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Abstract

Nucleosomes, the fundamental repeating subunits of all eukaryotic chromatin, are responsible for
packaging DNA into chromosomes inside the cell nucleus and controlling gene expression. While it
has been well established that nucleosomes exhibit higher affinity for select DNA sequences, until
recently it was unclear whether such preferences exerted a significant, genome-wide effect on nucle-
osome positioning in vivo. This question was seemingly and recently resolved in the affirmative: a
wide-ranging series of experimental and computational analyses provided extensive evidence that
the instructions for wrapping DNA around nucleosomes are contained in the DNA itself. This
subsequently labelled second genetic code was based on data-driven, structural, and biophysical
considerations. It was subjected to an extensive suite of validation procedures, with one conclusion
being that intrinsic, genome-encoded, nucleosome organization explains ~50% of in vivo nucleo-
some positioning. Here, we revisit both the nature of the underlying sequence preferences, and the
performance of the proposed code. A series of new analyses, employing spectral envelope (Fourier
transform) methods for assessing key sequence periodicities, classification techniques for evaluating
predictive performance, and discriminatory motif finding methods for devising alternate models,
are applied. The findings from the respective analyses indicate that signature dinucleotide peri-
odicities are absent from the bulk of the high affinity nucleosome-bound sequences, and that the
predictive performance of the code is modest. We conclude that further exploration of the role of
sequence-based preferences in genome-wide nucleosome positioning is warranted. This work offers a
methodologic counterpart to a recent, high resolution determination of nucleosome positioning that
also questions the accuracy of the proposed code and, further, provides illustration of techniques
useful in assessing sequence periodicity and predictive performance.



1 Introduction

In a recent, widely-celebrated article, Segal et al., [I] performed a diverse series of computational
and experimental analyses that purportedly established the existence of a second genetic code.
This code pertains to nucleosome positioning along the genome, and asserts that such positioning
is determined by the DNA itself. Derivation of the code was based on data-driven, structural,
and biophysical considerations. An extensive suite of validation procedures was applied and, based
on the attendant results, it was concluded that genomes encode an intrinsic nucleosome organi-
zation which explains ~50% of nucleosome positions in vivo. Here, we re-evaluate features and
performance of this nucleosome positioning code. Initially, we scrutinize one of the observations
showcased in the context of high affinity nucleosome-bound sequence; namely, that such sequences
exhibit strong periodicities of select dinucleotides. Subsequently, we revisit some of the approaches
used to assess performance of the code. Comparisons are drawn with a competing model derived
via motif finding methods.

We note at the outset that there are some important interpretational nuances surrounding relevant
aspects of the presentation and methodology of Segal et al, [I]. First is the matter of whether
a “code” comprising a rigid set of sequence-based rules for the (deterministic) placement of nu-
cleosomes is being advanced or, alternatively, a “model” is being proposed that detects a signal
related to nucleosome positioning. While these are distinct propositions, for our present purposes
we do not need to arbitrate between them. Our focus is on the manner whereby the code/model is
evaluated, and the key role for discriminatory analyses in this context. This viewpoint also served
to frame the analysis conducted by Yuan and Liu [2], described further in the Discussion.

Second is the question of whether the observed select dinucleotide periodicities provide motivation
for, or validation of, the proposed code. Again, we remain agnostic with respect to this distinction.
As described below, it is clear that dinucleotide frequencies of the obtained high affinity nucleosome-
bound sequences are fundamental to the code. That select dinucleotides exhibit apparently strong
~10bp periodicities for these sequence sets is prominently highlighted, with substantive interpreta-
tion as to both the particular dinucleotides displaying such periodicity and the cycle length. Our
concern here is in gauging the extent to which (a set of) sequences exhibit periodic behavior, and
providing and illustrating techniques that enable such assessment.

It is additionally important to establish what we are not attempting here. We are not seeking to
establish a new code, nor do we provide new data. In the Discussion, we comment on some very
recent work bearing on these aspects. Rather, our focus is on methodologic issues arising in, but
not limited to, the work of Segal et al., [I].



