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ABSTRACT OF THE DISSERTATION 

 

Essays on Productivity, Technology, and Economic Fluctuations 

by 

Lone Engbo Christiansen 

Doctor of Philosophy in Economics 

University of California, San Diego, 2007 

Professor Valerie A. Ramey, Chair 

 

 Technological progress is one of the main driving forces behind economic growth 

but how it affects the economy initially is not well understood. This dissertation contains 

three chapters that examine technological progress and productivity from different 

angles. They are all motivated by the need for better understanding the economic 

fluctuations that are observed in the data. 

 Chapter 1 presents a long time-series of data, dating from 1889 to 2002, in order 

to examine whether technological progress can lead to temporary slowdowns in 

productivity growth. In this chapter, patent application data are used as a measure of 

technological progress. Results show that labor productivity in the pre-WWII period falls 

below trend temporarily after the arrival of new technology. However, this is not seen in 



 xiii

the post-WWII period when labor productivity slowly starts to increase above trend 

without initial adverse effects. 

 Chapter 2, which is co-authored with Bryan Goudie, examines the assumption 

that technological progress generally is assumed to be exogenous to military spending. 

The chapter uses firm-level data on military prime contracts together with data on sales 

per employed worker and patent data in order to explore the effects of military spending 

on productivity and the development of new technology. The study finds that the number 

of patents increases significantly as a result of a military prime contract shock, indicating 

the arrival of new technology. 

 Chapter 3, co-authored with Bryan Goudie, follows the approach in chapter 2 but 

examines the effects of military prime contracts at the regional level. The chapter uses 

U.S. state-level data on military prime contracts, data on gross domestic product by state, 

and utility patents, sorted by the state of the first inventor. The analysis shows that also at 

the regional level, military prime contracts lead to the development of new technology. 

However, labor productivity at the regional level is only affected insignificantly. 
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Chapter I  

 

Do Technology Shocks lead to Productivity Slowdowns? 

Evidence from Patent Data 
 

 
Abstract 

 This paper provides empirical evidence on the response of labor productivity to 

the arrival of new inventions. The benchmark measure of technological progress is given 

by data on patent applications in the U.S. over the period 1889-2002. Through use of 

vector autoregressions, the analysis shows that labor productivity may temporarily fall 

below trend after technological progress. However, the effects on productivity differ 

between the pre- and post-World War II periods. The pre-war period shows evidence of a 

productivity slowdown as a result of the arrival of new technology, whereas the post-

World War II period does not. Positive effects of technology shocks tend to show up 

sooner in the productivity data in the later period. 
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historical R&D data and directing me to important, relevant literature. 
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I.A. Introduction 

 The traditional neoclassical real business cycle model assumes that technology 

arrives as an exogenous process, after which labor productivity immediately responds 

positively until the economy eventually converges to the new steady state where labor 

productivity is permanently higher. However, David (1990), Rogers (1995), and Hall 

(2004), among others, have provided evidence that technology diffuses slowly throughout 

the economy. This means that a new technology is adopted by agents over time and that 

all agents do not adopt the technology immediately. This process of adoption and 

diffusion of technology takes the form of an S-shaped curve. That is, the technology 

initially diffuses slowly, followed by a period of rapid diffusion until the speed decreases 

when the technology has been absorbed in the economy. This view of slow diffusion 

therefore challenges the notion that technology shocks have immediate and positive 

effects on the economy. Furthermore, Robert Solow’s statement: “You can see the 

computer age everywhere but in the productivity statistics”1 clearly states how the 

literature lacks economic understanding of how productivity is affected by the arrival of 

new technology. 

This paper will show, through use of vector autoregressions and more than a 

century of data, that labor productivity may respond negatively in the short run to a 

technology shock. This case can arise if the arrival of a new technology initiates high 

installation costs or a learning stage for the productive labor. During this stage labor 

productivity does not necessarily increase as assumed by the standard neoclassical 

models. Rather, labor productivity can actually fall below trend temporarily. After a time 
                                                 
1 New York Times, July 12, 1987, page BR36. 
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lag from when the technology was invented, the technology eventually becomes adopted 

in the economy and the inflection point of the S-shaped diffusion curve is reached. Inputs 

can then once again be active in the production process and it is likely that labor 

productivity will increase above trend. 

The existing empirical literature which has focused on technological progress and 

subsequent productivity slowdown has mainly relied on simple graphical analysis. This 

paper therefore provides formal statistical evidence that the arrival of new technology can 

lead to a temporary slowdown in productivity using both an actual measure of 

technological progress and a long time-series as is important when studying productivity 

growth. Furthermore, the paper compares differences between the response of labor 

productivity to technological progress in the Electrification period and the more recent 

period, when the computer and the internet became widely adopted. The results from the 

post-World War II (post-WWII) period have important implications for understanding 

whether technological progress is the main reason for the productivity slowdown 

observed after 1973. 

The focus of this paper is the response of labor productivity and other 

macroeconomic variables following the initial arrival of new technology. In this paper, 

technology is measured as new inventions that have experienced a patent application. 

Because of long diffusion lags, the main focus of this paper is not on long-run impacts on 

productivity but instead on possible adverse effects in the short run. Therefore, the paper 

does not argue that there are no positive effects on productivity from new inventions but 

instead argues that the positive effects may not arrive immediately after the invention of 

new technology. The contribution of this paper to the macroeconomic literature is 
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therefore to supply empirical and statistical evidence for how aggregate variables 

historically have responded to technology shocks in the short run. 

As explained in the next section of the paper, much theoretical research has 

addressed the subject of possible contractionary effects of technology shocks. Further, 

empirical methods have been employed within the applied microeconomics literature, but 

this question has not been adequately addressed with long macroeconomic time-series 

data. The time-series literature therefore lacks direct empirical evidence on the effects of 

changes in technology. 

In this paper, new inventions are measured using historical data on patent 

applications, extending back to 1889. Using this data set, the paper finds evidence that 

productivity can temporarily decrease below trend after new inventions arrive. While 

some macroeconomists argue against the use of patents as a measure of technological 

progress, it will be argued that problems with patent data are not severe and that the field 

of macroeconomics can benefit from using patent data, as has long been the case in the 

microeconomic literature. Indeed, the analysis shows that up to 90% of the long-run 

variation in productivity in the post-WWII period is explained by the patent data. 

The paper is organized as follows. In section I.B, the existing literature relevant 

for this analysis is briefly reviewed. Section I.C presents the data and argues for the 

validity of patent data as a measure of technological progress, while section I.D describes 

the methodology applied. Section I.E presents the empirical results in the benchmark 

scenario and in alternative representations of the data. Section I.F analyzes the data when 

splitting the sample around WWII, and section I.G discusses the implications for 
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theoretical macroeconomics that the empirical findings imply. Finally, section I.H 

concludes. 

I.B. Existing literature 

A substantial literature has focused on developing theoretical models that explain 

how productivity can be temporarily low after a technology shock. Among these are the 

models developed by Hornstein and Krusell (1996) and Greenwood and Yorukoglu 

(1997). Hornstein and Krusell (1996) examine the growth rate of total factor productivity 

and of labor productivity and show in a model with learning and a compatibility problem 

that a temporary slowdown in productivity growth can result after technological progress. 

These results arise in a case where labor is reallocated toward more recent vintages due to 

a higher rate of technological progress. 

Greenwood and Yorukoglu (1997) base their theoretical analysis on the observed 

decrease in the price of equipment around 1974, indicating technological change, 

together with an observed increase in wage inequality around the same period. These 

observations temporally coincide with the measured slowdown in labor productivity 

growth. Following these observations, Greenwood and Yorukoglu (1997) develop a 

model where the firm produces at a variety of plants using capital together with both 

skilled and unskilled labor as inputs. The model shows that an increase in the growth rate 

of investment-specific technological change leads to higher income inequality during a 

learning period since skilled labor is relatively higher priced during this period. 

Furthermore, labor productivity growth slows down since application of the new 
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technology takes time and because the new technology does not work at full capacity 

immediately after adoption as a result of the importance of learning. 

In empirical studies of productivity growth, Gali (1999) and Francis and Ramey 

(2004) identify technology shocks through a structural vector autoregression (VAR) 

using long-run restrictions. Gali (1999) assumes that labor productivity is characterized 

by a unit root which is driven solely by technology shocks. That is, technology shocks 

have a permanent effect on productivity and any permanent effects originate solely from 

these shocks. However, if variables other than technology affect long-run productivity, 

then the assumption used to identify the technology shocks is violated. Short-run effects 

based on long-run restrictions might therefore be unreliable. Thus, avoiding this 

restriction seems important when analyzing temporary short-run effects as done in this 

paper. Further, if productivity is trend stationary with deterministic breaks, then the long-

run restrictions are invalid and can result in misleading conclusions. 

To avoid using identifying long-run restrictions an alternative is to compute 

technology series based on total factor productivity. Basu, Fernald, and Kimball (2006) 

construct a measure intended to capture aggregate technology. Their technology series is 

based on aggregate total factor productivity, controlled for varying utilization of capital 

and labor, non-constant returns and imperfect competition, and aggregation effects. 

However, total factor productivity remains a residual that likely includes other factors 

than technology. An alternative approach is therefore to use a direct measure of 

technological change which is empirically observed. One of the pioneers in using patent 

statistics as indicators of inventive output was Jacob Schmookler. He examined relations 

between inventive and economic activity and explored the relation between successful 
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innovations and capital investment. The study in Schmookler (1972) contains an 

extensive list of patent statistics. 

Several studies in the patent literature have concluded that patent counts do have 

important information relevant for measuring technological progress and knowledge 

(Lach (1995), among others). Furthermore, Hall and Trajtenberg (2004) find that highly 

cited patents are important when identifying periods with diffusion and development of a 

general purpose technology (GPT)2. This is done by exploiting information on the 

number of patent citations received and in generality measures based on the NBER patent 

citations data file which is described in Hall, Jaffe, and Trajtenberg (2001). 

A big increase in the flow of patents indicates a takeoff of a new technology. This 

takeoff is then followed by a period of diffusion and adoption of the technology, in which 

productivity may slow down. Sullivan (1990) examines the widespread patenting and 

invention during the English industrial revolution. Further, Griliches (1990) has a survey 

on patents as economic indicators. Jovanovic and Rousseau (2005) provide a careful 

descriptive analysis of similarities between the Electrification period in the beginning of 

the 20th century and the IT revolution in the end of the century. They note how patenting 

should be more intense after the arrival of a GPT. For an in-depth analysis of the 

Electrification period, see Du Boff (1979) and Devine (1983). 

In recent studies, a substantial amount of work has been done on patent data 

within the area of industrial organization. While the microeconomics literature has 

exploited this measure of technological progress, it has rarely been applied in the 

                                                 
2 A General Purpose Technology (GPT) is described in Hall and Trajtenberg (2004) as a new technology 
that is extremely pervasive and used in many sectors of the economy and is subject to continuous technical 
advance after it has first been introduced. 
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macroeconomic time-series literature in spite of the fact that patent data are a source for 

direct measures of technology improvements. One macroeconomic paper that does 

incorporate data on patent statistics is Shea (1998). He employs an annual panel data set 

containing total factor productivity (TFP), research and development (R&D), and patent 

applications, sorted by industry and covering the period 1959-1991. He concludes that 

favorable R&D and patent shocks increase inputs in the short run but do not significantly 

increase measured TFP. However, grouping patent data at the industry level is associated 

with many potential problems since there is no clear data distinction between industry of 

manufacture and industry of use. Furthermore, many historically important inventions 

have arrived before 1959 and the recent surge in labor productivity in the late 1990s is 

not included in his sample. The long time-series dimension included in this present paper 

therefore contains valuable information that should be exploited. Further, since many 

aggregate variables exist over the time period after 1889, this paper can examine the 

effects on macroeconomic variables, other than TFP. The analysis in this paper therefore 

overcomes many of the problems faced by Shea. 

In a related paper, Alexopoulos (2006) uses an indicator of technological change 

based on book publications in the field of technology. Her annual sample period covers 

1955-1997. This new data set is interesting in itself. However, many book titles may be 

published as the technology becomes adopted and the technology indicator may therefore 

partly reflect the diffusion of products and not strictly the arrival of a new technology. A 

study based on aggregate patent data using a long sample period therefore adds 

significantly to the existing literature. 
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I.C. Data 

This paper follows the line of Shea (1998) by using patent data as a measure of 

technology since patents are a measure of inventive output in the economy. The paper 

uses patent applications instead of granted patents as the grant lag tends to vary 

considerably over time (Hall, Jaffe, and Trajtenberg (2001)). Furthermore, the number of 

patents granted in a given year tends to be correlated with employment activity at the 

patent office. 

Since the NBER patent citation database only contains citations made after 1975 

this paper focuses on total annual utility patent applications received by the United States 

Patent and Trademark Office (USPTO) in the period 1889-2002. The paper focuses on 

utility patents since these are considered as invention patents by the USPTO.3 This also 

corresponds to Hall, Jaffe, and Trajtenberg (2001) who include utility patents in the 

patent citations data file. 

For purposes of identifying the economic response of productivity to technology 

improvements, using patent data offers an advantage over imposing long-run restrictions, 

because controversial assumptions about which shocks will affect productivity in the long 

run are not required. However, as mentioned by Shea (1998) there are drawbacks to using 

patent data. Namely, changes in patent laws can change the incentive to apply for patents, 

not all inventions are patented, and the importance of specific inventions varies over 

                                                 
3 Other types of patents are plant patents and design patents. Plant patents can be granted to “anyone who 
has invented or discovered and asexually reproduced any distinct and new variety of plant, including 
cultivated sports, mutants, hybrids, and newly found seedlings” (USPTO). Design patents refer to a new 
design of a product. In most years, utility patents account for more than 93% of total patents and the results 
in the paper are not sensitive to using total patent applications. 
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time. However, as mentioned in section I.B, patents do contain important information 

about technological progress. 

The number of patents granted is correlated with changes in patenting activity at 

the USPTO due to variation in budgetary resources over the administrative cycle, leading 

to budgetary effects in the granting activity. Furthermore, there may be changes at the 

patent office which lead to changes in the granting rates over time. On the contrary, this 

paper employs patent applications, which should be less affected by changes in the 

patenting activity at the USPTO than data on granted patents. As such, it is not necessary 

to control for variations in patenting activity due to changes at the patent office. 

