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Abstract

The Analysis of Cluster-Randomized Test-Negative Designs:
Eliminating Dengue

by

Suzanne M. Dufault

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Nicholas P. Jewell, Chair

According to the World Health Organization, dengue is the most critical and most rapidly
spreading mosquito-borne viral disease in the world and is responsible for the infection of an
estimated 380 million people across the globe annually. There is no cure for dengue, making
prevention key to disrupting the rapid progression of this disease into the world’s population.

Recent scientific advances target the mosquito’s ability to carry and transmit viral dis-
eases. The method motivating this research injects a safe, naturally occurring bacterium
called Wolbachia into the mosquito population responsible for the spread of dengue and
other arboviruses including Zika, chikungunya, and yellow fever. When successfully intro-
duced into the mosquito population, Wolbachia prevents these viruses from replicating, which
reduces the potential of transmission to humans.

This dissertation addresses the statistical evaluation of the impact of studies of such
mosquito-based interventions. Collecting reliable evidence for mosquito-borne interventions
is often expensive and logistically prohibitive. The Cluster Randomized Test-Negative Design
discussed in this thesis addresses many of the barriers to such vital research. In this trial
setting and several variations, I propose and evaluate estimators of intervention impact.
These results can be used to better inform policies and protect vulnerable populations.
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Chapter 1

Introduction

This introduction aims to provide an overview of the global impact of mosquito-borne diseases
and the current state of evidence regarding preventative efforts for readers not familiar
with the field. Chapters 2 and 3 of this dissertation are comprised of papers that have
been published in peer-reviewed journals. Chapter 4 will be submitted for peer review and
publication in the near future. Each chapter has been written carefully and is consistent
within itself, but notation may differ from chapter to chapter.

1.1 The global impact of mosquito-borne infectious

diseases

Mosquitoes transmit diseases that are responsible for millions of human deaths each year,
making them one of the most dangerous members of Kingdom Animalia with respect to their
impact on human health.[40] Aedes aegypti mosquitoes, in particular, are the primary vectors
for dengue, Zika, chikungunya, yellow fever and other arboviruses. Though Zika has captured
global attention following the 2015 outbreak in Brazil, dengue remains one of the most
critical and rapidly spreading mosquito-borne diseases.[13] The estimated number of dengue
infections is around 390 million per year. Dengue is endemic in more than 100 countries and
is circulating in the Americas, Europe, Africa, and Asia with the majority of the case burden
occurring in Asia. It’s estimated that roughly 3 billion people are at risk of infection. The
true burden of dengue is still unknown given differences in detection and reporting practices
around the world, but current measures are likely to be underestimates.[13, 6]

Dengue is caused by four distinct RNA viruses, also referred to as serotypes. Exposure
and recovery from one serotype of dengue virus does not confer cross-protection or immunity
to the others, allowing for multiple sequential infections. Further, subsequent infection
with a second dengue serotype can increase the risk of severe dengue and dengue shock.[52]
Additional risk factors for severe dengue infection include high body-mass index, genotype,
female sex, and young age with severity of disease differing by dengue virus serotype as well.
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The pathogenesis of severe dengue is an active area of research and is complicated by the
lack of an adequate animal model.[52]

Upon infection with dengue virus, most people are asymptomatic. For the minority of
patients with symptoms, the infection progresses through three clinical phases. The first
“febrile phase” spans three to seven days and is characterized by high fever, vomiting, joint
and muscle pain, and occasionally the presence of a rash. Most recover after this phase
without additional complications. Those who do not enter a one- to two-day “critical phase”
in which patients may experience a buildup of fluid in the lungs and abdomen, persistent
vomiting, major skin or mucosal bleeding, and low pulse which can lead to shock and death.
Those who survive the critical phase enter the “recovery phase” which can consist of a
second rash and fatigue spanning several weeks.[52] There are no targeted treatments, such
as antivirals, for those infected with dengue, so hospitalization and the timely management
of complications is essential to the survival of those with severe dengue.[52, 6]

The World Health Organization has two distinct dengue classifications: dengue and se-
vere dengue. Those who enter and exit the febrile phase without additional complications
are classified as dengue cases. The minority of patients who enter the critical phase with
complications are classified as severe dengue cases.[52, 13] Severe dengue mortality rates can
be greater than 20% if adequate medical care is not available.[13]

In addition to the burden on human health, the disruption caused by outbreaks of
mosquito-borne diseases takes an alarming toll on global and national economies. For the
2000-2007 period in the Americas alone, the annual total cost of dengue was conservatively
estimated to be US$2.1 billion with a majority of this estimate the result of indirect costs
due to productivity losses. Brazil shouldered the majority of this burden, with an estimated
US$878 million in annual total costs.[51] In South East Asia, the region with the highest
dengue burden, the overall annual total cost was estimated to be US$905 million, with In-
donesia experiencing the majority of the economic burden (US$323 million).[50] Note that
the reason for the apparent “lower cost” in South East Asia compared to the Americas is pri-
marily due to differences in GDP which result in a higher cost per case for the Americas. In
total, billions of dollars are spent annually on direct and indirect costs due to dengue illness.
Shephard et al. anticipate that these costs will only increase if current trends continue.[51]

1.2 The current state of research for prevention of

mosquito-borne infectious diseases

As there are no effective targeted antivirals for the treatment of dengue, prevention is crucial.
Until recently prevention efforts primarily focused on reducing or eliminating the potential
of being bitten by a mosquito through direct and indirect interventions. Direct interventions
target the mosquito through space-spraying, fogging, the use of repellents or insecticides,
and other such methods. Indirect interventions target the environment, primarily through
community-based efforts to eliminate potential breeding sites, sanitation improvements, or
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changes to housing to prevent mosquito-entry.[7]
More targeted, and hopefully more effective, forms of prevention have been under devel-

opment over the last decade. Recent scientific advancements have made it possible to modify
the mosquito itself to either decrease its ability to transmit the disease or disrupt its ability
to reproduce, techniques referred to as population replacement and population suppression,
respectively. One such approach is through the use of genetic modification via gene drive
strategies which aim to introduce and propagate desirable genes into the mosquito popula-
tion. For example, the introduction of disease-refractory genes could make mosquitoes poor
hosts to human diseases, thereby rendering them unable to transmit such diseases.[35] An-
other approach is through the introduction of the intracellular bacterium Wolbachia, which
has been shown to render Aedes aegypti mosquitoes resistant to the replication and subse-
quent spreading to humans of arboviral diseases including dengue, Zika, chikungunya, yellow
fever, and Japanese encephalitis. While gene drives for dengue prevention have yet to be
studied “in the wild”, studies relating Wolbachia and dengue incidence are now underway,
with positive findings from preliminary studies[26] painting an encouraging picture.

Between the multitude of approaches and the high cost associated with ineffectively pre-
venting dengue illness from circulating, identifying the “best” direct and indirect interven-
tions is critical. A recent systematic review attempted to compile the existing, contemporary
evidence to answer, among other critical questions, “[w]hat are the best currently available
dengue vector control tools, as measured by their impact on dengue infections...?” In the 41
articles that met the requirements for inclusion in the review, the majority failed to examine
the impact of the intervention techniques on dengue incidence itself and instead examined
the impact on vector indices which have shown to be imperfect proxies for dengue incidence
in the human population. In addition, the prevalent use of weak experimental designs lack-
ing the robustness of randomized trials casts uncertainty on observed associations due to
internal and external threats to the validity of such observations. Because of the severe lack
of evidence-generating research linking vector control methods to clinical manifestations of
disease, the authors were unable to answer their primary question. The need for statistical
methods that tie intervention efforts to dengue incidence through thoughtful, feasible study
designs is essential for filling the existing gap in evidence generation and analysis — a need
this dissertation aims to directly address.

1.3 Dissertation overview

In the following chapters of this dissertation, I develop and compare methodologies for ana-
lyzing data to estimate intervention effects from study designs that generate valid evidence
and are feasible with respect to common barriers for implementation in mosquito-borne in-
fectious disease research. In particular, Chapter 2 describes the novel cluster-randomized
test-negative design (CR-TND), a variant of the gold standard approach for evaluating
community-level interventions that minimizes logistical hurdles to enrolling a sufficiently
large sample size for valid inference. This study design is the basis of the work presented in
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Chapters 2 and 3. Statistical analyses of randomized trial data typically have three primary
goals: 1) the accurate estimation of the size of the intervention effect, 2) an estimate of the
reliability (i.e. precision) of the estimated size of the intervention effect, and 3) a reliable
test to determine whether the size of the intervention is significantly different from what
would occur in the absence of an intervention. Meeting each of these goals is essential for
understanding the effectiveness of an intervention. Given the novelty of the design, these
statistical methods were not previously available. In Chapter 4, we consider the interrupted
time series (ITS) quasi-experiment. When a cluster randomized trial is infeasible, the ITS
design can be a reliable alternative. In this chapter, we propose a flexible parametric method
for simulating highly variable, short time series of dengue fever incidence from historic data.
Such simulations can provide insight to statistical, logistical, and practical decision making
during trial planning.
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Chapter 2

Cluster-Level Estimators of CR-TND
Data

This chapter has been published in the journal Biostatistics. I specifically focused on simu-
lations and analysis of simulated datasets.1

2.1 Introduction: The test-negative design

The test-negative design (TND) is a modification of a case-control study that allows for the
use of surveillance systems in assessing the impact of an intervention in reducing disease. The
design has been widely used to assess the effectiveness of seasonal influenza vaccines since
2005.[53] The original intent of the TND design was, in large part, to deal with confounding
associated with health-seeking behavior that can occur in case-control or cohort designs.
However, it can also be seen as providing a viable approach to disease ascertainment in cases
where longitudinal studies are likely to be ethically difficult or cost prohibitive.

In the TND, individuals seeking care for symptoms consistent with the disease of interest
(but not unique to this disease) are recruited and formally tested for the presence of the
specific disease. Those testing positive are then compared with those testing negative with
regard to a pre-specified exposure or intervention. As noted, the design is popular for evalu-
ating the effectiveness of seasonal influenza vaccination.[57] Here, patients seeking health care
for an acute respiratory illness are recruited into the study and tested for influenza—those
confirmed as incident cases of influenza are referred to as test-positives, whereas the others
are the test-negatives. In addition, the patient’s recent vaccination status is ascertained. In
general, assuming that influenza ascertainment was complete, one could estimate influenza
incidence proportions for both the vaccinated and unvaccinated population subgroups by
dividing the number of influenza cases by the sizes of the vaccinated, and unvaccinated,
susceptible and care-seeking populations, respectively, to yield estimates of incidence pro-

1I am grateful for permission from my collaborators to include this paper as a part of my dissertation:
Nicholas P. Jewell, Zoe Cutcher, Cameron P. Simmons, and Katherine L. Anders.
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portions. However, these population sizes can be extremely difficult to determine accurately.
The TND uses the relative frequency of the test-negatives in the two exposure groups as a
proxy for the ratio of these population sizes. This yields an estimated Relative Risk (RR)
based on the ratio of the odds of vaccination in patients testing positive for influenza to the
equivalent odds in patients testing negative—see [27], and below, for further details. No rare
disease assumption is required.

Because cases and controls are recruited from the same patient population, and restricted
to those seeking care at participating clinics, the design was assumed to eliminate bias caused
by health-care seeking behavior[27, 19]; however it has recently been demonstrated that this
bias is more likely reduced than entirely removed.[58] Several authors have explored the
statistical rationale and underlying assumptions of the TND, showing that the Odds Ratio
(OR)—i.e. the odds of vaccination in influenza cases versus that for test-negative controls—
is directly equivalent to the RR of influenza comparing vaccinated with unvaccinated indi-
viduals, providing underlying assumptions are met ([27, 19] etc.). In addition, the causal
structure underlying this approach has recently been studied in detail using directed acyclic
graphs and causal inference ideas sullivan2016theoretical. For the traditional TND exam-
ining influenza, vaccination is applied at the individual level, not always possible for some
interventions. This paper discusses TNDs for interventions randomly applied at a group
level.

2.2 Cluster-randomized trials and application to

test-negative designs

Randomized controlled trials are considered the gold standard for evaluating the efficacy
of health interventions, providing the basis of non-model dependent inference. When an
intervention is delivered to groups of individuals, e.g. in neighborhoods, or is expected
to have a community-wide impact, randomization of the intervention necessarily occurs at
the group, rather than individual, level. Such a trial is termed a cluster randomized trial
(CRT)—see [22].

Investigators implement a CRT by recruiting a cohort of participants, randomly assigning
the intervention to groups of individuals, and following the cohort over time to measure the
endpoint in groups assigned to each study arm. The Relative Risk comparing intervention
and non-intervention arms is used to quantify the intervention’s efficacy, equal to one minus
RR. The non-independence of individuals within each group in CRTs causes statistical
inefficiency, termed the ‘design effect’ and inferential methods must appropriately account
for the clustering induced by the design ([22], Part C).

While these statistical challenges have been effectively addressed, prospective CRTs fre-
quently require very large cohorts of individuals to generate a sufficient number of events
for hypothesis testing, particularly when the outcome is relatively rare (see, for example,
[39]). This has significant cost, time, ethical and logistical implications. Trials of pre-
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ventive interventions against infectious diseases with acute and transient presentations or
narrow diagnostic windows face further challenges due to difficulties in obtaining complete
and unbiased ascertainment of outcomes within a cohort. Where blinding to intervention
status is not possible due to the nature of the intervention or other reasons, this introduces
the potential for detection or performance bias[66] if care-seeking or testing behavior (and
therefore case ascertainment) is differential by study arm due to participant’s and/or health-
care providers’ perceptions of the intervention’s efficacy. Estimation of disease incidence in
treated and untreated populations through simple clinic-based surveillance of the disease of
interest, without employing the test-negative design, also requires knowledge of the size of
the source population from which cases arise. In most settings this cannot be estimated
with any accuracy, given that case surveillance is likely to occur in only a subset of the total
available healthcare providers and most (potentially care-seeking) populations will have the
choice of a number of providers, including in the private sector, both within and outside
their local residential area.

Here we propose a method to assess the endpoints in CRTs using the test-negative design
that offers the advantage of being more efficient, cost effective, and logistically simpler to
achieve than a large prospective cohort, and does not require knowledge of the sizes of
populations at risk. We refer to our proposal as a Cluster Randomized Test-Negative Design
(CR-TND)—see [1]. The CR-TND fundamentally alters the standard TND in two key ways:
(i) randomization of the exposure, and (ii) clustering of participants’ exposure status due to
randomized delivery of the intervention at a group-level.

The next section describes the motivating application, a preventive intervention against
dengue. Section 4 introduces estimation and inferential methods to assess an intervention’s
efficacy using data arising from the new design, based on summary measures at the cluster
level (as compared to individual level data). Section 5 provides exploratory simulation results
to assess the power of these approaches along with additional properties of the estimation
and inferential methods. Inference is examined in terms of the permutation distribution in-
duced by randomization; some comparisons are made with model-based methods—including
Generalized Estimating Equations (GEE) and mixed effects logistic regression—techniques
intended to account for within group correlation. Section 6 provides a brief discussion and
points towards further research topics.

2.3 Application

The World Mosquito Program is an international research collaboration that is delivering a
paradigm shift in the control of arboviral diseases transmitted by Aedes aegypti mosquitoes.
The method utilizes Wolbachia, obligate intracellular endosymbionts that are common in
insect species (see, for example, [23]) but were not present in Aedes aegypti mosquitoes un-
til they were stably transinfected in the laboratory. In insects, Wolbachia is maternally
transmitted via the egg and manipulates insect reproduction to favor its own population
dissemination via cytoplasmic incompatibility. The result is that Wolbachia rapidly enters
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into naive mosquito populations in a self-sustaining, durable manner. Strikingly, the pres-
ence of Wolbachia in Aedes aegypti mosquitoes renders them more resistant to disseminated
arbovirus infection, including dengue, Zika, CHIK and Yellow fever.[14, 30, 45] Thus the
critical and signature effect of Wolbachia as an intervention is to severely reduce the vecto-
rial capacity of mosquito populations to transmit arboviral infections between humans. For
field implementation, the approach seeds wild mosquito populations with Wolbachia through
controlled releases of small numbers of Wolbachia infected mosquitoes.

The motivation for the proposed CR-TND arises from a planned two-year trial to eval-
uate the efficacy of Wolbachia-infected mosquitoes in reducing dengue transmission in Yo-
gyakarta City, Indonesia. The administrative area of the city, with a population in 2015
of 408,000, has a generally higher dengue incidence than surrounding districts. A parallel
two-arm non-blinded CR-TND will be conducted. The study site was subdivided into 24
contiguous clusters, each approximately one km2 in size, to allow for effective deployment
while minimizing cluster interference. Clusters were randomly allocated in a 1 to 1 ratio to
receive either Wolbachia-infected mosquito deployments or no intervention. Eligible febrile
participants will be recruited from across the study area through primary healthcare clin-
ics, and subsequently classified as virologically confirmed dengue cases (test-positives) or
arbovirus-negative controls on the basis of laboratory testing (i.e. those suffering from other
febrile illnesses or OFIs). The Wolbachia exposure distribution in test-positive cases (i.e.
whether or not the individual lives in an intervention cluster) will be compared with that
for test-negative controls, in order to estimate the efficacy of the intervention.