2 Results

2.1 Select dinucleotide periodicities for high affinity nucleosome-bound
sequences

The starting point for deriving the nucleosome positioning code (NPC) are sets of yeast DNA
sequences that are stably nucleosome bound, these being isolated by an accurate, genome-wide
assay. While the assay yielded 518 sequences only the 199 (38%) with lengths within + 5 basepairs
(bp) of the canonical 147bp nucleosome were employed for model development. These 199 sequences
were then center aligned and augmented with (i) their reverse complements, reflecting the 2-fold
symmetry of the nucleosome structure [3], and (ii) = 1bp offset sequences, predicated on the
notion that such small changes in spacing of key nucleosome DNA sequence motifs incur little
free energy cost with respect to histone - DNA interactions. So armed with this aligned set of
sequences, probability scores based simply on aggregating position-specific, dinucleotide proportions
are computed. These scores provide the foundation for the proposed code. As indicated, the
observation that, for select dinucleotides, these proportions exhibit striking periodicities receives
considerable attention. In particular, in-phase ~10bp cycles (coincident with the DNA helical
repeat) are evident for AA/TT/TA dinucleotides (see Figure [I)), these being out of phase with
a ~10bp GC cycle. Not only are arguments advanced as to the importance of these specific
dinucleotides with respect to bendability (essential for the sharp bending required for wrapping
[4; B]) and phase anisotropy (facilitating necessary positive and negative basepair roll), but also the
same periodicities and phase behaviors are exhibited when a set of in vivo nucleosome sequences
from chicken and three in vitro experiments are similarly scored.

Let S = (51,54, ..,5147) denote an arbitrary 147bp sequence. Representing the above position-
specific, dinucleotide probability as P;(S;|S;—1),7 = 2,...,147, the nucleosome-DNA model score
for S is computed according to a first-order Markov model as

147

P(S) = Py(S1) [ [ P(SilSi1). (1)

=2

A legal configuration specifies a set of 147bp nucleosomes, scored according to (1), and a start
position for each, such that no two nucleosomes overlap and the minimum distance between them
is 10bp. The probability of every configuration is then given by the Boltzmann distribution. While
the number of configurations is vast, a forward-backward dynamic programming method enables
efficient estimation of the probability of placing a nucleosome that starts at each basepair in the
genome. This probability (and derivations therefrom) constitutes the second genetic code. Further
details can be found in [I] and the supplementary material thereof.

So, given that neighboring nucleosomes are separated from one another by stretches — of length
10 to 50bp — of unwrapped linker DNA, overall some 75% - 90% of genomic DNA is nucleosome
bound; a recent estimate for yeast based on a high resolution, tiling array approach being 81% [6].
Accordingly, in view of the genesis of the code, we would anticipate seeing numerous instances of
~10bp periodicities throughout the genome. Informal (purely visual) assessments of genome-wide
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Figure 1: Position specific fractions of com- Figure 2: Average (over individual sequence)
bined AA, TT, and TA dinucleotides aggregat- spectral envelope (red) with standard errors
ing over the 199 nucleosome bound sequences. (blue) and analytical (see Methods) critical

values (grey).

dinucleotide periodicities have been performed, revealing ~8bp cycles that have been linked to
indications (based on molecular models of a DNA - Dnmt3a (DNA methyltransferase 3a) dimer)
that Dnmt3a methylates DNA in a periodic fashion [7;8]. Formal techniques have also been applied.
Notably, the (Fourier-based) spectral envelope, built on work of Stoffer and colleagues [9; [10], and
briefly outlined in Methods, has been employed. Accordingly, the following quote from Rosen and
Stoffer [11], is of interest (emphasis added):

The spectral envelope picks up a signal at one cycle every three bp, which occurs often
in coding sequences we have analyzed. There is another peak in the spectral envelope
indicating a signal at one cycle every 10bp. This signal is particularly interesting be-
cause, while the double helix makes one turn about every 10 base-pairs, the 10bp signal
is rarely seen and the importance of this twisting is not clear.

