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Abstract  

To further understand the neural basis of conscious experience, we employ cutting edge machine 

learning techniques to home in on neural activity that correlates with specific conscious content or 

specific information that becomes accessible to awareness (e.g., the experience of pain, the color 

blue). In the context of differing views regarding the functional localization and neural 

underpinnings of the neural correlates of consciousness, we narrow the focus of disagreement to 

testable theoretical predictions concerning the timing of conscious visual  representational content. 

Our findings are consistent with theories that propose a late electrophysiological correlate of visual 

awareness.  
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I. Introduction 

Over the last several decades new methodological and modeling techniques have 

contributed to progress in isolating the notoriously elusive neural correlates of consciousness 

(NCC). NCC is a term coined by Christof Koch and is defined as the “minimal set of neuronal 

events and mechanisms jointly sufficient for a specific conscious percept” (Crick & Koch, 1990). 

When investigating the neural basis of consciousness, it is important to make the common-sense 

distinction between two different aspects of consciousness: 1) conscious states – referring to the 

level of consciousness or wakefulness (ranging from coma to sleep to the waking state), and 2) 

conscious contents – referring to specific (pieces of) information that become accessible to 

awareness. In this dissertation, we focus on the latter characterization of the NCC. For example, 

neurons that respond to vertical stimuli if and only if a monkey reports awareness of a vertical 

orientation during a binocular rivalry task is one such case of isolating the representational contents 

of the neural systems that correspond with awareness (Logothetis & Schall, 1989). Here we 

embark on the nontrivial task of determining how neural activity in humans differs for the 

informational content that are aware of versus the informational content that we are not aware of. 

Recently, EEG and MEG experiments have employed multivariate decoding techniques to 

examine putative NCCs (King, Pescetelli, & Dehaene, 2016; Salti et al., 2015). The combination 

of these techniques provides a powerful tool for investigating the temporal dynamics of 

representational content in the visual processing stream as it pertains to the content of conscious 

experience. To further understand the nature of conscious visual perception, Chapter I uses 

psychophysics and EEG decoding to track the evolution of visual representations over time, 

focusing on the idea that our conscious perception of orientation is largely invariant over wide 

variations in luminance contrast, even though neural activity in early visual cortex is highly 
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contrast-dependent. If the conscious perception of orientation is not influenced by contrast, but a 

given neural signal is, then that signal does not seem like a plausible NCC. 

Experiment 1 of Chapter I uses psychophysics to quantify the representational precision of 

low- and high-contrast oriented stimuli. Experiment 2 examines the neural underpinnings of 

contrast-invariant orientation perception with EEG decoding, focusing on how contrast invariance 

evolves over time. Since previous research has shown a correspondence between layers of a deep 

convolutional neural network (CNN) and the human visual processing stream, we used 

representational similarity analysis link the EEG data to a CNN, making it possible to more closely 

examine the progression of contrast invariance. Furthermore, since similarities have been found 

between units in a CNN network and single neurons for orientation tuning, Experiment 3 examines 

the potential mechanism of contrast invariance within the CNN architecture itself.  

To further understand the time course of conscious perception, Chapter II uses ERP 

decoding methods to decode perceived and nonperceived orientation information during 

binocular-rivalry. We compare decoding accuracy of contents reported in the perceptually 

dominant eye (conscious information content) with content in the non-dominant eye (unconscious 

information content). We test two major theories of consciousness that make differing predictions 

about when awareness occurs in the visual processing hierarchy. Global Workspace Theory 

predicts a difference in conscious and unconscious processing would occur at ~300 ms after 

stimulus onset, alternatively, the view that an earlier electrophysiological correlate of visual 

awareness reflects conscious perception (e.g., Visual Awareness Negativity) predicts that the 

difference in conscious and unconscious processing occurs at ~200 ms. 
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II. 

 

Chapter I: ERP Decoding of Low-and-High-Contrast Orientations: 

Implications for Contrast-Independent Perception 

 
Abstract 

Even though neurons in early visual areas respond in a contrast-dependent manner, we can 

consciously perceive the form of a stimulus even at relatively low contrast. To test the hypothesis 

that the precision of these high-level conscious representations remains relatively constant at low 

levels of contrast, we conducted two experiments. The first was a psychophysical experiment to 

demonstrate that at low contrast people could have a precise representation of the orientation of a 

teardrop shape. Teardrop-shaped stimuli were presented as dark stimuli on a grey background. The 

teardrop ranged from black (80.5% contrast) to only slightly darker than the background (1% 

contrast). Participants were instructed to remember the orientation of the teardrop and to reproduce 

it after a 1500 ms delay. We found that as the contrast level was reduced, the precision was 

unaffected, although at the lowest contrast we saw an increase in the guess rate. We then performed 

an ERP decoding experiment where we examined the ability to decode the orientation of the 

teardrop from the scalp distribution of the ERP at each moment in time following the onset of the 

stimulus. This task was similar to the behavioral task, but only two contrast levels were used. This 

experiment allowed us to test the hypothesis that early sensory activity would be reduced and 

therefore undecodable at low contrast, whereas later, higher-level (presumably conscious) 

processing would be decodable in both high and low contrast conditions. Results were consistent 

with our hypothesis, showing that during the early sensory period (~50-150 ms) decoding accuracy 

was much greater for high contrast than low contrast. By 200 ms, decoding accuracy was nearly 

as great for low contrast stimuli as for high contrast stimuli. We also used representational 

similarity analysis to examine the link between the neural signal at each time point and the 
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individual layers of a deep convolutional neural network (CNN) that models the human ventral 

processing stream. The hypothesis was that activation in early layers of the model would show 

representational similarity with the EEG data in the high contrast condition compared with the low 

contrast condition. The results trended in that direction but were not significant. A third experiment 

examined the CNN itself, finding that the responses of single units were less contrast-dependent 

in the higher layers of the model. These findings suggest that early visual areas are not encoding 

the conscious perception of orientation, but awareness instead requires extended processing over 

time to extract a largely contrast independent perception of orientation. 

 

Introduction 

Decades of research on the ventral object processing pathway has revealed a cascade of 

neurons coding increasingly complex features. Early areas of this hierarchy code basic visual 

features such as luminance, color and orientation, whereas higher level areas code categories, 

objects and abstract forms (Malach et al., 2002; Riesenhuber & Poggio, 1999). A key 

computational goal of this pathway is to code the shape of an object independently of its other 

features, such as its location, direction of motion, and color. For example, neurons in V1 are 

highly sensitive to an object’s retinotopic location, whereas neurons in inferotemporal cortex 

have large receptive fields that allow them to respond in a largely location-independent manner 

(Gross & Mishkin, 1977). Although the ability to code the shape of an object independently of its 

location is well understood, the ability to code shape independently of contrast is not.   
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Figure 1 illustrates that increasing the contrast of a 

stimulus leads to a multiplicative increase in the responses 

of orientation-selective cells in early visual cortex. That is, 

the effect of contrast is small for nonpreferred orientations 

and large for preferred orientations. As a result, the firing 

rate of a given neuron is ambiguous: different combinations 

of contrast and orientation lead to the same firing rate. More specifically, Figure 1 shows the 

orientation tuning curves of a neuron (from single unit recordings in macaques), which was 

measured using a stimulus that varied in contrast. The empty circles are 10% contrast and the 

filled circles are 80% contrast. If we cut a line across the Y axis, we see that there is some 

ambiguity as to which orientation is present, because you can get exactly 

the same firing rate for a nonpreferred orientation at high contrast and a 

preferred orientation at low contrast (red circles). In our everyday 

subjective experience though, our conscious perception separates the 

contrast of a stimulus from its shape (as long as the contrast is modestly 

above threshold). For example, as illustrated in Figure 2, when we see a stimulus such as the 

word “CONTRAST”  at different contrasts, we can clearly identify each letter whether it is 

presented at low or high contrast, while separately perceiving that any given letter looks gray 

(low contrast) or black (high contrast). In other words, whereas contrast is multiplicatively 

combined with other features (like orientation) in early visual areas (i.e., for any given neuron it 

is difficult to know what is happening), the information across the whole population is obviously 

there in order for us to have the conscious perception of both shape and contrast. So presumably 

there is a transition process which takes the information at the population level and then enables 

Figure 1. Orientation tuning curves of a neuron from 

single unit recordings in macaques measuring a 

stimulus that varied in contrast. Empty circles are 

10% contrast and filled circles are 80% contrast. 

Figure 2. Each letter is identifiable 
whether presented at low or high 
contrast, while separately perceiving 
that any given letter looks gray (low 
contrast) or black (high contrast). 
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us to perceive shapes largely independently of contrast, where we can identify both the letter 

identities and whether they look grey or black. In this way, conscious perception is able to 

separate the shape of an object from its contrast – it is subjectively contrast invariant.  

In the present study, we examined this 

‘subjective contrast invariance’ behaviorally 

by presenting teardrop-shaped stimuli as dark 

stimuli on a grey background (Figure 3). The 

teardrop stimulus was presented on a grey 

background at one of four luminance contrast 

values. A black teardrop at 80.5% contrast was 

the darkest stimulus, while the other three 

stimuli were only slightly darker than the background at 2%, 1%, and 0.03% contrast. The 

teardrop was presented randomly at one of sixteen discrete orientations, and participants were 

instructed to remember the orientation of the teardrop and to reproduce it after a 1500 ms delay.  