However, using patent applications results in the problem that inventions which are not 

considered sufficiently unique and therefore are not patented are included in the data. For 

the present analysis, this is not a severe problem since arrival of a new GPT should lead 

to a surge of patent applications, as explained by Jovanovic and Rousseau (2005). To the 

extent that interest lies in exploiting the information about changes in economically 

important technological progress, patent application data do become a good indicator. 

Another potential problem with patent data is that patenting can be considered a 

strategic decision, and some firms may choose to keep their inventions secret rather than 

patent them. However, Trajtenberg (2000) notes that it is widely believed that these 

limitations are not too severe and argues that they do not affect trends or variation over 

time. Because this paper uses the time-series variation in the patent data, these limitations 

are not important. 
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For the present analysis it is important to note that patents measure inventions and 

not innovations4. It is very likely that there is a lag between the arrival of a new invention 

and its full use in the macroeconomy, as shown in figure I-1. Furthermore, if the 

economy-wide adoption of new technology is sufficiently slow it is possible for the 

economy to slow down temporarily after the arrival of a new invention; positive effects 

may not arise until the technology has been sufficiently adopted. 

Another argument for using patent data as a measure of technological progress is 

the importance of news. Ramey (2006) shows how estimates of the effects of government 

spending shocks change dramatically if the initial anticipation of government spending is 

not taken into account. For the present paper, where technology shocks are the center of 

attention, this problem is particularly important, because technology affects the economy 

through slow diffusion. Considering shocks that have only immediate and positive effect 

on productivity may potentially exclude very important information about temporary 

adverse effects of technological progress. Using information from the patent data about 

the time of invention enables the analysis in this paper to capture the full effects of 

technology shocks. 

As the measure of productivity, the paper uses labor productivity, calculated as 

output per hour; the historical data come from Kendrick (1961). Details of the data, 

including other variables used and their sources, are described in the appendix. The 

natural logarithm is taken of all variables. The logarithm of the flow of total utility patent 

applications is illustrated in panel A of figure I-2 and the logarithm of labor productivity 

and labor productivity growth are illustrated in panel B. 

                                                 
4 Innovation indicates first use of a given invention. 
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The paper uses labor productivity instead of total factor productivity (TFP) in 

order to avoid some of the problems mentioned in Nordhaus (2005). Namely, the inputs 

of capital services are not observed directly and therefore must be estimated with specific 

assumptions when calculating TFP. See Nordhaus (2005) and references therein for a 

further discussion of this issue. As a robustness check, the calculations in this paper were 

also done with TFP in place of labor productivity. This did not change the conclusions 

and these results are therefore not reported. 

Figure I-3 plots total patent applications together with total patents granted by 

year. The overall movements in these two series are similar, but the variation in the 

application-grant lag in some periods leads to a shift in the series on granted patents. For 

example, the surge of applications in the second half of the 1930s does not show up in the 

grant series until the first half of the 1940s. Similar shifts in the grant series can be seen 

in the second half of the 1940s and in the 1950s. Further, during the 1970s we observe a 

decrease in the number of patents granted while patent applications remained constant. In 

general, budget cuts at the USPTO lead to fluctuations in the grant series that are not 

present in the applications series. 

Based on the theoretical findings of Greenwood and Yorukoglu (1997), this paper 

also examines whether wage inequality changes as a result of technological progress. 

Data on income and wage inequality are taken from Piketty and Saez (2003). They 

collected annual data from the Internal Revenue Service back to 1913, which signified 

the beginning of the modern U. S. income tax. Data on income and wage inequality cover 

the period 1917-1998 and 1927-1998, respectively. The data include the income and 
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wage shares of total income and wages for the top decile of tax units5. The income shares 

are calculated by dividing the income for a given fractile by total personal income from 

the National Income Accounts6. Wage shares are computed using an equivalent 

methodology, though linear interpolation is used where a few observations are missing. 

Piketty and Saez mention that the Tax Reform Act of 1986 and World War II are 

important for the development of the data series. During World War II, for example, 

there is a sharp drop in wage shares of the top decile, and this paper controls for this by 

including dummy variables whenever these variables are included in the estimation. 

Figure I-2, panel B illustrates how labor productivity clearly has an upward trend. 

This may be due to an inherent unit root with drift or to a deterministic trend. Table I-1 

presents the results of Augmented Dickey Fuller unit root tests for labor productivity and 

patent applications under different assumptions for the alternative hypothesis. According 

to these tests, the paper cannot reject a unit root in productivity or patents in levels. Tests 

were also performed for unit roots in differences. These tests were all rejected and are not 

reported here. 

If both time-series are integrated of order one, I(1), it is important to test for 

cointegration in the data. However, cointegration tests for the full sample (not shown) 

reject the presence of cointegrating vectors when allowing for a linear trend in the data. It 

can therefore be concluded that a VAR(p-1) in log differences can be estimated. 

However, ignoring efficiency considerations, estimation can also be performed as a 

VAR(p) in levels and results of this estimation are described in section I.E. 
                                                 
5 A tax unit is defined as “a married couple living together (with dependents), or a single adult (with 
dependents), as in the current tax law” (Piketty and Saez (2003)). 
6 Piketty and Saez (2003) note that this is the standard procedure when computing income inequality 
measures in historical studies. 
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An important issue when testing for unit roots is that unit root tests are hard to 

reject if a coefficient is close to one. It is likely that the patent-productivity system is 

stationary around a trend. Perron (1989) considered the null hypothesis that a time series 

has a unit root with possibly nonzero drift against the alternative that the process is trend-

stationary. In this specification he showed that one can reject the hypothesis of a unit root 

for most macroeconomic time-series when the alternative allows for an exogenous break 

in trend. Following Perron (1989), the exogenous break can in the pre-World War II (pre-

WWII) period be estimated as a change in the intercept for the crash in 1929. For the oil 

price shock in 1973 the break can be estimated as a change in the slope of the time trend. 

To allow for a Perron-type specification, this paper estimates a number of VARs with 

different assumptions, including time trends, breaks in trend, and dummy variables 

whenever necessary. Results of these estimations are reported in section I.E. 

True exogenous technology shocks should not be predictable by past observations 

of productivity. In order to test whether the measure of technology shocks used here 

satisfies this requirement, this paper presents Granger Causality tests with patents and 

productivity in table I-2, panel A. The tests are done both in levels and in differences to 

avoid any inference problems caused by possible unit roots. It can be seen in the table 

that patents Granger Cause productivity and that the Granger causality does not run in the 

opposite direction. This, again, argues for the validity of patent data as a measure of 

exogenous technological progress. 

That patent application data despite their noisy component can be used as a 

measure of the arrival of major inventions can also be seen by examining a few 

historically known technological advances. Examples from the beginning of the sample 
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period include the arrival of the first hydro-electric facility in 1894, the discovery of X-

rays in 1895, the airplane in 1903 and the radio in 1906, all of which are of great 

importance for development of future inventions. And all of these inventions were 

followed by an increase in patent applications. The second half of the 1930s also showed 

an increase in patent applications. This observation is consistent with Mensch (1975) who 

found that the years around 1935 were characterized by a large number of basic 

innovations which were important for further technological development. In more recent 

years, one of the most important new GPTs was the internet, which arrived in 1991 

during a surge in patenting. 

An important issue concerning technological progress is the possible endogeneity 

of new inventions. As an example, R&D expenditures are important for development of 

new products. However, if the big changes in the flow of patents over the sample period 

are thought of as arrival of new GPTs, then these may tend to be less correlated with 

R&D expenditures. As a robustness check, section I.E also includes R&D expenditures in 

the analysis. 

On the contrary, if we consider adoption of new products in the economy, Comin 

and Hobijn (2004) showed that real GDP per capita is very important for the rate of 

adoption of a new technology as is the level of schooling. For many products a network 

effect is also in place. When examining the diffusion curves for different products we 

therefore observe the well known S-shape as described earlier. Figure I-4 illustrates the 

S-shaped diffusion curve for aggregate electric power in American manufacturing. Figure 

I-5 is a graph of how different inventions became adopted by American households. Note 

that there is a significant lag from the start of the diffusion process till it reaches its 
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inflection point. Further, there is a lag between the initial date of invention, which for 

some products can be seen in table I-3, and the start of the diffusion process. This lag 

tends to be shorter for more recent inventions just as the diffusion evolves at a faster rate. 

Alm and Cox (1996) address the fact that as the economy evolves, it takes less and less 

time for new products to become adopted. An example is the internet which was adopted 

at a rate that exceeded historically observed rates for other GPTs. This faster rate of 

diffusion in the later period indicates that any observed negative effects after new 

inventions may be shorter-lived in the second half of the sample than in the first half. 

I.D. Methodology 

The benchmark model originates from a bivariate VAR with patents and labor 

productivity. Estimates are computed through a recursively identified structural VAR 

with patents as the first variable and productivity as the second. This corresponds to the 

assumption that patents are only affected by productivity with a lag, whereas productivity 

can respond to contemporaneous changes in patents. Using this ordering allows for 

productivity adjustments because of changes in expectations of future profitability after 

news of new inventions.7 The unrestricted reduced form VAR can be written as 

 ttptpttt xyyycy ε+Γ+Φ++Φ+Φ+= −−− ...2211 . 

Here, yt is an n × 1 vector of the n endogenous variables in the VAR. As such, yt contains 

patents and productivity in the benchmark specification. When the paper allows for other 

variables to enter the system these variables will appear as the third variable in yt. xt is a 

vector of exogenous variables. εt is a vector of error terms, while c is a vector of 

                                                 
7 The paper also tried different ordering of the variables. This did not change the overall conclusions. 
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constants. Φi, where  i = 1,…p, are matrices of coefficients on lagged observations of yt, 

and Γ is a matrix of coefficients for the exogenous variables. 

Let Ω denote the variance-covariance matrix of the error terms such that 

( ) '' PPE tt ==Ω εε , where P is a lower triangular matrix computed by Cholesky 

factorization. Following Hamilton (1994), let F denote the matrix of coefficient estimates 

such that 
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where In is an n × n identity matrix and 0n is an n × n matrix of zeros. The orthogonalized 

impulse response functions from a unit shock to yj s periods into the future can then be 

written as 
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11
11 ⋅=

∂
∂ −−+ ,  for  s = 1, …, h, 

where sF11   is the first n rows and n columns of Fs, Pj is the jth column of P, and Pjj is the 

(j,j) element of P. Thus, whenever the paper analyzes responses to a shock in a variable, 

the paper considers a shock to the corresponding orthogonalized error term.8 With this 

specification, the imputed impulse response functions will depict the change in the 

forecast that occurred as a result of shocking one of the endogenous variables in the 

system. The impulse response functions will therefore illustrate changes in a variable, 

                                                 
8 The impulse response functions are computed based on one standard deviation shocks, corresponding to 
not dividing by Pjj. 
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relative to the trend the given variable would otherwise have followed had the given 

variable not experienced a shock. As such, when the paper talks about negative or 

positive responses of variables to a technology shock, this should be interpreted as 

revisions in forecasts such that the given variable is forecasted to be below or above the 

initially forecasted level. That is, a negative response does not necessarily imply an actual 

fall in the level of the variable but indicates a slowdown relative to the initially forecasted 

path. 

I.E. Empirical evidence 

I.E.1 Benchmark specification 

In section I.C, the paper found that unit roots cannot be rejected in the 

productivity and patent data. If it is assumed that these two variables have a unit root, this 

would argue for estimating the VAR in log differences in order to obtain stationarity. 

However, since both estimations in log differences and in log levels are consistent, both 

estimations are performed on the full sample.9 The two specifications show impulse 

response functions that are very similar, and the paper therefore only reports the results as 

estimated in log levels. As mentioned above, Perron (1989) found that many 

macroeconomic time-series are stationary around a trend if we allow for a break in trend. 

The bivariate VAR is therefore also estimated with time trends. Using this specification, 

the paper follows Perron (1989) and allows for a change in the intercept in 1930 in the 

                                                 
9 Estimating in differences in the presence of unit roots is more efficient than estimating in levels. 
However, the levels estimation is consistent and often preferred to the difference estimation in order to 
avoid possible misspecification. 
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beginning of the great depression and for a break in trend in 1973, following the oil 

shock.10 

To determine the optimal lag-length in the VAR the Akaike Information Criterion 

(AIC) is estimated. The AIC suggests using p = 5 lags when estimating the VAR in 

levels. However, if the true lag-length is finite, the AIC estimate will not be consistent. 

See Bhansali (1997) for an analysis of this. To reduce the small sample bias, the paper 

therefore chooses p = 4 lags when estimating the VAR in levels11 and p = 3 lags when 

estimating the VAR in differences. 

On figure I-2, panel A, patent data appear to have a break in trend in 1985. This 

could potentially be due partly to a change in the patent law in 1985 that may have 

affected the incentive to apply for a patent. The analysis can control for this by including 

a break in trend in 1985. The impulse response functions that result from a bivariate VAR 

with patents and productivity after a one standard deviation shock to patents are 

illustrated in figure I-6 under different specifications. Panel A of figure I-6 shows the 

responses using a VAR in levels without any time trends or dummies in the regressions. 

Panels B, C, and D of figure I-6 include time trends with breaks in trend. The responses 

are plotted together with 2 standard deviation error bands. 

In figure I-6, patents respond positively to a patent shock and in specifications 

where a time trend is included, the trend-stationarity leads to no permanent effects. 

Productivity temporarily decreases relative to the initially forecasted level after a positive 

patent shock under all specifications, and productivity slowly converges back to the 

                                                 
10 See Ramey and Shapiro (1998) for another example of a Perron type time trend. 
11 The paper also tried using p = 5 lags. This did not change the overall conclusions. 
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initially forecasted level. This result supports the hypothesis of Hornstein and Krusell 

(1996) who examined if technology improvements can cause productivity slowdowns. If 

the response of productivity is examined in the Perron-type specification, including 

dummies for WWII and the Great Depression, at a horizon longer than 10 years, the 

response function (not shown) increases insignificantly above the originally forecasted 

level, indicating that productivity eventually will be positively affected by a technology 

shock. Furthermore, many researchers prefer to analyze detrended time series data so this 

paper also estimated the VAR with the full sample of HP-filtered12 data. The resulting 

impulse response functions are depicted in figure I-6, panel E. Using HP-filtered data did 

not change the conclusions of a temporary productivity slowdown. However, the positive 

effects in this case show up sooner than in the case of a Perron-type specification. 