The CR-TND approach has been developed for the Yogyakarta trial in preference to a
traditional cohort design, in which absolute and relative dengue incidence in treated and
untreated populations is measured directly, because of challenges in reliably ascertaining
dengue illness episodes prospectively in a large population and in quantifying true expo-
sure to Wolbachia prior to any presenting infection. Passive ascertainment of dengue cases
through existing routine disease surveillance systems would provide incomplete, and po-
tentially biased, estimates of the population dengue incidence. The surveillance system in
Indonesia, and many endemic settings, captures only hospital admissions, and completeness
of reporting may be spatially and temporally variable. Specificity of the surveillance data is
also imperfect and variable, as case notification is commonly based on a clinical diagnosis
of dengue, with only a subset of cases confirmed by laboratory diagnostics. The alterna-
tive approach of actively ascertaining dengue cases within a cohort of individuals recruited
from treated and untreated areas is challenging both operationally and ethically, due to the
large size of the cohorts required, the intensity of contact required to detect and diagnose
acute dengue infections, and the potential for biases arising from under-ascertainment of
illness events or loss to follow-up. Further, it would be hard to measure individual mobil-
ity and Wolbachia levels at the time of any presenting infection without almost continuous
monitoring.
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2.4 Cluster-level analyses of CR-TND data

Test-positive fraction of all tests by cluster

Suppose there are 2m clusters with m randomly assigned to the intervention and the re-
mainder untreated. All test-positive (cases) and test-negative (controls) individuals are
selected, numbering nD, and nD̄ = rnD, respectively. The Relative Risk, associated with
the intervention, is denoted by λ. The simplest data are cluster counts of confirmed test-
positives and test-negatives. As our primary approach is to develop inference based on
a permutation approach, we take these numbers as fixed, at this point allowing random-
ness only to enter through the allocation of intervention status to each cluster. Further,
pDj and pD̄j represent the fraction of cases and controls, respectively, in the jth clus-
ter. Let aj denote the ratio of the number of test-positives (nDj) to the total number
of tests in the jth cluster (nDj + nD̄j). Note that aj =

nDpDj

nDpDj+nD̄pD̄j
≡ pDj

pDj+rpD̄j
. A

proposed test statistic to assess the effect of the intervention is then T ≡ αI − αC ≡
average(aj|cluster j is intervention)− average(aj|cluster j is untreated).

Under the null hypothesis of no intervention effect, for a randomly selected cluster (from
either arm) E0(pDj) = 1/2m since the pDjs sum to 1; here the expectation is over the
permutation distribution of all possible random allocations and the subscript 0 reinforces that
this expectation is under the null. Similarly, E0(pD̄j) = 1/2m. Thus, E0(T ) is approximately
zero using the delta method. In fact, by the symmetry of its definition, E0(T ) ≡ 0.

We now approximate E(T ) when the intervention affects case counts, changing the relative
distribution of cluster test-positives to test-negatives, and how this depends on λ. For
a large number of test-positives in the intervention arm, this total is reduced by λ (for
λ < 1). Thus, the fraction of the total number of test-positives that occur in the intervention
clusters is approximately λ/(1 +λ). Hence, for a random cluster, j, in the intervention arm,
E(pDj) ≈ λ

m(1+λ)
. Similarly, for a random cluster, j, in the untreated arm, E(pDj) ≈ 1

m(1+λ)
.

The pD̄j are unaffected by the intervention so that by the delta method,

αI ≈
2λ

(2 + r)λ+ r
, αC ≈

2

rλ+ (2 + r)
. (2.1)

Thus,

E(T ) ≈ 2λ

(2 + r)λ+ r
− 2

rλ+ (2 + r)
=

2r(λ2 − 1)

[(2 + r)λ+ r][rλ+ (2 + r)]
. (2.2)

The RHS of (2.2) is zero if and only λ = 1, as noted above. When λ < 1, E(T ) < 0, as
expected. Further, (2.2) is quadratic in λ for any given E(T ). Thus, we can substitute an
estimate of E(T ), obtained from differencing the average observed ratios aj in each arm,
into (2.2) and solve for λ, yielding an approximate estimate of RR. This approach assumes
a cluster specific interpretation of the Relative Risk as compared to a marginal version–we
return to this point later.
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We illustrate with a simple example, with r = 1 and λ = 0.5. Here (2.2) yields αI ≈ 2/5
and αC ≈ 4/7, so that E(T ) ≈ −6/35. In reverse, substituting −6/35 into the LHS of (2.1)
yields 22λ2 + 15λ− 13 = 0 with only one positive solution, namely λ = 0.5.

Turning to inferential methods based on T , the null hypothesis can be tested via the
permutation distribution of T , calculated by examining the estimated T s for all possible
randomized intervention allocations, holding the observed data fixed. This permutation
distribution can then be used to assess the significance of the observed value of T .

For simplicity in carrying out simulations, and for additional insight, we can analytically
evaluate the null permutation variance of T . As noted, we consider the observed values of
aj for j = 1, . . . , 2m to be fixed. Under the null hypothesis the ajs for the m intervention
clusters are simply a random sample of m of these values, also true for the untreated ajs.
The variance of the 2m fixed values of aj across all clusters depends on: (i) the variability
of both the pDjs and pD̄js, i.e. the distribution of cluster test-positives and test-negatives,
respectively, (ii) the covariance of the pDjs and the pD̄js, i.e. how test-positives and test-
negatives covary across the clusters, and (iii) the value of r. However, we do not need to
analytically derive this variance as we will empirically estimate it in due course. We refer to
the variance of the 2m ajs by σ2 =

∑2m
j=1(aj − ā)2/(2m− 1) where ā =

∑2m
j=1 aj/2m.

In the m intervention clusters, the permutation variance of αI is (σ2/m)×
(

2m−m
2m

)
where

the second term is the finite population correction factor. The variance of T must accommo-
date that αI and αC are correlated due to the finite number of clusters, and the fact that we
are conditioning on the observed data and computing expectations and variances according to
the permutation distribution. In fact, under the null hypothesis, mαI +mαC = 2mµ (where
µ = 1

2m

∑2m
j=1 aj), so that αC = 2µ − αI . Hence, under the null hypothesis, T = 2(αI − µ).

Finally, therefore,
variance0(T ) = 2× (σ2/m). (2.3)

Note that, when m is sufficiently large, the RHS of (2.3) is just what you would obtain by
naively treating αI and αC as independent averages with a common variance σ2/m.

The variance, σ2, can be estimated by the variance of the ajs in either the intervention
or untreated clusters. Since these arms both contain m clusters, an average of these two
estimates suffices–the pooled variance estimator of the two-sample t-test. With this estimate,
σ̂2 used in (2.3), the standardized test statistic is thus T/

√
2(σ̂2/m), equivalent to the two-

sample t-test statistic comparing the observed ajs across the two arms. Of course, if the
null hypothesis is true we would know the variability of the ajs exactly since all would be
observed, but this variance would overestimate the variance of T away from the null. We
can then compare the standardized test statistic to a t distribution with 2(m− 1) degrees of
freedom to assess significance, and this provides a close approximation to the permutation
distribution result so long as m is large.

For any r, the difference in the average cluster means of the ajs across intervention arms
estimates E(T ) and thus directly relates to an estimate of λ, through (2.2). As λ moves
away from the null value, the absolute size of E(T ) monotonically increases. Hence, in
addition to point estimation, a confidence interval for E(T ) directly yields a corresponding
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confidence interval for λ. Note that, in the scenario with an intervention effect, it is not
straightforward to approximate the permutation variance of T . Nevertheless, we recommend
treating the average aj’s as if they come from independent samples since this is correct at
the null. Away from the null, the variances of αI and αC are not equal so that it might
be better to base confidence intervals on the Welch version of the t-test, using separate
estimates of the variances in the two arms and modifyng the number of degrees of freedom
appropriately using the Welch-Satterthwaite formula.[63, 49, 62] We examine the empirical
coverage properties of this approach in Section 5. Note that the differentiation between
the intervention arms—given by E(T )—gets smaller as r increases from 1. Perversely, this
approach is then optimal when r = 1 and loses power as r increases. However, this effect is
small as examined quantitatively in simulations.

Odds ratios from collated cluster data

Consider now an alternative method to both assess the intervention’s efficacy and provide an
estimate of λ. Following [27], Table 2.1 is the 2 x 3 table that classifies care-seeking individ-
uals by their intervention status and outcomes, with A+ the total number of individuals who
both experience the intervention, are detected by the surveillance system, and test positive
for the outcome of interest with similar definitions for other entries. There is an analogous
classification of (unobserved) individuals who do, or would, not seek care when experiencing
such infections; the generalizability of any intervention efficacy estimate from observed data
in Table 1 to the entire population depends on an untestable assumption that efficacy is not
modified by care-seeking behavior—see [27] and [58].

Seek Care

Infected
with

dengue

Infected
with
OFI

Not
Infected

Total

Intervention A+ B+ C+ NI

Control G+ H+ I+ NC

Table 2.1: Stratification of population based on intervention status, infection, and health
care-seeking behavior. OFI refers to other febrile illnesses with similar presenting conditions
to the infection of interest that can be discriminated on the basis of a specific laboratory
test. Adapted from Figure 1 of Jackson & Nelson (2013).

NI is the total number of exposed susceptible individuals in the population who would
seek care if they experience symptoms; an analogous definition describes NC for controls. In
principle, the incidence of the disease outcome in the exposed care-seeking population can
then be estimated by A+/NI , and RR by A+

NI
/G+

NC
. Unfortunately, it is often difficult to obtain

accurate details for the susceptible care-seeking population sizes NI and NC . The TND
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therefore exploits the incidence of OFIs in the population as a basis for assessing the relative
population sizes NI and NC , under the assumption that incidence of OFIs is independent of
the intervention. The latter assumption means that B+

NI
≈ H+

NC
so that H+

B+
≈ NC/NI . Thus

(A+ × H+)/(G+ × B+) ≈ RR. In other words, the empirical Odds Ratio from the data of
Table 2.1 provides a direct estimate of RR. Note that this is a marginal Odds Ratio with
no reference to within cluster characteristics.

In the CR-TND, the two rows of Table 2.1 correspond to data from different clusters
since every individual in a given cluster is either exposed to the intervention or not. The
observed log Odds Ratio from Table 2.1 is then log (A+H+/B+G+). We first assess the
properties of this random variable (induced by randomization, keeping the data fixed) under
the null hypothesis, i.e. under the permutation distribution. Under random sampling,
E0(A+) = E0(G+) = nD/2 where nD = A+ + G+. Analogously, E(B+) = E(H+) = nD̄/2.
Then, by the delta method, E0 (log (A+H+/B+G+)) ≈ 0; of course, this expectation is
exactly 0 because of the symmetry between the counts caused by randomization. Thus,
this log(Odds Ratio) is centered at the correct value assuming the null. For testing we can
again revert to the full permutation distribution. Again, we can analytically approximate
the variance of the cumulative log(Odds Ratio) estimate at the null hypothesis for use in
simulations and to provide approximate permutation inference.

As before, under the null, the permutation variance of A+ is simply mVD×
(

2m−m
2m

)
where

VD is the variance of the test-positive counts A1, . . . , Am, G1, . . . , Gm across both intervention
and untreated clusters (again using (2m−1) in the denominator of the definition of VD). Here
we use Aj, Gj etc to refer to the entries of Table 2.1 specific to the jth cluster. Conditional
on the observed data, A+ and G+ are not independent under the randomization distribution
since A+ + G+ = nD. Thus the null variance of log(A+/G+) ≈ (16/nD

2)var(A+) using the
delta method and the fact that E0(A+) = nD/2. Finally, putting these two observations
together yields

var(log(A+/G+)) ≈ (16/nD
2)(m/2)VD. (2.4)

Similarly,
var(log(B+/H+)) ≈ (16/nD̄

2)(m/2)VD̄, (2.5)

where VD̄ is the variance of all 2m cluster test-negative counts.
For approximate estimation of the variance of the log(Odds Ratio), note that A+ and B+

may be correlated because of characteristics of the clusters that may induce test-positives
and test-negatives to tend to be high together (e.g. the population size and density within a
given cluster) or possibly negatively associated. We can approximate the covariance of the
two terms log(A+/G+) and log(B+/H+) by exploiting the delta method, so that

cov(log(A+/G+), log(B+/H+)) ≈ nDnD̄
A+(nD − A+)B+(nD̄ −B+)

cov(A+, B+). (2.6)
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Putting (2.4), (2.5) and (2.6) together then yields

var(log(Odds Ratio)) ≈ (16/nD
2)(m/2)VD + (16/nD̄

2)(m/2)VD̄

−2× nDnD̄
A+(nD − A+)B+(nD̄ −B+)

cov(A+, B+). (2.7)

It remains to estimate VD, VD̄, and cov(A+, B+). As before, under the null, VD could be es-
timated by using a variance estimator of the test-positive counts A1, . . . , Am, G1, . . . , Gm from
both intervention and untreated clusters. However, this yields a poor estimate with an inter-
vention effect. We thus use a pooled estimate, the average of the variances of the A1, . . . , Am
and G1, . . . , Gm, separately estimated (using m−1 in the denominator for the estimated vari-
ances). VD̄ can be estimated analogously. Finally, cov(A+, B+) = m× cov(Aj, Bj)×

(
2m−m

2m

)
using finite population sampling methods—see [59] for the less familiar use for covariances.
The term cov(Aj, Bj) can be estimated from the covariance of the observed A1, . . . , Am
and B1, . . . , Bm in the intervention clusters, again using m − 1 in the denominator of the
covariance estimate.

A simple example illustrates the effectiveness of a Gaussian approximation to the permu-
tation distribution (at the null) based on the proposed sample estimate of (2.7). Table 2.6 in
Section 2.7 shows an assumed distribution of dengue and OFI cases for 10 clusters (mimick-
ing more complete data used in later simulations). From these distributions, a random set
of 100 cases and 100 controls were selected once. There are 252 =

(
10
5

)
possible intervention

cluster intervention allocations. The exact standard deviation of the permutation distribu-
tion of log(OR), with no intervention effect, is 0.1566. Over the 252 possible intervention
allocations the average estimated standard deviation of log(OR) based on (2.7) is 0.1529,
a close approximation. For comparison, for a simple random intercept logistic regression,
the average model-based standard deviation estimate is 0.2843. The average estimated ro-
bust standard deviation based on a standard GEE (assuming an exchangeable correlation
structure - see below) is unreliable at this small of a sample size. However, when 16 of the
252 permutation distributions with unreliably large estimates are removed, the average esti-
mated standard deviation is 0.1407. Further discussion of these two approaches is provided
below. For log(OR), using the 252 possible intervention allocations yields lower and upper
2.5% percentile thresholds of ±0.2870 for the exact permutation distribution; the lower and
upper thresholds, induced by ±1.96 × the average standard deviation estimate based on
(2.7), are ±0.2997. The performance of GEE improved as sample size increased, resulting
in a stable underestimate of the permutation variance; the performance of the mixed effects
estimator was more variable and not always as poor as this specific case and also improves as
the sample sizes of cases and controls increase. Further simulation evidence of type 1 error
rates and power associated with using this approximate Odds Ratio inference approach is
given in the next section.

For confidence interval calculations (away from the null) we need to evaluate the ran-
domization distribution of the log(Odds Ratio) estimate assuming an intervention effect.
Following [27], note that the intervention only affects the counts A1, . . . , Am by assumption.
These are each replaced in turn by A∗1, . . . , A

∗
m which reflect altered test-positive counts in
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the intervention clusters. For large populations, A∗j ≈ λAj for the intervention clusters.
Note that this specifically uses the assumption that the intervention effect is the same for
all clusters. An alternative approach might model the intervention effect that allows varia-
tion with cluster characteristics, or, for example, with the size of Aj itself. We ignore this
“second order” phenomenon and leave this for future analysis. The common reduction of
the A1, . . . , Am has two immediate implications: first, under the randomization distribution,
E (log (A+H+/B+G+)) ≈ log(λ); second, there is no change to the variance formula (2.7)
since all the Odds Ratios for different permutations are simply shifted by approximately
log(λ). Despite the remaining usefulness of (2.7), we do now have to modify the estimates
of nD, VD, and cov(A+, B+) due to the replacement of each Aj with A∗j . The necessary

adjustment is achieved by simply increasing the observed A∗js by the common factor 1/λ̂ to
obtain an estimate of Aj (in the j intervention clusters), en route to an estimate of nD, VD,
and cov(A+, B+) as before.

The above approach ignores any random variation of A∗j around λ × Aj. Two potential
sampling models might be employed here to account for this additional variation when the
counts A1, . . . , Am are smaller due to an intervention effect. The first is to assume that for the
intervention clusters, and given Aj, A

∗
j is Binomial with probability λ×Aj. The alternative

is to assume that Aj is Poisson with rate parameter λ × Aj. Essentially we are assuming
here that given all the test-positive and test-negative counts in all the clusters, the Ajs in
the intervention clusters are ‘filtered’ by an additional layer of randomness to generate the
observed A∗js. The Binomial approach essentially assumes that RR < 1 but this can achieved
without loss of generality by switching the intervention label. By first conditioning on all
counts (including the unobserved A1, . . . , Am in the intervention clusters), we can see that
the variance in (2.7) is subsequently increased approximately by either (1−λ)/(λA+) for the
Binomial case, or 1/(λA+) for the Poisson. (The latter is more conservative and therefore
recommended.)

Odds ratio estimates via GEE and random effects logistic
regression models

The CR-TND design yields clustered binary outcome data where interest may focus on
estimation of the Odds Ratio. It is natural, therefore, to consider applying Generalized
Estimating Equations (GEE), or random intercept logistic regression methods. For GEE we
focus on use of a working exchangeable correlation structure within groups. Both of these
methods are well known and easily implementable using standard software, and account for
clustering through use of a robust variance method (GEE) or via an appropriate assumed
random effects distribution. However, both methods are also known to suffer in performance
in situations with small number of clusters, each containing a large number of observations.
Also, at the outset, it is important to note that these two approaches are designed to estimate
different parameters: GEE focuses on the marginal, or population averaged, Odds Ratio
whereas the random effects model targets the cluster-specific Odds Ratio (see, [22], Chapter
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9.3). As defined in Section 2.4, the Odds Ratio used to estimate intervention efficacy is a
marginal Odds Ratio.

In the simple example above with 10 clusters, when the sample size is small GEE is
unreliable in estimating the variability of the log OR; the random effects model also over-
estimates the relevant standard deviation although significantly less so. As the sample size
increases, both methods tend to underestimate the standard deviation. In general, with
small numbers of clusters, the GEE technique suffers from inflated Type 1 error rates [4].
Pan and Wall [41] describe approaches to correcting for this though use of a t distribution as
reference as opposed to the standard Normal. Morel and others [38] suggest an alternative
modification for making inferential statements. As pointed out by [22], however, this tactic
requires addition calculations to determine the relevant degrees of freedom.