We hypothesized that if the perception of the shape of an object is independent of the 

contrast, assuming it is supraliminal, subjects are able to have a fully precise representation of 

the stimuli even when measured in working memory. We further tested this hypothesis using 

ERP decoding, which allowed us to examine the neural activity during the processing of the 

stimulus, instead of long after the stimulus is gone.  

Some research has already explored the transition from contrast-dependent to contrast-

independent coding in the primate visual system (Alitto & Usrey, 2004; Anderson, 2000; Avidan 

et al., 2002; Cheng et al., 1994; Reynolds & Chelazzi, 2004; Rolls & Baylis, 1986; Skottun et al., 

1987). For example, single-cell recordings in monkeys found that the responses of face-selective 

Delay: 500ms

Target: 200ms

Delay: 1300ms

Response

Figure 3. Schematic of task. A teardrop stimulus was presented on a grey 

background at one of four luminance contrast values: 80.5%, 2%, 1%, 

and 0.03% contrast. Participants were instructed to remember the 
orientation of the teardrop and to reproduce it after a 300 ms delay. 
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neurons in the superior temporal sulcus were relatively invariant with respect to the contrast of 

the face (Reynolds & Chelazzi, 2004; Rolls & Baylis, 1986). Human fMRI research has also 

found that neural responses to objects and faces became increasingly contrast invariant at higher 

levels of the ventral stream (Avidan et al., 2002). Research and applications in image processing 

and computer vision have also endeavored to find a solution to the problem of contrast 

invariance (Monasse, 1999; Monasse & Guichard, 2000; Ohayon et al., 2012; Xia et al., 2010).  

In the present study, we took advantage of powerful pattern classification methods which 

make it possible to decode detailed, content-specific visual representations using scalp EEG 

recordings. Unlike fMRI, where the BOLD signal is a sluggish and secondary consequence of 

neural activity, EEG has the advantage of directly reflecting the extracellular voltage fields 

produced by neurotransmission in real time (Buzsáki et al., 2012). Recent EEG decoding studies 

have successfully decoded low-level features along continuous dimensions (e.g., orientation, 

motion), and high level categorical representations (e.g., faces, words; Bae & Luck, 2018). These 

powerful multivariate analysis techniques make it possible to track and decode the evolution of 

mental representations along the visual processing hierarchy with precise temporal resolution. In 

the present study, we took advantage of these decoding methods to examine the evolution of 

contrast-dependent coding of orientation and later, contrast-independent coding over time.  We 

hypothesized that the initial brain response would be contrast-dependent, but later in the 

processing hierarchy, later in time, there would be evidence for a contrast-independent 

representation.  

Previous research has shown a hierarchical correspondence between the layers of deep 

convolutional neural network networks (CNN) and the human visual processing stream (Cichy et 

al., 2016; Mohsenzadeh et al., 2020). Specifically, these studies showed that early layers of the 
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network map onto low level visual areas whereas later layers of the network map onto higher-

level visual areas. Therefore, to further examine the flow of information in the visual processing 

hierarchy, or the progression of contrast invariance in an artificial model, we linked the EEG 

data to a CNN (Alexnet) using representational similarity analysis. We tested the hypothesis that 

activation in early layers of the model would show greater representational similarity with the 

EEG data in the high contrast condition than in the low contrast condition, an effect that would 

disappear in latter layers. Furthermore, because similarities have been found between units in a 

CNN network and single neurons for orientation tuning, we examined the potential mechanism 

of contrast invariance in this highly simplified CNN architecture by feeding our teardrop stimuli 

at varying contrast levels into the CNN and examining how the activation values of the units 

varied as a function of contrast (much as classical electrophysiological research examined how 

single-unit activity varied as a function of contrast).  

 

Experiment 1: Psychophysics 

Participants 

University of California, Davis students (n = 18, median age = 21, male = 7, female = 11) 

received monetary compensation for their participation. All participants reported normal or 

corrected-to-normal vision and no neurological disorders. The experimental protocol was 

approved by the University of California-Davis Institutional Review Board, and informed 

consent was obtained before each session. 

Stimuli & Procedure 

The stimuli and task are illustrated in Figure 3, and were adapted from Bae and Luck 

(2018). All stimuli were generated in Matlab (MathWorks) using PsychToolbox (Brainard, 1997; 
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Pelli, 1997). Stimuli were presented on a 60 Hz LCD monitor (Dell U2412M) at a viewing 

distance of 100 cm. A black fixation dot was presented throughout the trial, except during the 

response interval. Each trial began with the fixation dot (500 ms), followed by a teardrop shaped 

stimulus (200 ms; 2.17º long, 0.8º wide) centered on the fixation dot. The teardrop offset was 

followed by a blank delay period (1300 ms). Sixteen discrete teardrop orientations were 

randomly presented with equal probability (0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°, 180°, 

202.5°, 225°, 247.5°, 270°, 292.5°, 315°, and 337.5°). Participants were instructed to remember 

the orientation of the teardrop over the delay period. After the delay period, a response ring was 

presented (radius 2.17°) and once participants moved the mouse, a sample teardrop appeared in 

the center of the ring. The orientation of the sample teardrop during the response period 

corresponded to the current position of the mouse. Participants used the mouse to rotate the tip of 

the teardrop to a position which corresponded to the orientation of the target teardrop, and they 

clicked the mouse to finalize their response. The response was followed by an intertrial interval 

(1000 ms). Participants completed 16 practice trials before the critical trials. Critical trials 

consisted of  640 trials (40 trials x16 orientations) in random order. In Experiment 1, the teardrop 

stimulus was presented on a grey background (25 cd/m2) at one of four luminance contrast 

values. A black teardrop at 80.5% contrast (2.7 cd/m2) was the darkest stimulus, while the other 

three stimuli were only slightly darker than the background at 2% (23.6 cd/m2), 1% (24 cd/m2), 

and 0.03% (24.5 cd/m2) contrast. Contrast is given in Michelson units, CM = (Lmax - Lmin) / 

(Lmax + Lmin).  

 

Results and Discussion 
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Experiment 1 Behavioral Data. Participants’ mean time to report the orientation of the 

teardrop (via the mouse button) was 1191 ms (single trial range was 334-3053 ms; subtracting 

the fastest and slowest 2.5% of trials). Performance was assessed by response error, i.e., the 

angular difference between the target orientation and the reported orientation. We fit a mixture 

model, which characterizes the response errors as a mixture of 1) a von Mises distribution 

centered at 0 error (perfect memory of orientation), and 2) a uniform distribution (random 

guesses). This yields a precision parameter (kappa) from the von Mises distribution, and a guess 

parameter (pmem), denoting the probability of a random guess, from the uniform distribution.  

Probability distributions of response errors collapsed across all participants as a function 

of contrast are summarized in Figure 4a. Precision (kappa) was largely constant across contrast 

levels, but the probability of a random guess increased (leading to a lower pmem) at the lowest 

contrast (Figure 4b). 

A one-way ANOVA with a factor of contrast (80.5%, 2%, 1%, 0.03%) was performed 

separately for kappa and pmem. A significant effect of contrast was observed for the guess rate 

parameter (pmem), F(1,18) = 5.36, p = 0.02, but not for the precision parameter (kappa), F(1,18) 

= 0.01, p = . 0.95. Bonferroni post hoc tests revealed that the guess rate for the lowest contrast 

value (M = 0.30, SD = .06) was significantly different from the other three, respectively.  

These results show that, at least for the teardrop shapes used in the present study, 

reducing the contrast does not impact the precision of the representation of an object’s 

orientation (a key aspect of its shape). Instead, reducing the contrast to very low levels led to an 

all-or-none failure, producing random guesses. These results are consistent with the hypothesis 

that shape processing is largely contrast-independent until the contrast gets so low that the shape 

is not consciously perceived at all. 
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Figure 4a. Probability distribution of response errors collapsed across all participants at four different luminance contrast values. Teardrop-shaped stimuli were presented on a 

dark stimuli on a grey background. One stimulus was black, 80.49% contrast, while the other three stimuli were only slightly darker than the background, 2%, 1%, 0.03% contrast. 

Figure 4b. Parameter estimates of a two component mixture model. Mean kappa (left) represents precision of the von-Mises distribution, while the guess rate, or 1- Pmem 

parameter, represents the all-or-none access to awareness (right).  

 

 

Experiment 2: EEG 

General Method 

Participants 

University of California, Davis students (n = 22, median age = 22, male = 9, female = 13) 

received monetary compensation for their participation. All participants reported normal or 

corrected-to-normal vision and no neurological disorders. The experimental protocol was 

approved by the University of California-Davis Institutional Review Board, and informed 

consent was obtained before each session. 

Stimuli & Procedure 

The task and stimuli in Experiment 2 were identical to those in Experiment 1 except for 

two changes designed to facilitate ERP analyses: 1) only two contrast values were use (80.5% = 

2.7 cd/m2 and 1% = 24 cd/m2), and 2) participants were probed to respond on a random 10% of 
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trials instead of reporting on every trial. Both of these changes were designed to allow more 

trials to be collected for each condition. In addition, the number of trials for each combination of 

contrast and orientation was increased (40 trials for each of the 2 x 16 combinations). 