For the following analysis a benchmark model must be selected. The paper 

chooses to follow Perron (1989) and include a time trend, allowing for breaks. The 

benchmark specification can therefore be written as 

 
tttt

ttptpttt

timeWWIIGD
Dtimeyyycy

ελδγ

βα

+⋅+⋅+⋅+

⋅+⋅+Φ++Φ+Φ+= −−−

73
29...2211  

where the notation is as in section I.D. Additionally, timet is a time trend starting in 1889, 

and D29t is a dummy variable such that D29t = 1 for t > 1929 and 0 otherwise. GDt is a 

dummy variable that takes the value of 1 in 1931-33 in order to account for the Great 

Depression. WWIIt is a dummy variable such that WWIIt = 1 for t = 1941-45, and time73t 

is a time trend starting in 1973. A break in trend in 1985 is left out because it has little 

                                                 
12 HP filter denotes the Hodrick-Prescott filter. An HP parameter, λ, of 400 was used. 
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effect on the standard errors of the regressions and on R2.13 Furthermore, Kortum and 

Lerner (1998) examined the surge in patenting after 1985. They examined if this recent 

increase is a result of changes in patent laws in the U.S., a widening set of technological 

opportunities, or a change in the management of R&D facilities. They concluded that the 

recent surge in U.S. domestic patenting is correlated with an increase in patenting abroad 

by U.S. inventors and is not specific to U.S. patent law changes. This suggests that a 

surge in discovery and innovation started around 1985 and argues for not including a 

break in trend in 1985. Instead, the change is left as variation in the flow of patents, 

resulting from the arrival of new technology. 

Piketty and Saez (2003) mention that the Tax Reform Act of 1986 may 

temporarily have affected income inequality measures as 1987 and 1988 experienced a 

relatively large gain in inequality with no permanent level effects. The paper therefore 

includes a dummy for the two years following the Tax Reform Act when income 

inequality measures are included. 

To find support for the argument that technological progress can lead to 

productivity slowdowns, the response of other variables must be examined. A trivariate 

VAR is estimated with patents and productivity as the first two variables and a variable 

Dt as the third variable14. Dt will represent variables such as real consumption, gross 

private investment, output, and an index of stock market prices, among others. Only one 

of these variables enters at a time according to the measure of interest. 

                                                 
13 Including a break in trend in 1985 does not change the overall conclusions. In most cases it only further 
decreases the response of productivity to a shock to patents. 
14 The paper has experimented with other orderings of the variables without altering the conclusions. 



 

 

22

The resulting impulse response functions of a shock to patents are shown in 

Figure I-7. Each row in figure I-7, panel A, indicates a different VAR with a different Dt. 

The response functions depicted in figure I-7, panel B, are from different trivariate 

VARs. Labor productivity shows a transitory slowdown after a patent shock, although 

insignificant at the 5 percent level in the case of output and hours as the third variable. 

Note that when consumption and hours are included in the analysis, the response of 

productivity after 6 years is positive, although insignificant at the 5 percent level. This 

indicates that the new technology does have a positive effect on labor productivity as is 

expected from theory. However, the time lag until the response is positive is longer than 

the standard theory would suggest. 

Consumption increases after a patent shock. This is consistent with the notion that 

consumers expect an increase in their future stream of income after the arrival of new 

technology. In order to smooth consumption, consumers increase consumption 

immediately. Panel A of figure I-7 also reports the response of real GDP, which 

decreases temporarily. Correspondingly, the paper finds a large and significant short-run 

increase in consumption’s share of income after a patent shock. This reflects the 

importance of consumption smoothing after news arrives about new technology. Figure I-

7, panel A, also shows the response of output in the private economy. Here it can be 

observed that private output does not respond significantly. 

The response of investment is insignificant and a clear conclusion cannot be made 

in this case. There is some indication that investment may be increasing in the short run, 

which is likely if net exports are decreasing. However, if the technology is adopted 

slowly, it may be that investment only increases over time as productivity increases. This 
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is further explored in section I.F. If investment does indeed increase in the short run, then 

an alternative explanation for the positive responses of both consumption and investment 

could be if patent applications tend to increase during economic expansions. A patent 

shock could thereby forecast an increase in consumption and investment. However, this 

does not fit the response of output, and Granger Causality tests in panel B of table I-2 

show no indication that consumption and investment Granger Cause the flow of patents. 

This interpretation therefore does not seem convincing. Another explanation could be that 

government spending is correlated with the rate of patenting. However, if government 

expenditures are included in the VAR, ordered first in the system, then government 

spending does not show a significant reaction to a patent shock (not shown). This 

explanation, therefore, does not seem to be driving the results.15 

Hours worked show an insignificant response, although indicating that labor input 

may be reduced in the long run after the arrival of new technology. The finding that labor 

productivity temporarily decreases corresponds to the result of Fisher (2005), who finds 

that productivity may decrease after an investment specific technology shock. However, 

in his analysis this arises as a result of positive responses of both hours and output, with 

hours showing the strongest response. 

When considering income inequality, existing literature (Krusell, Ohanian, Rios-

Rull, and Violante (2000), among others) suggests that wage inequality increases after the 

arrival of new technology as a result of higher demand for skilled labor. Looking at the 

empirical evidence available from patent data, there is some indication that this 

                                                 
15 For some orderings there is some indication that government expenditures may show a negative response 
to a patent shock. Further examination of the relation between government spending and development of 
new technology is a subject for future research. 
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phenomenon is present. The wage inequality measure is described by the wage share of 

the top decile of tax units. Piketty and Saez (2003) indicate that the top percentile of the 

income distribution is largely influenced by capital income. The impulse response 

function is therefore estimated based on data for the 90-99th percentile16. The impulse 

response function shows that wage inequality increases temporarily after an increase in 

the flow of patents; however, this result is not statistically significant at a 5 percent level. 

Using instead a measure of the income share that covers the period 1917-1998, the 

response corresponds to the one obtained using wage shares. However, when using the 

income share as a measure of inequality, the temporary increase is significant. The paper 

therefore finds support for the notion that a learning period is prevalent when adopting a 

new invention. This result further distinguishes the paper from Shea (1998), who does not 

explore how income inequality is affected by a technology shock. 

When a measure of wage inequality is included in the VAR, the response of 

productivity is not statistically significant. This could be a result of the change in the 

sample period, as data on wage inequality are only available beginning in 1927. 

Differences between the first half and the second half of the sample will be examined in 

section I.F. 

Using the full sample period, the analysis finds that consumption is affected 

immediately by the arrival of new technology. Similarly, stock prices are expected to 

respond. Figure I-8 contains the responses associated with the stock price analysis. Since 

it is uncertain how quickly the market learns about the new technology, this paper 

                                                 
16 The paper also estimated the response function including the top percentile. This did not change the 
responses. 
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experiments with two different measures of stock prices. The impulse responses are 

based on a trivariate VAR with patents, productivity, and one of the measures of stock 

prices. Panel A of figure I-8 uses January values of an S&P Composite index (SP1) in 

order to annualize the data, while panel B is based on June values (SP6). The top rows of 

the two figures show the responses of productivity and stock prices to a patent shock, 

while the bottom rows show the responses of productivity and patents to a stock price 

shock. The importance of comparing responses from a patent and a stock price shock 

originates from Beaudry and Portier (2006). They suggest that stock price shocks can 

reveal news about new technology and identify a shock that affects stock prices 

contemporaneously, but leads to an increase in productivity only with a lag. Since stock 

prices are assumed to incorporate all available information, changes in stock prices may 

arise as a forward-looking response to future patent applications. 

Comparing the responses of productivity to a patent shock in panels A and B of 

figure I-8 indicates that the temporary productivity slowdown is not sensitive to including 

different measures of stock prices in the analysis. In addition, the responses of 

productivity to a patent and an SP1 shock show the same overall pattern, although the 

productivity slowdown following an SP1 shock is insignificant. This may indicate 

similarities in the underlying information inherent in the patent and early stock price data. 

The impact responses of SP1 and SP6 to a patent shock are positive but insignificant. On 

the contrary, patents show a positive and significant response three to four years after a 

stock price shock, and patents respond faster to an SP6 shock than to an SP1 shock. The 

fact that patents increase after a stock price shock may result from the forward-looking 

behavior of stock prices, indicating news about the future profitability of new technology. 
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Alternatively, a stock price increase can free up resources for funding of R&D and 

thereby lead to a future response of patents. A closer examination of this is left for future 

research. 

I.E.2 Robustness of the results 

Many macroeconomists are reluctant to accept patent data as a measure of 

technological progress because of the noise inherent in the data. As a robustness check, 

this paper therefore reexamines the impulse responses using different measures of 

technological progress. 

I.E.2.1 The patent stock 

A measure of the stock of patent applications is created, following Lach (1995). 

This corresponds to computing the stock of knowledge in the economy instead of 

focusing solely on the addition of new technology. Let Pt indicate the flow of patent 

applications in period t which was used in the previous section. The stock of patents, KPt, 

is then estimated as 

 
g

PKP t
t +
=
δ

    t = 1889, 

 ( ) ttt PKPKP +−= −11 δ   t = 1890, …, 2002. 

δ indicates the rate of depreciation of patent capital and is set to 15%, a level that 

is common in the literature. g is the average growth rate of patent applications over the 

full sample. The patent stock is illustrated in figure I-9 together with the flow of patents. 

When comparing the two series, it can be observed that the patent stock mainly differs 

from the data on the flow of patents by smoothing the series. 
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The response of productivity after a shock to the stock of patents is shown in 

figure I-1017. The impulse response function shows that the temporary negative effect on 

productivity remains. This result is also robust to changes in the depreciation rate, δ, 

which was varied in the interval δ ∈ [0 , 1]. 

Using the stock of patents as the measure of technology, the analysis finds that 

consumption responds positively, corresponding to the effect using data on the flow of 

patents. This response is therefore not shown. Since the results are unchanged when using 

the stock of patents, the paper chooses to return to the use of patent flows as the measure 

of technological change. 

I.E.2.2 Evidence from a restricted model 

The VAR above incorporates dynamics in the system by allowing lags of 

productivity to affect the flow of patents. However, from table I-2 it can be concluded 

that productivity does not Granger cause patents. Allowing for these dynamics in the 

VAR may therefore result in an unnecessary degrees of freedom reduction and less 

precise parameter estimation. To take this issue into account, the paper follows the 

approach of Lach and Schankerman (1989), who use firm-level data to estimate the 

importance of shocks that affect R&D, investment, and the stock market rate of return. 

Following their procedure, this paper allows investment to help explain the variation in 

patents and productivity in the unrestricted system of equations. This section therefore 

allows for three different kinds of shocks to the system. 

                                                 
17 When the patent stock is used as the measure of technology, the VAR is estimated using p = 6 lags as 
suggested by the AIC criterion. The LR and Hannan-Quinn (HR) criteria suggest using p = 5 lags. This 
does not change the result. 
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Ignoring exogenous variables, the unrestricted system of equations looks as 

follows: 
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where pt is the flow of patents at time t. yt indicates productivity, and it is investment. 

Bij(L) for i, j=1, …, 3 are polynomials in the lag-operator, L. Finally, εt, ηt, and τt, are 

orthogonal disturbance terms, where it must be determined how the shocks affect each 

equation. C is a matrix of coefficients. 

Following Lach and Schankerman (1989), this paper uses F-tests, corresponding 

to Granger Causality tests, as exclusion criteria in the system. The model is estimated 

equation by equation assuming trend-stationarity with breaks in trend as described earlier, 

and the F-tests are computed on the individual equations. The following steps test 

whether patents, productivity, and investment individually and collectively Granger cause 

each other. The steps can be explained as follows: 

Step 1. H0: yt and it do not Granger cause pt, neither individually nor collectively. 

Step 2. H0: pt and it do not Granger cause yt, neither individually nor collectively. 

Step 3. H0: pt and yt do not Granger cause it, neither individually nor collectively. 

Table I-4 shows the results of the tests. 

From step 1, the paper concludes that lags of productivity and investment do not 

help predict current levels of the patent flow, whereas the tests in step 2 show that lags of 

both patents and productivity do have predictive power for current productivity. For 

investment, there is evidence that lags of investment are important for prediction. 
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Furthermore, at the 10 percent level it is rejected that patents and productivity jointly can 

be dropped from the regression, although neither has explanatory power individually. 

Since the theoretical prior is that patents help predict investment, the paper chooses to 

include patents and productivity in the investment equation. 

Based on the results of the exclusion restrictions, the paper follows the recursive 

identification structure used for the VAR in section I.E.1 to restrict the matrix C, such 

that it is lower triangular. Ignoring the constant and other exogenous variables, the 

restricted system of equations can then be written as 
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where effects of the orthogonal disturbances on the endogenous variables are normalized 

in the it-equation, as indicated by the row of ones. The matrix of coefficients on the 

disturbance terms indicates the causal ordering by being lower triangular such that a 

shock to patents, εt, is allowed to have immediate effect on the remaining endogenous 

variables. The coefficient estimates of the endogenous variables in the restricted system 

are shown in table I-5 together with standard errors of the estimates and the variance-

covariance matrix of the residuals from the regressions, Σ̂ . It is important to note that the 

matrix of coefficients on lagged endogenous variables is lower triangular in this restricted 

system. This means that there is no feedback from changes in productivity to patents as 

was the case in the benchmark model in section I.E.1. 

Since the residuals can be decomposed into orthogonal disturbance terms it is of 

interest to identify the effects that these orthogonal disturbances have on the endogenous 
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variables. To do this, the symmetric variance-covariance matrix of the error terms is 

analytically solved as 
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where 2
iσ is the variance of the orthogonal error term i, for i = ε, η, and τ. 

