a good fit 
to the data of De Jonghe and Rahaman for the ZnO/SiC composites. Lange's 
model is, however, purely geometric and does not make any distinction 
between polycrystalline and amorphous matrices. In addition, it appears 
unlikely that nearly spherical inclusions would form a contiguous network 
below v.~0.1. 

Th~ analysis of De Jonghe and Rahaman (17) gives eqn. (10) as the 
important relation between the matrix densification rate and the properties 
of the matrix. The quantity n In has not been measured for ZnO, but 
preliminary data on an MgO/Bi~O ~?stem in which sintering occurs by a 
liquid phase mechanism (De Jong~e and Srikant (26)), indicate that it is 
~2. Assuming the same value for ZnO then a plot of i ,corrected for 
grain growth, vs 11[1 + 8v./(1 - v. )~ should yield a s~~aight line that 
extrapolates through the ofigin. Tftis plot has been done in Fig.7. A 
linear relationship is obeyed, but considerable deviations from the theory 
are apparent, even for low inclusion contents. A number of suggestions have 
been put forward recently to explain these deviations; these range, for 
example, from the effects of inclusion size and inclusion clustering 
(Weiser and De Jonghe (27)), to the formation of a skeletal network of the 
inclusions (Lange (16)), to microstructural anisotropy due to the 
viscoelastic ~tress field (Bordia and Scherer (28)). 

CONCLUDING REMARKS 

For glass matrix compo~ites, Scherer's theory provides an excellent 
explanation of the experimental data for inclusion volume fractions,v., 
below- 15%. At higher values of vi' deviations from the theory might 1 be 
due to impingement effects between the inclusion particles. 

Data for the densification of polycry~talline ceramic matrix 
composites show considerable deviations from theory even at low inclusion 
contents, and a number of suggestions have been put forward recently to 
explain these deviations. Considerable work involving both theoretical 
modelling and experimental investigations of sintering and microstructure 
development is needed to extend the present understanding of the 
densification of polycrystalline ceramic matrix composites at high 
inclusion contents. 

ACKNOWLEDGMENT 

This work was supported by the Division of Materials Sciences, Office 
of Basic Energy Sciences, U.S. Department of Energy, under Contract No. 
DE-AC03-76SF00098. 



10 

REFERENCES 

1. R.L. Coble, J. Am. Ceram. Soc., 56 [9] 461 (1973). 
2. W.H. Rhodes, J. Am. Ceram. Soc.,-g4 [1] 19 (1981). 
3. F. W. Dynys and J.W. Halloran, J.~m. Ceram. Soc.,~ [9] 596 (1984). 
4. R.C. Bruk, T.W. Dawidski, and P.S. Apte, J. Am. Ceram. Soc., 66 [11] 

815 (1983). 
5. F.F. Lange, J. Am. Ceram. Soc., 67 [2] 83 (1984). 
6. G.Y. Onoda, Ceramic Microstructures '76, R.M. Fulrath and J.A. Pask 

(ed.), Westview Press, Boulder, CO, 1977, p163. 
7. G.L. Messing and G.Y. Onoda, J. Am. Ceram. Soc., 61 [7-8] 363 (1978). 
8. G.L. Messing and G.Y. Onoda, J. Am. Ceram. Soc., 64 [8] 468 (1981). 
9. J.P. Smith and G.L. Messing, J. Am. Ceram. Soc., 67 [4] 238 (1984). 

10. L.C. De Jonghe, M.N. Rahaman, and M. Lin, Ceramic~icrostructures •86, 
J.A. Pask and A.G. Evans(ed.), in press. 

11. A.G. Evans, J. Am. Ceram. Soc., 65 [10] 497 (1982). 
12. R. Raj and R.K. Bordia, Acta Metall., 32 [7] 1003 (1984). 
13. C.H. Hsueh, A.G. Evans, R.M. Cannon, and R.J. Brook, Acta Metall., ~ 

[5] 927 (1986). 
14. C.H. Hsueh, A.G. Evans, and R.M. McMeeking, J. Am. Ceram. Soc., 69 [4] 

C64 (1986). 
15. C.H. Hsueh, J. Mater. Sci., 21 2067 (1986). 
1 6. F. F. Lange, J. Mater. Res., ~ [ 1] 59 ( 1987) . 
17. L.C. De Jonghe and M.N. Rahaman, Acta Metall., in press. 
18. G.W. Scherer, J. Am. Ceram. Soc., 70 [10] (1987). 
19. G.W. Scherer, J. Am. Ceram. Soc., 67 [11] 7'J9 (1984). 
20. M.N. Rahaman, L.C. De Jonghe, and R.J. Brook, J. Am. Ceram. Soc., 69 

[1] 53 (1987). 
21. W. Beere, Acta Metall., 23 [1] 131 (1975). 
22. W. Beere, Acta Metall., 23 [1] 139 (1975). 
23. J.M. Vieira and R.J. Brook, J. Am. Ceram. Soc., 67 [4] 245 (1984). 
24. M.N. Rahaman and L.C. De Jonghe, J. Am. Ceram. Soc., in press. 
25. L.C. De Jonghe, M.N. Rahaman, and C.H. Hsueh, Acta Metall., 34 [7] 1467 

(1987). -
26. L.C. De Jonghe and S. Srikant, Unpublished ~ork. 
27. M.W. Weiser and L.C. De Jonghe, J. Am. Ceram. Soc., in press. 
28. R.K. Bordia and G.W. Scherer, submitted to Acta Metall. 



t..-.-

LAWRENCE BERKELEY LABORATORY 
TECHNICAL INFORMATION DEPARTMENT 

UNIVERSITY OF CALIFORNIA 
BERKELEY, CALIFORNIA 94720 

·to-- ..... ~ 