We now take up the task of reconciling this apparent discrepancy: on the one hand, according to
the basis of the nucleosome positioning code, 10bp periodicities ought be common while, on the
other hand as asserted in [I1], they are seldom seen. The contention that an attribute is “rarely
seen” is clearly dependent on where and how the search was conducted. As it is problematic to
address the “where”, our focus here is on the “how” — the spectral envelope methodology used
for eliciting periodicities. In order to assess whether the spectral envelope is a sufficiently refined



technique for identifying periodicities in short sequences we apply it to the five nucleosome sequence
sets (yeast, chicken in vivo; yeast, mouse, synthetic in vitro) where, according to Figure |1] and [1]
and references therein, such signals are manifest.
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Focussing initially on the yeast in vivo sequences, we compute the spectral envelope for each se-
quence and display the resultant mean envelope (averaged over the ensemble), along with ana-
lytically defined critical values (see Methods), in Figure Contrary to expectation, there is no
evidence of 10bp periodicity, corresponding to w = 0.1. [We note that here, and subsequently, we
have been flexible in making evaluations in a neighborhood of w = 0.1.] However, this process
of averaging individual envelopes does not reflect the manner whereby the striking periodicities of
Figure [1| were exposed. To produce a corresponding spectral envelope requires averaging the indi-
vidual sequences (rather than averaging spectral envelopes), this conforming to the computation
of select dinucleotide fractions as displayed. Doing so produces the spectral envelope presented in
Figure |3| where now critical values are (preferably — see Methods) obtained via permutation. Now
the 10bp cycle is clearly detected, there being a significant peak at w = 0.1. Nonetheless, the failure
of the former process of averaging individual envelopes begs the question as to the extensiveness
of the characterizing periodicity in the (individual) select, nucleosome bound sequences. Figure
shows that while more than 50 sequences(out of 398 = 199 X 2, reverse complement being included,
albeit duplicative, as a concordance check) have a significant (p < 0.05) peak at w = 0.1, the bulk



of the sequences do not exhibit this signature. Furthermore, the same applies to the other systems
studied.

These findings call into the question the various interpretations as to the consequence of the select
dinucleotide periodicities. Whether invoked from either a motivating or validating standpoint, the
absence of the prescribed periodicities from > 80% of the high affinity nucleosome-bound sequences
suggests that they are at best a weak component of an in vivo preference signature. However, it is
important to note that these periodicities were not directly incorporated into the code as defined
by the spatial probabilities and subsequent steric hindrance models. So, their paucity does not
impact the validity of the code. Segal et al., [1] proffer a mound of evidence in order to demonstrate
legitimacy of the positioning code. We next scrutinize what we believe to be the critical components
thereof.

2.2 Predictive performance of the positioning code

Many figures analogous to Figure 2 of Segal et al., [I] are presented in their companion supplemen-
tary information. Using genomic coordinates these figures display tracks corresponding to stably
positioned nucleosomes according to the literature, and stably positioned nucleosomes as predicted
by their code. Showcasing the seemingly close alignment between these tracks is presumably in-
tended to contribute to affirming the validity of the code. However, while numerous, these figures
are but qualitative snapshots, and so do not provide quantification of the code’s genome-wide ac-
curacy. More importantly, they do not afford a discriminatory perspective which, we believe, is
essential for any hypothesized prediction scheme such as the proposed code. To illustrate: as was
cited above, [6], 81% of yeast genomic DNA is nucleosome bound. So, a trivial rule that declared
every basepair to be nucleosome occupied would enjoy 81% accuracy, greatly exceeding the =~ 50%
claimed for Segal et al’s code. Where the “highly non-informative and useless” [12] trivial rule
breaks down, of course, is in predicting nucleosome free or depleted genomic regions. A few relevant
data sets are presented in [I] (Supplementary Figures 23-25), two of which are recreated here in
Figures [5| and @ [We do not consider the data of Supplementary Figure 23 since the depleted set
is sparse and it is the sole open reading frame example, precluding validation; see below.] Indeed,
while the analysis of these data sets contributes to the overall ~ 50% accuracy estimate, they are
not accompanied by formal or direct assessments of misclassification performance. Next, we review
the methods used to analyze this pivotal data, as well as applying alternate approaches that provide
such formalism.