The 6 distinct elements of the variance-covariance matrix yield a system of 6 

equations in 6 unknowns.18 Solving this system of equations allows the paper to find the 

coefficients on the shocks and the variances of the disturbances. Parameter estimates are 

given in table I-6. Impulse response functions from the restricted model are then 

computed by simulation and shown in figure I-11. It is confirmed that productivity 

responds negatively to the arrival of new technology as a shock to εt, which is the shock 

associated with the flow of patents, leads to a decrease in productivity. The paper 

therefore concludes that the results are robust to restricting the system in order to obtain 

more precise parameter estimates. 

I.E.2.3 Research and development 

R&D expenditures, which are an input to the production of new technologies, 

precede any future patents and may lead to inventions that are not patented. It is therefore 

of interest to see how productivity responds to an R&D shock. For this analysis, the paper 

uses data on investment in privately financed R&D for the period 1935-1997. The 

resulting impulse response functions from a trivariate VAR with R&D, patents, and 

                                                 
18 The 6 unknowns are the three parameters, α, β, and δ, together with the three variances of the orthogonal 
disturbance terms, 2

εσ , 2
ησ , and 2

τσ . 
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productivity are shown in figure I-12. As theory predicts, the system shows that patents 

indeed increase significantly after an R&D shock and that productivity responds 

negatively in the short run. However, an interesting feature of the impulse response of 

productivity to an R&D shock is the positive effect after around 7 years. This is likely 

due to leaving out the relatively slow rate of diffusion of products during the 

Electrification period in the beginning of the 20th century. Using R&D data over the 

period 1935-1997, when the speed of diffusion tended to be faster, makes it possible to 

identify the eventual positive effects of new technology on productivity. 

That the time period is important can also be seen from the corresponding 

response of productivity to a patent shock in figure I-12. This figure shows a response 

similar to what is observed with an R&D shock.19 The equivalent responses from a 

bivariate VAR (not shown) with either patents or R&D and productivity for the period 

1935-1997 show similar responses. That is, patent data succeed in identifying the initial 

short-run response and the future positive response. The paper concludes that the results 

are robust to using different measures of technology. 

The observation that VARs, using either R&D data or patent data, produce 

equivalent impulse responses supports the validity of patent data as a measure of 

technological progress. However, the fact that impulse response functions based on the 

sample period 1935-1997 show a different pattern than when based on the full sample 

indicates the importance of further analysis of sub-samples of the data. 

                                                 
19 The trivariate VAR was estimated under several different specifications for the ordering of the variables. 
The resultant responses look similar to the ones illustrated in figure 12 and are therefore not reported. 
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I.E.2.4 The pre-IT period 

One can argue that the increase in the rate of patenting after 1985 explains a large 

part of the result since productivity growth was relatively low around this period. The 

estimations were therefore repeated, leaving out the period 1986-2002. This did not 

change the conclusions but only yielded a further negative response of productivity to a 

patent shock and consumption still exhibited a temporary increase after a patent shock. 

However, the initial response of investment was muted and became negative after a few 

years, matching the negative response of output. Overall, limiting the analysis to the 

period before the surge in patenting in 1985 and thereby only including the pre-

Information Technology (IT) period does not change the conclusions but only renders 

responses of productivity to technology shocks that are more negative. 

The fact that the response of investment is more negative while the data show a 

longer-lasting slowdown in productivity when considering the pre-IT period may indicate 

that the faster rates of diffusion in the last part of the 20th century may be very important 

for understanding and identifying any economic contractionary or expansionary effects of 

new technology. This is so, because the more negative response of investment in the early 

period is an indication of slow diffusion where firms postpone investments until the new 

technology has been further improved. As seen in figure I-5, the rate of adoption of 

electricity among American households was slower than the equivalent adoption rate for 

the internet. This paper therefore now considers any possible differences between the pre-

WWII and the post-WWII periods. 
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I.F. Pre- and post-WWII 

The sample is now divided into two sub-periods. The pre-WWII period covers the 

years 1889-1940 while the post-WWII period extends over 1948-2002. Doing this allows 

technological progress to affect productivity differently during the Electrification period, 

when the diffusion of technology was relatively slow, than during the IT period, when 

diffusion happened more rapidly. 

The Electrification period was a period over more than 30 years and was a period 

during which several important GPTs were invented and implemented. Because of the 

relatively slow rate of diffusion for electricity, it is very likely that learning and 

reorganization processes within firms were relatively long lasting, leading to more 

pronounced negative effects on productivity in the pre-WWII period than in the post-

WWII period. For the IT period, adoption of the internet started immediately after the 

invention in 1991 and the speed of diffusion was fast already from the beginning. 

Therefore, one should expect shorter-lasting negative effects on the macro economy since 

any positive network externalities will arrive faster with a high rate of diffusion relative 

to a slow diffusion process. 

A further argument for dividing the data into two periods, before and after WWII, 

is the change in volatility. Figure I-2, panel B, shows how productivity growth exhibited 

larger volatility in the pre-WWII period where the standard deviation of the growth rate is 

0.039, than after WWII, where the standard deviation is merely 0.016. Similarly is it the 

case for the growth rate in patent applications which also experienced a decrease in the 

variance after WWII. 
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I.F.1 VAR estimation on two sample periods 

The impulse response functions from a bivariate VAR with patents and 

productivity in the two sub-samples are shown in figure I-13. For both the pre- and the 

post-WWII periods the AIC suggests using p = 1 lag. However, because of the slow 

diffusion of technology during the early period, more lags may be needed. The figure 

therefore also shows the response functions using 4 lags. As seen, the response functions 

are robust to using different lag lengths. 

The difference between the two periods is easily seen. In the pre-war period, 

productivity depicts the temporary slowdown as seen when using the full sample. On the 

contrary, in the post-war period, there is no evidence of a temporary slowdown. Instead, 

the positive effects of a technology shock are now prevalent such that productivity 

increases significantly after 2-3 years. Including more lags in the estimation postpones 

the significantly positive effect another couple of years but without evidence of a 

productivity slowdown. This result is very important for understanding the productivity 

slowdown during the Electrification period and after 1973. The paper finds evidence that 

technology, indeed, can lead to a temporary productivity slowdown as seen in the early 

period. However, from this analysis it can be concluded that the productivity slowdown 

after 1973 does not seem to be a result of the arrival of new technology. 

In panel A of figure I-13 with pre-WWII data, the long-run positive effects of 

technological progress on productivity do not show up when using 1 or 4 lags. This may 

be due to only considering a sub-sample period when diffusion was considerably slow. 

Figure I-13, panel A, therefore also estimates the VAR using 9 lags. This consumes many 

degrees of freedom but may provide an indication that the long diffusion lags are 
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important. Indeed, when including more than 8 lags the future positive effects do show up 

in the long run, although insignificantly, while still depicting a temporary slowdown in 

the short run. 

For the pre-WWII period, responses of other variables than productivity look 

similar to the responses using the entire sample period and are therefore not reported. For 

the post-WWII period there are important differences that must be further analyzed. The 

following therefore focuses on the post-WWII period which can yield important insights 

for the current literature. 

I.F.2 Post-WWII VECM 

If there is evidence of cointegrating relationships when considering the post-

WWII period separately, a vector error-correction model (VECM) may provide a better 

description of the data than stationarity around a deterministic trend with breaks. 

Furthermore, the inclusion of a break in trend in the regressions may partly explain the 

lack of a productivity slowdown in the later period. It is therefore of interest to examine 

the system of equations without exogenously removing the 1973 trend break. 

When looking at the full sample period and at the pre-WWII period only, there is 

no evidence of cointegration and the results are robust to different specifications. 

However, cointegrating relationships for the post-WWII period cannot be rejected at a 5 

percent level. Results from a cointegration test in the bivariate system for this period are 

reported in panel A of table I-7 and panel B reports corresponding tests in trivariate 

systems. At a 5 percent level, the paper cannot reject one cointegrating relationship in the 

system. This section therefore examines the responses to a patent shock under the 
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assumption that a VECM best describes the post-WWII data. Impulse response functions 

with 95 percent confidence intervals calculated by Hall Bootstrap20 methods are reported 

in figure I-14. Panel A of this figure illustrates the responses of patents and productivity 

to a patent shock in a bivariate VECM. Each row in panel B depicts responses to a patent 

shock, based on a VECM with three variables where the third variable changes, 

according to the measure of interest. Lag length is determined mainly based on AIC 

estimates. The corresponding VARs without imposing cointegrating relations and without 

deterministic trends in the regressions are also estimated in figure I-15.21 

Figure I-15, panel A, reports the impulse response functions from a bivariate 

VAR with patents and productivity. Panel B of figure I-15 reports the equivalent 

responses from trivariate VARs. The organization of the variables corresponds to the 

ordering from the VECM analysis. The responses for productivity, consumption, 

investment, and output, as measured by GDP, generally show equivalent pictures whether 

estimated from a VECM or a VAR. 

Figure I-14, panel A, with VECM results reports that labor productivity does not 

display a significant slowdown after a patent shock but that productivity increases 

significantly after several years. In figure I-14, panel B, consumption increases slowly 

but the response remains statistically indistinguishable from zero at a 5 percent level. 

However, the corresponding VAR with no cointegration in figure I-15, panel B, does 

depict a significant response. Investment and output slowly converge to a significantly 

higher level. When based on a VECM, hours do not show a significant response but do 
                                                 
20 Efron bootstrap confidence intervals were also computed. Hall confidence intervals tend to show more 
significant results than Efron estimates. However, the overall conclusions derived from impulse response 
functions using these confidence intervals were unchanged. 
21 Impulse responses with trend and break (not shown) depict responses that lead to unchanged conclusions. 
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indicate that labor input use is reduced in the long run after the arrival of new technology. 

However, when estimating the response of hours based on a VAR with no cointegration, 

as illustrated in panel B of figure I-15, hours do not demonstrate a reduction in input use 

in the long run. If hours are truly constant, such that long-run labor input use is 

unchanged after the arrival of new technology, then the post-WWII impulse response 

functions can be matched by a standard growth model with labor held constant, assuming 

that technology arrives exogenously through slow diffusion. The theoretical implications 

will be discussed in section I.G. 

The VECM analysis confirms results from the previous section, that there is not 

evidence of a significant slowdown in the post-WWII period after the arrival of new 

technology. That any transitory contractionary effects of a new invention are more 

prevalent in the pre-war period indicates the importance of further analysis of the 

consequence of the rate of diffusion and learning for the economic effects. It is left for 

future research to explore these differences in more thorough detail. Instead, the paper 

now estimates the importance of technology shocks for variations in productivity at 

different horizons. 

I.F.3 Variance decomposition 

In the neoclassical models, a large focus has been put on the role of technological 

progress. Using the historical data in this paper, it is possible to estimate the importance 

of a patent shock for the variation in productivity. Table I-8, panel A, shows the results 

from a decomposition of the forecast error variance during the two sub-sample periods 

under different assumptions about the data in a bivariate analysis with patents and 
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productivity. Panel B of table I-8 reports results using R&D as a measure of technology 

instead of patents and panel C displays the results if a third variable is included in the 

system. 

In the period 1889-1940, 37 percent of the variation in productivity can be 

explained by the patent shock at a 50 year horizon. Similarly, in the post-WWII period 

61.5 percent of the variation is explained by the technology shock when estimating in a 

VAR with deterministic trend assumptions but almost 90 percent is explained when 

taking into account possible cointegration during the sample period. These numbers 

indicate that patents explain a large fraction of long-run variation in productivity and that 

patent data therefore do capture the arrival of new technology. As a result, the paper 

concludes that technology shocks, indeed, are important for fluctuations in productivity. 

Equivalently, R&D explains around 27 percent of the variation in productivity. However, 

in the case of R&D, the sample period includes the war time years.  

Generally, technology shocks, identified with patents, seem to explain a larger 

fraction of the variance of productivity in the post-war period than in the earlier period. 

However, the estimates in table I-8 are smaller than the results computed by Francis and 

Ramey (2004). Through a long-run specification, they find that technology shocks 

explain more than 90 percent of the variance of productivity on a horizon longer than 

three years. That patents only account for up to 90 percent of the forecast error variance 

of productivity at a horizon of 50 years is an indication that also other sources than 

technology are important for explaining long-run fluctuations in productivity. It is 

therefore likely that human capital can be important, also in the long run, when 

explaining fluctuations in productivity growth. 
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Many economists focus mainly on determining the effects of new technology on 

productivity at a business cycle horizon. As an example, Beaudry and Portier (2006) have 

argued that news about future technology can lead to an economic expansion in the short 

run. However, the variance decomposition in table I-8 illustrates that the arrival of new 

technology as measured by new patent applications only have little importance for the 

variation in productivity at a horizon shorter than three years. After five years, 

approximately 24 percent of the variation in productivity is explained by patents in the 

pre-WWII period while around 18 percent of the variation is explained in the post-WWII 

period when estimating with a VAR. 

To further explore the importance of technology shocks at the business cycle 

horizon, table I-8, panel C, reports the variance decomposition results for the post-WWII 

period when based on a trivariate system. The table shows that technology shocks alone 

are not important for explaining business cycle fluctuations since less than seven percent 

of the variation is explained by patents at a horizon shorter than five years. However, 

technology is important for explaining variations in investment and output in the long 

run. Furthermore, when consumption, output, or hours worked are included in the system, 

the variation in productivity explained by patents at a horizon of 50 years remains around 

90 percent when estimated by a VECM (not shown) and the overall conclusions are not 

sensitive to the ordering of the variables in the systems. 

I.G. Theoretical implications of the results 

The main purpose of this paper is to provide empirical, statistical evidence for 

how the economy responds to the arrival of new technology. However, the result that 
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technology shocks are not important for explaining business cycle expansions has 

important implications for current theoretical macroeconomic research. The real business 

cycle model predicts that a technology shock has an immediate and positive impact on 

the economy. However, from the present analysis, this paper concludes that this result 

does not match the data. The next important step is therefore to explore which models can 

explain these empirical findings. 

The post-WWII response functions point in the direction of incorporating slow 

diffusion when modeling technological progress. A model with a continuum of plants 

that adopt the new technology at different times is therefore an appropriate setting for 

incorporating slow diffusion. Rotemberg (2003) has a model which incorporates the 

diffusion of technological innovations that can lead to temporary slowdowns in output. 