EEG Recording and Preprocessing 

Continuous EEG was recorded from 32 electrodes using a Brain Products ActiCHamp 

system (Brain Products GmbH). Recordings were obtained from the following scalp electrode 

sites: FP1, FP2, F3, F4, F7, F8, C3, C4, P3, P4, P5, P6, P7, P8, P9, P10, PO3, PO4, PO7, PO8, 

O1, O2, Fz, Cz, Pz, POz, and Oz. Electrodes were also placed on the right and left mastoid to be 

used as references, and additional electrodes were placed adjacent to the right and left eye and 

beneath the right eye to record vertical and horizontal electro-oculogram (EOG) signals. These 

signals were filtered online with a cascaded integrator-comb antialiasing filter (half-power cutoff 

at 130 Hz) and digitized at 500 Hz. Impedances were <10 kΩ for the scalp electrodes and <20 

kΩ for the EOG electrodes.  

 Offline analysis was performed using EEGLAB (Delorme & Makeig, 2004) and 

ERPLAB  (Lopez-Calderon & Luck, 2014). All channels were re-referenced offline to the 

average of the mastoids. Data were band-pass filtered from 0.1 to 80 Hz and resampled at 250 

Hz. EEG data during the intertrial intervals were removed. Independent component analysis 

(ICA) was use to correct for eye blinks and eye movements. Previous research has shown ICA 

eliminates ocular artifacts so that these artifacts do not influence the decoding analyses (Bae & 

Luck, 2018). To extract the ERPs, stimulus-locked epochs were extracted from –500 to 1500 ms 

relative to stimulus onset  and baseline corrected from -500 ms to 0 ms. The epochs for each 

combination of contrast and orientation were then averaged together. 
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Analyses 

Below is a brief description of analyses detailed in Bae and Luck, 2018. Additional 

information on the analysis technique and procedure can be found in this previous published 

manuscript.  

Decoding Analysis 

For decoding purposes, each epoch was low-pass filtered at 20 Hz and resampled at 100 

Hz (one data point per 10 ms) prior to decoding. This resulted in a 4 dimensional matrix for each 

participant: timepoints (100) x orientations (16) x trials (~40) x electrode sites (27). Support 

vector machines (SVMs) and error-correcting output codes (ECOCs; Dietterich et al., 1995) were 

used to  classify orientation based on the distribution of the ERP signal over the 27 scalp 

electrodes sites (collapsed across the current – trial teardrop orientation). 

Data were decoded independently at 200 time points from -500 – 1480 ms. The decoding 

procedure used threefold crossvalidation, iterated 100 times. Therefore the data were divided into 

three separate training (2) and test (1) sets, resulting in three groups of 13 trials for each of the 16 

orientations (3 groups x 16 orientations x 27 electrodes) at each time point. To improve signal-to-

noise ratio, the 13 trials were averaged per group for each orientation, resulting in 3 ERP 

waveforms, and decoding analyses were implemented on these averages (not single trials; see 

Bae & Luck, 2018). 

A separate classifier (16 SVMs) was trained to discriminate between each orientation and 

the other 15 orientations (one vs. all). When classifying orientation in the test set, decoders were 

combined to create a single decision about the most likely (predicted) orientation for a given 

(test) case. Decoding accuracy was calculated for the average of the set of trials for each 

orientation, and was only considered correct when the classifier could pick the correct orientation 
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out of the sixteen possibilities (chance is .0625 or 1/16). This procedure was repeated 3 times at 

each time point with each group of data serving as the test data. This operation was then iterated 

100 times, shuffling the trials before each iteration. Decoding accuracy was then collapsed across 

orientations (16), crossvalidations (3), and iterations (100) to produce a percentage decoding 

accuracy at each time point. We separately decoded the orientation of the stimuli at each contrast 

level.  

Statistical Analysis of Decoding Accuracy 

To test whether the decoding accuracy was greater than chance (.0625), we calculated 

one-sample t -tests at each individual time point during the 0–1500 ms epoch. Below-chance 

decoding accuracy is meaningless in this context so a one-tailed test was used at each time point. 

To control for multiple comparisons, we used a false discovery rate (FDR) correction (Benjamini 

& Yekutieli, 2001). FDR correction allows us to identify with reasonable confidence as many 

significant points as possible while preserving a low false positive rate. Unlike familywise error 

rate correction procedures like Bonferroni, which controls the probability of at least one Type 1 

error, FDR has less strict control over Type I errors (i.e., of points that are still significant after 

correction only 5% of them we would expect to be spurious).  

RSA & Convolutional Neural Network Model Procedure 

In an effort to investigate the correspondence between the layers of a deep convolutional 

neural network and the human visual processing stream, we linked EEG data to a convolutional 

neural network (CNN) model using representational similarity analysis. Since there is no strict 

isomorphism between brain data and computational models, representational similarity analysis 

(RSA) allows us to abstract away from activity patterns in a particular modality (e.g., fMRI, 

scalp electrophysiology) and to compare the geometrical structure of the representations ( e.g., 
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not the pattern of activation itself; Kriegeskorte et al., 2008). In the current study, we used RSA 

to compare how brain activity during high and low contrast condition related to different layers 

of a convolutional neural network.  

First, we computed the representational similarity matrices (RSM) for the EEG data, 

which quantified the similarity between the scalp topography for the 16 different orientations. 

RSMs were computed for every subject for every timepoint by correlating the scalp topography 

for all 16 different orientations. This left us with a 16x16 (orientation) RSM at each of the 500 

time points for each of the 22 subjects.  

Second, we used Alexnet (Krizhevsky et al., 2012) as our neural network model of the 

visual system. This model was inspired by the human ventral visual pathway, wherein as 

information flows through the ventral stream, receptive fields integrate visual information over 

larger and larger receptive fields as response properties become more complex layer by layer. 

The model consists of 12 purely feedforward layers: 5 convolutional layers and 3 pooling layers, 

followed by 3 fully connected layers. In this study, we trained Alexnet on Imagenet to recognize 

objects (Deng et al., 2009) and then fed in all 16 different orientations into the CNN with both 

low and high contrast stimuli. For each orientation we then obtained the activation values from 

the rectified linear activation (ReLU) function for each unit of the CNN at each layer, so for each 

of the 12 layers we had different activations for every orientation for both low and high contrast, 

producing 12 16x16 RSMs for both low and high contrast.  

Once the EEG and model data were in the same units (i.e., RSMs), we could determine 

the relationship between the two different representational spaces. Because the relationship 

between the two different measurement spaces may not be linear, we used a Spearman Rank 

correlation between each subject’s EEG RSMs (at each timepoint) and each of the convolutional 
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layer RSMs, giving us 22 (subject) correlation values at each of the 12 layers for each of the 500 

time points. In this way, we could assess the strength of the relationship between each 

representational space, wherein greater similarity in the representational geometry between the 

brain data and the model yields greater correlational strength. This enabled us to see which layers 

of the visual processing hierarchy in the model corresponded to the information represented in 

the brain data. For a more detailed version of the methods see Kiat and Luck, 2020 (Kiat et al., 

2020). 

 

Results 

Experiment 2 Behavioral Data  

Participants’ mean time to report the orientation of the teardrop (via the mouse button) 

was 2200 ms (single trial range was 600-7500 ms after subtracting the fastest and slowest 2.5% 

of trials). The behavioral data for Experiment 2 were just like those in Experiment except 1) two 

contrast values were use (80.5%, 1%), and 2) participants were probed to respond on 10% of 

trials instead of reporting on every trial. Probability distributions of response errors collapsed 

across all participants as a function of contrast are summarized in Figure 5a. Figure 5b provides 

the parameter estimates from the mixture model. 

A one-way ANOVA on each parameter revealed no significant differences between 

contrast level for either the guess parameter (pmem), F(1,18) = 0.49, p = 0.49, or the precision 

parameter (kappa), F(1,18) = 0.43, p = . 0.52. Note that the low-contrast condition of this 

experiment was the same as the second-lowest contrast used in Experiment 1, so the behavioral 

pattern observed here replicates the findings of Experiment 1. 
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To reduce motor artifacts and to collect a sufficient number of trials for the purposes of 

EEG decoding analyses, we probed participants to report the orientation on only 10% of trials, 

leaving us with fewer trials for Experiment 2 than Experiment 1. Therefore these results are less 

robust than those in Experiment 1 (but still yielded the same pattern, with no difference in either 

precision or guess rate between the highest contrast and the second-lowest contrast used in 

Experiment 1).  
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Figure 5a. Probability distribution of response errors on 10% of trials, collapsed across all participants at two different luminance contrast values. 

Teardrop-shaped stimuli were presented on a dark stimuli on a grey background. One stimulus was black, 80.5% contrast, while the other stimulus was 1% 

contrast. Figure 5b. Parameter estimates of a two component mixture model. Mean kappa (left) represents precision of the von-Mises distribution, while 

the guess rate, or 1- Pmem parameter, represents the all-or-none access to awareness (right).  
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Univariate EEG Analyses 

 

Figure 6a shows grand average ERPs at the midline electrodes 

Fz, Cz, Pz, Oz for low-and high-contrast stimuli, averaged across 

orientations. We found that low contrast stimuli are more salient in 

frontal electrodes at early time points but this pattern reverses in more 

posterior electrodes where high contrast stimuli become more salient. 

ERPs for high and low contrast stimuli were significantly different 

between 200 – 450 ms at Fz, Cz, and Oz, t(21) = 2.08, p < .05. 

Although there was no significant difference for high and low contrast 

stimuli at Pz, t(21) = 2.08, p = .42. 

Figure 6b plots the mean global field power (MGFP), a measure 

of total activity across all scalp electrode sites. Consistent with previous 

studies, the early 

sensory activity was 

significantly different 

for high-contrast than for the low-contrast 

stimuli between 50 and 200 ms,  t(21) = 2.08, p 

< .05. However, at later points (400 – 1000 ms), the MGFP was quite similar for low- and high-

contrast stimuli, t(21) = 2.08, p = .12. 