Recent research has examined the impact of small numbers of clusters on point and inter-
val estimation of a fixed effect that covers both GEE and random effects logistic regression.
See [36] for an overview. While comparisons differ depending on the context, the general
consensus is that GEE performs poorly with small numbers of clusters whereas random
effects models provide reasonable inference. We consider both methods in the simulations.

2.5 Simulations

We used simulations that exploited historical information on the incidence of dengue and
OFIs in Yogyakarta City. As discussed above, the city was divided into 24 non-overlapping
contiguous clusters. The design randomly allocates 12 of these clusters to the intervention,
with the remainder left untreated. Dengue incident cases, along with relevant comparative
OFIs will be collected over a two-year period. Table 2.7 contains the frequency of recorded
(hospitalized) dengue cases in the 24 clusters for each of nine distinct two-year periods
covering 2003-2014. During this period, there was no available data for 2004 and 2009, so
that the first two-year interval was for 2003 and 2005; similarly the 2008-10 interval included
data for 2008 and 2010. Otherwise each two-year period covered consecutive years. Data
for the distribution for OFIs (in Table 2.8) is only available for one two-year period from
2014-15.

We carried out simulations assuming that the dengue distribution was exactly as identified
for a given time period, but with a consistent OFI distribution across all time periods (the
2014-15 distribution). For each simulation, 1000 dengue cases were assigned to the 24 clusters
according to the dengue distribution, and r× 1000 OFIs were assigned according to the OFI
distribution. These allocations provided the base data from which we subsequently applied
intervention assignment labels to 12 of the 24 clusters at random (according to a permutation
distribution) for each distinct simulation. The cluster intervention assignment was permuted
10,000 times at random.

At the null, no further data modifications were required in computing various estimates
and test statistics. Away from the null, we applied various values of λ to deterministically
reduce the dengue cases in the 12 intervention clusters before selecting cases (while maintain-
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ing the total number of cases at 1000). While this reduction could be applied stochastically,
this was not considered necessary given that the permutation approach conditions on the
true fixed number of cases in each cluster and bases inference on simply permuting the inter-
vention assignment. Note that this applies a cluster-specific reduction in cases corresponding
to the chosen λ.

We first examine the power of several approaches to testing for an intervention effect: (i)
comparison of the average test-positive fraction across intervention arms as outlined in Sec-
tion 2.4, using the t-test statistic (assuming variance homogeneity across the two arms), (ii)
using a test statistic based on estimated Odds Ratio from aggregated cluster data (by arm)
as described in Section 2.4, using the variance estimate (2.7) (on the log scale), (iii) GEE
(with a working exchangeable correlation structure) Odds Ratio from aggregated Odds Ratio
data that employs a robust variance calculation, and (iv) a mixed effects logistic regression
model with random intercept terms by cluster, the latter two approaches mentioned in Sec-
tion 2.4. For each method, the same 10,000 random permutations of intervention assignment
were used to generate results. Subsequently simulation results were averaged across the nine
distinct two-year time periods.

Given the relatively small number of clusters in the Yogyakarta trial, constrained ran-
domization was used to ensure balance between study arms for some key cluster covariates
including historical dengue incidence, OFI incidence, demographics, population and area.
Constrained randomization restricts the number of permuted intervention assignments that
are allowed in the random selection. After filtering 100,000 random allocations by these bal-
ancing criteria, 247 balanced allocations were retained, i.e. 494 potential allocations of the
intervention to either arm. Computational considerations make it difficult to examine the ex-
act permutation distribution of the average test-positive fraction difference or the aggregate
Odds Ratio test statistic over all simulations and so we focus here on the approximations
derived above.

Table 2.2 shows the power of the various methods for testing the null hypothesis of no
intervention effect for values of λ ranging from 1.0 down to 0.3 with r = 4 (with results
averaged across the nine historical dengue distributions discussed above). The average type
1 error control is extremely close to 5% for the test-positive fraction approach, and very
slightly anti-conservative for the Odds Ratio method. Decomposing the results for the nine
specific dengue cluster distributions used (not shown here) exhibits very little variation where
the range of type 1 errors is from 4.6% to 5.2% for the test-positive fraction methods, and
from 6.7% to 8.2% for the Odds Ratio test. The extremes do not necessarily occur for the
same dengue distribution across clusters for the two techniques. GEE and the random effects
model perform similarly to the direct Odds Ratio technique. This suggests that while 10
clusters were insufficient to reliably use such models, 24 may be enough.

With regards to power, both the test-positive fraction and direct Odds Ratio methods
exhibit excellent power, on average, for values of the true Relative Risk equal or lower than
0.5, as exhibited in Table 2.2. The Odds Ratio method exhibits slightly improved power, as
compared to the test-positive method, somewhat more than can be explained by its slight
anti-conservativeness at the null. The random effects model is, in turn, very slightly more
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Relative Risk (λ) Test-Positive Fraction Odds Ratio GEE Random Effects

1 0.0497 0.0749 0.0779 0.0743
0.6 0.4916 0.5795 0.5936 0.6143
0.5 0.7498 0.8238 0.8266 0.8445
0.4 0.9298 0.9620 0.9603 0.9670
0.3 0.9951 0.9985 0.9983 0.9988

Table 2.2: The proportion of simulations that returned significant results for each interven-
tion effect of interest (λ). The GEE assumed an exchangeable correlation matrix. Each
approach was applied to the results of the 10,000 random intervention allocations with 1,000
cases and 4,000 controls (r = 4).

powerful than the direct Odds Ratio technique. There is considerably more variation in the
power of both methods over the nine varying dengue distribution scenarios. For example,
with the Relative Risk, λ, at 0.5, the power of the test-positive fraction approach ranges
from 52% to 94% (with average of 75%); at the same λ, the power ranges from 61% to
98% for the Odds Ratio strategy. Again, the extremes occur at differing assumed dengue
distributions for the two methods. Table 2.9 provides similar results for r = 1. Given the
way the simulations were performed, it is immediately apparent why the results are identical
for the direct Odds Ratio approach. Results for the other three techniques are very similar
with an incremental increase in power for the test-positive fraction method as previously
noted (the results for the GEE method only appear the same–differences occur beyond the
fourth decimal place).

Tables 2.10 and 2.11 present analogous results for the situation where assignment of the
intervention labels is constrained as described above. Now, on average, the test-positive
fraction and Odds Ratio methods are both quite conservative in this situation (as is the
random effects model), although the Odds Ratio test remains considerably less so. For this
case, at least, it appears that the test thresholds should be relaxed (thereby gaining additional
power) to produce a 5% type I error; this is, of course, most easily achieved by using the
exact permutation distribution. The constrained randomization power is only modestly
greater than for unconstrained randomization although this would likely be improved by
using the exact permutation distribution in each case.

We also examined point and interval estimation of the Relative Risk based on the test-
positive fraction (using both the homogeneous variance assumption and the Welch adjusted
method), Odds Ratio, and random effects logistic regression techniques. We examined the
identical 10,000 random permutations used for our power calculations above for both r = 1
and r = 4 . Table 2.3 shows the bias of point estimates based on the test-positive frac-
tion quadratic estimation procedure, with a comparison of the average estimated standard
deviation of the differences of the test-positive fractions (i.e., T ), based on the estimator
given in (2.3) with pooled variance, to the true standard deviation of T across the 10,000
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Ratio = 1 Ratio = 4

Relative Risk (λ) Bias

Average
Estimated
Standard

Deviation of
T

True
Standard

Deviation of
T

Bias

Average
Estimated
Standard

Deviation of
T

True
Standard

Deviation of
T

1 0.0264 0.0559 0.0564 0.0340 0.0397 0.0401
0.6 0.0386 0.0552 0.0557 0.0180 0.0392 0.0389
0.5 0.0390 0.0546 0.0551 0.0140 0.0389 0.0379
0.4 0.0380 0.0536 0.0540 0.0099 0.0385 0.0365
0.3 0.0351 0.0520 0.0521 0.0053 0.0379 0.0344

Table 2.3: The bias for the test-positive fraction quadratic estimates of the Relative Risk
and the standard deviation of the difference in arm-specific averages (T ) from 10,000 uncon-
strained intervention allocations.

simulations. We show the bias on the scale of λ and the standard deviation comparison on
the (symmetric) scale for T on which confidence intervals are first calculated. In practice,
these confidence intervals are subsequently transformed back to λ. The table shows very
little bias in the estimation strategy (with very slight overestimation, i.e. closer to the null
here) and that (2.3) provides a very good approximation to the variance of T , even away
from the null where the common variance assumption is not exactly satisfied. This suggest
that there will be little value in turning to the more complex Welch version of the t-test.
This is examined further below when we consider confidence interval coverage.

A similar analysis was implemented for the direct Odds Ratio estimator where bias is
assessed on the Odds Ratio scale but standard deviations are compared on the log scale
(where confidence intervals are calculated). Note that here, the term ‘bias’ is a misnomer as
the Odds Ratio estimator targets a marginal effect whereas, in the simulated data, λ denotes
a cluster-specific effect. As noted above, the Odds Ratio estimate for a specific sample has
zero bias as a single random draw from the permutation distribution of the Odds Ratio
estimators. Thus, here the bias term refers to the difference between the population-averaged,
or marginal Odds Ratio and the true cluster-specific Odds Ratio. This difference moves the
Odds Ratio estimate slightly towards the null as would be expected. Specifically, the bias is
0.0287, 0.0172, 0.0143, 0.0115, and 0.0086 for λ = 1, 0.6, 0.5, 0.4, and 0.3, respectively. The
average estimated standard deviation of log(λ̂) is 0.2348 whereas the true standard deviation
is 0.2435, these values not depending on λ; there is no variation of the true standard deviation
of log(λ̂) as λ changes since the simulations at differing λ do not allow for stochastic variation
around the reduced A+ counts as previously noted. Thus, for any given permutation labeling,
the estimator log(λ̂) is simply shifted by the fixed amount log(λ). When λ 6= 1, the simulation
average of the estimated standard deviation of log(λ̂) over permuted intervention assignments
also does not depend on the true value of λ when the variant of (2.7) is used in estimation
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after changing the observed A∗j counts. This is because the A∗js are deterministically obtained
by multiplying the (fixed but unobserved) Ajs by λ. For variance estimation, Section 4.2

then suggests inflating A∗j by λ̂ to estimate the original Aj. But, as noted, λ̂ = λA+H+
B+G+

, so

that λ/λ̂ does not depend on the assumed λ. By the same token, the estimated VD, VD̄, and
cov(A+, B+) in (2.7) using the modified A∗js also do not depend on λ. Note that, at the null,
no modification of the observed A∗js is necessary if one assumes λ ≡ 1: in this case, without

modification, the average estimated standard deviation of log(λ̂) is 0.2363, very similar to
that recorded when adjustments are made even at the null. These simulations indicate that
(2.7) provides a good approximation to the true permutation variation of the estimator.

Table 2.4 provides analogous average results based on a simple random effects logistic
regression model. The bias is acceptably small (and here the random effects model indeed
targets the appropriate cluster-specific effect), and the model-based standard deviation esti-
mator (on the log scale) adequately estimates the true standard deviation with this number
of clusters.

Ratio = 1 Ratio = 4

Relative Risk (λ) Bias

Average
Estimated
Standard

Deviation of
log(λ̂)

True
Standard

Deviation of
log(λ̂)

Bias

Average
Estimated
Standard

Deviation of
log(λ̂)

True
Standard

Deviation of
log(λ̂)

1 0.0284 0.2239 0.2366 0.0293 0.2262 0.2390
0.6 0.0169 0.2240 0.2364 0.0171 0.2263 0.2388
0.5 0.0141 0.2240 0.2365 0.0142 0.2263 0.2390
0.4 0.0113 0.2242 0.2364 0.0113 0.2264 0.2388
0.3 0.0083 0.2248 0.2438 0.0081 0.2270 0.2367

Table 2.4: The bias and standard deviation for the random effects Odds Ratio estimates of
the relative risk from 10,000 unconstrained intervention allocations.

Finally, Table 2.5 provides coverage properties of approximate confidence interval meth-
ods associated with the three methods. The Odds Ratio methods works on the log scale
and uses (2.7) to provide the relevant estimated standard deviation, before subsequently
transforming back by exponentiating; the test-positive method is based on the scale of T ,
using (2.3) for standard deviation estimates and then transforms back to the scale of the
Relative Risk (noting that this assumes two independent samples of ajs in the two arms as
discussed in Section 2.4); and the simple random effects model also works on the log scale
using model-based variance estimation before transforming back to the original scale. The
coverage estimates are again averaged across the simulated permuted intervention assignment
labels for a specific dengue and OFI distribution and then averaged across the nine possible
scenarios. All of the methods provide reasonable coverage for each case considered with little
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to choose between them. The Welch-Satterthwaite modification to the test-positive fraction
method makes very little difference to coverage, very slightly improving the performance
when r = 1 (for example, in the best case considered, increasing coverage to 0.9434 when
λ = 0.3) but working in the opposite direction when r = 4 (for example, in the worst case
considered, increasing coverage to 0.9651 when λ = 0.4).

Any value of r r = 1 r = 4

Relative Risk (λ)
Direct Odds

Ratio
Method

Random
Effects
Method

Test-Positive
Method

Random
Effects
Method

Test-Positive
Method

1 0.9251 0.9258 0.9494 0.9257 0.9507
0.6 0.9628 0.9635 0.9478 0.9635 0.9544
0.5 0.9629 0.9636 0.9463 0.9636 0.9575
0.4 0.9629 0.9638 0.9445 0.9638 0.9626
0.3 0.9629 0.9642 0.9426 0.9640 0.9713

Table 2.5: The coverage averaged across the 10,000 intervention allocations and 9 time
periods for the proposed Odds Ratio method, the random effects Odds Ratio estimates,
and the test-positive method using pooled variance estimation. The proposed Odds Ratio
Method is invariant to r.

In the simulation scenarios examined, the random effects logistic regression model is rea-
sonable. However, it is premature to speculate that this will remain true in other simulation
scenarios or with a different number of clusters. In Section 2.4 we showed that, with 10 clus-
ters, the performance of a random effects logistic regression model is unsatisfactory. Further
research will be needed to demonstrate conditions where the latter approach is reliable.

2.6 Discussion

The CR-TND provides an excellent approach to evaluating the efficacy of an intervention
randomly applied to clusters that allows for clinic-based surveillance of disease outcomes.
Our simulations are necessarily limited although motivated by the specific application. Even
here, the simulations only consider one OFI distribution where, in reality, the observed
distribution may differ. Further analysis of the various methods in a wider variety of other
settings would be valuable. In particular, evaluation of the methods for data generated by
designs other than parallel arm interventions is of immediate interest. Consideration of the
CR-TND with a stepped wedge design [25] may provide an appealing alternative design in
many contexts.

The methods considered here use cluster summaries of the observed frequencies of dengue
and OFI outcomes. The methods also assume no interference across cluster boundaries in
terms of the intervention and outcome. In the Yogyakarta trial, data will be collected
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on mobility of participants in the immediate time window proceeding the relevant clinic
visit, information that will account for the percentage of time spent in intervention and
untreated clusters. In addition, contemporaneous assessments of Wolbachia prevalence in
trapped mosquitoes by cluster will be measured throughout the trial. Both of these will allow
construction of an index of “Wolbachia exposure” prior to disease onset precipitating a clinic
visit. The ability to capture an exposure assessment immediately prior to the onset of clinical
symptoms presents a significant advantage to a cohort design where such measurements
would be challenging absent constant surveillance. This kind of exposure measure, and other
factors of interest, introduce individual level covariates that may explain some of the variation
in dengue, as compared to other OFI, incidence. Such data then demands the extension
of the permutation-based inference methods considered here to allow for individual-level
explanatory covariates. This requires extension of the methods of [54] (and earlier authors)
to the CR-TND context. This paper summarizes methods to extend exact permutation
inference to account for covariance adjustment in cluster-randomized trials with continuous
outcomes and sharp null hypotheses. More recent work extends these methods to handle
composite null hypotheses with binary outcomes [16, 31]. Extension of these ideas to the
CR-TND design represents an important area of current research.

2.7 Supplement

Cluster ID Distribution of Dengue Cases Distribution of OFI Controls

1 52 138
2 74 212
3 54 125
4 72 145
5 46 165
6 42 194
7 70 250
8 50 131
9 73 229
10 69 156

Total 602 1745

Table 2.6: Hypothetical dengue and other febrile illness (OFI) count data for an example of
10 clusters used for permutation distribution estimates.
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Period

Cluster ID ’03 – ’05 ’05 – ’06 ’06 – ’07 ’07 – ’08 ’08 – ’10 ’10 – ’11 ’11 – ’12 ’12 – ’13 ’13 – ’14

1 13 19 37 29 42 48 18 26 34
2 14 14 30 27 34 37 15 25 34
3 35 32 39 43 62 52 25 40 38
4 9 13 13 8 18 18 6 7 9
5 17 25 69 60 36 53 34 47 71
6 37 38 77 72 75 89 84 120 104
7 23 28 48 51 85 76 28 40 36
8 20 32 51 57 66 41 13 36 37
9 25 29 46 41 57 48 15 27 25
10 14 25 53 49 41 31 9 35 42
11 40 61 78 64 84 98 57 62 71
12 33 54 74 59 80 80 44 63 69
13 35 52 79 86 119 112 49 56 76
14 28 39 57 48 59 56 29 49 62
15 30 39 56 46 52 40 20 25 27
16 22 51 68 47 56 43 19 36 38
17 12 18 25 22 20 14 8 17 16
18 41 55 112 93 130 151 81 139 128
19 16 27 69 71 53 44 24 47 69
20 19 37 43 28 45 41 30 79 77
21 24 45 63 49 59 62 42 73 68
22 33 57 72 59 84 73 35 66 62
23 12 19 29 29 36 29 14 34 32
24 21 40 67 90 151 106 27 72 76

Table 2.7: Dengue Case Counts. The frequency of recorded (hospitalized) dengue fever
cases in each of these 24 clusters for each of nine distinct two-year periods covering the
time interval from 2003-2014. During this period, there was no available data for 2004 and
2009, so that the first two-year interval was for 2003 and 2005; similarly the 2008-10 interval
included data for 2008 and 2010. Otherwise each two-year period covered consecutive years.
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Cluster ID ’14 – ’15

1 486
2 155
3 1197
4 255
5 249
6 710
7 658
8 714
9 478
10 376
11 388
12 426
13 842
14 547
15 285
16 586
17 344
18 484
19 151
20 223
21 522
22 804
23 286
24 792

Table 2.8: OFI Counts. Data for the distribution for OFIs is only available for one two-year
period from 2014-15.