However, this coincides with fluctuations in hours worked that do not correspond to the 

present empirical findings. Therefore, an S-shaped adoption rate cannot alone explain the 

empirical results. 

The pre-WWII period is not only affected by slow diffusion but also by temporary 

adverse effects that significantly decrease labor productivity. One promising line of 

research is therefore to explore the importance of learning and the influence of the stock 

of human capital that may facilitate the adoption of new technology. On this issue, Bartel 

(1989) showed that large businesses that are introducing new technologies are more 

likely to have formal training programs and that formal training of workers have a 

positive impact on productivity. Therefore, more skilled labor in the post-1948 period 

compared to the early part of the sample may enable easier and faster learning and 

thereby shorten the time-lag until any positive effects show up in the productivity data. 
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This is also evidenced by Bartel and Sicherman (1999) who confirm that workers in 

industries with higher rates of technological change have more human capital. 

Compatibility problems between old and new technologies may also play a role in the 

early part of the sample and including such factors may improve the performance of a 

theoretical model explaining the effects of technological progress on productivity over 

long sample periods. 

I.H. Conclusion 

This paper has argued that patent application data can be used as a valid measure 

of technological progress. Using vector autoregressions on data from 1889 to 2002, this 

paper concludes that when examining the full sample period aggregate labor productivity 

responds negatively in the short run after technological progress occurs. This result is 

robust to several different methodological specifications and to utilizing the stock of 

patent applications and R&D data as alternative measures of technology. 

The paper found evidence that the effects of technology shocks on productivity 

have changed substantially over the last century. This may be a result of changes in the 

rate of diffusion of technology since diffusion has been faster in the post-WWII period 

than it was in the pre-WWII era. A faster rate of diffusion can lead to shorter-lasting 

negative effects of technology shocks, and future positive effects on productivity will 

then show up in the impulse response functions. The effect of human capital may also be 

very important since more skilled labor facilitates the adoption of new technology. That 

there are important changes over the sample period is indeed what the data demonstrate. 

Using data from 1889-1940, productivity is estimated to be lower than the initially 
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forecasted level following a technology shock, after which it slowly reverts back to the 

initial forecast and a further increase. On the contrary, data on 1948-2002 do not show 

significant negative effects on productivity. Instead, significantly positive revisions in the 

forecast are observed. Similarly, investment and output follow a path equivalent to that of 

productivity. Further examination of the importance of the rate of diffusion and the 

amount of skilled labor for the response of labor productivity to a technology shock is a 

subject for future research. 

Variance decompositions support the role of patent statistics as a measure of 

technological progress since variations in long-run productivity are explained mainly by 

patents. However, the analysis also shows that technology shocks are not very important 

in explaining business cycle fluctuations. The empirical findings in this paper therefore 

have important theoretical implications. The results point toward the importance of 

incorporating slow diffusion, human capital, and learning in macroeconomic models 

when trying to understand the effects of technological progress on productivity. 
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I.I. Tables and figures 

Table I-1: Augmented Dickey Fuller unit root tests 

 Alternative hypothesis 

 Constant term, no time trend Constant term, linear time trend 

Patents 1.193202 -0.043288 

Productivity 0.069758 -1.678276 

Note: 4 lags are used. Variables are in log-levels over the full sample, 1889-2002. 
MacKinnon 5% and 10% critical values for rejection of the null of a unit root are -2.8879 and -2.5807, 
respectively for case 1 with an intercept but no trend included.  When a constant term and a linear trend are 
included, the critical values are -3.4512 and -3.1507, respectively. 
 

 

Table I-2: Granger causality tests 

Null hypothesis   

Panel A F-stat P-value 

Productivity does not Granger cause patents (levels) 0.77926 0.54122 

Patents do not Granger cause productivity (levels) 5.18307 0.00077* 

Productivity does not Granger cause patents (differences) 0.73067 0.53600 

Patents do not Granger cause productivity (differences) 6.50808 0.00045* 

   

Panel B   

Consumption does not Granger cause patents (levels) 0.48862 0.74406 

Patents do not Granger cause consumption (levels) 2.14049 0.08123 

Investment does not Granger cause patents (levels) 0.61309 0.65417 

Patents do not Granger cause investment (levels) 0.75838 0.55478 

Note: 4 lags are used when testing in levels. 3 lags are used when testing in differences. 
*Rejected on a 1% level. 
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Table I-3: Great inventions 

Year Product 

1894 First hydro-electric facility at Niagara Falls* 

1895 X-rays discovered by Wilhelm Roentgen*** 
Diesel locomotive invented**** 

1903 Airplane**. Steam turbine generator*** 

1905 Patenting of alloy of nickel and chromium, Nichrome, making electric toasters possible*** 

1906 Radio** 

1926 Television** 

1927 Polyvinyl chloride (PVC)*** 

1933 Polyethylene**** 

1934 Diesel locomotive and radar innovated **** 

1945 Atomic bombs dropped in Japan*** 

1953 Microwave oven** 

1971 Intel introduces the microprocessor*** 

1975 Bill Gates and Paul Allen found Microsoft*** 

1981 IBM introduces the PC*** 

1983 
Cell phone** 
Apple Computer introduces the Macintosh computer*** 
Microsoft releases Microsoft Windows 1.0*** 

1991 Internet** 

Source: *Jovanovic and Rousseau (2005). 
**Alm and Cox (1996). 
***National Academy of Engineering. 
****Mench (1975), pp. 127-128, table 4-4. 
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Table I-4: Exclusion tests in a restricted model 

 Null hypothesis F-statistic P-value 

Step 1 (pt) pt does not Granger Cause pt 54.02592 0.000000 

Step 1 (yt) yt does not Granger Cause pt 1.236390 0.300998 

Step 1 (it) it does not Granger Cause pt 1.910400 0.115306 

Step 1 (yt and it) yt and it do not Granger Cause pt 1.367494 0.221240 

    

Step 2 (pt) pt does not Granger Cause yt 3.544856 0.009778 

Step 2 (yt) yt does not Granger Cause yt 42.12399 0.000000 

Step 2 (it) it does not Granger Cause yt 0.581868 0.676527 

Step 2 (pt and it) it and pt do not Granger Cause yt 2.544901 0.014986 

    

Step 3 (pt) pt does not Granger Cause it 0.881667 0.478175 

Step 3 (yt) yt does not Granger Cause it 1.201055 0.315762 

Step 3 (it) it does not Granger Cause it 5.888828 0.000290 

Step 3 (pt and yt) pt and yt do not Granger Cause it 1.939921 0.063181 

Note: 4 lags are used. A time trend, a change in the intercept in 1930, a break in trend in 1973, and 
dummies for the Great Depression and WWII are included.  
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Table I-5: Coefficient estimates of the restricted model 

Variable Patents Productivity Investment 

P(-1) 1.006301** 
(0.096138) 

-0.064572* 
(0.034109) 

0.304491 
(0.274178) 

P(-2) -0.118558 
(0.137876) 

0.055203 
(0.048012) 

-0.419511 
(0.385404) 

P(-3) -0.200454 
(0.136704) 

-0.104881** 
(0.047861) 

0.295276 
(0.388206) 

P(-4) 0.193563** 
(0.094011) 

0.120116** 
(0.033607) 

-0.323420 
(0.279470) 

Y(-1) - 0.517956** 
(0.090733) 

0.796636 
(0.760687) 

Y(-2) - 0.185034* 
(0.102279) 

-0.249734 
(0.846228) 

Y(-3) - 0.308067** 
(0.100219) 

0.194143 
(0.825519) 

Y(-4) - -0.111920 
(0.085658) 

0.388071 
(0.730636) 

I(-1) - - 0.398163** 
(0.107580) 

I(-2) - - 0.004190 
(0.119179) 

I(-3) - - -0.087063 
(0.110917) 

I(-4) - - 0.063423 
(0.090265) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Σ

0302.00017.00012.0
...0005.00001.0
......0047.0

ˆ  

Note: Constants and time trends with breaks, as described in the text, were included in the regressions. 
Standard errors in parentheses. 
(**) Denotes significance at the 5% level. 
(*) Denotes significance at the 10% level. 
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Table I-6: Parameter estimates for the restricted model 

Parameter Value  Parameter Value 

α 3.9167  2
εσ  0.0003 

β 0.0833  2
ησ  0.0056 

δ 0.2973  2
τσ  0.0243 

 
 
Table I-7: Cointegration in post-WWII data 

Hypothesized number of 
cointegrating relations Trace Statistic 5 percent critical value 1 percent critical value 

Panel A. Bivariate system 

Patents and Productivity:    
0 22.57 15.41 20.04 

At most 1 3.53 3.76 6.65 

    

Panel B. Trivariate systems 

Consumption:    
0 36.06 29.68 35.65 

At most 1 9.56 15.41 20.04 

Investment:    
0 35.13 29.68 35.65 

At most 1 15.34 15.41 20.04 

Output:    
0 36.21 29.68 35.65 

At most 1 8.38 15.41 20.04 

Hours:    
0 34.94 29.68 35.65 

At most 1 8.41 15.41 20.04 
Note: The test allows for a linear deterministic trend in data. 1 lag in differences is included. The paper 
only shows results for up to 1 cointegrating relation since this is accepted. 
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Table I-8: Variance decomposition, continued on next page 

Panel A. VAR with patents and productivity 

 1889-1940 (VAR) 1948-2002 (VAR) 1948-2002 (VECM) 

Year Patents Productivity Patents Productivity Patents Productivity 

1 0.0000 0.2128 0.0000 0.4461 0.0000 0.2214 

2 0.4271 2.3610 0.7884 3.5887 0.3083 0.6125 

3 0.3661 2.7362 1.8375 8.2642 0.3297 0.5604 

5 0.4914 23.8217 3.6410 18.4600 0.2856 4.1188 

10 0.9458 33.6160 5.9150 36.3111 0.1731 29.8711 

20 1.2758 36.8177 7.2418 51.1076 0.2511 68.0240 

50 1.2914 36.9073 7.9620 61.5152 0.9252 89.8874 

Note: Columns for “patents” indicate the percentage of the forecast error variance for patents explained by 
productivity. Similarly, the percentage of forecast error variance for productivity explained by patents is 
indicated under columns labeled “productivity”. Year 1 is the time of the shock. 
1889-1940 includes a time trend, a change in intercept in 1930 and a dummy for the Great Depression. 4 
lags are used. 1948-2002 includes a time trend and a break in trend in 1973 in the case of VAR. The VAR 
employs 1 lag. Including 2 lags only increases the fraction of the variation in productivity explained by 
patents. In the case of VECM, no break in trend is included and 1 lag in differences is used. 
 
Panel B. VAR with R&D and productivity 

 1935-1997 

Year R&D Productivity 

1 0.0000 0.3337 

2 1.1559 0.3999 

3 0.8784 5.4773 

5 2.5449 16.9040 

10 6.2682 25.2598 

20 6.9241 27.1433 

50 6.9924 27.3293 

Note: Based on a bivariate VAR with R&D and productivity. 4 lags included together with a trend and a 
break in trend in 1973. The column for “R&D” indicates the percentage of the forecast error variance for 
research and development explained by productivity. Similarly, the percentage of the forecast error 
variance for productivity explained by R&D is indicated under the column labeled “productivity”. Year 1 is 
the time of the shock. 



 

 

49

Table I-8 (continued): Variance decomposition 
Panel C. VAR with patents, productivity, and a third variable 

 1948-2002 (VAR) 1948-2002 (VECM) 

Year C I Y H C I Y H 

1 0.9553 0.0287 0.6880 0.0462 1.1842 1.1876 0.0111 0.0070 

2 1.0160 0.2402 0.6965 1.4168 0.8943 2.1753 0.4471 0.8798 

3 1.3657 1.0359 1.4694 2.4789 0.8290 3.4458 0.5286 2.9929 

5 3.1418 4.4170 6.6761 2.7745 1.2287 6.6531 0.9606 5.6318 

10 10.9690 14.4791 19.7172 3.0942 3.5132 16.2715 8.6216 10.6952 

20 19.8131 27.1267 30.7217 3.3264 8.4499 32.3941 31.4676 17.4414 

50 24.3104 41.4140 41.0630 3.6470 15.6607 54.1356 60.1973 24.9481 

Note: The columns indicate the percentage of the forecast error variance explained by patents. Year 1 is the 
time of the shock. Based on a trivariate system with patents, productivity, and a third variable as indicated 
in the table. 
1948-2002 (VAR) includes a time trend and a break in trend in 1973. The VAR employs 1 lag. In the case 
of VECM, no break in trend is included and 1 lag in differences is used for C, Y, and H. 0 lags in 
differences are used when I is included, following the AIC choice. 
 

 

 

 

 

 
Figure I-1: The flow of technologies 
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Panel A. Total Utility Patent Applications 

 

 

 

 

 

 

 

 

 

 
Panel B. Private Business Labor Productivity and Productivity Growth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I-2. Patents and productivity 
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Note: Patent applications are sorted by application year. Patents granted are sorted by grant year. 
 
Figure I-3: Total patent applications and patents granted 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Source: Du Boff (1979) and author’s calculations. 
Note: Aggregate electric power is the sum of primary electric motors and the proportion of total primary 
power engaged in producing electricity for intra-plant use. Linear interpolation is used in place of missing 
observations. 
 
Figure I-4: Diffusion of aggregate electric power in manufacturing 
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Source: W. Michael Cox, Federal Reserve Bank of Dallas. 
Note: Airplane is percentage of air miles traveled per capita relative to miles traveled in 1996. Automobile 
refers to the number of motor vehicles relative to persons age 16 and older. For further explanation, see 
Alm and Cox (1996). 
 

Figure I-5: Spread of products into American households 
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Panel A. VAR in levels. No trends or dummies included. 
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Panel B. VAR in levels. Time trend, change in intercept, 1930, change in slope, 1973. 
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Panel C. VAR in levels. Time trend, change in intercept, 1930, change in slope, 1973, dummies for 
The Great Depression and WWII. 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard 
error bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. 
 
Figure I-6: Responses of patents and productivity to a patent shock, 1889-2002, continued on next 
page 
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Panel D. VAR in levels. Time trend, change in intercept, 1930, change in slope, 1973, change in slope, 
1985. 
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Panel E. VAR on HP-filtered data. 