 

Experiment 2: ERP Decoding 

Figure 7a and 7b show the decoding accuracy at each time point for the low- and high-

contrast stimuli, respectively, with gray shading for time points at which the decoding was 

Figure 6b. Mean Global Field Power (MGFP); a measure of total activity 
across electrode sites. 

Figure 6a. Grand average ERPs at the midline 
scalp sites for low-and high-contrast stimuli, 
averaged across orientations. 
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significantly greater than chance (with an FDR correction for multiple comparisons). Figure 7c 

shows decoding accuracy overlaid for the low- and high-contrast conditions, and the red 

horizontal bar indicates time points in which decoding accuracy differed significantly between 

the two contrast levels (using 2-tailed t tests with an FDR correction). 

Decoding accuracy was significantly above chance beginning at 50 ms for high-contrast 

stimuli and beginning at 150 ms for low-contrast stimuli. In addition, decoding accuracy was 

significantly greater for high-contrast stimuli than for low-contrast stimuli from 100 – 200 ms. 

After approximately 200 ms poststimulus, decoding accuracy was almost as high for low-

contrast stimuli as for high-contrast stimuli and no significant differences between the two 

contrast levels was observed after this time point. 

   

 

RSA/CNN Model 

We did our RSA-CNN analyses on the first 5 convolutional layers of the network. Figure 

8 shows the representational similarity values at each time point for the first and last 

convolutional layers. We found a significant difference between the high contrast and low 

contrast conditions in the early layers at relatively short latencies (145-250 ms), t(21) = 2.08, p < 

.05, paralleling our decoding effects. At higher layers, the peak in representational similarity 

declined in the early latency range; the difference between high and low contrast conditions was 

trending but not significant (Figure 8b). At later time points, in early and late layers, there was no 

Figures 7a&b. Statistically significant (grey shaded) decoding accuracy for high and low contrast can be seen in Fig. 7a and 7b, respectively. Figure 7c. Statistically 
significant difference in decoding accuracy between high and low contrast (red line; 100-200 ms). 

7a. 7b. 7c. 
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significant difference between high and low contrast conditions; this finding is consistent with 

the lack of significant difference in decoding accuracy at later time points.   

We repeated the analysis using a different neural network, Cornet S, which includes not 

only feed-forward but recurrent connections and found a similar pattern when comparing the V1 

layer and the IT layer.  

  

 

 

Experiment 3: CNN Neurophysiology Analyses 

The ability to  recognize a shape over a broad range of contrasts is important in natural 

vision. As a result, one might expect that CNNs that are trained to classify objects in natural 

scenes would also exhibit contrast invariance in the deeper layers. To test this hypothesis, we 

asked whether units in the different layers of AlexNet exhibit the general pattern of contrast 

invariance that we observed in the behavioral 

results from Experiments 1 and 2. We took an 

approach that is analogous to the approach used 

in classic primate electrophysiology, in which we 

“presented” teardrops of different orientations 

and different contrast values to the network and 

8a. 8b. 

Figure 8a & 8b. RSA/CNN analyses revealed a significant difference between the high contrast and low contrast conditions in the early layers (8a.) at relatively 
short latencies (145-250 ms), while the peak in representational similarity declined progressively in higher layers (8b.). 

Figure 9. Taking the ten most responsive units from each layer (legend) 
and plotting the average activation level after the ReLU operation for each 
unit across the ten units for their preferred orientation as a function of 
contrast. 

80                                                    60                                               40                                         20                                                     0  

                                                                                                 % Contrast 
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then plotted the magnitude of a given unit’s response as a function of the orientation to get 

tuning curves. 

In these analyses, we used a version of Alexnet that had been trained on Imagenet to 

recognize photographs of real-world objects. We fed in teardrop stimuli at 125 different contrast 

levels ranging from nearly zero percent contrast to 80% contrast, when compared to the grey 

background (25 cd/m2). Just as classic electrophysiologists often searched for responsive neurons 

and then obtained their tuning curves, we found the ten most responsive units from each layer 

and plotted the average activation level (after the ReLU operation) for each unit across the ten 

units for their preferred orientation as a function of contrast level (Figure 9).  The data were 

normalized so that the smallest response for a given unit was coded as 0 and the largest response 

was coded as 1 ([value – minimum] ÷ [maximum – minimum]). 

As shown in Figure 9, layer 1 exhibited a nearly linear decrease in activation as the 

contrast decreased. However, the contrast function became more bowed at higher layers, 

meaning that the response did not drop as steeply as the contrast dropped (until the very lowest 

contrast levels, where the activation dropped very rapidly. The function was highly nonlinear for 

layer 5, where the activation remained reasonably strong until the contrast neared zero. 

Therefore, we found reduced sensitivity to contrast in deeper layers of the network, confirming 

what we saw in the neural data and in the behavioral data. 

 

Discussion 

As we saw in Figure 2 when viewing the word CONTRAST at low and high contrasts,  

the perception of the shape of an object was largely independent of the contrast. As long as the 

contrast was high enough that the observers could see that a teardrop was present, the observers 
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were able to have a very precise representation even when measured in working memory. In 

other words, the stimulus was subjectively contrast invariant. Experiment 1 illustrated this 

invariance behaviorally, and the mixture model indicated that precision did not become impaired 

at low contrast, but instead participants sometimes exhibited random guesses for low-contrast 

stimuli as if they were completely unaware that a teardrop had been presented. In other words, 

subjects could report the orientation of a teardrop shape equally precisely whether it was 

presented at .03% or 80% contrast—the fact that there was absolutely no detectable impact on 

precision in behavior is a striking, nonobvious finding. 

Experiment 2 examined this contrast invariance neurally, using decoding to test the 

hypothesis that the visual system begins with a contrast-dependent representation of orientation 

(lower orientation decoding accuracy for low-contrast relative to high-contrast stimuli) and then 

shifts to a contrast-independent representation of orientation (equal orientation decoding 

accuracy for low- and high-contrast stimuli). We found that during the early sensory period 

(~50-150 ms), decoding accuracy was greater for high contrast than low contrast stimuli, but 

beginning around 200 ms, decoding accuracy was nearly as great for low contrast stimuli as for 

high contrast stimuli. Thus, there is a period where the orientation information is contrast 

dependent and the orientation cannot be decoded from the EEG for low-contrast stimuli, and 

then the neural representation becomes largely contrast independent. This pattern is consistent 

with other studies indicating that contrast information is discarded at higher-level stages (Ohayon 

et al., 2012; Rolls & Baylis, 1986; Strasburger & Rentschler, 1996). We knew that from the 

single unit recordings but we have now demonstrated it in humans. 

With the CNN analysis, we tried to flesh this out a bit more mechanistically. By linking 

EEG data to a CNN with RSA, we tested the hypothesis that activation in early layers of the 
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model would show representational similarity with the EEG data in the high contrast condition 

compared with low contrast condition, an effect that would reverse in deeper layers. Results of 

the model indicated a significant difference between the high and low contrast condition in the 

early layers, but the peak in representational similarity declined as you got to higher and higher 

layers; a finding that was trending but not significant.  

One of the most interesting aspects about the behavioral data was the increase in guess 

rate at the lowest contrast with little impact on the precision. Follow up studies examining this 

lack of change in the precision by comparing the precision of the behavioral data to the decoding 

data to assess if behavioral precision is correlated with the decoding precision subject by subject, 

would be informative. By treating the decoder output like a behavioral response (i.e., what the 

decoder reported the orientation was on each iteration), one could plot the decoding error 

distributions for high and low contrast. A beautiful finding from the brain data would be that the 

precision is the same across contrasts, but there is a higher guess rate for the low contrast, as in 

the behavioral data.  

An ongoing debate in neuroscientific consciousness research involves the functional 

localization of conscious perception. Higher Order (H. C. Lau, 2007; H. Lau & Rosenthal, 2011)  

and Global Workspace theories (Baars, B.J., 1997; Dehaene et al., 2011; Dehaene & Naccache, 

2001) argue that conscious perception occurs in the prefrontal cortex, whereas Local Recurrency 

(Lamme, 2010) and Neural Synchrony theories (Crick & Koch, 1990) argue that conscious 

perception resides in posterior cortices. Therefore, an ongoing debate is whether V1 is necessary 

but not sufficient for visual consciousness, or does V1 contribute to visual consciousness directly 

or indirectly? In the context of examining subjective contrast invariance, one might ask, when 

subjects are reporting about orientation are they pulling the representation from V1 (analogous to 
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layer 1 of Alexnet) or inferotemporal cortex (analogous to layer 5)? If subjects must be pulling 

from one or another pool of representations, our neural and modeling data are consistent with the 

idea that inferotemporal cortex is the pool from which they are drawing. Together these findings 

suggest that early visual areas are not encoding the conscious perception of orientation, but 

awareness instead requires extended processing over time to extract a largely contrast 

independent perception of orientation. 
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III. 

Chapter II: ERP Decoding of Visual Consciousness During Binocular Rivalry 

Abstract 

EEG decoding techniques provide a powerful tool for examining the temporal dynamics of 

representational content in the brain, which can help adjudicate between theoretical models of 

consciousness that delineate when awareness occurs in the visual processing hierarchy (Dehaene 

& Changeux, 2011; Lamme, 2006). In an effort to isolate the neural correlates of consciousness 

(NCC) and further understand the time course of conscious perception, the current study used EEG 

decoding methods to decode conscious and unconscious orientation information during binocular 

rivalry. We compared decoding accuracy from a) conscious content reported in the perceptually 

dominant eye with b) unconscious content in the non-dominant eye, suppressed during rivalry. 