Relative Risk (λ) Test-Positive Fraction Odds Ratio GEE Random Effects

1 0.0506 0.0749 0.0744 0.0742
0.6 0.5258 0.5795 0.6161 0.6222
0.5 0.7798 0.8238 0.8446 0.8508
0.4 0.9418 0.9620 0.9657 0.9693
0.3 0.9965 0.9985 0.9988 0.9990

Table 2.9: The proportion of simulations that returned significant results for each interven-
tion effect of interest (λ) as in Table 2 of the paper, but now with 10,000 random intervention
allocations of 1,000 cases and 1,000 controls (r = 1).
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Relative Risk (λ) Test-Positive Fraction Odds Ratio GEE Random Effects

1 0.0013 0.0117 0.0779 0.0743
0.6 0.4786 0.6136 0.5936 0.6144
0.5 0.8075 0.8866 0.8266 0.8445
0.4 0.9732 0.9831 0.9603 0.9670
0.3 1.0000 1.0000 0.9983 0.9988

Table 2.10: The proportion of simulations that returned significant results for each interven-
tion effect of interest (λ) as in Table 2 0f the paper, but now with each approach applied to
the results of the 247 constrained intervention allocations with 1,000 cases and 4,000 controls
(r = 4).

Relative Risk (λ) Test-Positive Fraction Odds Ratio GEE Random Effects

1 0.0022 0.0117 0.0058 0.0054
0.6 0.5283 0.6136 0.6534 0.6601
0.5 0.8488 0.8866 0.9141 0.9213
0.4 0.9800 0.9831 0.9906 0.9926
0.3 1.0000 1.000 1.0000 1.0000

Table 2.11: The proportion of simulations that returned significant results for each inter-
vention effect of interest (λ) as in Supplementary Table 4, but now constrained intervention
allocations with 1,000 cases and 1,000 controls (r = 1)
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Chapter 3

Analysis of Counts for Cluster
Randomized Trials: Negative Controls
and Test-Negative Designs

This chapter has been published in the journal Statistics in Medicine.1

3.1 Introduction

Randomized controlled trials are the gold standard for evaluating the efficacy of health
interventions. Randomization makes comparison groups as similar as possible in all factors
except for the intervention under study, and provides a basis of non-model based inference.
When an intervention is delivered to groups of individuals, e.g. in neighborhoods, or may
have a community-wide health impact, randomization of the intervention necessarily occurs
at the group, rather than individual, level. Such a trial is termed a cluster randomized
trial (CRT).[22] The non-independence of individuals within each cluster in CRTs causes
statistical inefficiency–the design effect– necessitating inflation of the sample size to achieve
power equivalent to an individually randomized trial.[22, 11, 21]

In many CRTs, outcome measurements are made at the cluster–rather than individual–
level for a variety of reasons. For example, counts of events across a cluster may be collected
by existing or designed surveillance systems. For CRT count outcome data, common esti-
mators of the intervention effect include estimation of absolute and relative rate differences,
usually based on demographic information on relevant population years of observation, or
population size, per cluster.[22] When adjustment for cluster level covariates is desirable,
model-based regression modeling approaches are often used, including marginal generalized
estimating equation (GEE) approaches and mixed effects models with random effects at

1I am grateful for permission from my collaborator, Nicholas P. Jewell, to include this paper in my dis-
sertation. Additionally, I am grateful to my collaborators at the World Mosquito Program for the motivating
example.
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the level of the cluster. The latter models can be extended to allow for individual level
information.

In many situations, these standard approaches require modification. For example, in
settings where few clusters are available for randomization, model-based estimation and in-
ference may be less accurate and require small sample size adjustments.[22] In such cases,
a randomization-based strategy (e.g. permutation tests) presents an attractive alternative.
Further, population-based denominators may sometimes be unavailable or not appropriate.
The latter can occur when the count ascertainment system does not cover the entire cluster
populations, perhaps due to access to care issues. The statistical analysis then depends
solely on randomization balancing the unobserved population denominators across interven-
tion arms. This risks unobserved bias–particularly in unblinded studies–due to differential
ascertainment coverage across arms that will confound any intervention effect.

As noted, it is possible to estimate and test an intervention effect using only cluster-
level case counts given intervention randomization. Here, we discuss such inference, focusing
on the Relative Risk and its permutation distribution (under permuted intervention assign-
ments). We subsequently consider the impact of differential ascertainment bias, and intro-
duce a method to remove, or reduce, such bias through the use of negative controls.[33] We
discuss briefly the required properties for a valid negative-control count. We use simulations
to address bias and precision comparisons between the various methods.

An example of a design that explicitly uses negative controls is the test-negative design
that was recently extended to allow for cluster randomization of an intervention.[1] Test-
negative designs are explicitly used to address ascertainment bias caused by differential
health-care seeking behavior.[58, 27] We thus interpret our findings in the context of cluster
randomized test-negative designs with analytic methods that either only use case count data
or use negative control (in addition to case count) information. Test-negative designs also
directly accommodate the absence of population level denominator information underlying
the observed counts of interest.

These issues are motivated by the World Mosquito Program’s ongoing balanced parallel-
arm Cluster Randomized Test-Negative Design (CR-TND) trial to evaluate the efficacy of
Wolbachia-infected mosquitoes in reducing the burden of dengue transmission in Yogyakarta
City, Indonesia. In this study, Yogyakarta City, and its population of approximately 400,000,
was divided into 24 contiguous clusters each measuring approximately 1 km2 in size but with
varying population density and socioeconomic status. Twelve of the clusters were randomly
assigned to an intervention arm that received releases of Wolbachia-infected mosquitoes.
Wolbachia successfully transinfected in non-native hosts such as Aedes aegypti mosquitoes,
the primary vectors of dengue, have been shown to disrupt the transmission of dengue
and other flaviviruses by minimizing virus replication within the vector.[30] The remaining
twelve clusters were assigned as control clusters. Count ascertainment depends on individuals
seeking care at puskesmas (community health clinics) who present with general symptoms
consistent with the clinical case definition of dengue. Such individuals who consent to enroll
in the trial are subjected to laboratory testing for dengue, which determines their test-
positive (case) or test-negative (control) status. The trial has been described in greater
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detail elsewhere.[28, 2]

3.2 Direct comparison of counts in the absence of

population denominators

We consider here a CRT for which the outcome is measured at the cluster level and comprises
of a count of a number of “events” in each cluster. For example, the counts could represent
the number of incident dengue infections over the study period as obtained through some
well-defined ascertainment system. We let Aj denote the observed count in the jth cluster
assigned to the intervention and, analogously, Gj is the count in the jth control cluster. Then,
AT and GT are the total sum of the j cluster-level case counts (Aj, Gj) in the treatment and
control arms, respectively. That is, AT =

∑m
j=1 Aj and GT =

∑m
j=1Gj where we assume,

for convenience, that m clusters are randomly assigned to both the intervention and control
arm.

Given randomization, differences in the cluster counts between the intervention and con-
trol arms should only arise through the intervention so long as case ascertainment is not
differentially applied across arms. In particular, the underlying population denominators for
a rate should be balanced across arms. Thus, to test the null hypothesis that there is no
difference in the rate of case counts between the intervention and control arms, we can use
the test statistic in Equation 3.1.

T =
∑

Aj −
∑

Gj

= AT −GT

(3.1)

With small numbers of clusters, we focus on the permutation distribution of T (across
all permutations of clusters’ intervention assignments). In the simple case considered here,
there are

(
2m
m

)
possible intervention assignments and computation of an estimate for each of

these (while holding each cluster count fixed) yields the permutation distribution that can
form the basis of randomization inference. It is immediate that EP [AT ] = EP [GT ] = nD/2,
where EP refers to the expectation under the permutation distribution, and nD is the total
of all counts across all clusters, i.e. AT + GT , held fixed over all permutations. Further,
from finite sampling methods, VarP (AT ) = mVD/2 where VD is the variance of the combined
counts A1, . . . , Am, G1, . . . , Gm in the intervention and control clusters combined, with this
variance calculated using (2m − 1) in the denominator. This follows since, for a random
permutation, the Aj counts are simply randomly selected from the combined counts across
all clusters.

Thus, EP [T ] = EP [AT ]−Ep[GT ] = 0, and the permutation variance of T is just VarP (T ) =
2mVD. Thus, to evaluate the null hypothesis of no intervention effect we can either use the
full permutation distribution or approximate such an approach by comparing a standard-
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ized statistic, T/
√

2mV̂D–using an appropriate estimate of VD–to a t distribution with the
appropriate number of degrees of freedom.

VD can be simply estimated by the empirical variance of the Ajs in the intervention
clusters or the Gjs in the control clusters (or the variance of the counts combined across
both arms). Since the arms contain the same number of clusters, a simple average of these
two arm-specific variance estimates could be used, leading to the so-called pooled variance
estimator for the two-sample t-test with 2(m − 1) as the appropriate number of degrees of
freedom. The combined variance, and, to a lesser extent the pooled estimator, are likely
to be biased in estimating VD in the presence of an intervention effect. This suggests an
alternative approach when using the permutation distribution, or its approximation, as the
basis for confidence intervals, which we discuss below.

Seek Care Do Not Seek Care

Test-
Positive
Cases

Test-
Negative
Controls

Not
Infected

Total
Test-

Positive
Cases

Test-
Negative
Controls

Not
Infected

Total

Intervention (E) AT BT CT NIO DT ET FT NIU

Control (Ē) GT HT IT NCO JT KT LT NCU

Table 3.1: Stratification of population based on intervention status, infection, and health-
care–seeking behavior. Adapted from Figure 1 of Jackson & Nelson.[27]

We now turn to estimation of λ, the Relative Risk comparing intervention and control
arms. One can think of λ as the ratio of the underlying rates that generates the cluster
counts in each arm. Alternatively, λ is simply the ratio of the mean of the cluster counts
across the two arms. Here, we focus on the estimator λR = AT/GT = AT/(nD − AT ),
where R simply stands for ratio (of the counts). For confidence intervals, we move to the
symmetrically distributed version, log(λR). By definition, EP log(λR) = 0 at the null. Away
from the null, we need to evaluate the permutation distribution of the log(λR) assuming an
intervention effect. Note that the delta method can be used to approximate the permutation
variance of log(λR) ≈ (16/n2

D)(m/2)VD.
Note that the intervention only affects the counts A1, . . . , Am by assumption. These are

each replaced in turn by A∗1, . . . , A
∗
m which reflect altered counts in the intervention clusters.

For large populations, A∗j ≈ λAj for the intervention clusters, assuming that the intervention
effect is the same for all clusters. The common modification of the A1, . . . , Am has two
immediate implications: first, under the permutation distribution, EP log(λR) ≈ log(λ);
second, there is no change to the variance formula log(λR) ≈ (16/n2

D)(m/2)VD since all
count ratios for different permutations are shifted by approximately log(λ).

However, away from the null, we have to modify the estimates of nD, VD due to the
replacement of each Aj with A∗j . The necessary adjustment is achieved by simply increasing
the observed A∗js by the common factor 1/λR to obtain an estimate ofAj (in the j intervention
clusters), en route to an estimate of nD, VD as at the null.
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3.3 Differential case ascertainment

A fundamental threat to the validity of the approach of Section 3.2 – even with randomization
– arises when there is differential “counting” methods across the two arms. In such cases,
when passive surveillance approaches are used to generate the necessary counts, differential
case ascertainment may occur across treatment arms. For example, individuals’ health-care–
seeking behavior may be differential based on knowledge of their intervention assignment and
this will affect any ascertainment system that is based on attendance in some health-care
setting. This behavior is particularly relevant in trials where blinding of the participants
and/or investigators to the intervention is infeasible for logistical, ethical or other reasons.
We refer to this phenomenon as differential count ascertainment. We stress that this threat
to validity persists even if the relevant denominator information is known for the cluster
counts.

We quantify this effect through the relative propensity π of treated and untreated pop-
ulations to “be counted”, e.g. seek health care. We allow this propensity to differ across
treatment arms denoted by E here, for convenience. That is E refers to individuals in the
intervention arm and Ē to those in the control arm. Then we let

αRA =
Pr(A = 1|E,D)

Pr(A = 1|Ē,D)
,

where A stands for ascertainment, RA for relative ascertainment, and the binary indicator
D denotes a ‘case’ that would be counted if ascertainment was guaranteed.

It is obvious that with the comparison of counts across arms as described in Section
3.2, the effects of risk reduction and relative ascertainment are completely confounded and
could not be disentangled without direct knowledge of αRA. One approach to address this
fundamental bias, is through use of negative controls. Negative controls, commonly used
to calibrate measurements in laboratory experiments, have recently been re-examined for
epidemiological applications.[33] The key requirements for a useful negative control outcome
is that (i) no intervention effect is expected on the negative control outcome, and (ii) neg-
ative control outcomes must be affected by identical relative ascertainment effects as our
outcome of interest. Note that the latter assumption allows differential ascertainment across
intervention arms but this must occur in identical fashion as to what occurs for the outcome
of interest as quantified by αRA. It is exactly this assumption that allows estimation of αRA
and subsequent removal of ascertainment bias in estimation of λ.

The second of these conditions may appear difficult to achieve in any practical interven-
tion study. We nevertheless introduce exactly such an example in the context of what are
referred to as test-negative designs.

The Test-Negative Design

In infectious disease research, issues relating to differential case ascertainment, typically
under the influence of differential health-care–seeking behavior, have been mitigated by the
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implementation of the test-negative design (TND). TNDs represent a variant on a traditional
case-cohort design: studies enroll subjects who seek care for a clinical syndrome, defining
those who test positive and negative for a pathogen of interest as cases and controls, re-
spectively. Specifically, the popularity of the TND arose from its ability to use existing
surveillance systems (e.g. clinic data) to estimate seasonal influenza vaccine effectiveness
while minimizing bias due to health-care–seeking behavior. A nuanced discussion of this
design can be found in the recent literature [58, 64, 15] that includes a formal analysis of
causal diagrams associated with the design. The design and analytical methods were recently
extended to cluster randomized interventions, [28, 2] yielding the so-called cluster random-
ized test-negative design (CR-TND). A recent review of test-negative designs to mosquito
vaccine effectiveness discusses 348 such studies.[10]

In a TND, test-positives play the role of our case counts in Section 3.2, and are ascer-
tained through attendance, diagnosis and testing at a clinic or other health-care setting.
Subsequently, a critical component of the TND is the definition of test-negatives. As nega-
tive controls, the objective is to identify a disease that is unaffected by the intervention of
interest, and symptomatically similar to the disease outcome of interest. Upon recruitment
at a clinic, a highly sensitive and specific laboratory test is used to distinguish test-positive
cases (those with the disease of interest) from the test-negative controls (those without). The
full extent of these assumptions have been critically discussed in the literature.[1, 58] The key
property of negative controls regarding differential ascertainment is explicitly achieved since
participants do not know their disease status until they are ascertained and so it theoreti-
cally not possible for the test-positives and test-negatives to suffer from differential relative
ascertainment; that is, the relative ascertainment αRA is the same for Ds (test-positives) as
for D̄s (test-negatives).

Using the cumulative notation provided in Table 3.1, that describes totals across clusters,
the negative control assumption that the intervention has no impact on test-negatives leads
to the proportion of test-negative individuals among the intervention care-seeking popula-
tion (BT/NIO) being approximately equivalent to the proportion of test-negative individ-
uals among the negative control care-seeking population (HT/NCO). Note that, in this
context, NIO and NCO represent the unobserved denominators discussed in Section 3.2.
It is then possible to approximate the natural, but unobserved, estimate of the relative
risk of disease across the intervention and control populations ((AT/NIO)/(GT/NCO)) by
substituting the ratio of test-negative individuals from the intervention and control sub-
populations (HT/BT ) as a proxy for the unobserved relative sizes of the care-seeking inter-
vention and control denominators (NIO/NCO). This results in the simple TND estimator,
λTND = ATHT/BTGT .[58]

Estimation of differential case ascertainment

Note that the assumptions of an appropriate negative control allow for estimation of the
common relative ascertainment parameter αRA. The first assumption indicates that the
relative counts of test-negatives in the intervention and control arms are not affected by the
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intervention which has a null effect on the negative control outcome. The second assumption
then yields that the relative ascertainment of test-negatives is the same as for test-positives
representing the outcome of interest.

Consider the scenario in which individuals within the intervention arm are ascertained
differentially from individuals within the control arm. Focusing on the test-negatives, our
assumptions show that αRA = Pr(A = 1|E, D̄)/Pr(A = 1|Ē, D̄). Provided the other CR-
TND assumptions hold,[1] and with the assumption of no intervention effect on the negative
controls, αRA can be estimated by the identical approach previously outlined for case count
only estimation of the RR; that is, α̂RA = BT/HT . This provides an unbiased estimator of
the relative ascertainment parameter.

The variance of α̂RA can be estimated exactly as we described for the intervention effect
estimate in Section 3.2: VarP (α̂RA) ≈ (16/n2

D̄
)(m/2)VD̄, where VD̄ is the variance of the

clusters’ test-negative counts combined across intervention arms and nD̄ = BT + HT . To
assess whether ascertainment (of the negative controls) differs across arms, a suitable test
statistic is, again, the difference in counts, T = BT −HT , scaled by the variance VarP (T ) =
2mVD̄, where VD̄ is the population variance of the 2m test-negative counts, and compared to
a t distribution with 2(m− 1) degrees of freedom (assuming we use a variance estimate that
averages variability across the two arms as described in Section 3.2). This test is of interest
in its own right when negative control information is available as it assesses differential
ascertainment effects across arms independently of any intervention. Such information may
be useful in planning and interpreting future trials.