Consider Figure [5| Depicted are two empirical cumulative distribution functions (ecdf(s)) corre-
sponding to two sets of sequences: yeast intergenic regions that are respectively nucleosome depleted
(blue, 294 sequences) and occupied (red, 5387 sequences) where the partitioning into depleted /
occupied categories conforms to that defined by Bernstein et al., [13] who conducted the original
Chip-ChIP experiments. For Figure @ which utilizes data from Lee et al., [14], the set of depleted
regions was obtained by stringent thresholding (30% under-enrichment). The ecdfs are for average
nucleosome occupancy probabilities (ANOP(s)) which are defined as the average, across all base-
pairs in a designated sequence, of the probability that a basepair is covered by any nucleosome.



The latter quantity is obtained by summing the probabilities of placing a nucleosome at a given
basepair over the preceding 146bp which, in turn, are derived from and the forward-backward
dynamic model. As such, these quantities embody the nucleosome positioning code.
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Figure 5: Empirical distribution functions of Figure 6: As for Figure [} Lee et al., data
ANOPs by class: Bernstein et al., data (Sup- (Supplementary Figure 25).

plementary Figure 24). The vertical black

bar designates the Kolmogorov-Smirnov test

statistic; see text.

As depicted in Figures[5land[6], differences between the depleted and occupied sequences are assessed
via the Kolmogorov-Smirnov (KS) test, which attains seemingly impressive p-values: 10~ and 10~°
respectively, although we are dealing with large sample sizes. Now, the KS test is an established
means for assessing differences between cumulative distribution functions. But, it does not address
predictive (classification) performance of the code. Of course, many such measures are available,
including misclassification rate, sensitivity, specificity, and positive and negative predictive value. It
is straightforward to show (see Methods) that the optimization implicit in the KS test corresponds
to maximizing the sum of sensitivity plus specificity. While this is not a bad criteria, it is not
necessarily a good one, and can mislead especially in imbalanced (class size) settings as here. A
more established means of assessing a classifier’s performance is via cross-validated (CV) receiver
operator characteristic (ROC) curves (sensitivity vs 1- specificity) and the attendant area-under-
the-curve (AUC).

Results from such an approach are presented in Figures [7] and [§] Here we are using ANOPs
to discriminate between the two classes. The classifier employed was gradient boosting [15} [16],



overkill for this single feature setting, but used for comparability with subsequent multi (two)
feature inputs. While results with a single feature are, by definition, invariant to classifier choice,
similar invariance was observed with two features. An ROC curve coincident with the diagonal,
with associated AUC = 0.5, corresponds to random classification (e.g., based on a coin toss) and
indicates that the feature(s) have no discriminatory power. That the cross-validated ROC curves
in Figure [§] are, in fact, virtually coincident with the diagonal, with average AUC = 0.54, shows
that here ANOPs have little predictive content. Results for Figure [7] are marginally better, with
an average AUC, over the 5 CV folds, of 0.60.

Boosting CV ROCs: Boosting CV ROCs:
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Figure 7: ROC curves: Bernstein et al., data. Figure 8: As for Figure[7} Lee et al., data.

The five individual traces correspond to the
each of the five cross-validation folds.

However, before accepting these results, and accordingly dismissing the genome-wide discriminatory
content of the proposed nucleosome code, we thought it prudent to confirm the input ANOPs.
These had ben derived using the script provided by Segal et al., see http://genie.weizmann.
ac.il/pubs/nucleosomes06/segal06 _exe.html As a simple check we re-estimated the respective
ecdfs for each of the occupancy / depleted datasets. The results, as presented in Figures @ and
10, reveal dramatic differences with the ecdfs obtained using the original ANOPs, given in Figures
and [§ Moreover, the nature of these differences — reduced separation between classes — would
clearly serve to attenuate discriminatory signal. The reason for the differences is handling of
boundary effects. These were naively ignored in our initial computation of ANOPs, despite a
recommendation to employ at least 5000bp of flanking sequence around the target sequence of
interest (http://genie.weizmann.ac.il/pubs/nucleosomes06/segal06 prediction.html). In
actuality, the original ANOPs did not use flanking sequence but, rather, were derived from a
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whole genome solution (on a per chromosome basis) with mapping to the appropriate region. It
has been reasonably asserted (Eran Segal, personal communication) that this is the appropriate
course since (i) each region is part of the entire chromosome and neighboring sequences influence
its nucleosome organization, and (ii) boundary effects that will otherwise dominate especially for
short sequences. Nonetheless, in view of (a) the dramatic differences obtained from the global wvs
local approaches, and (b) the highly dynamic nature of nucleosome remodeling, the question of the
extent to which distant sequence ought influence derived ANOPs warrants additional investigation.
Further, irrespective of the manner in which boundary effects are handled, the averaging used in
obtaining sequence- / region- level ANOP summaries can conceal disparate position level occupancy
probabilities within a sequence (not shown).
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Figure 9: ANOP empirical cumulative distri- Figure 10: As for Figure [0} Lee et al., data; cf
bution functions (ecdfs) without flanking data: Figure [6]