 
Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard 
error bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. 
 
Figure I-6 (continued): Responses of patents and productivity to a patent shock, 1889-2002 
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Panel A. Full sample period, 1889-2002 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard 
error bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. Each row of 
responses comes from a trivariate VAR where the third variable is as indicated by the right hand column. A 
time trend with break in trend in 1973, a change in intercept in 1930, and dummies for The Great 
Depression and WWII are included in the estimation. Notation is as follows: C = consumption, I = 
investment, and Y = real GDP = output. 
 
Figure I-7: Responses to a patent shock, continued on next two pages 
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Panel A (continued). Full sample period, 1889-2002 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard 
error bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. Each row of 
responses comes from a trivariate VAR where the third variable is as indicated by the right hand column. A 
time trend with break in trend in 1973, a change in intercept in 1930, and dummies for The Great 
Depression and WWII are included in the estimation. H denotes hours worked. 
 
Figure I-7 (continued): Responses to a patent shock 
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Panel B. Shorter than full sample period 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard 
error bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The response 
functions are from two different trivariate VARs. Data for wage inequality (W) cover the period 1927-
1998. 4 lags are used. A time trend with break in trend is included together with dummies for WWII and 
1987-88 and a change in intercept in 1945. Income inequality (Income) covers the period 1917-1998. 4 lags 
are used. A time trend with break in trend is included together with dummies for the Great Depression, 
WWII, and 1987-88 and changes in intercept in 1930 and 1945. 
 
Figure I-7 (continued): Responses to a patent shock 
 
 
Panel A. January values of stock prices 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard 
error bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The responses are 
from a VAR with patents, productivity, and stock prices. A time trend with break in trend in 1973, a change 
in intercept in 1930, and dummies for The Great Depression and WWII are included in the estimation. SP1 
denotes January values of the stock price index. 
 
Figure I-8: Stock prices, 1889-2002, continued on next page 
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Panel B. June values of stock prices 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard 
error bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The responses are 
from a VAR with patents, productivity, and stock prices. A time trend with break in trend in 1973, a change 
in intercept in 1930, and dummies for The Great Depression and WWII are included in the estimation. SP6 
denotes June values of the stock price index. 
 
Figure I-8 (continued): Stock prices, 1889-2002 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure I-9: The stock of patents 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard 
error bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The responses are 
from a VAR with the stock of patents and productivity. A time trend with break in trend in 1973, a change 
in intercept in 1930, and dummies for The Great Depression and WWII are included in the estimation. p = 
6 lags are used as suggested by the AIC. However, the response functions are robust to using five lags. 
 
Figure I-10: Shock to the stock of patents, 1889-2002 
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Note: The solid line signifies the impulse response function to a one unit shock to the orthogonal error term 
in the patent equation. The horizontal dashed line indicates the zero-line. A time trend with break in trend 
in 1973, a change in intercept in 1930, and dummies for The Great Depression and WWII are included in 
the estimation. 4 lags are used. The responses indicate the numerical responses of the logarithm of the 
given variable. The size of the shock is different than in the previous figures since the normalization in the 
system is different. 
 
Figure I-11: Responses to a patent shock in a restricted model, 1889-2002 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard 
error bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The responses are 
from a VAR with R&D, patents, and productivity. The time period covers 1935-1997. A time trend with 
break in trend in 1973 is included in the estimation. p = 4 lags are used as suggested by the AIC. The right 
hand column depicts responses of productivity to either an R&D shock or a patent shock. The left hand 
column depicts responses of patents and R&D to a shock to R&D and patents, respectively. 
 
Figure I-12: Response of productivity to an R&D and a patent shock, 1935-1997  
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Panel A. 1889-1940 
p = 1 lag: 

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10
Response of Patents

P
er

ce
nt

Years
0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

2
Response of Productivity

P
er

ce
nt

Years  
p = 4 lags: 
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p = 9 lags: 

0 5 10 15 20
-10

-5

0

5

10
Response of Patents

P
er

ce
nt

Years
0 5 10 15 20

-4

-2

0

2

4
Response of Productivity

P
er

ce
nt

Years  
Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard 
error bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The responses are 
from a VAR with patents and productivity over the time period 1889-1940. The first row employs p = 1 lag 
in the estimation, whereas the second row uses 4 lags. The third row employs p = 9 lags. A time trend with 
a change in the intercept in 1930 is included in the estimation. If a dummy for The Great Depression is 
included, the overall response is unchanged. However, it is then only significant when using 4 and 9 lags. I 
choose to leave out this dummy in order to keep the maximum degrees of freedom. 
 
Figure I-13: Two sample periods, continued on next page 
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Panel B. 1948-2002 
p = 1 lag: 
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p = 4 lags: 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard 
error bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The responses are 
from a VAR with patents and productivity over the time period 1948-2002. The first row employs p = 1 lag 
in the estimation whereas the second row uses 4 lags. A time trend with a break in trend in 1973 is included 
in the estimation. 
 
Figure I-13 (continued): Two sample periods 
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Panel A. Bivariate VECM with patents and productivity 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 95 percent 
confidence intervals estimated by Hall bootstrapping methods with 10,000 draws. The horizontal dashed 
line indicates the zero-line. The responses are from a VECM with patents and productivity over the time 
period 1948-2002. 1 lag in differences is included to be consistent with the following responses. However, 
using 0 lags in differences as suggested by the AIC does not change the responses, although the 
productivity response does not become statistically significant until a few years later when using 0 lags in 
differences. 
 
 
Panel B. Trivariate VECM with patents, productivity, and a third variable 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 95 percent 
confidence intervals estimated by Hall bootstrapping methods with 5,000 draws. The horizontal dashed line 
indicates the zero-line. The responses are from a VECM with patents, productivity, and a third variable, 
depending on the measure of interest. The time period is 1948-2002. For consumption, C, 1 lag in 
differences is used as suggested by the AIC. For investment, I, 0 lags in differences are used as suggested 
by the AIC. 
 
Figure I-14: Responses from a post-WWII VECM, 1948-2002, continued on next page 
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Panel B (continued). Trivariate VECM with patents, productivity, and a third variable 

0 5 10 15 20
-2

0

2

4

6
Response of Productivity

P
er

ce
nt

Years
0 5 10 15 20

-2

0

2

4
Response of Y

P
er

ce
nt

Years  

0 5 10 15 20
-2

0

2

4

6
Response of Productivity

P
er

ce
nt

Years
0 5 10 15 20

-4

-3

-2

-1

0

1
Response of H

P
er

ce
nt

Years  
Note: The solid line signifies the impulse response function. The thick dashed lines indicate 95 percent 
confidence intervals estimated by Hall bootstrapping methods with 5,000 draws. The horizontal dashed line 
indicates the zero-line. The responses are from a VECM with patents, productivity, and a third variable, 
depending on the measure of interest. The time period is 1948-2002. For both output, Y, and hours, H, 1 lag 
in differences is used as suggested by the AIC. 
 
Figure I-14 (continued). Responses from a post-WWII VECM, 1948-2002 
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Panel A. Bivariate VAR with patents and productivity 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 95 percent 
confidence intervals estimated by Hall bootstrapping methods with 5,000 draws. The horizontal dashed line 
indicates the zero-line. The responses are from a VAR with patents and productivity over the time period 
1948-2002. No deterministic trend included in the estimation. 2 lags are used to be consistent with the 
corresponding VECM above. Using 1 lag as suggested by the AIC does not change the responses. 
 
 
Panel B. Trivariate VAR with patents, productivity, and a third variable 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 95 percent 
confidence intervals estimated by Hall bootstrapping methods with 5,000 draws. The horizontal dashed line 
indicates the zero-line. The responses are from a VAR with patents, productivity, and a third variable, 
depending on the measure of interest. The time period is 1948-2002. No deterministic trend included in the 
estimation. For consumption, C, 2 lags are used as suggested by the AIC. For investment, I, 1 lag is used as 
suggested by the AIC. 
 
Figure I-15: Responses from a post-WWII VAR, 1948-2002, continued on next page 
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Panel B (continued). Trivariate VAR with patents, productivity, and a third variable 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 95 percent 
confidence intervals estimated by Hall bootstrapping methods with 5,000 draws. The horizontal dashed line 
indicates the zero-line. The responses are from a VAR with patents, productivity, and a third variable, 
depending on the measure of interest. The time period is 1948-2002. No deterministic trend included in the 
estimation. For both output, Y, and hours, H, 2 lags are used as suggested by the AIC. 
 
Figure I-15 (continued). Responses from a post-WWII VAR, 1948-2002 
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I.J. Data Appendix 

Patent data 

Patent data are total annual utility patent applications received by the U.S. Patent 

and Trademark Office for the period 1889 – 2002. Patents granted are from the same 

source. 

 

Labor productivity, hours, and output in private business 

Data for labor productivity (Output per Manhour), real output, and hours are from 

Kendrick (1961) table A-XXII and table A-X for the period 1889 – 1946 and from the 

Bureau of Labor Statistics (BLS) for the period 1947-2002. The series are spliced by 

multiplying the pre-1947 data by the ratio of the BLS data in 1947 to the Kendrick data in 

1947. 

 

Real GDP, Consumption, Investment 

Real GNP is from Balke and Gordon (1989) for the period 1889-1928. Real 

consumption expenditures and gross private investment are from Kendrick (1961), Table 

A-IIa for the period 1889-1928. Nominal consumption and GNP are from Kendrick 

(1961), Table A-IIb for the period 1889-1928. For the period 1929-2002, nominal GDP, 

chain-weighted GDP, consumption, and investment are from Bureau of Economic 

Analysis (BEA), NIPA data. The series were spliced in 1929 by multiplying pre-1929 

data with the ratio of the NIPA data in 1929 to Kendrick’s data in 1929. 
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Income and Wage inequality 

The top decile and other fractiles for the income share, 1917-1998, and the top 

decile and other fractiles for the wage share, 1927-1998, are from Piketty and Saez 

(2003). 

 

R&D 

R&D for 1935-1997 is investment in privately financed research and 

development, deflated by chain-type price index for GDP and as computed by NPA Data 

Services. The data are available in Terleckyj, Levy, and Coleman (1997). 

 

Diffusion of products 

Data on spread of products into American households, 1900-2004, are provided 

by W. Michael Cox, Federal Reserve Bank of Dallas. 

Data on diffusion of electric power are from Du Boff (1979). 

 

Stock price index 

Data on stock prices are real S&P Composite Stock Price Index 1889-2002. Data 

are available at a monthly frequency on http://www.econ.yale.edu/~shiller/data.htm. This 

site contains updated data for chapter 26 of Market Volatility, Shiller (1989), and 

Irrational Exuberance, Shiller (2005). The January annualized values are the values used 

by Shiller in Market Volatility, chapter 26 and updated by Shiller while the June values 

are taken directly from the monthly data as computed by Shiller. 
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Chapter II  

 

Assessing the Link between Military Spending and 

Productivity: Evidence from Firm-Level Data 

 

 

 

Abstract 

 This paper examines whether changes in military prime contract awards lead to 

the development of new technology and analyzes the effects on firm-level productivity. 

The analysis is performed using firm-level military prime contract data from the 

Department of Defense together with Compustat data and data from the NBER patent 

database in panel vector autoregressions. This allows the paper to take into account 

individual firm effects. Results show that firm-level productivity, research and 

development, and patents increase in response to a military contract award. 
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II.A. Introduction 

An extensive literature has studied the consequences of increased government 

spending on the U.S. economy. However, economists have not reached agreement on the 

economic effects of military spending. Furthermore, it is commonly assumed in 

macroeconomic models that technological progress is exogenous to government 

spending. This assumption stands in sharp contrast to the fact that many new inventions 

originate in the defense sector and that military considerations often have led to 

government financed support for development of new technological products. As is the 

case with the internet, which originates from federally funded defense programs, many of 

these inventions have later been used commercially in the private sector. 

It is possible that military spending leads to an increase in privately funded 

research and development and to higher productivity. However, conflicting empirical 

evidence exists. In addition, the microeconomic literature on this topic has not 

sufficiently taken into account the dynamics between variables across time. Therefore, 

this paper examines the effects of increased military spending on the development of new 

technology. The result will have important consequences for modeling the evolution of 

the firm’s production possibility frontier and for determining the aggregate economic 

effects. 

Military spending has varied considerably during the post-World War II period. 

This paper puts focus on the Carter-Reagan military buildup in the 1980s which is 

considered exogenous to U.S. economic fluctuations. As described in Ramey and Shapiro 

(1998), this buildup was initiated after the Soviet invasion of Afghanistan on December 
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24, 1979. This invasion led to speculations about possible repercussions in the Persian 

Gulf oil states, and the U.S. defense buildup became a reality. In 1979, U.S. defense 

spending accounted for 5.7 percent of GDP, and by the time of the peak1 in 1986 it had 

risen to 7.4 percent of GDP. This accounts for an increase in real defense spending from 

1979 to 1986 of 54.8 percent2. As a result of this large exogenous change in military 

spending, the large defense contractors faced considerable increases in prime contract 

awards that were unrelated to aggregate productivity. 

Although the buildup was exogenous to aggregate U.S. economic fluctuations, it 

may be that the individual awards are assigned at the firm level based on the economic 

performance of the firms. However, Warf and Glasmeier (1993) note that the demand for 

military products is highly price-inelastic and military contracts often result in cost-

overruns. Further, military-related companies use political lobbying in the efforts to 

receive military contracts. For the big defense contractors, military prime contract awards 

in the period of a big exogenous military buildup can therefore be considered exogenous 

to the economic conditions at the firm. The paper discusses this issue and provides 

evidence that only few of the contracts awarded to the big defense contractors are 

competitively procured. 