Estimating the intervention effect, λ, in the presence of
differential case ascertainment

When αRA 6= 1, the estimated intervention effect given by λR is necessarily biased, as noted
above; that is, the estimate is shifted multiplicatively by αRA (or, additively, by logαRA
on the log scale). Without further information, this reflects the vulnerability to bias of the
‘count-only’ approach of Section 3.2. However, knowledge of the negative control counts
allows estimation of αRA as shown in Section 3.3. Thus, a ‘de-biased’ intervention Relative
Risk can then be estimated by λ̂ = λR × α−1

RA = ATHT

GTBT
. This, of course, is precisely the

simple TND estimator (λTND) proposed for all test-negative designs including the CR-TND.
Randomization-based inference associated with this estimator is presented in Chapter 2.

3.4 Simulations

Data-based simulations evaluate the performance of the proposed estimation methods. As
a practical basis for simulations, historical counts of dengue from 24 contiguous clusters
within a city in Indonesia collected from 2003 to 2014 were divided into 9 consecutive2 two-

2There are two exceptions to the consecutive two-year period counts. Data was missing in 2004 and 2009
which were ignored in making a two year time period in both cases.
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year periods. Other febrile illnesses (OFIs) with similar presenting symptoms will be used
as negative controls. Counts of OFIs for each of the 24 clusters from 2014 through 2015
provided the historical distribution of these negative controls. Exact distributions of these
historical counts can be found in Tables 2.7 and 2.8. For each historical period, complete
random assignment was performed such that m = 12 of the total 24 clusters were assigned
to a putative intervention and the remainder to control.

Instead of building an exhaustive permutation distribution of the more than 2 million
distinct intervention allocations for each time period, each simulation assigned intervention
according to the same 10,000 distinct potential intervention allocations and examined the
results of these intervention allocations across all 9 historical time periods.

For a specific period, the distribution of the case counts (nD) and negative control counts
(nD̄) amongst clusters are assumed to follow multinomial distributions parameterized by the
observed historical cluster-level proportions of cases (or negative controls) that fell in cluster
j, pDj or pD̄j, respectively. Given an intervention effect λ, p∗Dj = λpDj for all clusters in
the intervention arm with the other proportions in the control cluster left unchanged. These
adjusted proportions are then standardized such that

∑2m
i=1(E = 1)×λpDi+{1− (E = 1)}×

pDi = 1. The negative control distribution is unaffected by the intervention by definition.
To allow for potential differential ascertainment by intervention arm, we assume that αRA

can be applied in a similar manner except that it also modifies the distribution of negative
controls. Since αRA is a relative measure of differential ascertainment, we modify all case
counts and negative control counts within the intervention arm only. After this modification,
the proportions are again standardized such that the proportions of case counts and negative
control counts each sum to one across all clusters.

The marginal ratio of cases (Ds) to negative controls (D̄s) was 1:4, with 1,000 cases
and 4,000 controls selected for each simulation. Five3 intervention relative risks (λ =
1, 0.8, 0.6, 0.4, 0.2) are examined and four different levels of differential ascertainment (αRA =
1, 0.95, 0.85, 0.5). The performance of the count ratio method of Section 3.2 (λR) was com-
pared to the bias-adjusted method of Section 3.3 (λTND) using the variance estimates noted
in 2.4.

For model-based comparisons we also consider mixed effects models and GEE. For the
estimation of the Relative Risk using only case counts in the absence of a population-based
denominator, the GEE and mixed effects models assume Poisson distributed counts and use
a canonical log link. To estimate the Relative Risk with the inclusion of negative controls
counts, the GEE and mixed effects models assume binomially distributed counts and use a
canonical logit link. All mixed effects models include a random intercept for each cluster
and all GEEs assume an exchangeable correlation structure.

All simulations and subsequent analyses were performed in R version 3.6.1 “Action of
the Toes”.[43] GEE models were fit using “geeglm” from the “geepack” package.[24, 68, 67]
Mixed effects models used “glmer” from the “lme4” package.[3] Plots were generated using

3The supporting material also shows results for two additional intervention relative risks λ = 0.5, 0.3.
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the “ggplot2” package.[65] All additional simulation code is available as a GitHub repository
managed by the first author.4

3.5 Results

Detecting an intervention effect

Figures 3.1, 3.2, and 3.3 compare the performance of the count ratio estimator (λR) to the
simple de-biased estimator (λTND), as well as the mixed effects, and GEE approaches. The
simulation results are averaged across the 10,000 unique intervention allocations applied
to each of the 9 different observed historical time periods. Thus the simulations reflect
overall performance over nine somewhat different scenarios. These results are summarized
numerically in Tables 3.3 through 2.5 included in Section 3.7.

Power, shown in Figure 3.1, is estimated as the proportion of permuted allocations that
return a significant test result at a significance level of 0.05. Significance for the count ratio
method is determined on the basis of the test statistic proposed in Equation 3.1, standardized
by its estimated variance, as compared to a t-distribution with 2(m− 1) degrees of freedom.
In the case of the simple ascertainment de-biased estimator (λTND), a significant result
is determined by the absence of the null value in the 95% confidence interval around the
estimated intervention RR, as performed on the log scale. Finally, significance is determined
by the model-based coefficient p-value corresponding to intervention in the mixed effects
and GEE models. The power for each intervention and differential ascertainment scenario
is relatively stable for the approaches that make use of both count and negative control
information (Figure 3.1B). The count only approach shows the most desirable estimated
Type I error in the setting where there is no differential ascertainment (power = 0.058).
However, it seriously deteriorates for a high level of differential ascertainment. This is
explained by the introduced bias in estimation. This does not effect the approaches that use
the negative control information (Figure 3.1B) although there is some anti-conservativeness
in the simple TND estimator for a high level of differential ascertainment.The increasing
power of the count only methods (Figure 3.1A) for any fixed value of λ is an artefact of
the fact that, for the simulations considered here, the intervention effect and the differential
ascertainment work in the same direction (of reducing counts in the intervention clusters);
for simulations with αRA > 1 (not shown here), the power of the count only approaches
substantially worsens as differential ascertainment widens.

Bias (Figure 3.2) is estimated as EP [λ̂] − λ. The estimated bias is reported on the
scale of the Relative Risk for interpretability. In the setting of no differential ascertainment
(αRA = 1), the estimators perform similarly, as expected, as most of the estimators enjoy
zero asymptotic bias (note that the mixed effects model estimates a cluster specific odds ratio
that is not identical to the marginal odds ratio targeted by GEE and the other methods).
The small gain when using the count ratio estimator is less than 1% which is negligible.

4 https://github.com/sdufault15/case-only-crtnd
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Figure 3.1: The power, and Type I error rates, in testing departure from the null of no
intervention effect based on various estimation methods for a range of Relative Risks (RR),
over 10,000 intervention allocations applied to each of 9 historical time periods with 1,000
cases and 4,000 negative controls (when applicable). Differential ascertainment (αRA) is
allowed to increase in severity. A) Results from count only methods in the absence of
a population denominator. The mixed effects and GEE models assume the case counts
are Poisson distributed and use the canonical log link. B) Negative control bias-adjusted
results. The mixed effects and GEE models assume the case and negative control counts are
binomially distributed and use the canonical logit link.

Further, as differential ascertainment increases, the count only estimators (Figure 3.2A) are
unable to reliably estimate the intervention effect. The simple TND estimator, binomial
GEE, and binomial mixed effects methods (Figure 3.2B) all maintain low bias (bias ≤ 0.05).

Finally, coverage (Figure 3.3) represents the proportion of estimated 95% confidence in-
tervals which contain the true intervention Relative Risk. Again, in the absence of differential
ascertainment, the count ratio estimator (λR) enjoys slightly improved coverage across each
of the examined intervention RRs (≈ 93.4% coverage). As expected, however, the cover-
age deteriorates as the bias from differential ascertainment increases (Figure 3.3A). Slight
deterioration in coverage as differential ascertainment worsens was observed across each of
the estimators, though for the approaches accounting for negative controls (Figure 3.3B)
coverage fell only to 90%.
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Figure 3.2: Bias in estimation of the intervention Relative Risk for various methods over
10,000 intervention allocations applied to each of 9 historical time periods with 1,000 cases
and 4,000 negative controls as differential ascertainment increases in severity. A) Results
from count only methods in the absence of a population denominator. The mixed effects
and GEE models assume the case counts are Poisson distributed and use the canonical log
link. B) Negative control bias-adjusted results. The mixed effects and GEE models assume
the case and negative control counts are binomially distributed and use the canonical logit
link.

Detecting differential ascertainment

As described in Section 3.3, the count ratio estimator can be used to estimate the Relative
Risk of differential ascertainment (αRA) using the negative control counts, when available.
Table 3.2 displays the bias, power, and coverage statistics for estimation of αRA when the
true αRA is null (αRA = 1), low (αRA = 0.95), medium (αRA = 0.85), and high (αRA = 0.5).
As the distribution of the negative controls is assumed unaffected by the intervention, these
results are true for any size of intervention effect λ. Despite the low bias in estimation, good
coverage and type I error (i.e. power when αRA = 1), the power to detect differential ascer-
tainment away from the null (i.e. αRA 6= 1) is necessarily low except with high differential
ascertainment.

Note that, in Table 3.2, when αRA = 1 (i.e. at the null of no differential ascertainment),
the power represents the Type I error and should be complementary to the coverage rate
in that the two values should sum to 1. However, for the count ratio estimator, hypothesis



CHAPTER 3. ANALYSIS OF COUNTS FOR CLUSTER RANDOMIZED TRIALS:
NEGATIVE CONTROLS AND TEST-NEGATIVE DESIGNS 36

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

RR = 1.0

RR = 0.8

RR = 0.6

RR = 0.4

RR = 0.2

0 20 40 60 80 100

GEE
Mixed Effects

Count Ratio

GEE
Mixed Effects

Count Ratio

GEE
Mixed Effects

Count Ratio

GEE
Mixed Effects

Count Ratio

GEE
Mixed Effects

Count Ratio

Coverage (%)

A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

RR = 1.0

RR = 0.8

RR = 0.6

RR = 0.4

RR = 0.2

0 20 40 60 80 100

GEE
Mixed Effects
Simple TND

GEE
Mixed Effects
Simple TND

GEE
Mixed Effects
Simple TND

GEE
Mixed Effects
Simple TND

GEE
Mixed Effects
Simple TND

Coverage (%)

B

αRA

● 0.5

0.85

0.95

1

Figure 3.3: 95% confidence interval coverage based on estimation of the intervention Relative
Risk for various methods over 10,000 intervention allocations applied to each of 9 histori-
cal time periods with 1,000 cases and 4,000 negative controls as differential ascertainment
increases in severity. A) Results from the comparison of counts in the absence of popula-
tion denominator. The mixed effects and GEE models assume the case counts are Poisson
distributed and use the canonical log link. B) Bias-adjusted results. The mixed effects and
GEE models assume the case and negative control counts are binomially distributed and use
the canonical logit link.

testing is based on the normalized t-statistic of Section 3.3, whereas coverage is based on
the confidence interval associated with the ratio estimator of the relative ascertainment αRA,
also introduced in Section 3.3. Thus, the corresponding entries only approximately add to
one.

3.6 Conclusions

The count only approaches for CRTs perform comparably in estimation of an intervention
Relative Risk as compared to alternatives that use additional negative control information
(albeit at reduced power), but only in the absence of differential ascertainment. The count
only methods have reasonable bias and coverage properties (near 94%), and comparable
power while maintaining a desirable Type I error rate. These properties depend entirely on
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Bias Power Coverage

αRA = 1 0.0215 0.0583 0.935
αRA = 0.95 0.0207 0.0479 0.934
αRA = 0.85 0.0181 0.0443 0.935
αRA = 0.5 0.0108 0.6870 0.934

Table 3.2: Bias, power (Type I error when αRA = 1), and 95% confidence interval coverage
based on estimation of differential ascertainment by intervention arm from 10,000 permuted
intervention allocations across 9 time periods of historical data for a ratio of 1,000 cases to
4,000 negative controls.

randomization and so cannot be used directly when the clusters are not randomized.
Further, the performance of the count only approaches falter in the presence of even

relatively low differential ascertainment (αhcsb = 0.95) as demonstrated by increases in bias
and decreases in coverage. In contrast, methods that adjust for differential ascertainment by
incorporating proposed negative control counts maintain desirable performance even under
major differential ascertainment. Thus, the count only estimators should only be used when
there is no other alternative (despite this being currently standard), and should be treated
with considerable caution if there is any possibility of differential ascertainment. The use of
negative controls in CRTs provides an attractive option to remove, or reduce, the effect of
differential ascertainment and should be used more widely.

Potentially, the results have more significance when considering stepped wedge designs
rather than the parallel arm scenario considered here. Currently, almost all stepped wedge
studies only consider an outcome of interest and do not employ negative controls to re-
move bias. Analytical results for the stepped wedge design in this context will be provided
elsewhere.

Finally, determining whether differential ascertainment exists by the estimation approach
proposed here is informative but lacks sufficient power to detect moderate differences by
intervention arm. As such, determining whether a setting is appropriate for future estimation
by the count only approach will likely return uninformative results unless ascertainment is
exceptionally differential (αRA ≤ 0.5 or αRA ≥ 2.0 ).

Recommendations

The findings suggest two key recommendations. First, in CRTs where only counts are avail-
able for analysis, the proposed estimator is a viable option with desirable statistical prop-
erties. However, even with randomized interventions, it is only appropriately employed in
settings where there is little to no differential ascertainment by intervention arm. This is
likely most plausible under blinded intervention assignment. Second, in CRTs where differ-
ential ascertainment is likely or inevitable, negative control data is important for validity.
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3.7 Supplement

Note that when λ = 1 (i.e. at the null hypothesis of no intervention effect), coverage and
Type I error are complementary so that the corresponding entries of Table 3.3 and Table
3.5 are expected to add exactly to one. This is exactly true for the simple TND, GEE and
mixed effects approaches since both tests and confidence intervals are based on estimation
of the same parameter. However, for the count ratio only estimator (last column of both
Tables 3.3 and 3.5), hypothesis testing is based on the normalized t-statistic of Section 3.2,
whereas coverage is based on the confidence interval associated with the ratio estimator of
the Relative Risk, λR, also introduced in Section 3.2. Thus here, the corresponding entries
of Tables 3.3 and 3.5 only approximately add to one.
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Count Only Methods* Negative Control De-biased Methods†

λ αRA GEE Mixed Effects Count Ratio GEE Mixed Effects Simple TND

1.00 0.078 0.069 0.058 0.085 0.074 0.074
0.95 0.086 0.078 0.045 0.084 0.073 0.073
0.85 0.159 0.144 0.054 0.084 0.073 0.074

Type 1 Error: 1.0

0.50 0.898 0.870 0.669 0.084 0.074 0.100

1.00 0.229 0.205 0.079 0.193 0.179 0.172
0.95 0.302 0.271 0.113 0.193 0.181 0.172
0.85 0.490 0.442 0.224 0.194 0.181 0.176

0.8

0.50 0.985 0.979 0.877 0.193 0.184 0.217

1.00 0.699 0.647 0.402 0.580 0.571 0.547
0.95 0.769 0.722 0.481 0.580 0.573 0.549
0.85 0.884 0.853 0.643 0.578 0.573 0.548

0.6

0.50 1.000 0.999 0.980 0.571 0.574 0.583

1.00 0.900 0.871 0.668 0.813 0.808 0.791
0.95 0.931 0.909 0.731 0.813 0.806 0.790
0.85 0.973 0.964 0.835 0.812 0.807 0.791

0.5

0.50 1.000 1.000 0.997 0.804 0.808 0.797

1.00 0.985 0.979 0.877 0.956 0.953 0.948
0.95 0.991 0.988 0.907 0.956 0.953 0.948
0.85 0.998 0.996 0.951 0.956 0.952 0.948

0.4

0.50 1.000 1.000 1.000 0.952 0.951 0.945

1.00 1.000 0.999 0.980 0.997 0.997 0.997
0.95 1.000 1.000 0.987 0.997 0.997 0.996
0.85 1.000 1.000 0.996 0.997 0.997 0.996

0.3

0.50 1.000 1.000 1.000 0.996 0.996 0.996

1.00 1.000 1.000 1.000 1.000 1.000 1.000
0.95 1.000 1.000 1.000 1.000 1.000 1.000
0.85 1.000 1.000 1.000 1.000 1.000 1.000

0.2

0.50 1.000 1.000 1.000 1.000 1.000 1.000
* GEE and mixed effects count only models assume Poisson distributed counts and use the
canonical log link.
† GEE and mixed effects negative control de-biased models assume a binomial distribution
and use the canonical logit link.

Table 3.3: The power, and Type I error rates, in testing departure from the null of no
intervention effect based on estimation methods with and without de-biasing by negative
control counts for a range of Relative Risks (λ), over 10,000 intervention allocations applied
to each of 9 historical time periods with 1,000 cases and 4,000 negative controls (when
applicable). Differential ascertainment (αRA) is allowed to increase in severity.
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Count Only Methods* Negative Control De-biased Methods†

λ αRA GEE Mixed Effects Count Ratio GEE Mixed Effects Simple TND

1.00 0.022 0.024 0.022 0.032 0.033 0.032
0.95 -0.030 -0.027 -0.030 0.031 0.032 0.031
0.85 -0.132 -0.130 -0.132 0.031 0.032 0.031

1.0

0.50 -0.489 -0.487 -0.489 0.032 0.028 0.032

1.00 0.017 0.020 0.017 0.025 0.025 0.025
0.95 -0.024 -0.021 -0.024 0.025 0.024 0.025
0.85 -0.105 -0.103 -0.105 0.025 0.023 0.025

0.8

0.50 -0.392 -0.390 -0.392 0.025 0.019 0.025

1.00 0.013 0.015 0.013 0.018 0.016 0.018
0.95 -0.018 -0.016 -0.018 0.019 0.016 0.019
0.85 -0.079 -0.077 -0.079 0.019 0.015 0.019

0.6

0.50 -0.294 -0.292 -0.294 0.019 0.012 0.019

1.00 0.010 0.013 0.010 0.015 0.012 0.015
0.95 -0.015 -0.013 -0.015 0.015 0.012 0.015
0.85 -0.066 -0.064 -0.066 0.015 0.011 0.015

0.5

0.50 -0.245 -0.243 -0.245 0.015 0.008 0.015

1.00 0.008 0.010 0.008 0.012 0.009 0.012
0.95 -0.012 -0.010 -0.012 0.012 0.008 0.012
0.85 -0.053 -0.051 -0.053 0.012 0.008 0.012

0.4

0.50 -0.196 -0.195 -0.196 0.012 0.005 0.012

1.00 0.006 0.008 0.006 0.009 0.005 0.009
0.95 -0.009 -0.007 -0.009 0.009 0.005 0.009
0.85 -0.040 -0.038 -0.040 0.009 0.005 0.009

0.3

0.50 -0.147 -0.146 -0.147 0.009 0.002 0.009

1.00 0.004 0.006 0.004 0.006 0.002 0.006
0.95 -0.006 -0.005 -0.006 0.006 0.002 0.006
0.85 -0.026 -0.025 -0.026 0.006 0.001 0.006

0.2

0.50 -0.098 -0.097 -0.098 0.006 -0.001 0.006

Note: GEE and Count Ratio, Simple TND results only appear identical due to rounding.
* GEE and mixed effects count only models assume Poisson distributed counts and use the
canonical log link.
† GEE and mixed effects negative control de-biased models assume a binomial distribution
and use the canonical logit link.