Bernstein et al., data; cf Figure

We revisited cross-validated classification {depleted, occupied} performance using the chromosome-
level, boundary-corrected ANOPs [I], again employing boosting. Results are depicted in Figures
and [I[2] The improvements over uncorrected ANOPs are slight, with the new AUCs for the
Bernstein et al., and Lee et al., datasets being 0.62 and 0.57 respectively. Still, modest though
these AUCs are, perhaps they are sufficient to contend that the proposed nucleosome positioning
code has useful predictive content. Since it is problematic to make such judgements solely on
absolute AUCs, we next turn to alternate means for pursuing sequence-based classification.
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2.3 Discriminatory motif finding

Since the ability to distinguish nucleosome depleted sequences from nucleosome occupied sequences
is fundamental to positioning code evaluation, we now turn to methods that tackle such objectives
directly. Given a set of (provisionally) related sequences there is an extensive literature on finding
patterns common to the set. Such patterns are called motifs and techniques for their elicitation
are termed motif finding methods. Broadly, there are three classes of motif finding approaches:
statistical (model-based) [I7; I8; 19 20], enumerative [21; 22], and dictionary-based [23}; 24].
Additionally, within each of these families there are generative and discriminative approaches, as
well as hybrids thereof. Given our classification emphasis, and the availability of both nucleosome
depleted and occupied sequence sets, we focus on discriminative methods, as has been recently
advocated [25; 26} 27]. Interestingly, this approach is also promoted by the lead author of the
positioning code; see Segal et al., [28§].

From an algorithmic standpoint the status of discriminatory enumerative [29] or hybrid dictionary -
statistical [30] methods is considerably more advanced than pure statistical methods [31]. This is, in
large part, a consequence of effective use of hash tables coupled to a hidden Markov model (HMM)
for motif representation. Accordingly, we employ Wordspy (http://cic.cs.wustl.edu/wordspy/)
which has been shown to outperform [30] a suite of competing motif finding methods on benchmark
datasets [32].

We first applied Wordspy to the sequence sets of Supplementary Figure 24 (Bernstein et al., [13]);


http://cic.cs.wustl.edu/wordspy/

see Methods for specifications. Among the leading motifs extracted of length > 10 nucleotides
were poly(dA.dT) stretches and variants on the Rapl binding motif (CACCCATACAT). These,
or subsequences thereof, have previously been implicated in nucleosome positioning [33; [13; [6].
Next, we used the frequency of occurrence (counts per sequence / sequence length) of these two
motifs as features in classifying the (nominally — see below) unseen data of Supplementary Figure
25 (Lee et al., [14]). The results obtained, again using boosting, are presented in Figure [13|
It is immediately apparent that this simple model, based on just two motifs, provides greater
discriminatory power than the nucleosome positioning code, the respective AUCs being 0.76 (two
motifs) and 0.57 (ANOPs, Figure [12)).

Boosting CV ROCs: Supp Fig 25 Boosting CV ROCs: Supp Fig 25
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Figure 13: Discrimination between depleted Figure 14: Discrimination between depleted
and occupied sequences using poly(dA.dT) and and occupied sequences using ABF1 and REB1
Rapl motifs; c¢f Figure [12] motifs; ¢f Figure [12]

A few comments are in order. Firstly, while it is the case that there are significant differences in
sequence length between the depleted and occupied sets, these are not driving the discriminatory
performance depicted in Figure Even when we do not normalize for sequence length, but just
use raw motif counts as features, we obtain comparable classification performance.