Because the retinal stimulus is the same for different conscious percepts, binocular rivalry is a 

canonical paradigm for investigating the NCCs. We tested two competing predictions: (1) the 

Global Neuronal Workspace Theory (GNWT) predicts that the difference between conscious and 

unconscious processing would occur at least 300 ms after stimulus onset (i.e., the time range of 

the P3b component); (2) the view that an earlier electrophysiological correlate of visual awareness 

(the Visual Awareness Negativity) reflects conscious perception predicts that the difference 

between conscious and unconscious processing occurs earlier than the P3b, at ~200 ms. We found 

that decoding accuracy for the conscious and unconscious percepts on the same trial both exceeded 

chance at ~140 ms poststimulus and remained approximately equivalent until ~560 ms; the 

unconscious percept then returned to chance while the decoding accuracy for the conscious percept 
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persisted until 1000 ms. These findings are consistent with theories such as the GNWT that propose 

a late electrophysiological correlate of visual awareness.  

 

Introduction 

 One major debate in the science of consciousness involves the role of the prefrontal cortex 

in facilitating conscious perception. Higher Order (H. C. Lau, 2007; H. Lau & Rosenthal, 2011) 

and Global Workspace theories (Baars, B.J., 1997; Dehaene et al., 2011; Dehaene & Naccache, 

2001) postulate that conscious perception is circumscribed to the prefrontal cortex (PFC), 

whereas Local Recurrency (Lamme, 2010) and Neural Synchrony theories (Crick & Koch, 1990) 

argue that the PFC is not essential for perceptual awareness (H. Lau & Morales, 2022). 

 According to Global Neuronal Workspace Theory (GNWT), conscious access constitutes 

the “selection, amplification, and global broadcasting” of information (Dehaene et al., 2011). On 

this account, early bottom-up processes from ~100-300 ms are necessary but not sufficient for 

awareness. To become conscious, the representations created by these early processes must be 

amplified through top-down processes and maintained in a global workspace (Dehaene et al., 

2011). This amplification and broadcasting of neuronal information, which begins sometime 

after ~300 ms, occurs in conjunction with increased gamma oscillation and phase synchrony 

across the brain and is referred to as conscious “ignition”. On this model, the P3b, a late 

electrophysiological signature occurring at ~300-500 ms, consistently correlates with conscious 

access (Babiloni et al., 2006; Del Cul et al., 2007; Koivisto & Revonsuo, 2010; Lamy et al., 

2008; Sergent et al., 2005). 

 Unlike Global Workspace Theories, which require global activity in frontoparietal 

networks, Higher Order Theories argue that specific computations in PFC are required for 
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conscious perception. Consciousness on this account is not for producing superior performance, 

but instead is based on Bayesian decision theory (H. C. Lau, 2007). On this account, since 

perceptual decision making capacity is limited by the amount of noise in the system, the best 

performance is set by decision criteria derived from previous behavior, implying that the system 

makes many statistical inferences or learns from internal signals over time (e.g., “higher order” 

learning). Despite these differences from GNWT, Higher Order Theories agree that 

consciousness does not occur until a relatively late stage of processing. 

 By contrast, several opposing theories and findings argue that posterior cortices house the 

critical loci for conscious perception. Recurrent Processing Theory claims that a feedforward 

sweep of processing is not sufficient, and that consciousness requires recurrent processing 

(Lamme, 2006). Evidence for recurrent activity can be found in monkey studies where the initial 

V1 responses were identical whether monkeys reported seeing a figure or not (identifying when a 

salient figure on a background), but a late V1 response component (thought to represent 

recurrent activity) only occurred when the monkey reported seeing the figure (Supèr et al., 2001; 

Tononi & Koch, 2008). These findings are consistent with the claim that recurrent loops are 

necessary for conscious access.  

 Crick and Koch put forth the Neural Synchrony Theory in a 1990 paper, wherein the 

authors coined the popular working definition of the neural correlates of consciousness as “the 

minimal set of neuronal events and mechanisms jointly sufficient for a specific conscious 

percept”. On this account, attention causes neural firing rates to become synchronized between 

40-70 Hz. They argued that this oscillatory mechanism underlies all conscious perception (i.e., 

neural oscillatory activity at 40-70 Hz constitutes a NCC), and the NCC resides in the cortical 

areas where this neural synchrony takes place. Therefore, various visual features like orientation 
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and motion are processed in early visual areas and are bound together by synchronous  neural 

activity in these areas. Even though this activity is coordinated with feedback from higher level 

cortices, the PFC does not play a constitutive role in maintaining conscious perception.  

 Naturally, the cortical localization of  perceptual consciousness bears upon the timing of 

neural activation. Evidence related to this latter set of models, which claim that awareness arises 

in early visual cortex, can be found by Koivisto and Revonsuo (2010). They found an early 

electrophysiological correlate of visual consciousness referred to as the visual awareness 

negativity (VAN). Incidentally, the authors proposed three NCC candidates, P1 enhancement at 

~100 ms, an early posterior temporal and occipital negativity at ~200 ms, (i.e., the visual 

awareness negativity), and the P3b component at ~300-500 ms. Results showed a larger VAN 

when comparing stimuli that reached awareness to stimuli that did not, across studies and 

conditions (Koivisto et al., 2010; Koivisto & Revonsuo, 2003, 2010). The VAN was found to be 

independent of attention and often, but not always, followed by a the P3b. 

 This chapter focuses on the temporal commitments of these two general theoretical camps, 

which make different predictions about the functional localization and therefore the time course 

of conscious perception. Specifically, we concentrate on the GNWT and the VAN because these 

theories and findings make testable predictions regarding the timing of visual awareness. We 

employ EEG decoding methods during binocular rivalry to test two competing predictions: 1) the 

Global Neuronal Workspace Theory (GNWT) predicts that the difference between conscious and 

unconscious processing will occur at least 300 ms after stimulus onset (i.e., P3b time range), 2) 

the view that the VAN reflects conscious predicts that the difference between conscious and 

unconscious processing occurs at ~200 ms. 
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 Binocular rivalry is an elegant paradigm for assessing the NCC. In this paradigm, two 

distinct images are presented separately at spatially corresponding locations, one to each eye. 

During rivalry, the observer is typically aware of only one of the two images, and conscious 

perception appears to “switch”, or “alternate”, or to spontaneous “reverse” between the images 

over time. Binocular rivalry is uniquely suited to isolate the NCCs since the retinal stimulus 

remains the same while only the conscious percept changes (Leopold & Logothetis, 1999). In 

other words, because a given eye will sometimes contain the image corresponding to awareness 

and will sometimes contain the unconscious image, this paradigm makes it possible to compare 

conscious and unconscious mental representations of exactly the same stimulus, thus isolating 

awareness. In the words of Randolf Blake, “what you are seeing…is not what you are viewing” 

(Blake, 2022). Because binocular rivalry occurs frequently in natural perception (e.g., when part 

of an image is occluded by an object in one eye but not in the other eye), it is also a more natural 

way to track conscious visibility, and information about the perceived and unperceived items are 

kept separate at least until area V1. Moreover, because people typically either fully perceive the 

image in one eye or fully perceive the image in the other eye, rivalry does not require the 

complex metacognitive processes and thresholds involved in making a visible/invisible decision 

for a masked stimulus. 

 Previous research using binocular rivalry has yielded inconsistent results regarding the 

time course of conscious perception. Single unit recordings of neural activity in monkey visual 

cortex provided evidence of a relatively late effect. Specifically, only a small percentage of 

neurons in early cortical areas (V1 and V2) responded in concert with rivalrous alternations 

(Leopold & Logothetis, 1989). Neuronal firing was higher for rivalrous alternations in 

extrastriate areas V4, MT and MST than in V1 and V2, while nearly all visual activity in IT and 
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STS corresponded to the rivalrous percept (Leopold & Logothetis, 1999; Logothetis & Schall, 

1989). These findings suggest a relatively late onset of the perceptually dominant percept in the 

visual processing hierarchy. By contrast, a study using univariate EEG analyses found evidence 

of a relatively early effect. Specifically, differences in ERP activity between trials on which 

participants reported they were aware of the stimulus emerged at ~130-160 ms (Pitts, et al, 

2010).   

It is important to note that univariate analyses are limited for multiple reasons. Since 

conscious experience can vary trial by trial, univariate tests are not as sensitive to trial by trial 

differences. For example, there may be some trials where a prerequisite of conscious experience 

occurs (e.g., arousal, preparatory motor activity) but a conscious experience of the stimuli does 

not. Univariate tests therefore are less predictive of conscious experience because they can only 

show an average difference between conscious and unconscious conditions (Sandberg et al., 

2014). 

More recently a mathematical technique using powerful pattern classification methods 

called multivariate decoding has been used to decode information processing in the brain 

(Norman et al., 2006). Importantly, this technique can reveal detailed, content-specific aspects of 

information processing like how the brain processes specific orientation information (Bae & 

Luck, 2018; Kamitani & Tong, 2005). A typical decoding protocol involves splitting the data into 

training data and test data. Researchers then train a classifier (e.g., a support vector machine) on 

the training data to determine the patterns of brain activity that best distinguish between the to-

be-decoded stimulus classes. The training yields an optimal plane in the multidimensional data 

space for separating the data associated with the two different stimulus classes. After the 

classifier is trained on the training data, it is tested on the test data to see if the classifier can 
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predict which class a given test case belongs to. If the classification accuracy is better than 

chance, this indicates that the brain data contains enough information to satisfactorily 

differentiate the stimulus classes (Weil & Rees, 2010).  