Table 3.4: Bias in estimation of the intervention Relative Risk for estimation methods with
and without de-biasing by negative control counts for a range of Relative Risks (λ), over
10,000 intervention allocations applied to each of 9 historical time periods with 1,000 cases
and 4,000 controls (when applicable). Differential ascertainment(αRA) is allowed to increase
in severity.



CHAPTER 3. ANALYSIS OF COUNTS FOR CLUSTER RANDOMIZED TRIALS:
NEGATIVE CONTROLS AND TEST-NEGATIVE DESIGNS 41

Count Only Methods* Negative Control De-Biased Methods†

λ αRA GEE Mixed Effects Count Ratio GEE Mixed Effects Simple TND

1.00 0.922 0.931 0.934 0.915 0.926 0.926
0.95 0.914 0.922 0.926 0.916 0.927 0.927
0.85 0.841 0.856 0.859 0.916 0.927 0.926

1.0

0.50 0.102 0.130 0.115 0.916 0.926 0.900

1.00 0.922 0.931 0.934 0.916 0.926 0.927
0.95 0.914 0.923 0.926 0.915 0.927 0.926
0.85 0.841 0.856 0.859 0.916 0.926 0.925

0.8

0.50 0.101 0.131 0.116 0.916 0.926 0.900

1.00 0.923 0.931 0.934 0.917 0.928 0.927
0.95 0.915 0.923 0.927 0.915 0.926 0.925
0.85 0.843 0.860 0.861 0.915 0.925 0.925

0.6

0.50 0.105 0.136 0.119 0.916 0.926 0.899

1.00 0.922 0.931 0.934 0.916 0.926 0.926
0.95 0.913 0.922 0.925 0.915 0.926 0.925
0.85 0.843 0.859 0.860 0.917 0.926 0.926

0.5

0.50 0.106 0.137 0.121 0.916 0.925 0.898

1.00 0.923 0.931 0.935 0.915 0.926 0.926
0.95 0.916 0.923 0.927 0.916 0.925 0.926
0.85 0.844 0.861 0.862 0.916 0.927 0.924

0.4

0.50 0.110 0.144 0.126 0.915 0.925 0.896

1.00 0.922 0.931 0.934 0.917 0.927 0.927
0.95 0.914 0.925 0.926 0.916 0.926 0.927
0.85 0.846 0.864 0.864 0.916 0.927 0.925

0.3

0.50 0.117 0.152 0.134 0.916 0.924 0.895

1.00 0.922 0.932 0.933 0.916 0.926 0.926
0.95 0.915 0.926 0.927 0.915 0.924 0.926
0.85 0.849 0.869 0.867 0.916 0.926 0.924

0.2

0.50 0.130 0.168 0.148 0.916 0.902 0.892
* GEE and mixed effects count only models assume Poisson distributed counts and use the
canonical log link.
† GEE and mixed effects negative control de-biased models assume a binomial distribution
and use the canonical logit link.

Table 3.5: 95% confidence interval coverage based on estimation of the intervention Relative
Risk for estimation methods with and without de-biasing by negative control counts for a
range of Relative Risks (λ), over 10,000 intervention allocations applied to each of 9 historical
time periods with 1,000 cases and 4,000 negative controls (when applicable). Differential
ascertainment (αRA) is allowed to increase in severity.
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Chapter 4

Model-based Simulations for Short,
Highly Variable Interrupted Time
Series Studies: Dengue Surveillance
Data

4.1 Introduction

Many public health interventions cannot be implemented using full treatment randomization
for ethical, logistical, or economical reasons. When exposure cannot be randomized, analyses
face additional threats to their internal and external validity. In randomized trials, the
objective is typically to minimize threats to internal validity in order to establish causality.
This is accomplished by breaking causal relationships between factors related to selection,
maturation, and other sources that may confound any true causal relationship between the
exposure and the outcome of interest. Studies that cannot implement randomization are then
subjected to a broader range of potential threats to internal validity than their randomized
counterparts.[8, 20]

Quasi-experimental designs aim to address many of these validity concerns. An increas-
ingly popular quasi-experiment is the interrupted time series (ITS) design. A time series
is comprised of repeated measures often taken at regular points in time. A natural source
of time series data includes the regular accumulation of counts for processes under regular
surveillance. An ITS is a particular case in which the time series has been interrupted by
something such as the implementation of an intervention. The ITS quasi-experiment then
uses the pre-interruption data as the null case by observing the outcome trend in the absence
of an intervention. The assumption is that this estimated trend provides the counterfactual
of what would have continued had the interruption not occurred. The post-interruption data
is similarly used to estimate the trend in the outcome in the presence of the intervention.

Due to its straightforward nature and applicability to public health natural experiments,
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ITS studies are rapidly becoming one of the most popular cases of quasi-experimental designs
in the epidemiological literature.[5] Public health ITS studies have been used to investigate
everything from campaigns to increase hand washing [56], changes in morbidity and mortality
following natural disasters [37], reduced street lighting and automobile casualties [55], and
the effect of smoking bans on acute myocardial infarction.[17] In examples such as these,
researchers examine exposures that would be logistically impossible or entirely unethical to
randomize, often through the use of surveillance data.

A clear advantage ITS has over classic prepost designs — designs that simply compare
the average outcome levels from the pre- and post-intervention periods — is that ITS designs
can account for secular trends such as seasonality through the use of ARIMA or alternative
modeling techniques. ITS can also provide more nuance in the type of effect expected and
subsequently estimated in these quasi-experiments. As outlined by Campbell and Cook,
there are many ways in which an ITS intervention effect can manifest. Does the intervention
have an immediate effect or is there a lag? Does the effect endure (a continuous effect) or does
it fade (discontinuous) with time? Does the intervention affect the average outcome level
(the intercept) and/or does it cause a change in trend (the slope)? A researcher interested
in implementing ITS can consider each of these questions and propose a plausible, and
appropriately complex impact model that clearly communicates the expected effect.

In order to estimate and evaluate the hypothesized effect, researchers must develop meth-
ods that account for the threats to internal validity. In classical randomized controlled trials,
proper randomization of the intervention and extensive control over other experimental con-
ditions mitigate investigator concern that the effect observed is spurious or due to another
source. However, in ITS studies it is critical to identify, measure, and adjust for external
sources of influence in order to isolate the intervention effect to the best of the researcher’s
ability. ARIMA models are often the most popular approach for estimating and subsequently
removing the “noise” in time series data.[8] Segmented regression adjusting for some func-
tion of time is far more applicable when the time series is “short”, e.g. less than the 50
recommended observations for adequate ARIMA modeling. As there is already considerable
work on ARIMA and long series, we will focus on the setting where the time series is “short”.

ITS studies are increasingly common in interventions targeting vector-borne infectious
disease. Unlike ITS studies of the impact of particular public policies on relatively steady-
state phenomena such as cigarette sales, vector-borne infectious diseases often have drastic,
“explosive” outbreaks that are not easily explained by seasonality alone. In stark contrast
to these massive outbreaks, there is also an abundance of low-transmission months where
it is not unusual to have zero reported cases. The high monthly and seasonal variability,
the presence of zero counts, and short follow-up periods complicate standard approaches for
model selection and estimation in ITS studies of infectious disease. The ability to simulate
data and assess various estimators on metrics such as power, bias, and coverage, is therefore
essential in planning a rigorous evaluation of the evidence collected in an infectious disease
ITS study.

Valuable work has been done to develop simulations for ITS studies of public health inter-
ventions,[69] but very little guidance exists for researchers working with the highly variable,
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short time series such as those found for infectious disease interventions. This can present
a barrier to planning and conducting critical research on the effectiveness of vector-borne
disease interventions. A recent sytematic review, described in Chapter 1, highlighted the se-
rious lack of evidence on the effectiveness for a multitude of current vector control methods,
including common methods such as spraying.[7] ITS studies may present an approach that
is feasible and cost-effective if properly implemented. In planning such trials (prospective or
based on natural experiment), simulations may provide significant insight.

This paper explores a model-based framework to generate simulations from complex
historical data in order to inform statistical decision making for short ITS analyses. This
approach is demonstrated in an application to a planned prospective ITS study evaluating
the effectiveness of Wolbachia in decreasing the incidence of reported dengue using historic
data from Yogyakarta, Indonesia. In the application, we find that splines and at least two
years of follow-up are necessary for reliable estimation of the intervention effect in this short
ITS analysis. In the discussion, we identify additional ways simulations can be used in
designing ITS trials as well as potential simulation alternatives for future work.

4.2 Methods

Exposure

Let A denote a point treatment exposure. Specifically, for a time series with measurements at
each time t, A is an intervention occurring at a particular point t′ that results in the distinct
identification of pre-intervention (t < t′) and post-intervention (t ≥ t′) follow-up. We will
focus strictly on ITS with clear pre- and post-intervention periods. In many cases, there is
a period of transition from pre-intervention to post-intervention in which the intervention
itself is establishing, resulting in a less abrupt demarcation of the pre- and post- intervention
periods. Rather than discard the data from this in-between state, other work [12] has
shown methods, both deterministic and adaptive, for accounting for this in order to de-bias
intervention effect estimates.

It can be helpful, particularly in short, highly variable settings, to have a nearby control
region that does not receive the intervention but can be used to adjust for secular trends
in the modelling process. The proposed simulation approach can accommodate single and
multi-arm ITS study designs.

Outcome

The outcome of interest in an ITS study is commonly a count Y collected across all time
points t. The count distributions that often appear in the epidemiological literature include
Poisson and negative binomial, in both standard and zero-inflated form. While overdis-
persion and zero-inflation may not be concerns for certain, well-behaved time series, these
complications certainly arise in the realm of vector-borne infectious disease research. It is
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critical that outcome counts are recorded during both the pre- and post-intervention periods.
The pre-intervention counts are used to establish the outcome trend in the absence of an
intervention. The post-intervention data is used to establish the counterfactual trend in Y
in the presence of the intervention.

Follow-Up

The need to collect information during both the pre- and post-intervention periods of an ITS
study necessitates additional points of planning: 1) how much follow-up is necessary? and,
2) is balance between the pre- and post-intervention periods essential? Assuming that the
counts Yt are readily available through existing surveillance systems (e.g. reported monthly
case counts), there may be decades of historical data that could be used to establish estimates
of the outcome trend in the absence of an intervention. As such, the difficulty arises not
necessarily in accessing data for the pre-intervention period, but in identifying the necessary
duration of post-intervention follow-up. This is a relevant task for both natural and planned
ITS studies. A prospective ITS study is often restricted by limited funding which in turn
restricts the length of follow-up that can be expected in any particular study. For a natural
experiment, the importance of including an appropriate amount of follow-up is highlighted
in nearly all introductory material of this subject.[8]

When the duration of a prospective ITS is restricted to two or three years of post-
intervention followup, as is common for prospective grants, this results in fewer than 36
post-intervention monthly counts. One hypothesis may be that the short follow-up could
be offset by incorporating a longer pre-intervention series. However, previous work has
demonstrated that the gain in power when increasing the number of data points is minimal
when the balance between pre- and post- intervention periods is lost. [69] Further, for
infectious disease outbreaks, it may be unreasonable to expect the infectious disease trends
years prior to the study of interest to be relevant to modern trends, even barring changes in
reporting standards or quality.

Simulations from Historical Data

The objective of this model-based simulation procedure is to use sampling rather than fore-
casting in an attempt to preserve the unique dependencies, fluctuations, and covariances in
the observed historical data. For highly variable, short ITS it may be difficult to simulate
plausible data for a future that hasn’t yet occurred. However, if we can rely on history as
a guide, it is far easier to simulate data that looks like what we have already seen. The
proposed approach uses the observed counts as estimates of the average rate of the outcome
at time t and generates new simulated data from a parametric model fit to the historical
data, with modifiable parameters for the various pieces of the impact model. In this way,
we can construct data that looks like the historical data while knowing the true intervention
effect, allowing us to evaluate the performance of various methods to determine which ap-
proach will make the most efficient and unbiased use of the data, according to some desirable
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standard. Further, we can gain insight into the necessary duration of follow-up for reliable
effect estimation.

To put this into concrete terms, assume we have access to historical surveillance data of
outcome Yt for t = 1, . . . ,M total time points and plan on carrying out a quasi-experiment of
length m ≤ M , where m includes the duration of pre- and post-intervention followup. The
pre- and post-intervention followup need not be balanced, but we will assume there is enough
pre-intervention follow-up to establish an outcome trend in the absence of an intervention.

To begin the simulation procedure, draw a sequence Y|m| of m consecutive historical Yt.
Drawing a consecutive sequence Y|m| will preserve any complexities in the transmission of the
disease. Next, fit a negative binomial count model to Y|m|, flexibly accounting for seasonality
or other time-related trends. The model fit of Y|m| will serve as the average rate of Y at
each time t across the sequence of length m, denoted in Equation 4.1 as µt. Therefore, to
simulate the data around these average rates, at each time t, a value for the simulated Y ∗t is
then drawn from the negative binomial distribution characterized by Equation 4.2, with the
dispersion parameter ν estimated from the data.

µt = E[Yt|t, Nt] = Ntexp{β0 + f(t)} (4.1)

Y ∗t ∼ Negative Binomial(µt, µt +
µ2
t

ν
) (4.2)

The same procedure can be used when there are multiple arms, Z, by incorporating the
proposed arm information into the negative binomial model. Specifically, the model should
note which counts belong to which arm of the hypothetical study and should include offsets
for differences in population sizes. For example, the average dengue count Y at time t
under the absence of an intervention could be modeled as a function of the “arm” Z, some
function of time to account for seasonality f(t), and an offset for the population size in
each “arm” Nt, which may change with time (Equation 4.3). Note, this model assumes that
once seasonality, f(t), has been accounted for, the average rate of the outcome Y in each
arm is constant across time. In the event the average rate is not constant across time, an
appropriate interaction term between Z and t would be required.

µt = [Yt|Z, t,Nt] = Ntexp{β0 + β1Z + f(t)} (4.3)

To introduce intervention effects into the simulated data, one must simply take advantage
of the multiplicative nature of the model. If the proposed impact model shows a step change
in the average rate, then the simulated counts in the intervention arm need only be modified
by the intervention RR = λ = exp{β2At}, where At is an indicator denoting the intervention
status at time t. This will always be equal to zero for the control arm and will only be equal
to one for the treatment arm during the post-intervention period, when t ≥ t′.

This basic approach can be modified to produce simulated data from increasingly complex
proposed impact models. For example, if a step change and a trend change during the post-
intervention period is anticipated, this can be simulated by multiplying the simulated counts
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in the intervention arm with λ1 = exp{β2At} and λ2 = exp{β3At × t}. Here, λ1 captures
the immediate discontinuity in rates from pre- to post-intervention period and λ2 ensures
that the post-intervention trend continues to change monotonically with time. A host of
flexible functions and model parameterizations can be used to create increasingly complex
intervention effects, hopefully reflecting the reality of the underlying data and hypothesized
impact model.

4.3 Application

In this section we demonstrate the usefulness of this technique with a real-world application.

Data

Surveillance data of monthly reported dengue hemorrhagic fever case counts from two non-
contiguous regions bordering Yogyakarta, Indonesia was available from January 2006 until
December 2017. These two regions were identified to be the sites of a controlled prospective
ITS study of the effect of Wolbachia-infected mosquitoes on the incidence of dengue. The
northern region received large-scale Wolbachia deployment starting in August 2016 while
the southern region was held as an untreated control area. The specifics and results of this
trial have been described elsewhere. [26]

The establishment of Wolbachia among local Aedes aegypti mosquitoes was expected to
decrease the level of dengue incidence. In terms of simulating data for the ITS study, we
proposed an impact model with a change in step, not necessarily a change in slope. The
assumptions are therefore: 1) there has been no systematic increasing or decreasing in the
average incidence rate of surveilled dengue infection during the pre-intervention period, 2)
the application of the intervention will only affect the intervention arm, 3) the effect of the
intervention will not lead to a systematic increasing or decreasing over time in the average
incidence rate of dengue infection during the post-intervention period, but rather a step
change in the average rate.

Simulations

To simulate ITS data, we used only the historical data preceding any deployment of Wol-
bachia, restricting to only the counts from January 2006 until August 2016. Given the moti-
vating proposed trial was a prospective ITS study with a limited post-intervention period, we
examined post-intervention periods of 1, 2, and 3 years each. We considered pre-intervention
periods of 3, 4, 5, 6, and 7 years. This allowed us to examine the tradeoffs in estimation
between more balanced designs (those with shorter pre-intervention periods) and those with
increased series length (those with longer pre-intervention periods). As described in Section
4.2, a negative binomial model was fit to a random consecutive sequence ranging from 6
years to 10 years of historical data. This model was used to simulate the null case, or the
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trend under no intervention effect. An intervention RR respecting an impact model with a
change in step was applied. Simulated intervention effects included RR = 0.2, 0.4, 0.6, 0.8,
1.0 (no effect). Power, bias, and coverage were based on estimation of the intervention effect
in 1,000 simulated datasets for each unique duration and intervention effect combination.