Secondly, our strategy of using one dataset for eliciting motifs and the other for evaluating classifier
accuracy, might suggest that the two sets are independent. However, this is far from the case.
Since both constitute whole genome categorizations of nucleosome depletion / occupancy for all
intergenic reasons, they differ (essentially) only in the manner whereby partitioning into these
classes is effected. Thus, it may not surprise that motifs found using the Supplementary Figure 24
partition provide discriminatory power when applied to Supplementary Figure 25, and further incur
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concerns about data reuse and associated optimistic performance assessments [34]. It was in order
to mitigate this concern that we utilized cross-validation based measures of classifier accuracy.
However, the fact that the overlap between the depleted sets is meager — only one third of the
depleted sequences in Supplementary Figure 24 are so identified in Supplementary Figure 25 — calls
into question Segal et al’s analysis and interpretation of these data. To paraphrase: if nucleosome
depletion (occupancy) is such a moving target how can it be captured by a static code?

Thirdly, that the proposed positioning code was experimentally verified, presumably bolstered
claims as to its legitimacy. Yet, experimental confirmation of the importance of the two motifs
identified above also exists [33} [13]. For example, nucleosomes are depleted in the vicinity of
Rapl consensus sites and this depletion can be reversed by the small molecule rapamycin or by
removing Rapl binding sites. We are not advancing an alternate code based on these two motifs.
Rather, we are questioning whether claims for a genome-wide code can be affirmed by select in
vitro experimentation, which does not preclude alternate explanations, and especially when genome
level accuracy is modest.

3 Discussion

The purpose of this paper was to revisit both attributes and performance of the recently pro-
posed nucleosome positioning code (NPC) [I]. Using spectral envelope techniques, we first showed
that the signature periodicities deemed to characterize sequences with high nucleosome affinity
are absent from a sizable number of such sequences. Subsequently, using motif finding methods
and classification techniques, we developed an alternative, experimentally justified, “code” which
provided superior discriminatory performance to that of the original NPC.

A recent study by (William) Lee et al., [6], of nucleosome positioning that achieved the highest
basepair resolution to date through use of tiling arrays, also reached the conclusion that other
structural features and motifs are more predictive than NPC occupancy probabilities. The Rapl
and poly(dA.dT) motifs figure very prominently in the lists of predictive DNA properties they
elicited [6, Figures 5a, 6¢]. Two other features, the ABF1 and REB1 transcription factor binding
sites, also were forefront on these lists. To further assess their importance on unseen data we
applied the same cross-validated, gradient boosting classification approach to the Bernstein et al.,
data (Supplementary Figure 24) and (Cheol-Koo) Lee et al., data (Supplementary Figure 25), using
ABF1 and REBI frequencies as inputs. Although AUCs were smaller (0.72 and 0.66 respectively)
than those attained with Rapl and poly(dA.dT) (0.82, 0.76) they were still significantly greater
those obtained using the NPC (0.62 and 0.57). Figure 14| displays the cross-validated ROC curves
for the (Cheol-Koo) Lee et al., data. Thus, these motifs exhibit both consistency across datasets
and superior predictive performance to the NPC.

The high resolution approach of [6] enables the authors to declare, on purely empiric grounds, that
the 199 high nucleosome affinity sequences upon which Segal et al’s code is based have a “nearly
random distribution of occupancy ratios and do not correspond to well-positioned nucleosomes.”
They go on to speculate that global, genome-wide positioning is governed by exclusion signals,
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whereas local positioning is influenced by select periodicities. This conforms with our view that
genome scale positioning needs to be tackled as a discrimination / prediction problem. Yuan
and Liu [2] pursued this approach by complementing the 199 nucleosome-bound yeast sequences
with 296 nucleosome depleted linker sequences. They used stepwise logistic regression to perform
classification based on wavelet-derived features. Not only did they achieve appreciably greater
accuracy than that obtained using the NPC of Segal et al., but they demonstrate how the by
adoption of a discriminatory approach, with negative instances, can improve the NPC. It is our
view that a wide range of genomics problems can benefit from such discriminatory approaches, as
opposed to positive-sequence-only generative methods.

Methods

Spectral envelope

For real-valued data use of Fourier methods and spectral analysis is fundamental to assessing peri-
odicity. The spectral envelope construct was developed for frequency domain analysis of categorical
time series by the scaling thereof [9 [10]. It has obvious relevance to detecting periodicities in DNA
or protein [35] sequence.