 Until recently, decoding has primarily been applied to fMRI data. Unlike conventional 

univariate fMRI approaches, which track the magnitude of the BOLD signal at a specific voxel 

or averaged across a region of interest, multivariate pattern analysis (MVPA; of which decoding 

is a subset) assesses patterns across many voxels. Previous studies using fMRI have decoded 

color and form, object categories (face/house), and the identity of individual faces (Brouwer & 

Heeger, 2009; Haxby, 2001; Kriegeskorte et al., 2007; Seymour et al., 2010). These fMRI 

decoding methods have also been used to decode the neural correlates of consciousness, 

including a study by Haynes and Rees (2005) which attempted to decode changes in conscious 

experience during binocular rivalry (Haynes & Rees, 2005).  

 However, because the BOLD signal integrates neural activity over a period of several 

seconds, it is difficult to know the precise time when a given neural response has occurred. This 

makes it difficult to distinguish between models of consciousness that vary largely in whether 

awareness occurs very early in processing (as in the visual awareness negativity) or relative late 

in processing (as in the GNWT). More recently, researchers have applied decoding methods to 

EEG data because of its superior temporal resolution, on the order of milliseconds. In addition, 

EEG has the advantage of directly reflecting the summed postsynaptic potentials of the active 

neurons in the brain, whereas the BOLD signal is a downstream, secondary consequence of 

neural activity. EEG decoding therefore provides a powerful and fairly novel tool for 

investigating the temporal dynamics of representational content in the brain, especially as it 

pertains to the content of conscious experience.  
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 Only recently have EEG and MEG experiments used decoding techniques to examine 

potential NCCs. In one experiment, for example, participants were instructed to report the spatial 

location (one of eight) and visibility (manipulated by a backward mask) of a target stimulus 

during a “blindsight” task (Salti et al., 2015). MVPA showed that some information about spatial 

location was found on the blindsight trials, but only at ~270 ms post stimulus onset did 

information unique to consciously perceived stimuli occur. Another study examining 

unconscious working memory found that orientation could be decoded independently of 

visibility reports, and that this information was maintained over a retention period even when 

reported as unseen (King et al., 2016).  

 It is typical to manipulated visibility via backward masking to compare conscious and 

unconscious content. However, backward masking has its limitations. Since backward masking 

disrupts the representation of information beginning in the retina, reducing the quality or strength 

of the stimulus, this makes informational content difficult to decode. In this way, binocular 

rivalry is a superior paradigm to test and compare the timing of conscious and unconscious 

content without disrupting early representational content (i.e., in V1). Additionally, previous 

studies relied on participants to report whether a given stimulus was visible or not, which can be 

unreliable in masking paradigms because research shows that participants can  perform better 

than chance even when they report being unaware of the stimulus.   

Another problem in identifying the NCCs results from limitations of the contrastive 

approach that was used in many of the previous studies. The contrastive approach involves 

comparing conditions in which the stimuli are identical but participants either have or do not 

have a conscious experience of the stimuli, and then examining the differences in brain activity 

(Baars, B.J., 1997). One difficulty with the contrastive approach lies in conflating the true NCC 
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with the prerequisites and consequences of conscious perception; that is, a necessary 

precondition for awareness will differ between aware and unaware trials, as will a downstream 

consequence of awareness.  

These processes are sometimes distinguished as three distinct NCCs: 1) NCC-pr, 

prerequisite processes carrying no conscious content; 2) NCC proper, the true NCC; and 3) 

NCC-co, the consequences of conscious experience (Aru et al., 2012; Pitts et al., 2014). For 

example, preparatory processes included in the NCC-pr may be necessary but not sufficient for 

the NCC proper. Therefore, differentiating these three NCC processes is particularly important 

when adjudicating between theories of consciousness which make claims about the timing of 

conscious perception. This problem is notoriously difficulty with self-report, because it 

necessarily reflects both perceptual and post perceptual processing. However, decoding methods 

like we employ in this study can now be applied to the contrastive approach. That is, comparing 

content–specific aspects of conscious vs. unconscious contents may help resolve the problem of 

conflating pre and post NCCs with the NCC proper. For example, some of the prerequisites and 

consequences of consciousness that would vary between aware and unaware trials (e.g., arousal) 

would not be expected to contain decodable information about the contents of awareness. 

Consequently, if the contents of visual awareness can be decoded from a presumptive NCC, this 

increases the likelihood that it is a NCC proper rather than being a prerequisite or consequence of 

awareness.  
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In the Binocular Rivalry condition of the present study (top left Figure 1), a red oriented 

grating was presented to one eye and a green oriented grating was simultaneously presented to 

the other eye. Participants viewed the stimuli through a mirror stereoscope that aimed the two 

gratings so that they appeared at the same foveal location in both eyes. That is, the sensory input 

contained a red grating of one orientation and a green grating of another orientation that 

appeared as if they were at the same location in space. In the absence of active mechanisms for 

dealing with difference between the two eyes, these two gratings would merge together into a 

single complex grating. However, the visual system contains mechanisms that prevent this kind 

of merger and instead involve a winner-take-all outcome in which either the red grating or the 

green grating is consciously perceived on a given trial.  

The present study also included a Physical Alternation condition, in which a grating 

appeared in only one of the two eyes on each trial (bottom right Figure 1). Because there was no 

significant competition from the other eye, this grating was always consciously perceived. For 

Figure 1: The Binocular Rivalry Procedure (top left), Physical Alternation Procedure (bottom right). Participants viewed the stimuli through a 
mirror stereoscope. Binocular pairs (left) were presented for 600 ms followed by a variable delay between 500-700 ms of a blank screen. 
Monocular pairs (right) were presented for 600 ms followed by a variable delay between 500-700 ms. High and low spatial frequencies were 
always associated with red and green colors, respectively. 8 possible orientations were presented. Participants reported the color they 
perceived (red/green) by pressing one of two keys. In the probe condition, on a random 10 % of trials participants were asked to report the 
orientation of the stimulus on the previous trial. 

 



 44 

both the Binocular Rivalry and Physical Alternation condition, the stimulus was presented for 

600 ms, followed by a variable delay between 500-700 ms. Participants pressed one of two keys 

on each trial to indicate whether they perceived a red grating or a green grating on that trial. 

They were instructed to press neither key if they perceived a mixture of the red and green 

gratings (which occurred rarely). On a random 10 % of trials participants, the grating was 

followed by a cue that indicated they should report the orientation of the grating that they had 

just seen.  

In the Binocular Rivalry condition, each trial contained a red grating presented to one eye 

and a green grating presented simultaneously to the other eye, but the observer was consciously 

aware of only one of these two gratings. Because of their keypress responses, we knew which of 

the two gratings was consciously perceived on each trial. This made it possible for us to take the 

EEG data—which contained a mixture of brain activity corresponding to the consciously 

perceived eye and the orientation presented to the unperceived eye—and try to decode the 

orientation of the perceived grating and the orientation of the unperceived grating. If Global 

Workspace Theory is correct, one would predict that rivalry is not resolved until ~300-500 ms. 

That is, this is the time range in which the stimulus in one eye becomes consciously available. 

Thus, GWT would predict that decoding accuracy for the consciously reported orientation would 

increase from ~300-500 ms relative to nonperceived orientation presented to the other eye, and 

decoding accuracy from the nonperceived eye would then quickly return to chance. By contrast, 

if the Visual Awareness Negativity view is correct, the stimulus in one eye would become 

available to consciousness at ~ 200 ms. That is, this model predicts that the difference in 

decoding accuracy between the perceived and nonperceived orientations would occur at ~200 

ms. 
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 The physical alternation (non-rivalrous condition) serves as a baseline, and the two theories 

do not make differing predictions. We predict that the decoding accuracy for the raw stimulus 

would initially exceed chance at ~50 ms after stimulus onset (because this is approximately when 

visual signals reach visual cortex) and should be maintained for at least the 500 ms stimulus 

duration, reflecting a combination of unconscious and conscious processing. 

  Traditionally, stimuli in binocular rivalry paradigms are presented for a long duration (e.g., 

30 seconds), and observers report spontaneous perceptual ‘reversals’ over time. However, 

spontaneous reversals are difficult to time-lock, making EEG decoding impractical. That is, if we 

don’t know exactly when the reversal occurred, it is difficult to determine the exact time at which 

a given neural signal occurred relative to the reversal. This is why we used the intermittent 

stimulus presentation approach shown in Figure 1 rather than the traditional approach. The 

intermittent stimulus presentation approach makes it possible to simply use stimulus onset as the 

time-locking point. Previous studies have shown that with stimulus parameters such as those 

used in the present study, only one percept is experienced per trial, and transition rates across 

trials are similar to reversal rates in continuous presentation paradigms (Pitts et al., 2010; Pitts & 

Britz, 2011). In many designs, participants make differential responses. For example, during an 

oddball paradigm participants are often instructed to report only the rare stimuli. However, in 

this design the response related activity will be identical for the aware and unaware orientations 

because participants are not reporting the orientation on every trial, but instead whether they 

perceived the color red or a green. In this way, the response related activity is nicely separated 

from the orientation information and decodability. This unique experimental design—which 

takes advantage of the intermittent stimulus approach together with the temporal precision of  
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EEG decoding— will, for the first time, be able to determine the exact time at which the content 

of the neural representation differs for perceived and non-perceived stimuli. 