Analyses

In this application, we used the simulated data to determine which modeling techniques may
be most appropriate in an analysis. We considered three popular methods of controlling for
seasonality and secular trends and compared their effects across the simulated datasets.
Specifically, we compared modeling approaches where the f(t) term in Equation 4.3 is spec-
ified as a cubic spline, Fourier terms, and quarterly indicators. Equation 4.4 lists each of
these functions explicitly. The numeric month (e.g. January = 1, December = 12) at time
t is denoted by mt, ck denotes the left boundaries set by knot k, and ω is the inverse of the
period which, in this case, is taken to be 1/12. The model coefficients are represented by γ
in each of these models for simplicity and are not expected to be equivalent across models
in estimation or interpretation.

f(t) =


γ1t+ γ2t

2 +
K∑
k=1

γ1+kI{t ≥ ck}(t− ck)3 spline

γ1 sinωmt + γ2 cosωmt Fourier series

γ1I {mt ∈ {4, 5, 6}}+ γ2I{mt ∈ {7, 8, 9}}+ γ3I{mt ∈ {10, 11, 12}} quarterly

(4.4)
Rather than use the naive estimates of the variance-covariance matrix that are returned

by default by most software, we used the HC3 covariance estimator. This should produce
heteroskedasticity-consistent estimation of the covariance matrix for the model coefficients.

Simulations and analyses were carried out using R version 3.6.2 “Dark and Stormy
Night”.[43] Negative binomial modeling was performed using the “MASS” package.[60] Splines
and harmonic terms were incorporated thanks to R packages “spline” [44] and “tsMod-
els”,[42] respectively. All code necessary to recreate this analysis is available at a GitHub
repository1 managed by the corresponding author.

4.4 Results

Assessing Simulation Model Fit

The historical incidence rate data from the two regions in Yogyakarta, Indonesia is shown
in Figure 4.1. The intervention status of the two regions has been assigned according to
their designations in the prospective quasi-experiment. The Wolbachia intervention has not

1https://github.com/sdufault15/short-variable-its
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yet been applied for the range of data shown. It is difficult to identify a clear pattern or
even seasonality in the historical data when displayed this way. When a smoother is fit
to the grouped monthly data (Figure 4.2) a distinct transmission season begins to appear
with rates increasing after the month of October and decreasing after the month of April.
However, the variability is still quite high and there does not seem to be a clear relationship
in monthly or yearly lags.

A more formal approach to assessing seasonality or secular patterning is through the
use of the autocorrelation function (ACF) and partial autocorrelation function (PACF).
Figure 4.3A displays the autocorrelation in the original data. There does appear to be
autocorrelation up to a lag of 3, but there is no clear evidence of annual seasonality, which
would be indicated by spikes at a lag of 12 months. When carried out properly, the residuals
between the observed data and the model estimates should be normally distributed and free
of autocorrelation. The model-based approach described in Section 4.3 for capturing the
underlying secular trends in the historical data do seem to accomplish this task. The ACF
and PACF of the residuals are plotted in Figure 4.3B. Though there is a small amount of
lingering autocorrelation at a lag of 1, the majority of the autocorrelation has dissipated.
Further, Figures 4.3C and 4.3D demonstrate the distribution of the residuals by time and
marginally, respectively.

Figure 4.1: Observed monthly historical rates of dengue for two regions near Yogyakarta,
Indonesia from January 2006 until July 2016.
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Figure 4.2: Monthly rates of dengue from January 2006 until July 2016 in two regions outside
of Yogyakarta, Indonesia. The blue smooth line represents a linear smoother and its 95%
confidence interval, as fit to the monthly rates.

Comparing Analysis Model Performance

This section contains the results from applying the model-based approach to simulating data
to the example described in Section 4.3. Recall, the objectives in simulating data for this
example included determining a reliable modeling approach for estimating the intervention
effect, determining a minimum length of post-intervention follow-up, and identifying whether
there are benefits to including additional years of pre-intervention data. This is the order in
which we will examine the results.

Power, presented in subsequent tables, was estimated as the proportion of 1,000 simu-
lations that returned a treatment coefficient p-value below the a priori specified cutoff of
α = 0.05. This p-value was estimated based on the adjusted covariance matrix. Table 4.1
displays the power and Type I error rates in testing for a departure from the null of no
intervention effect based on a negative binomial model with harmonic, cubic spline, or quar-
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Figure 4.3: Assessing the quality of the model fit versus the observed historical data. The
model will be used to simulate ITS data. A) The autocorrelation function (ACF) and partial
autocorrelation (PACF) plots for the original data. B) The autocorrelation function (ACF)
and partial autocorrelation (PACF) plots for the model residuals. C) The model residuals
plotted against time. D) The marginal distribution of the model residuals.
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Method

Post-intervention follow-up (years) Harmonic Quarter Spline

1 0.394 0.381 0.039
2 0.074 0.063 0.036Type 1 Error
3 0.006 0.004 0.037

1 0.326 0.319 0.111
2 0.435 0.371 0.180RR = 0.8
3 0.293 0.225 0.260

1 0.594 0.553 0.411
2 0.923 0.886 0.693RR = 0.6
3 0.983 0.962 0.855

1 0.967 0.939 0.832
2 0.999 0.998 0.982RR = 0.4
3 1.000 1.000 1.000

1 1.000 1.000 0.985
2 1.000 1.000 1.000RR = 0.2
3 1.000 1.000 1.000

Table 4.1: Power and Type I error rates in testing for a departure from the null of no
intervention effect based on a negative binomial model with various methods of adjusting for
seasonality and secular trends. All models were GLMs assuming a negative binomial count
distribution and using a log link. To adjust for secular trends, the harmonic model used a
pair of harmonic terms, the quarter model used quarterly indicator variables, and the spline
model used cubic splines with knots at the boundaries of the transmission season. These
results are estimated from 1,000 simulations based on ten years of monthly historical dengue
incidence data.

terly indicator terms to adjust for seasonality. For concision, the pre-intervention length was
fixed at 7-years though the observed trends persisted across the entire range of considered
pre-intervention lengths. Generally, power increases as the duration of follow-up increases
for all models. The harmonic and quarterly indicator models appear to have higher power
for detecting an effect than the spline model, but their Type 1 error is far more variable than
that of the spline model. Particularly, when follow-up is short, the Type 1 error is quite
high.

Coverage, shown in Table 4.2, was estimated based on the proportion of simulations that
returned estimated 95% heteroskedasticity-adjusted confidence intervals that contained the
true intervention effect. This estimation was carried out on the log scale for improvements
in distribution. As the duration of follow-up increases, the coverage tends to improve for
each method. In contrast to power, we now get a clear sense of the superiority of the flexible
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Method

Post-intervention follow-up (years) Harmonic Quarter Spline

1 0.606 0.619 0.961
2 0.926 0.937 0.964RR = 1
3 0.994 0.996 0.963

1 0.661 0.681 0.959
2 0.926 0.939 0.965RR = 0.8
3 0.996 0.998 0.965

1 0.646 0.662 0.961
2 0.912 0.929 0.968RR = 0.6
3 0.995 0.998 0.958

1 0.680 0.688 0.955
2 0.929 0.937 0.956RR = 0.4
3 0.990 0.994 0.953

1 0.730 0.727 0.967
2 0.937 0.945 0.964RR = 0.2
3 0.988 0.988 0.969

Table 4.2: 95% confidence interval coverage rates in estimating the intervention effect based
on a negative binomial model with various methods of adjusting for seasonality and secular
trends. All models were GLMs assuming a negative binomial count distribution and using a
log link. To adjust for secular trends, the harmonic model used a pair of harmonic terms, the
quarter model used quarterly indicator variables, and the spline model used cubic splines
with knots at the boundaries of the transmission season. Confidence interval estimation
relied on heteroskedasticity-adjusted standard errors. These results are estimated from 1,000
simulations based on ten years of monthly historical dengue incidence data.

spline model in estimation of the intervention effect. The coverage for the spline model is
consistently around 95%. The harmonic and quarterly indicator models have far lower, less
consistent coverage by comparison.

Bias, Figure 4.4, is measured as the difference in the estimated intervention effect and the
true intervention effect, taken on the log scale. The spline method consistently hovers around
a difference of zero for all follow-up lengths, with a relatively symmetric distribution around
zero indicating occasional over and under estimation in approximately equal proportion.
The models using harmonic terms and quarterly indicators show deviation from zero bias
when the follow-up is short (i.e. at or under two years). In these settings, these methods
tend to estimate an intervention effect that is smaller than the truth, resulting in an anti-
conservative bias. When there are three years of follow-up, this negative behavior seems to
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Figure 4.4: The bias in estimation of the intervention effect based on a negative binomial
model with various methods of adjusting for seasonality and secular trends. All models
were GLMs assuming a negative binomial count distribution and using a log link. To adjust
for secular trends, the harmonic model used a pair of harmonic terms, the quarter model
used quarterly indicator variables, and the spline model used cubic splines with knots at the
boundaries of the transmission season.

adequately disappear and they seem to outperform the spline model in terms of the variance
of the estimated bias.

Selecting Follow-Up Time

Next, we examine the importance of balance and duration of follow-up for estimation of the
intervention effect. Given the reliable performance of the spline model, these results will
be specific to its performance. Table 4.3 presents the power results for the spline model
across all pre- and post-intervention follow-up times and intervention effects considered in
the simulations. Power was estimated in the manner previously described. Moving row-wise
across Table 4.3 demonstrates how critical the extension of follow-up can be in powering a
study. In particular, for a relatively substantial, though not unreasonable effect size of RR
= 0.6, it is not until there are at least 3 years of follow-up data that the analysis will reach
the desirable threshold of 80% power.

To consider the impact of additional pre-intervention data, one can fix the post-intervention
follow-up and trace the change in power down the columns. In this simulation study, though
adding an additional year of pre-intervention occasionally provides a boost in power, its
effect is not nearly as substantial as that of an additional year of follow-up.

Finally, the impact of balance on power can be examined by moving diagonally from
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right to left across Table 4.3. Power for a fixed trial period (the cumulative pre- and post-
intervention time) is highest when there is balance. For example, consider a study that is
fixed at 6 total years in length. According to these simulations, if the intervention effect
is expected to be RR = 0.6, there is 71.6% power for a trial that divides pre- and post-
intervention periods evenly at 3 years each. When balance shifts so that the pre-intervention
period is 4 years in length and the post-intervention follow-up is an additional 2 years,
power drops to 59.9%. Coverage can be seen in the supplemental materials (Table 4.4) but
remains around 95% for all considered pre- and post-intervention combinations. Bias (Table
4.5) reflects the power trends with added years of pre-intervention data having a minor
impact on de-biasing estimation, but additional years of post-intervention having a more
considerable impact.

4.5 Discussion

This paper explores a flexible parametric model-based approach to simulating highly variable,
short ITS data. This work is particularly relevant for evaluating the efficacy of popular
interventions targeting vector-borne infectious diseases such as dengue. Simulations can
be used to plan a prospective trial as well as identify an appropriate method of analysis.
Hopefully, researchers will continue to develop tools such as these to continue to improve
evidence generation in settings where random experiments may not be feasible or ethical,
but natural experiments do tend to arise.

In order to produce useful simulated data from a parametric model, it is essential that
the model appropriately reflects reality. In the time series literature there are a number of
recommended metrics and visualizations to determine precisely this. We have shown the
results from a few of the most common approaches, but researchers should be thorough
in determining whether their model adequately captures the observed data trends and can
simulate plausible data. This parametric model-based approach is only as useful as its ability
to capture and replicate reality. As is the case with any attempts at power analysis, these
approaches should not be seen as a way to extract proscriptive guidelines, but rather, when
thoughtfully carried out, as one of many sources of insight that can be incorporated to
improve trial design and analysis.

In the application, we find that when historical data is abundant the inclusion of an extra
year of historical data in the pre-intervention period is not nearly as valuable as an extra year
of follow-up data. This result agrees with common intuition around ITS studies. Further,
the example indicates the importance of continuing follow-up until at least two cycles of data
on seasonality and other secular trends have been measured. The inconsistency of the trend
in power for one year of follow-up as pre-intervention data increases from three to seven
years is evidence of the high variability in the data and an inability to observe the effect of
interest long enough to untangle it from external transmission trends.

In the setting where researchers are planning an entirely prospective ITS in which the pre-
intervention data has yet to be collected, balance in the planned pre- and post-intervention
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Post-intervention follow-up (years)

Intervention effect Pre-intervention (years) 1 2 3

3 0.052 0.040 0.042
4 0.048 0.038 0.043
5 0.043 0.038 0.026
6 0.040 0.043 0.033

Type 1 Error

7 0.062 0.031 0.035

3 0.128 0.150 0.189
4 0.106 0.171 0.189
5 0.120 0.153 0.220
6 0.124 0.172 0.259

RR = 0.8

7 0.121 0.180 0.237

3 0.369 0.605 0.716
4 0.374 0.599 0.737
5 0.409 0.674 0.785
6 0.446 0.669 0.819

RR = 0.6

7 0.424 0.680 0.844

3 0.810 0.972 0.991
4 0.820 0.974 0.996
5 0.820 0.984 0.996
6 0.830 0.986 1.000

RR = 0.4

7 0.840 0.988 0.999

3 0.978 1.000 1.000
4 0.976 1.000 1.000
5 0.974 1.000 1.000
6 0.986 1.000 1.000

RR = 0.2

7 0.988 1.000 1.000

Table 4.3: Power and Type I error rates in testing for a departure from the null of no
intervention effect based on a negative binomial model with a log link. The model adjusted
for seasonality via cubic splines with knots at the boundaries of the transmission season and
used heteroskedasticity consistent standard error estimation. These results are estimated
from 1,000 simulations based on ten years of monthly historical dengue incidence data.
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periods produces the most desirable effects in terms of powering the study to detect the
intervention effect. With highly variable outcomes of interest and short windows of trial
length, it is essential to get sufficient data to estimate both the null effect and the intervention
effect well.

Though including additional years of pre-intervention data demonstrated mild improve-
ments in power, there may be settings in which this will not be a desirable approach. One
critical consideration before using extensive historical data in simulating and estimating the
pre-intervention trend is whether the standards and consistency of reporting have remained
constant across the entire range. Additionally, expert knowledge may be useful in identifying
a temporal threshold at which historical data is so temporally distant that it is no longer
relevant to understanding current trends.

One unignorable limitation to this approach for simulating data is that it relies entirely on
access to historical data, particularly a time series that is of an equal or greater length than
the intended study. Sampling rather than forecasting to simulate data attempts to preserve
the variability of the observed data, but bars the possibility of reliable extrapolation beyond
the length of the observed historical time series. Alternatively, simulations based on self-
excitatory spatio-temporal point processes and other individual-based models common in the
mathematical modeling of infectious disease may be useful for generating highly variable,
time series without the reliance on such extensive historical data.[46, 47] One potential
direction is to build off of recent work combining stochastic Susceptible-Infected-Recovered
(SIR) and Susceptible-Exposed-Infected-Recovered (SEIR) models with a finite population
Hawkes model, accounting for absorbing states.[48, 9] In the meantime, the flexible modeling
approach proposed here can be readily implemented by most standard statistical software
and used to simulate data that reflects reality.

There are many additional directions for future work on this topic. First, if using a
parametric model for simulating data, it may be beneficial to use a larger, more flexible
model than is intended for analysis. A limitation of the example analysis is that spline-
based model used for estimation was correctly specified to the model used for simulating the
data. This makes the comparison between the spline, harmonic, and quadratic approaches
slightly artificial in that it likely overestimates the quality of performance of the spline model.
However, determining a larger model for simulating the data should be done with care and
in careful consultation with the set of proposed and plausible impact models.

In the example provided here, we considered a multi-group ITS design where one group
was treated and the other was not. As has been shown elsewhere,[34] controlled ITS designs
strengthen the internal validity by allowing for additional control over external factors. A
complementary approach to strengthening the comparability of the control group is through
the use of synthetic controls. Though not explored here, this innovative reweighting ap-
proach is useful when there may be multiple relevant control groups from which to create a
credible counterfactual for comparison against the treatment group[32] or for identifying an
appropriate control group.[34] The simulation procedure described here could be useful in
comparing the statistical properties of such methods to a standard multigroup ITS analysis.

In the analysis of a multi-group ITS design with many independent groups, one standard
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approach is through the use of mixed effects regression models with random effects for cluster
and fixed effects for time, treatment effect, and other shared covariate effects. In this way, the
models are able to account for within and across cluster variation while still estimating the
common intervention effect. This approach can also account for multiple intervention groups
receiving treatment at different times. The stepped wedge trial is a distinct case of this type
of crossover study, in which all clusters sequentially cross over from untreated to treated over
the study period, typically at regularly scheduled intervals. Rather than randomly assigning
clusters to treatment or control, clusters are randomly assigned a time to crossover. This
study design has an advantage over parallel arm studies when there is high variation at the
cluster level as each cluster can serve as its own treatment counterfactual. However, this
benefit must be balanced against the inevitable threat of temporal confounding. Building on
the work of previous researchers,[25, 18] the simulation procedure described here could be
extended to stepped wedge CRTs for insight into relevant analysis metrics and trial decisions.