Motivated by a macroeconomic question, this paper examines the effects of 

military spending on the development of new technology and productivity at a 

microeconomic level. Specifically, the paper explores whether military prime contract 

                                                 
1 The peak in real defense spending when estimated by quantity indexes was in 1987. However, as 
measured in percent of GDP, the peak was in 1986. 
2 Calculation is based on NIPA Quantity Indexes for real national defense spending. The overall increase in 
real defense spending from 1979 to 1987 was 62.2 percent. The corresponding increase in real GDP was 
25.2 percent. 
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(MPC) awards result in significant changes in research and development (R&D) and 

patenting and take into account dynamics across time through use of panel vector 

autoregressions (VARs). The paper uses U.S. military prime contract (MPC) data to 

examine whether firm-level productivity, stock prices, R&D, and patenting are 

significantly affected by increased demand in the form of MPC awards. The analysis 

covers the time period from 1969 to 1993 which includes the large military buildup in the 

1980s. With this data set the paper can assess how military demand translates into 

macroeconomic effects on productivity and can estimate the time lag until such effects 

are significant. These findings allow us to comment on how military demand shocks can 

affect the neoclassical model. 

The analysis employs a data set of firm-level Department of Defense contracts 

that have been created based on the Department of Defense publications that list the top 

100 military prime contractors and completed with aggregation of the underlying source 

data of the individual contracts. The paper can then provide a thorough statistical analysis 

of the effects of military prime contracts on the development of new technology and on 

productivity. Following a positive MPC shock, we conclude that labor productivity, 

which is computed as average revenue product, in a bivariate system increases after 

immediate positive responses of both sales and employment. Privately expensed R&D 

increases a few years after the shock, indicating that military contracts lead to company 

efforts in enhancing the production of technology. The response of patents is considered 

separately for the pre- and post 1984 periods in order to account for patent policy changes 

that may have affected the incentive to apply for a patent. Consistent with the impulse 
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response functions for R&D, we find that an MPC shock leads to a positive response of 

patent applications. 

The paper is organized as follows. In section II.B, relevant existing literature on 

government military spending is reviewed, followed by an outline of the underlying 

theoretical framework. Section II.C describes the data, and section II.D presents the 

methodology. Empirical results on productivity, stock prices, and research and 

development are provided in section II.E, while section II.F examines the effect of an 

MPC shock on patenting. Section II.G analyzes subgroups of the sample. Finally, section 

II.H concludes. 

II.B. Literature 

 Both macro- and microeconomic studies of the economic implications of 

government spending have been performed. The macroeconomic studies show conflicting 

evidence on the response of productivity and wages to a military spending shock, while 

the microeconomic literature has studied government support for research and 

development and found conflicting results. This section presents some of the existing 

literature on the subject and outlines how military demand can affect the neoclassical 

model. 

II.B.1 Related literature 

Among macroeconomic studies, Blanchard and Perotti (2002) employ a mixed 

structural VAR/event study approach, using institutional information from the tax system 

for identification purposes. They find that U.S. output is positively affected by increased 

government spending, while investment is negatively affected. Furthermore, when only 
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considering defense spending, output continues to be positively affected. When 

considering the response of aggregate output, similar results can be found in Ramey and 

Shapiro (1998). They find that GDP increases following a military buildup which is 

identified through a narrative approach. Furthermore, total number of hours worked in 

manufacturing increases insignificantly after an increase in defense spending, leading to a 

fall in labor productivity in the manufacturing sector, while output per hour in the 

business sector is positively affected. 

Ramey (2006) shows how the initial anticipation effect of government spending 

can have dramatic consequences for the estimated effects of a government spending 

shock. However, the anticipation effect of government spending is mainly important 

when using quarterly data. Specifically, Ramey finds that different identification methods 

provide similar results when applied to annual data. As such, our study does not suffer 

from problems with omitted announcement effects. 

Other papers of interest include Rotemberg and Woodford (1992), Devereux, 

Head, and Lapham (1996), and Edelberg, Eichenbaum, and Fisher (1999). Rotemberg 

and Woodford examine the effects of aggregate military spending in autoregressive 

models. Edelberg, Eichenbaum, and Fisher incorporate the Ramey-Shapiro buildup-dates 

in a VAR and confront uncertainty about the identified buildup dates. A key difference 

between several of these papers on government spending is the response of real wages. 

Rotemberg and Woodford find that real wages increase after a positive innovation to 

government purchases while the analysis in Edelberg, Eichenbaum, and Fisher leads to 

negative responses of real wages. Devereux, Head, and Lapham find in a model with 
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increasing returns and monopolistic competition that increased government spending can 

lead to higher productivity and wages. 

The microeconomic literature has explored the connection between government 

R&D spending and technological progress. Scott (1984) performs a cross-sectional study 

with observations from 1974 for lines of business for companies that reported to the 

Federal Trade Commission’s Line of Business program. As such, his study is not specific 

to the defense business and does not take into account variation in demand across time. 

He finds that government subsidization of R&D does not displace private R&D spending. 

Lichtenberg (1988) estimates the effects of government contracts on private R&D 

expenditure using firm-level panel data. However, his sample only covers a time 

dimension of 6 years and does not take into account patent, productivity and stock price 

effects. Nor does his sample period cover the drawdown in military spending in the late 

1980s. With our long time dimension and estimation in a panel VAR we are better 

equipped to approach a macroeconomic question and examine dynamics across time. 

Furthermore, the big defense contractors may act differently than small companies to a 

military prime contract award. Therefore, it is important to find the results from a study 

that mainly considers large defense conglomerates. 

David, Hall, and Toole (1999) survey the literature that has examined the 

consequences of public R&D for private R&D. Overall, their findings are ambivalent 

since existing literature has found evidence of both complementarity and substitutability 

between public and private R&D, depending on the underlying data and methods. One 

study can be found in Lerner (1999). Lerner assesses the long-run success of firms 

participating in the Small Business Innovation Research (SBIR) program and finds that 
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the superior growth of SBIR awardees mainly was seen for firms in areas with substantial 

venture capital activity. Other papers of interest include Reppy (1977), Levy and 

Terleckyj (1983), Saal (1999), and Wallsten (2000). Wallsten finds that public grants 

displace private R&D investment. 

The above mentioned studies lead to the conclusion that the existing literature has 

not reached agreement on the effects of defense spending on economic variables such as 

productivity, R&D, patents, and stock prices. By having a panel data set with a long time 

dimension, this paper can add significantly to the existing micro- and macroeconomic 

literature. With the firm-level data set, this study can provide micro evidence for the 

resulting macroeconomic effects. This paper is therefore important for understanding 

how macroeconomic effects arise as a result of underlying microeconomic decisions. It is 

the goal to reach a better understanding of the effects of military spending on the U.S. 

economy. Specifically, it is possible that military prime contracts have positive effects on 

the aggregate U.S. economy if the contracts lead to increased private investment in R&D. 

For example, if public R&D contracts allow firms to overcome fixed R&D costs then we 

may see a positive response of private R&D to a military prime contract. On the contrary, 

it may be that federal contracts substitute for private R&D that the firm otherwise would 

have undertaken at own cost for competitive reasons. See David, Hall, and Toole (1999) 

for an overview of why private R&D expenditures may be affected by public R&D 

contracts. 
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II.B.2 Theoretical background 

 If military prime contracts lead to significantly more resources put into R&D, 

then firm productivity may increase over time as a result of the more technically 

advanced production process. However, the neoclassical model at the firm level generally 

assumes that a demand shock in the form of increased demand for defense products does 

not affect the production possibility frontier. Rotemberg and Woodford (1991) discuss 

the transmission of aggregate demand variations to the labor market in order to reconcile 

how government spending can lead to increased real wages. 

 This section follows and builds on Rotemberg and Woodford (1991) in the 

theoretical framework below. They note that in the case of fully competitive firms with a 

standard neoclassical production function, output and employment fluctuations should be 

associated with countercyclical movements in the real wage if the production function is 

unaffected by the demand shock. However, if the analysis is extended to allow for 

imperfect competition where firms set prices at a markup over marginal cost, then labor 

demand can be expressed as 

(1)  ( ) tttttH wzHKF µ=;, . 

Here, FH indicates the partial derivative of the production function with respect to labor 

input, Ht, at time t. Kt and zt denote capital and existing technology, respectively, while µt 

signifies the markup over marginal cost. wt denotes the real wage. With fully competitive 

firms, µt equals 1. If capital and technology are taken as given, labor demand cannot shift 

in the short run as a result of a government spending shock. However, an outward shift in 

the labor supply curve leads to a lower real wage, corresponding to the results of 
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Edelberg, Eichenbaum, and Fisher (1999). As mentioned above, Rotemberg and 

Woodford (1992) find a positive response of the real wage after increased military 

expenditures. To approach their finding, Rotemberg and Woodford allow for imperfect 

competition with varying markup. In this case, if an increase in government spending 

leads to a downward adjustment of the markup, then the real wage can respond 

positively. The labor demand curve then shifts to the right after a demand shock, and 

equilibrium output and labor can be positively correlated with movements in the real 

wage. 

This paper makes an important addition to the discussion of Rotemberg and 

Woodford. Specifically, since many technologies originate in the defense sector, it is 

possible that even with a constant markup the labor demand curve can shift out. For 

example, if military spending leads to the possibility of taking out research and 

development projects that otherwise were unprofitable, then the labor demand curve 

shifts out as a result. Furthermore, if company sponsored R&D increases after a military 

demand shock it is likely that the production possibility frontier will shift out and 

productivity may slowly increase to a permanently higher level. 

The defense conglomerates analyzed in this paper are not fully competitive. It is 

likely that the markup either increases or decreases during a military buildup. In addition, 

if the increased demand leads to the development of new technology, then the production 

function is directly affected. Indeed the new technology can increase the range and 

quality of goods produced. Furthermore, the increased demand may alone result in 

learning-by-doing effects which increase the marginal product of each worker and 

thereby expands the production possibility frontier. 
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The optimality condition in (1) can be expanded by including other factors that 

can affect the production of goods. We allow the technology variable, zt, to depend 

positively on past R&D efforts. The condition then becomes 

 ( ) tttttH wzHKF µ=,,  where zt = Z(RDt-1). 

If the government contract includes R&D contracts, then the level of technology at the 

firm is positively affected. 

The purpose of this paper is to examine the effects of military prime contracts on 

economic factors. By examining firm-level labor productivity, sales, employment, stock 

prices, and the development of new technology, we can infer about the overall 

macroeconomic consequences of defense expenditures. 

II.C. Data 

The selection of firms is based on various issues of the Department of Defense 

publication “100 Companies Receiving the Largest Dollar Volume of Prime Contract 

Awards”. These publications list the top 100 military prime contractors that are receiving 

military prime contract awards in any given fiscal year. Thereby, the analysis includes 

firms whose main businesses rely on military prime contracts. However, several firms 

enter and exit the top 100 list over time. To fill out the missing observations this paper 

aggregated the raw data on MPC awards at the firm level, collected from the Department 

of Defense Directorate for Information Operations and Reports website. These data 

contain a complete list of all individual contracts awarded during the sample period. 

The raw data reveal that the number of contracts received by any one firm varies 

considerably among companies. In addition, a large military company with subsidiaries 
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receives more than 2000 contracts annually. To find the total dollar value of contracts at 

an annual level for each firm, the contracts were aggregated for each fiscal year.3 

Christiansen and Goudie (2007) (chapter III of this dissertation) contain a thorough 

description of this underlying data set, although their approach aggregates the data at the 

spatial level. In order to convert the military contracts into real values, the MPC data 

were deflated with the GDP deflator. It is likely that pricing of military contracts does not 

grow with the rate of inflation as measured by the GDP deflator. As an alternative price 

deflator this study therefore used a price index for national defense consumption 

expenditures and gross investment. However, this series is only available starting in 

1972. As such, using this series limits the time series dimension of the analysis. The 

overall results were not sensitive to using this deflator instead of the GDP deflator, and 

these estimations are therefore not shown. 

One potential issue is that the timing of military prime contract awards may be 

important in explaining the results below. It is likely that companies have advance 

information on forthcoming contract awards, and the identified military shock may 

therefore not fully take into account expectations. However, as mentioned above, Ramey 

(2006) find that the initial anticipation effect is not very important in annual data. 

Furthermore, this paper has tried including stock prices in all the computations below. 

This should account for any expectations formed prior to receiving the military contract. 

Including stock prices in the analysis did not change the conclusions, indicating that the 

timing of the contract awards is not important in explaining the results. 

                                                 
3 The fiscal year for the United States government lasts from October 1 of one year through the end of 
September of the following year. For example, fiscal year 1977 covers October 1976 through September 
1977. Before 1977, that fiscal year was defined as July through June.  
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Data on total sales, employment, stock prices, and research and development 

(R&D) at the firm level fiscal year were collected from the Compustat database. Some 

defense contractors are unavailable in Compustat, while others only have a few years of 

observations. To maximize the number of observations, the annual time series extends 

over the period 1969-1993. This allows for the inclusion of the big Carter-Reagan 

military buildup in the 1980s. Furthermore, the analysis allows for an unbalanced panel 

of firms in order to increase the sample size as not all firms cover the full sample period. 

This procedure yields a panel of 45 firms which includes big defense contractors such as 

Boeing, Grumman, Lockheed, McDonnell Douglas, Northrop, and Raytheon. The full list 

of firms in the sample can be found in table II-1. 

The aggregate real military prime contract value for the selected companies is 

depicted across time in figure II-1 together with total aggregate real U.S. military prime 

contract values. The graph clearly shows how the firm-level data capture the overall 

military buildup, and the contracts for the selected firms account for approximately fifty 

percent of total U.S. military contracts. As such, we can be confident that the defense 

spending faced by these firms relates to the exogenous Carter-Reagan military buildup. 

The data include the closing values of January stock prices, deflated using the 

GDP deflator. Data on value added is not directly available in Compustat. Therefore, this 

paper uses the average revenue product as a proxy for labor productivity data. The 

average revenue product, hereafter referred to as labor productivity, is computed as 

nominal sales deflated by the GDP deflator and divided by the total number of employed 

workers for the given company. The paper uses linear interpolation for the employment 

and R&D series where a few observations are missing. This is the case for very few 
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observations and is not important for the analysis. Company R&D expenses are deflated 

with the GDP deflator. It is important to note that R&D expenses account for company 

expensed R&D. Federally funded R&D is therefore not included in this variable. For a 

few companies, government financed R&D is included in single years. After examining 

the data, we find that this issue is not the main factor in explaining the results. 