 

Methods  

 Participants 

 EEG recordings were obtained from 29 UC-Davis students between the ages of 19–28 with 

normal or corrected-to-normal visual acuity, normal color vision, and normal depth perception, 

as determined by self-report. An a priori power analysis was conducted using G*Power version 

3.1.9.7 for sample size estimation. With a significance criterion of α = .05 and power = .90 for a 

medium effect (Bae & Luck, 2018), the minimum sample size needed with this effect size is n = 

21. Our n = 19 was just shy of the suggested a priori n = 21. Prior to the EEG recording, subjects 

were familiarized with the stereoscope to ensure they could achieve binocular fusion. Six 

subjects were removed due to the inability to perceive fusion or rivalry. Four were removed due 

to technical issues, leaving 19 subjects included in the analyses. Participants gave informed 

consent, and the study was approved by the UC-Davis Institutional Review Board. 

 Stimuli and Procedure 

 Stimuli were presented at a viewing distance of 100 cm on a grey background (25 cd/m2), 

and centered horizontally and vertically on a 60 Hz LCD monitor (Dell U2412M). Participants 

viewed stimuli through a mirror stereoscope (Stereo Aid; Figure 2) which allows images from 

different parts of the monitor to stimulate corresponding portions of the left and right eyes. At the 

beginning of each session, the experimenter adjusted the mirror angles to achieve stereo-fusion 

in each participant. To maintain fusion, participants were instructed to fixate a centrally located 

fixation point.  



 47 

 As illustrated in Figure 1, there were two conditions: a) the binocular rivalry condition, and 

b) the physical alternation condition. In the rivalry condition, stimuli consisting of circular 

square wave gratings 6 degrees in diameter were presented as pairs, one to each eye. Square 

wave gratings were used because V1 neurons are tuned for a combination of spatial frequency 

and orientation, and sine wave gratings would lead to responses only in neurons are tuned for 

that combination of spatial frequency and orientation. Square wave gratings, by contrast, will 

lead to responses from all neurons that are tuned to a given orientation, irrespective of their 

tuning for spatial frequency.  

 The gratings differed along four orthogonal dimensions, orientation (one of 8 different 

orientations; every 22.5 degrees starting at 0 degrees from upright), color (red: CIE = (2.1652, 

1.1164, 0.1015) or green: CIE = (0.8138, 1.6277, 0.2713), spatial frequency (high (5.85 cpd) or 

low (4.55 cpd)), and eye (right or left). Eight different orientations were randomly presented with 

equal probability. The presentation of the orientation to each eye was independent of each other 

(i.e., equal numbers of all possible combinations of the eight orientations). Because we used 

circular gratings, there were only 180° of distinct orientations. On each trial, one grating was red 

and the other was green, but which eye was red and which eye was green varied at random 

across trials. Orientation gratings were either high spatial frequency or low spatial frequency, 

with red always being high spatial frequency and green always being low spatial frequency. 

Color and orientation were perfectly correlated because if the randomly-chosen gratings 

presented to the two eyes happen to have the same orientation on a given trial, the gratings will 

not perfectly overlap because of the difference in spatial frequency. All stimuli were equated in 

luminance. There were 64 possible combinations of red and green gratings (randomly 

intermixed) presented for 16 blocks ( total trials).  
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 In the rivalry condition (Figure 1 upper left), binocular image pairs of were presented for 

600 ms followed by a variable delay between 500-700 ms of a blank screen. Because the stimuli 

were rivalrous, participants perceived either the red grating or the green grating on a given trial. 

Participants were instructed to report the color they perceive (red/green) on each trial, by 

pressing one of two keys. Participants were instructed to withhold their response if they 

perceived an integration of red and green of if they perceived a reversal of the colored grating 

(transition from red to green or vice versa) mid-trial. 

 In the physical alternation condition (non-rivalrous; Figure 1 lower right), one stimulus 

was presented to one eye while the other eye was blank. This condition served as a baseline or 

raw stimulus response. In this condition, participants were presented with one colored grating, so 

no binocular fusion was possible. The stimulus was presented randomly to either the right eye or 

the left eye on each trial. Perceptually, participants experienced this condition that same as the 

rivalry condition, but behind the scenes there was no binocular competition. The presentation 

rate mimicked the same presentation rate as rivalry.  

 On a random 10% of the trials, participants were probed to report the orientation of the 

perceived grating. These probe trials were inserted to ensure participants remained attentive to 

the orientation feature to maximize the encoding of orientation information. The probe display 

consisted of eight (black and white) orientation gratings; participants were instructed to use the 

gamepad to select the orientation that corresponded to the orientation they perceived on the 

preceding trial. The location of a given orientation within the probe array varied randomly from 

trial to trial. This made it impossible for the participant to prepare a motor response prior to the 

onset of the probe array. Consequently, we could be certain that we were decoding the working 

memory representation of the orientation rather than decoding motor preparation. There was a 
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1000 ms intertrial delay after the probe responses to avoid contaminating the following trial with 

motor related activity. 

 A flicker fusion photometry test was given prior to the onset of the main task to equate the 

luminance of the red and green stimuli for each individual subject. Flicker fusion photometry is 

based on the principle that the perceived flicker between the brightness of two colors is minimal 

when the brightness of the two colors are equal.  

       

 

 EEG collection and analysis 

 Continuous EEG was recorded from 64 electrodes using a Brain Products ActiCHamp 

system (Brain Products GmbH). Recordings were obtained from the following 59 scalp sites: 

AF3, AF4, AF7, AF8, FC1, FC2, FC3, FC4, FC5, FC6, FP1, FP2, F1, F2, F3, F4, F5, F6, F7, F8, 

C1, C2, C3, C4, C5, C6, CP1, CP2, CP3, CP4, CP5, CP6, P1, P2, P3, P4, P5, P6, P7, P8, P9, 

P10, PO3, PO4, PO7, PO8, T7, T7, TP7, TP8, O1, O2, Fz, FCz, Cz, CPz, Pz, POz, and Oz, the   

left and right mastoids, and three electrooculogram (EOG) sites. Two horizontal EOG electrodes 

were placed adjacent to the outer canthi and were used to record horizontal eye movements, and 

Figure 2: Participants viewed stimuli through a mirror stereoscope (above) which allows images from different parts of the monitor to 
stimulate overlapping portions of the left and right eyes. At the beginning of each session, the experimenter adjusted the mirror angles to 
achieve stereo-fusion in each participant. To maintain fusion, participants were instructed to fixate a centrally located fixation point. 
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a vertical EOG electrode was placed beneath the right eye and used to record eyeblinks and 

vertical eye movements. These signals were filtered online with a cascaded integrator-comb 

antialiasing filter (half-power cutoff at 130 Hz) and digitized at 500 Hz. Impedances were <10 

kΩ for scalp electrodes, and <20 kΩ for the EOG electrodes.  

 Offline analysis was performed using EEGLAB (Delorme & Makeig, 2004) and ERPLAB 

(Lopez-Calderon & Luck, 2014). Data were resampled at 250 Hz. A noncausal Butterworth 

bandpass filter was applied (half-amplitude cutoffs = 0.1 Hz and 30Hz, slope = 12 dB/octave), 

and all channels were re-referenced offline to the average of the mastoids. Independent 

component analysis (ICA) was used to correct for eye blinks and eye movements on the 

continuous EEG data. Artifact detection was performed on the epoched data to remove eye 

blinks that occurred at the time of the stimulus presentation using a 200-ms moving window with 

a step size of 100 ms and a ~300 μV cutoff. Stimulus-locked ERPs were generated using an 

epoch of -200–1300 ms. 

For the decoding analyses, the data were low-pass filtered at 6 Hz and resampled at 50 

Hz for the ERP decoding. This resulted in a 4-dimensional matrix for each participant (time point 

(100) x orientation (8) x trial (~40) x electrode site (27)). Following the approach of Bae & Luck 

(2018), support vector machines with error-correcting output codes were used to perform the 

orientation decoding. 

Decoding was implemented separately at each time point, and the data were divided into 

separate training and test sets. Data from a given orientation were averaged across multiple trials 

to improve the signal-to-noise ratio and decoding analyses were applied to these averages (not 

single trials; see Bae & Luck, 2018). Specifically, the ~40 trials for a given orientation were 

divided into three sets of ~13 trials, allowing us to make three different averages for each 
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orientation. A three-fold cross-validation procedure was used in which two averages for each 

orientation were used for training the decoder and the third was used for testing the decoder. 

Trials without a behavioral response were excluded (because this indicated that the participant 

did not perceive only one of the two gratings), and the number of trials for red and green 

responses was floored. A different classifier was trained to discriminate between each orientation 

and all other orientations (one vs. all decoding). When classifying the orientation in the test set, 

the decoders were combined to create a single decision about the most likely orientation for a 

given test case. Decoding was considered correct only when the classifier picked out the correct 

one of the eight orientations (so chance was 1/8 or 0.125). Decoding accuracy was calculated as 

the average percent correct for each of the eight averages used for testing. To test whether 

decoding accuracy was greater than chance (12.5%) we calculated one-sample t-tests at each 

individual time point during the 0-1200 ms epoch. A false discovery rate (FDR) correction was 

used to control for multiple comparisons (Benjamini & Yekutieli, 2001).  