4.6 Supplement
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Post-intervention follow-up (years)

Intervention effect Pre-intervention (years) 1 2 3

3 0.955 0.959 0.950
4 0.974 0.953 0.971
5 0.963 0.965 0.974
6 0.955 0.953 0.960

Type 1 Error

7 0.961 0.964 0.963

3 0.958 0.962 0.956
4 0.952 0.969 0.965
5 0.958 0.962 0.947
6 0.959 0.967 0.974

RR = 0.8

7 0.959 0.965 0.965

3 0.968 0.959 0.966
4 0.965 0.970 0.958
5 0.961 0.967 0.968
6 0.954 0.947 0.966

RR = 0.6

7 0.961 0.968 0.958

3 0.950 0.956 0.972
4 0.968 0.961 0.957
5 0.958 0.965 0.956
6 0.965 0.967 0.956

RR = 0.4

7 0.955 0.956 0.953

3 0.956 0.966 0.956
4 0.966 0.968 0.959
5 0.961 0.969 0.968
6 0.954 0.964 0.966

RR = 0.2

7 0.967 0.964 0.969

Table 4.4: Coverage based on 95% confidence intervals around the estimated intervention
effect using a negative binomial model with cubic splines to adjust for seasonality and secular
trends. These results are estimated from 1,000 simulations based on ten years of monthly
historical dengue incidence data.
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Figure 4.5: The bias in estimation of the intervention effect based on a negative binomial
count model with log link. The model used cubic splines with knots at the boundaries of
the transmission season to adjust for seasonality and secular trends.
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Chapter 5

Conclusion

The objective of this dissertation is to develop statistical methods for the analysis of vector-
borne disease preventative techniques wherein the treatment directly targets the vector and
the outcome is epidemiological in nature. The motivating example transinfects the bacterium
Wolbachia into Aedes aegypti mosquitoes, the primary vector of dengue, and as such disrupts
the transmission of dengue. The focus in Chapters 2 and 3 is statistical analysis in the
context of the Cluster-Randomized Test-Negative Design (CR-TND), which was proposed
to combine the randomization benefits of the gold standard cluster randomized trials with
the sampling benefits of the test-negative design. In Chapter 4, we examine simulations
in the context of the interrupted time series (ITS), a strong quasi-experiment and reliable
alternative when the CR-TND is infeasible.

In Chapter 2, we propose two distinct estimators of the intervention effect using cluster-
level counts and an intention-to-treat approach, assuming no interference: 1) the test-positive
fraction estimator, and 2) an aggregate Odds Ratio estimator that is equivalent to the simple
TND estimator examined by Jackson et al.[27] Using permutation-based inferential meth-
ods, these estimators are compared to the standard mixed effects and generalized estimation
equations approaches. In a simple 10 cluster example with small sample size, the GEE
and mixed effects models exhibit well-established poor performance in properly estimating
variance.[38, 41] In contrast, the proposed aggregate Odds Ratio estimator closely approxi-
mates the true permutation variance. In the more extensive simulations regarding 24 clusters
and larger sample sizes, the methods perform similarly, suggesting that 24 clusters may be
sufficient when sample size is large.

Chapter 3 expands on the work in Chapter 2 by considering CRT estimators that only
rely on the case counts. Case count-based analyses are standard practice in the evaluation
of CRTs, where counts are commonly aggregated at the cluster level and a cluster-level
population offset is used to adjust for differences in cluster size. When case ascertainment is
nondifferential by treatment arm, these methods perform well across all metrics considered.
However, when case ascertainment is differential by treatment arm, an example of which may
be differential health-care seeking behavior in an unblinded CRT, these standard approaches
are biased and unreliable. We further show that this bias cannot be resolved by a population
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offset, but can be mitigated when negative controls are used to approximate the underlying
health-care seeking populations. This negative control adjusted estimator is equivalent to
the simple TND[27] and aggregate Odds Ratio estimator proposed in Chapter 2.

Chapter 4 considers the ITS design for the evaluation of infectious diseases with pat-
terns that are highly variable and only surveiled for a short window of time, as is common
in prospective trials. As ITS designs for public health interventions grow in popularity,[5]
research on simulating such data also grows in order to provide guidance in the a priori se-
lection of statistical methods, determine an appropriate follow-up length, and inform other
critical trial decisions. This chapter aims to contribute a flexible parametric modeling ap-
proach for simulating data when extensive, reliable historical data is available. The proposed
simulation approach is applied to a real data example to demonstrate a handful of the many
questions that simulations may help answer in an endemic infectious disease ITS setting.

Future work on this topic includes the development of per-protocol and individual-level
analyses for the CR-TND that can account for interference and individual-level mobility be-
tween clusters of varying intervention and control statuses. Additionally, when the CR-TND
is infeasible, another design receiving considerable attention is the stepped-wedge quasi-
experiment in which each cluster receives the intervention according to a staggered treatment
schedule. Considering the complications in inference estimation when there are few clusters
available for randomization as well as the threats to unbiased point estimates observed by
differential case ascertainment, there is a pressing need for statistical methods that incorpo-
rate negative controls and permutation-based inference for stepped wedge designs. Recent
literature has examined permutation-based inference methods,[29, 61] but the incorporation
of negative controls would be a novel contribution to the growing literature.



63

Bibliography

[1] Katherine L Anders et al. “Cluster-randomized test-negative design trials: a novel and
efficient method to assess the efficacy of community-level dengue interventions”. In:
American Journal of Epidemiology 187.9 (2018), pp. 2021–2028.

[2] Katherine L Anders et al. “The AWED trial (Applying Wolbachia to Eliminate Dengue)
to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue
incidence in Yogyakarta, Indonesia: Study protocol for a cluster randomised controlled
trial”. In: Trials 19.1 (2018), pp. 1–16. issn: 17456215. doi: 10.1186/s13063-018-
2670-z.

[3] Douglas Bates et al. “Fitting Linear Mixed-Effects Models Using lme4”. In: Journal of
Statistical Software 67.1 (2015), pp. 1–48. doi: 10.18637/jss.v067.i01.

[4] Scarlett L Bellamy et al. “Analysis of dichotomous outcome data for community in-
tervention studies”. In: Statistical Methods in Medical Research 9.2 (2000), pp. 135–
159.

[5] James Lopez Bernal, Steven Cummins, and Antonio Gasparrini. “Interrupted time
series regression for the evaluation of public health interventions: a tutorial”. In: In-
ternational Journal of Epidemiology 46.1 (2017), pp. 348–355.

[6] Samir Bhatt et al. “The global distribution and burden of dengue”. In: Nature 496.7446
(2013), pp. 504–507.

[7] Leigh R Bowman, Sarah Donegan, and Philip J McCall. “Is dengue vector control
deficient in effectiveness or evidence?: Systematic review and meta-analysis”. In: PLoS
Neglected Tropical Diseases 10.3 (2016).

[8] Donald Thomas Campbell and Thomas D Cook. Quasi-experimentation: Design &
analysis issues for field settings. Rand McNally College Publishing Company Chicago,
1979.

[9] Adam Chaffee. “Comparative Analysis of SEIR and Hawkes Models for the 2014 West
Africa Ebola Outbreak”. PhD thesis. UCLA, 2017.

[10] Huiying Chua et al. “The use of test-negative controls to monitor vaccine effectiveness”.
In: Epidemiology in press (2019).

[11] J Cornfield. “Randomization by group: a formal analysis”. In: American Journal of
Epidemiology 108.2 (1978), pp. 100–102.



BIBLIOGRAPHY 64

[12] Maricela Cruz, Miriam Bender, and Hernando Ombao. “A robust interrupted time
series model for analyzing complex health care intervention data”. In: Statistics in
Medicine 36.29 (2017), pp. 4660–4676.

[13] Dengue and severe dengue. Mar. 2020. url: https : / / www . who . int / en / news -

room/fact-sheets/detail/dengue-and-severe-dengue.

[14] Heverton Leandro Carneiro Dutra et al. “Wolbachia blocks currently circulating Zika
virus isolates in Brazilian Aedes aegypti mosquitoes”. In: Cell Host & Microbe 19.6
(2016), pp. 771–774.

[15] Jill M Ferdinands et al. “Re:“Invited Commentary: Beware the Test-Negative De-
sign””. In: American Journal of Epidemiology 185.7 (2017), pp. 613–613.

[16] Colin B Fogarty et al. “Randomization inference and sensitivity analysis for composite
null hypotheses with binary outcomes in matched observational studies”. In: Journal
of the American Statistical Association 112.517 (2017), pp. 321–331.

[17] Antonio Gasparrini, Giuseppe Gorini, and Alessandro Barchielli. “On the relationship
between smoking bans and incidence of acute myocardial infarction”. In: European
Journal of Epidemiology 24.10 (2009), pp. 597–602.

[18] Alan J Girling and Karla Hemming. “Statistical efficiency and optimal design for
stepped cluster studies under linear mixed effects models”. In: Statistics in medicine
35.13 (2016), pp. 2149–2166.

[19] M Haber et al. “A probability model for evaluating the bias and precision of influenza
vaccine effectiveness estimates from case-control studies”. In: Epidemiology & Infection
143.7 (2015), pp. 1417–1426.

[20] Margaret A Handley et al. “Selecting and improving quasi-experimental designs in
effectiveness and implementation research”. In: Annual Review of Public Health 39
(2018), pp. 5–25.

[21] Richard J Hayes and S Bennett. “Simple sample size calculation for cluster-randomized
trials”. In: International Journal of Epidemiology 28.2 (1999), pp. 319–326.

[22] Richard J Hayes and Lawrence H Moulton. Cluster Randomised Trials. Second. CRC
Press, 2017.

[23] Kirsten Hilgenboecker et al. “How many species are infected with Wolbachia?–a statis-
tical analysis of current data”. In: FEMS Microbiology Letters 281.2 (2008), pp. 215–
220.

[24] Søren Højsgaard, Ulrich Halekoh, and Jun Yan. “The R Package geepack for Gener-
alized Estimating Equations”. In: Journal of Statistical Software 15/2 (2006), pp. 1–
11.

[25] Michael A Hussey and James P Hughes. “Design and analysis of stepped wedge cluster
randomized trials”. In: Contemporary Clinical Trials 28.2 (2007), pp. 182–191.



BIBLIOGRAPHY 65

[26] Citra Indriani et al. “Reduced dengue incidence following deployments of Wolbachia-
infected Aedes aegypti in Yogyakarta, Indonesia”. In: Lancet Global Health (submitted).

[27] Michael L Jackson and Jennifer C Nelson. “The test-negative design for estimating
influenza vaccine effectiveness”. In: Vaccine 31.17 (2013), pp. 2165–2168.

[28] Nicholas P Jewell et al. “Analysis of cluster-randomized test-negative designs: cluster-
level methods”. In: Biostatistics 20.2 (2019), pp. 332–346.

[29] Xinyao Ji et al. “Randomization inference for stepped-wedge cluster-randomized tri-
als: an application to community-based health insurance”. In: The Annals of Applied
Statistics 11.1 (2017), pp. 1–20.

[30] Karyn N Johnson. “The impact of Wolbachia on virus infection in mosquitoes”. In:
Viruses 7.11 (2015), pp. 5705–5717. issn: 19994915. doi: 10.3390/v7112903.

[31] Luke Keele, Dylan Small, and Richard Grieve. “Randomization-based instrumental
variables methods for binary outcomes with an application to the fffdfffdfffdIMPROV-
Efffdfffdfffdtrial”. In: Journal of the Royal Statistical Society: Series A (Statistics in
Society) 180.2 (2017), pp. 569–586.

[32] Ariel Linden. “Combining synthetic controls and interrupted time series analysis to
improve causal inference in program evaluation”. In: Journal of Evaluation in Clinical
Practice 24.2 (2018), pp. 447–453. issn: 13652753. doi: 10.1111/jep.12882.

[33] Marc Lipsitch, Eric Tchetgen Tchetgen, and T Cohen. “Negative controls: a tool for
detcting confounding and bias in observational studies”. In: Epidemiology 21.3 (2010),
pp. 383–388.

[34] James Lopez Bernal, Steven Cummins, and Antonio Gasparrini. “The use of controls in
interrupted time series studies of public health interventions”. In: International journal
of epidemiology 47.6 (2018), pp. 2082–2093.

[35] John M Marshall and Omar S Akbari. Gene Drive Strategies for Population Replace-
ment. Elsevier Inc., 2015, pp. 169–200. isbn: 9780128004050. doi: 10.1016/B978-0-
12-800246-9.00009-0. url: http://dx.doi.org/10.1016/B978-0-12-800246-
9.00009-0.

[36] Daniel McNeish and Laura M Stapleton. “Modeling clustered data with very few clus-
ters”. In: Multivariate Behavioral Research 51.4 (2016), pp. 495–518.

[37] Ai Milojevic et al. “Health effects of flooding in rural Bangladesh”. In: Epidemiology
(2012), pp. 107–115.

[38] Jorge G Morel, MC Bokossa, and Nagaraj K Neerchal. “Small sample correction for
the variance of GEE estimators”. In: Biometrical Journal: Journal of Mathematical
Methods in Biosciences 45.4 (2003), pp. 395–409.



BIBLIOGRAPHY 66

[39] Kevin Mortimer et al. “A cleaner burning biomass-fuelled cookstove intervention to
prevent pneumonia in children under 5 years old in rural Malawi (the Cooking and
Pneumonia Study): a cluster randomised controlled trial”. In: The Lancet 389.10065
(2017), pp. 167–175.

[40] Mosquito-borne diseases. url: https://www.who.int/neglected_diseases/vector_
ecology/mosquito-borne-diseases/.

[41] Wei Pan and Melanie M Wall. “Small-sample adjustments in using the sandwich vari-
ance estimator in generalized estimating equations”. In: Statistics in Medicine 21.10
(2002), pp. 1429–1441.

[42] Roger D Peng and with contributions from Aidan McDermott. tsModel: Time Series
Modeling for Air Pollution and Health. R package version 0.6. 2013. url: https:

//CRAN.R-project.org/package=tsModel.

[43] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing. Vienna, Austria, 2019. url: https://www.R-project.
org/.

[44] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing. Vienna, Austria, 2019. url: https://www.R-project.
org/.

[45] Stephanie M Rainey et al. “Understanding the Wolbachia-mediated inhibition of ar-
boviruses in mosquitoes: progress and challenges”. In: Journal of General Virology 95.3
(2014), pp. 517–530.

[46] Alex Reinhart et al. “A review of self-exciting spatio-temporal point processes and
their applications”. In: Statistical Science 33.3 (2018), pp. 299–318.

[47] Alex Reinhart et al. “Rejoinder: A review of self-exciting spatio-temporal point pro-
cesses and their applications”. In: Statistical Science 33.3 (2018), pp. 330–333.

[48] Marian-Andrei Rizoiu et al. “SIR-Hawkes: linking epidemic models and Hawkes pro-
cesses to model diffusions in finite populations”. In: Proceedings of the 2018 World
Wide Web Conference. 2018, pp. 419–428.

[49] Franklin E Satterthwaite. “An approximate distribution of estimates of variance com-
ponents”. In: Biometrics Bulletin 2.6 (1946), pp. 110–114.

[50] Donald S Shepard, Eduardo A Undurraga, and Yara A Halasa. “Economic and disease
burden of dengue in Southeast Asia”. In: PLoS neglected tropical diseases 7.2 (2013).

[51] Donald S Shepard et al. “Economic impact of dengue illness in the Americas”. In: The
American journal of tropical medicine and hygiene 84.2 (2011), pp. 200–207.

[52] Cameron P Simmons et al. “Dengue”. In: New England Journal of Medicine 366.15
(2012), pp. 1423–1432.



BIBLIOGRAPHY 67

[53] DM Skowronski et al. “Effectiveness of vaccine against medical consultation due to
laboratory-confirmed influenza: results from a sentinel physician pilot project in British
Columbia, 2004–2005”. In: Canada Communicable Disease Report 31.18 (2005), pp. 181–
91.

[54] Dylan S Small, Thomas R Ten Have, and Paul R Rosenbaum. “Randomization infer-
ence in a group–randomized trial of treatments for depression: covariate adjustment,
noncompliance, and quantile effects”. In: Journal of the American Statistical Associa-
tion 103.481 (2008), pp. 271–279.

[55] Rebecca Steinbach et al. “The effect of reduced street lighting on road casualties and
crime in England and Wales: controlled interrupted time series analysis”. In: Journal
of Epidemiology and Community Health 69.11 (2015), pp. 1118–1124.

[56] Sheldon Paul Stone et al. “Evaluation of the national Cleanyourhands campaign to re-
duce Staphylococcus aureus bacteraemia and Clostridium difficile infection in hospitals
in England and Wales by improved hand hygiene: four year, prospective, ecological,
interrupted time series study”. In: BMJ 344 (2012).

[57] Sheena G Sullivan, Shuo Feng, and Benjamin J Cowling. “Influenza vaccine effective-
ness: potential of the test-negative design. A systematic review”. In: Expert Review of
Vaccines 13.12 (2014), p. 1571.

[58] Sheena G Sullivan, Eric J Tchetgen Tchetgen, and Benjamin J Cowling. “Theoretical
basis of the test-negative study design for assessment of influenza vaccine effectiveness”.
In: American Journal of Epidemiology 184.5 (2016), pp. 345–353.

[59] SM Tam. “On covariance in finite population sampling”. In: The Statistician (1985),
pp. 429–433.

[60] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Fourth. ISBN
0-387-95457-0. New York: Springer, 2002. url: http://www.stats.ox.ac.uk/pub/
MASS4.

[61] Rui Wang and Victor De Gruttola. “The use of permutation tests for the analysis of
parallel and stepped-wedge cluster-randomized trials”. In: Statistics in Medicine 36.18
(2017), pp. 2831–2843.

[62] Bernard L Welch. “The generalization of student’s’ problem when several different
population variances are involved”. In: Biometrika 34.1/2 (1947), pp. 28–35.

[63] Bernard L Welch. “The significance of the difference between two means when the
population variances are unequal”. In: Biometrika 29.3/4 (1938), pp. 350–362.

[64] Daniel Westreich and Michael G Hudgens. “Invited commentary: beware the test-
negative design”. In: American Journal of Epidemiology 184.5 (2016), pp. 354–356.

[65] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York, 2016. isbn: 978-3-319-24277-4. url: https://ggplot2.tidyverse.org.



BIBLIOGRAPHY 68

[66] Anne L Wilson et al. “Evidence-based vector control? Improving the quality of vector
control trials”. In: Trends in Parasitology 31.8 (2015), pp. 380–390.

[67] Jun Yan. “geepack: Yet Another Package for Generalized Estimating Equations”. In:
R-News 2/3 (2002), pp. 12–14.

[68] Jun Yan and Jason P Fine. “Estimating Equations for Association Structures”. In:
Statistics in Medicine 23 (2004), pp. 859–880.

[69] Fang Zhang, Anita K Wagner, and Dennis Ross-Degnan. “Simulation-based power cal-
culation for designing interrupted time series analyses of health policy interventions”.
In: Journal of Clinical Epidemiology 64.11 (2011), pp. 1252–1261.