The spectral density, or periodogram, of a sampled, mean-centered, real-valued time series, X;,t =
1,...,n at frequency w is

2 2

_|_

2

nt Z Xysin(—27mwt)|  (2)

t=1

n~! ZXt cos(—2mwt)

t=1

I(w) = |n~ 12 Z X, exp(—2miwt)

t=1

The spectral density, f(w), of a stationary time series is the limit (n — o0) of E[I,(w)]. We have

var(X;) = 2 fol/ ? f(w)dw = o2. These constructs generalize to a k-dimensional multivariate time-
series, Yy, with now the spectral density fy(w) being a k x k complex-valued Hermitian matrix.

Consider a categorical time series, X, t = 0,+1,£2, ... with finite state space C' = {¢1, ¢, ..., ¢k}
The ¢;’s designate (all) possible categories: X; = ¢; when the time series is in state ¢; at time t.
We recast the one-dimensional categorical time series as a multivariate k-dimensional time series,
Y, via unit vectors ej, ey, ..., e, such that Yy = e; when X; = ¢;. The scaling process uses a
scaling vector 3 = (04, ..., k) to convert the multivariate time series to a univariate, real valued
series, X;(3), by assigning category ¢; numeric value ;. Thus, X;(8) = 8'Y;. Then we have
fy(w; B) = B fi¢(w)B, where fi¢(w) denotes the real part of fy(w). The key question is then how
to select the scalings 3. Stoffer et al., [10] advocate choosing 8 to maximize the power (variance)
at each frequency w € (—1/2,1/2] relative to the total power o? = (). This corresponds to the
optimization criterion

) = {B'gf#} 3)

where V' is the covariance matrix of Y. The value A(w) is called the spectral envelope since
it envelopes the (standardized) spectrum for any scaling. Importantly, the spectral envelope is

12



readily computed via the discrete Fourier transform [I0]. Application to sequence data comes via
mapping the relevant categories (e.g., 4 letter nucleotide or 20 letter amino acid alphabets) to a
multivariate time series. In our applications here, following [1], we use the di-nucloetide alphabet.

Assessment of peak significance is a central concern. In Figure [2] we have used the analytic ap-
proximations advanced by Stoffer et al., [10]: the a-level critical value for the estimated spectral
envelope A(w) is here (2/(n— 1)) exp(za/vy), where n is the sequence length, z, is the 1 — « critical
value of the standard normal distribution, and v, is a function of weights depending on the smooth-
ing employed in estimating the underlying spectral density fy(w). However, these critical values
are accompanied by the somewhat ambiguous advice [I0]: “From our experience thresholding at
very small values of « relative to sample size works well.” Accordingly, in Figure [3] thresholds are
obtained by permutation.

Kolmogorov-Smirnov statistic reformulation

Let 7;(x);0 < r;(x) < 1 be the score (here ANOP) for case (here sequence) x in group i; i =
1 (depeleted), 2 (occupied). Let f; be the cumulative distribution function (cdf) for group i: f;(t) =
f(f ri(u)du. The associated empirical cdf (ecdf) is f;(t) = > gy H{ri(z;) < t}/n; where n; is the
number of sequences in group 7, and [ is the indicator function. The Kolmogorov-Smirnov (KS)
statistic is KS = sup, | f1(t) — f2(f)| and is estimated from the corresponding ecdfs. Without loss of
generality let fi(t*) > fo(t*) at t*, the value at which the KS statistic attains it’s maxima. If we
consider a classification rule g based on thresholding the r; values at t* then it is immediate that
sensitivity(¢) = f1(¢*) and specificity(¢) = 1 — fo(t*). Thus KS = sensitivity(g) + specificity(g) — 1.

WordSpy motif finding inputs

The following settings were used in applying discriminatory motif finding using WordSpy to the
Bernstein et al., data of Supplementary Figure 24. A maximum word (motif) length of 12 was
declared. Degeneracy and subtle motifs were allowed and no repeat filtering was imposed. The
maximum number of motifs examined for each word length was restricted to 100. Both strands
were searched. All other inputs were retained at default values.
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