The EEG data on a given trial contained a mixture of brain activity corresponding to the 

orientation in the perceived eye and brain activity corresponding to the orientation in the 

unperceived eye. We separately decoded the orientation of the stimulus in the perceived and 

unperceived eyes. That is, in one run of decoding, we organized the trials according to the 

orientation in the perceived eye, creating training and test cases labeled according to the 

orientation in that eye. The orientation in the unperceived eye varied randomly across these 

cases, so decoding accuracy reflected the information being coded from the perceived eye. In 

another run of decoding, we organized the trials according to the orientation in the unperceived 

eye, and decoding accuracy reflected the information being coded from the perceived eye. Bae 
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and Luck (2018) have shown that this approach can be applied successfully when two 

independently varying sources of information are mixed together in the EEG signal. 

 

Results  

Behavioral Results    

 Previous research using the intermittent stimulus 

presentation design showed that the two colors, and 

hence the two eyes, were approximately equally likely 

to be reported as the perceived stimulus (Pitts et al., 

2010). We replicated these results in our study, finding 

that participants reported seeing a red grating on 45% 

of trials and a green grating on 48% of trials, with no 

response (indicating a blend of red and green) on 6% 

of trials (See Figure 3). In the physical alternation condition, participants reported seeing a red 

grating on 49% of trials, a green grating on 49% of trials, and they withheld their response on 

.07% of trials.  

  Flicker fusion photometry tests revealed very little variability in perceived luminance 

when comparing red and green stimuli across subjects. Controlling for luminance across subjects 

ensured we are not decoding a difference in luminance values between red and green (Lee et al., 

1988).  

 

 

 

Figure A 

Rivalry Condition  

Figure 3: Participants reported seeing a red grating on 45% of 
trials and a green grating on 48% of trials, and withheld their 
response on 6% of trials. 
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Decoding Results  

  

   

Figures 4a & 4b show decoding accuracy for the orientation of the color that was reported (the 

conscious percept; Figure 4a) and the color that 

wasn’t reported (the unconscious percept; Figure 

4b), respectively. We found a period of decoding 

accuracy that was significantly  greater than 

chance (grey shaded) for both the conscious and 

unconscious percepts. These figures show that 

decoding accuracy exceeded chance starting at 

approximately the same time for conscious (140 

Figure 4a: Decoding accuracy for orientation for consciously reported percepts. Figure 4b: Decoding accuracy for orientation for unconscious on 
the same trial (decoding accuracy significantly greater than chance shaded grey). Figure 4c. Decoding accuracy for conscious and unconscious 
percepts on the same trial. The conscious percept diverges from the unconscious percept at 560 ms and is sustained past 1000 ms, unlike the 
unconscious percept which returns to chance after the stimulus offset.  

4a. 

4c. 

4b. 

Figure 5: Decoding accuracy for red and green gratings in 
the non-rivalrous physical alternation control condition. 
Decoding accuracy was nearly identical for red and green 
gratings, except for a brief period between 560-660 ms 
when decoding accuracy was significantly different (blue 
line). 
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ms) and unconscious percepts (160 ms). However, Figure 4c shows that decoding accuracy 

remained well above chance until 1200 ms for the conscious percept whereas it fell quickly to 

chance by 950 ms for the unconscious percept. Moreover, decoding accuracy was significantly 

greater for the orientation in the reported color than for the orientation in the unreported color 

between 660 ms and 1000 ms (Figure 4c; blue line). 

 Figure 5 compares decoding accuracy for the red and green gratings in the non-rivalrous 

physical alternation control condition. Decoding accuracy was nearly identical for red and green 

gratings at most time points, although there was a brief period from 560-660 ms (blue line) in 

which decoding accuracy was significantly greater for the red gratings than for the green 

gratings. Note that absolute decoding accuracy for the physical alternation cannot be compared 

with the absolute decoding accuracy for the binocular rivalry condition, because the decoding 

was based on different numbers of trials in these two conditions, which directly impacts 

decoding accuracy. 

 

Discussion  

 We examined the time course of conscious perception using the temporal precision of EEG 

decoding methodology during binocular rivalry. We found that neural information about 

orientation was identical for the perceived and unperceived gratings until at least 500 ms after 

stimulus onset. After that point, the consciously perceived information diverged from the 

unreported, unconscious information. The difference between the conscious and unconscious 

information began at ~560. The decoding of the consciously perceived orientation was sustained 

until ~1000 ms, whereas the decoding of the unconscious orientation fell to chance rapidly after 

stimulus offset. This pattern of results is consistent with theories of consciousness (e.g., Global 



 55 

Neuronal Workspace Theory) which argue that the awareness occurs as a result of an ignition 

process that is indexed by the P3 wave. The lack of an earlier differentiation between perceived 

and unperceived information is not consistent with theories proposing that awareness arises 

rapidly. 

 Naturally, only correlational claims can be made regarding the decodability of conscious 

content, even though this experimental design aimed to isolate the neural correlates of awareness 

by controlling the retinal stimulus while only the conscious percept changed. However, the 

robust above-chance decoding accuracy of the unperceived stimulus from the time of stimulus 

onset until the time of stimulus offset is an interesting manipulation check regarding what 

information decoding techniques are able to capture. That is, the robust decoding of the 

information presented to the unperceived eye indicates that our method provided substantial 

sensitivity for assessing the information content present in the neural signal. 

 The present study was designed to avoid some of the problems with studies using the 

contrastive approach, which focus on differences in neural activity between trials in which a 

stimulus is consciously perceived and trials in which the stimulus is not perceived. That design 

makes it difficult to differentiate between true NCCs and neural signals associated with the 

prerequisites and consequences of conscious perception. For example, the P3b component is 

present when someone is aware of a stimulus and absent when they are unaware, but previous 

studies found that the P3b is a likely signature of report-related processes rather than awareness 

per se (Pitts et al., 2014). In the present study, we decoded the task irrelevant feature of 

orientation, not the color participants reported. Therefore, we only examined trials on which a 

stimulus was reported rather than comparing reported and unreported trials, so this is not an issue 

in the present study. Instead, we examined the trials in which the color in one eye was perceived 
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and the color in the other eye was not on the same trial, comparing the ability to decode the 

orientations presented to these two eyes. We did require participants to report the orientation 

from the perceived eye on 10% of trials, but the experiment was designed so that we could not be 

decoding the report per se. That is, we randomized the location of the eight orientation gratings  

on the probe screen so that we wouldn’t be decoding response preparation. 

 This leads to the question of whether there is something fundamentally unique about 

binocularly rivalry that would cause the conscious percept to depart from the unconscious 

percept on the same trial, particularly as late as ~560 ms, which is even later than P3b 

component. Previous research has shown that reversals in binocular rivalry have occurred as 

early as 200 ms (Pitts et al., 2010). However, current research in single cell recordings in 

monkeys show rivalrous perceptual reversals over time occurring at a comparable time course to 

what we see in our data (Kapoor et al., 2020). Follow-up studies examining the P3b during 

rivalry could help gauge whether the phenomenon of rivalry is causing conscious perception to 

resolve later than anticipated since we would ordinarily expect the P3b to occur between ~300-

500 ms, not at 560 ms, the time at which we found that decoding accuracy differed between the 

conscious and unconscious orientations.  

 Neuroscientists and philosophers alike might argue that the above chance-decoding that 

was present beginning shortly after stimulus onset also represents conscious contents (see Block 

phenomenal consciousness; Block, 2011). However, one would still need an explanation for the 

divergence of decodability at ~560 ms. There is some evidence that rivalrous competition can 

occur without conscious awareness, and therefore binocular rivalry is not an ideal paradigm for 

isolating awareness if neural activity correlated with rivalry can occur unconsciously (Zou et al., 
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2016). Nonetheless, the divergence between conscious and unconscious percepts at 560 ms still 

needs explanation. 

 Characterizing the temporal dynamics of conscious representational content with these 

methods allows us to home in on the timing of specific content, giving us better temporal 

precision in isolating NCCs, and bringing us closer to the “minimal neural representational 

system” of a content NCC, helping us to adjudicate between the ongoing debate whether 

conscious contents are represented in the prefrontal cortex  (PFC) or whether activity in the 

posterior cortical areas represent conscious contents. 
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IV. Summary  

We have shown that computational cognitive neuroscience can be used to test predictions 

made by some of the most influential theoretical views of the neural correlates of consciousness. 

Artificial models and cutting edge methodology enable neuroscientists to investigate the 

temporal dynamics of representational content with new precision. We empirically tested 

commitments of theoretical models which assert that the prefrontal cortex plays a crucial in 

conscience experience (e.g., Global Workspace Theory) vs. a class of models which asserts that 

the prefrontal cortex is not paramount for conscious perception. We found that predictions of this 

latter class of theories is not supported by evidence. 

In Chapter V, consistent with GWT that awareness occurs as a result of an ignition 

process indexed by the P3 wave occurring at ~300 ms after stimulus onset, our findings suggest 

that early visual areas are not encoding the conscious perception of orientation but awareness 

instead requires extended processing over time to extract a largely contrast-independent 

perception of orientation. Analogously, in Chapter VI the lack of an early differentiation in 

decoding accuracy between perceived and unperceived information during binocular rivalry is 

inconsistent with theories that propose awareness arises in early visual areas. Together, these two 

studies both support theories in which visual awareness of a stimulus arises at a relatively late 

stage. 

 In summary, the introduction of new methodological, statistical and computational 

advancements in neuroscientific research on consciousness can help identify putative NCCs and 

sharpen theoretical views regarding the functional localization, temporal characteristics, and 

computational architecture of consciousness.    