Patent data are collected from the NBER patent database which consists of utility 

patents granted between 1963 and 1999. Hall, Jaffe, and Trajtenberg (2001) describe this 

data set. For the analysis, the patent data are sorted by application year since variation in 

budgetary resources at the United States Patent and Trademark Office (USPTO) leads to 

changes in the application-grant lag over time as explained in Christiansen (2007) 

(chapter I of this dissertation). Since we are interested in examining the effects of 

government spending on the development of new technology, using the application year 

corresponds to employing the data most closely associated with the date of invention. 

Because of the time lag from the date of application till the date of grant, the last 

few years of the dataset contain a decrease in the patent application count as a result of 

data truncation. Patents granted in 2000 or later but which had an application date in 1999 

or earlier are as such not counted in the sample. Because the sample period used in this 

paper ends in 1993, this issue should not lead to severe truncation problems with the 

patent application data. In the patent analysis, firms are included if they have at least one 

patent application in every year during the given firm’s sample length. This leaves the 

study with 39 companies when using the patent application series. 

In 1980 President Carter changed the patent policy for small businesses and in 

1983 this was expanded to include all firms. Before 1983 the federal government had the 
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exclusive rights to patents of large businesses achieved as a result of federally funded 

research. Therefore, firm-level patent data in the sample may not be directly comparable 

before and after 1983. In order to account for this, the paper also splits the sample in 

1984 when examining the response of patents to a defense shock. See Eisenberg (1996) 

for a discussion of this change in patent policy. 

Collection of the mentioned variables results in an annual unbalanced panel of 

data on MPCs, R&D spending, productivity, employment, sales, patents, and stock prices 

over the time period 1969-1993 for up to 45 firms. The natural logarithm is taken of all 

variables. A few firms in the underlying data set merge during the sample period. In most 

of these cases the paper treats the merging firms as one firm over the full sample period. 

The paper also tried excluding big merging firms from the sample without affecting the 

conclusions. 

It is important to address the fact that military prime contracts may be awarded at 

the firm level based on the economic performance of the firm. To examine this possibility 

we obtained data from the Center for Public Integrity. These data contain information 

about the conditions under which military prime contracts were awarded at the firm level 

in the period 1998-2003. Table II-2 reports results from a selection of the large military 

prime contractors in the sample. The selection is based on the criteria that data are 

available from Center for Public Integrity and that the given firm is among the top 

contractors in the sample in this paper. As a result of data limitation, the table is based on 

data from 1998 to 2003. The paper thereby assumes that the nature of the award method 

was unchanged between the 1980s military buildup and the military spending in the late 

1990s. 
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The table describes that these firms largely receive military prime contracts that 

have not been put out for competitive bids, mainly as a result of being the sole source for 

the demanded military product or service. Furthermore, companies that primarily have 

been awarded contracts through full and open competition receive a substantial part of 

the contracts after a bid with only one or two bidders for the contract. Oil companies (not 

included in the table) are mainly awarded contracts through full and open competition, 

but most often with only two bidders. These contracts are mainly fixed price contracts. 

Overall, the paper finds strong evidence that MPC awards are given to the top military 

prime contractors primarily without strong competitive pressure. As a result, the analysis 

concludes that MPC awards can be assumed exogenous to firm-level productivity. 

II.D. Methodology 

Let N denote the total number of firms in the panel and Tn the number of time 

periods for firm n. This paper estimates an unbalanced panel vector autoregression 

(PVAR) with p lags and m variables. The basic unbalanced PVAR looks as follows: 
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wnt is an m × 1 vector of variables for firm n at time t. Φl is an m × m matrix of 

coefficients and c is a constant term. λt is a constant term that is common across firms but 

varies across time. This is included in order to take into account aggregate 
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macroeconomic effects that may affect profitability of the firms across the business cycle. 

αn is a firm-specific effect which is constant across time but varies across firms. This 

allows for individual effects that influence the firms differently. Lastly, εnt is a vector of 

errors. We assume homogeneity across firms such that the variance-covariance matrix, Ω, 

is common for all firms across time. Both αn and εnt have zero means and are independent 

among themselves and with each other.4 

To estimate the system, we remove the aggregate time effect and the constant 

term by subtracting the mean across firms from all observations. This yields the 

following equation: 
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The paper estimates this system by OLS where the individual effects are 

estimated. In general, under the assumption of a fixed T and N → ∞, the OLS estimator is 

inconsistent. Under this assumption the system can be estimated using the Anderson-

Hsiao estimator.5 However, if we assume big T then the model can be consistently 

estimated by OLS. For our sample length of up to 25 time periods, T is assumed 

                                                 
4 Standard errors are estimated by Monte Carlo with 2000 simulations. However, we also estimated (not 
shown in this version of the paper) standard errors, following Cao and Sun (2006). This method takes into 
account that when T is short, the usual asymptotic results for orthogonalized impulse response functions are 
not applicable but may lead to standard error bands that are too narrow. 
5 We estimated the system by GMM with Anderson-Hsiao instruments. However, the restrictive moment 
conditions together with the relatively small N lead to GMM results that are sensitive to changes in the lag-
length. 
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sufficiently large to not cause problems with OLS inconsistency or with narrow standard 

error bands as discussed in Cao and Sun (2006).6 

II.E. Empirical results 

 The benchmark model is a bivariate unbalanced panel VAR with Dnt and MPCnt. 

Here, Dnt indicates a variable that changes according to the measure of interest, and 

MPCnt denotes the log-level of military prime contract awards for firm n at time t. These 

variables enter the system in the aforementioned order. When Dnt denotes the log-level of 

labor productivity (LP), R&D (RD), or patents (PAT) this ordering allows for changes in 

productivity or technology to lead to MPC awards in case a contract indeed is awarded 

through competitive bidding to the most productive firm. However, since the Cholesky 

short-run restriction may be sensitive to the ordering of the variables, the impulse 

response functions were also computed ordering the MPC variable first in the system. 

Other variables such as the number of employed workers (EMP), total sales (SALE), and 

stock prices (SP) were also included in the system in place of Dnt. The natural logarithm 

was taken of all variables. 

 Before estimating the system, the appropriate lag-length must be chosen. The 

Akaike Information Criterion suggests using 1 lag. However, since military contracts 

may last longer than one year, only including one lag may introduce omitted variable 

bias. This paper therefore experiments with different lag lengths and chooses to include 3 

lags in the benchmark analysis. 

                                                 
6 We consider scenarios with more than 10 years of annual data, which suggests that the Cao-Sun standard 
error adjustment is small. Indeed, preliminary results show this to be the case. 



 

 

91

 The impulse response functions from a bivariate model with different variables 

and 90 percent confidence intervals are illustrated in figures II-2 through II-6, using 45 

firms for the estimation, except in the case of R&D where 43 firms are included as a 

result of data limitations. In a bivariate VAR with LP and MPC, an MPC shock leads to 

temporary effects on MPC awards and labor productivity increases during several years 

after the shock. Figure II-2, panel A, depicts results of including both 2 and 3 lags, while 

panel B presents impulse responses with MPC ordered first in the bivariate system. 

Changing the lag length does not change the overall conclusions. The very long-lasting 

response functions indicate a possible expansion of the production possibility frontier of 

the firm over time. When LP is ordered first in the system, military prime contract awards 

do not increase significantly after a productivity shock, although ordering MPC first in 

the PVAR does lead to a temporarily significant and positive response. With MPC placed 

first in the PVAR, productivity slowly increases to an insignificantly higher level. 

 The increase in productivity after an MPC award results from immediately 

positive and very persistent responses of both sales and employment (figures II-3 and II-

4), over time leading to an increase in productivity as a result of the relatively stronger 

response of sales. Although the military prime contract in itself leads to higher sales since 

the contract payments are included in the sales measures, it is not clear that this would 

lead to positive effects on productivity as employment must be adjusted in order to 

account for the increase in production demands. The impulse response functions indeed 

indicate that military prime contracts over time can be very beneficial to the contracting 

firms. 
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 With productivity increasing after an MPC shock, we expect this to be realized in 

the stock price. Indeed, panels A and B of figure II-5 show that stock prices with different 

orderings of the data respond positively to an MPC shock and the responses depict very 

long-lasting effects. Additionally, there is no evidence that military prime contracts are 

awarded to firms with high stock price value as the response of MPC to a stock price 

shock is not statistically different from zero at any horizon. This further supports the 

notion of military prime contracts being exogenously awarded. If military prime contracts 

were given based on the economic conditions at the firm, we would expect that a stock 

price shock, indicating an economically strong firm, would lead to military prime 

contract awards for the given firm. We do not find evidence of this. 

 That stock prices slowly increase to a higher level indicates that the future 

positive effects of MPC awards are not capitalized immediately. This may be a result of 

uncertainty about the development of future technology. For comparison, in the most 

recent military buildup, stock price analysts at CNN Money7 found that a portfolio of 

defense stocks experienced a gain of about 78 percent over the two and a half years 

following the invasion of Iraq in 2003. During the same period, the S&P gained 39 

percent. That the defense stocks also during the Iraqi war outperformed the market is 

consistent with the fact that stock prices increase over several years also in this paper’s 

analysis. 

 In a bivariate PVAR with R&D and MPC (figure II-6), the R&D response to an 

MPC shock becomes significantly positive a few years after the shock. In addition, with 

three lags in the PVAR, there is no significant effect of an R&D shock on MPCs. 

                                                 
7 CNN Money.com, November 10, 2005. 
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However, this response does become significant at the long horizon for some choices of 

lag lengths (not shown). This gives an indication that military contracts to some extent 

may be awarded to firms that have spent resources into developing a new technology. 

The fact that military prime contracts, which themselves include funding for R&D, lead 

to an increase in privately expensed R&D is a very interesting result. This finding adds to 

the existing literature by showing how the main response of R&D does not happen 

immediately but that allowing for time dynamics as done in this paper is very important. 

 Some of the results in the bivariate analysis may be affected by omitted variable 

bias if too few variables are included in the empirical model. Figures II-7, II-8, and II-9 

therefore display impulse response functions from a trivariate system of equations with 

three lags. The response of R&D to an MPC shock is unchanged when considering a 

trivariate system with R&D, LP, and MPC in figure II-7, clearly showing how more 

resources are put into research and development when prime contracts are awarded. 

Furthermore, any positive effects on MPC awards of labor productivity shocks are not 

present in the trivariate analysis. This provides further evidence that contracts are not 

awarded to the firm with highest productivity. Interestingly, an MPC shock in the 

trivariate system in figure II-7 only leads to insignificant effects on productivity. 

 Figure II-8 shows responses from a trivariate system with SP, R&D, and MPC 

with different lag lengths. The third columns of the figures depict how an MPC shock 

continues to lead to positive responses of SP and R&D. Additionally, figure II-9 reports 

results from a PVAR with SP, LP, and MPC, using two and three lags. Here, a military 

prime contract shock leads to positive responses of both SP and LP as was the case in the 
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bivariate analyses. Although the paper chooses to order SP first in the trivariate system, 

the result is robust to ordering SP last. 

 This section has shown that stock prices, research and development, and in most 

cases also productivity increase significantly following a military prime contract award. 

Furthermore, the analysis supports the assumption that military contracts are not 

distributed based on the economic conditions at the firm. However, there is some 

evidence that firms with increased spending on R&D tend to receive a higher number of 

contracts a few years after the R&D expense when new technologies have become 

productive. 

II.F. Patenting 

In 1980 President Carter approved the Bayh-Dole University and Small Business 

Patent Procedures Act (35 USC §§200-211). This implied a change in profitability of 

inventions from defense contracts. Before 1980, the rights to an invention made with 

federal funding belonged to the U.S. government. In 1980 it then became possible for 

universities and small businesses to retain title to inventions that were funded under 

federal research and development contracts, assuming that the federal government is 

granted a non-exclusive, non-transferable license to practice the given invention. 

However, most firms in the sample in this analysis are big publicly traded firms. We 

therefore choose to split the sample in 1984 after President Reagan in 1983 extended the 

policy to include all contractors, regardless of size. 

This change in patent policy increased the incentives to invent and innovate based 

on defense contracts as inventions originating in these contracts became profitable 
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through the option of collecting royalties. It is very likely that patenting at the firm level 

for these contractors changed substantially and inventive activity increased as a result of 

this policy change. To take this issue into account, this paper estimates the effect of MPC 

awards on the number of patent applications in the two sub-periods of the sample. 

The number of patents per firm in any given year varies considerably across 

firms. Table II-3 lists the number of average annual patents for the selection of firms in 

the patent sample. The average number of annual patent applications is higher in the post-

1984 period, compared to the earlier period. However, a few of the technology firms are 

very important in explaining this difference: Hewlett-Packard, IBM, Motorola, and Texas 

Instruments all experienced a big increase in patenting between the two periods. It is 

therefore not clear that the change in patent policy is important for the full sample of 

firms. 

It should be noted that the total annual number of U.S. patent applications started 

to increase in the mid-1980s. However, Kortum and Lerner (1998) have examined this 

issue and find that the surge in patenting was not specific to U.S. patent law changes. We 

can therefore contribute this change to an increase in overall U.S. scientific discovery. 

The finding of an increase in patenting for four of the technology companies confirms 

this result. Table II-3 also displays the annual average number of patent applications for 

the selection of companies, when we exclude the seven technology companies8 that rely 

heavily on the development of electronics. Indeed, the increase in the rate of patenting 

between the two sub-sample periods is smaller when the technology firms are excluded. 

                                                 
8 AT&T, Computer Science Corp, Hewlett-Packard, IBM, ITT Industries, Motorola, and Texas 
Instruments. Not all of these companies experienced an increase in patenting. However, all seven are 
excluded for consistency throughout the paper. 
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This indicates that the change in patenting primarily is a result of a surge in the rate of 

invention and that the patent policy change did not have a significant impact on the rate 

of patenting at the firms in this paper. This finding is consistent with the notion that the 

surge in patenting starting in the mid-1980s was related to the technological inventions of 

the Information Technology era. 

If the overall increase in patenting after 1984 is unrelated to the patent policy 

change but is correlated with a surge in the rate of technological discovery, then it is of 

interest to examine the patent response functions also over the full sample period. In 

addition to the two sub-sample periods, the paper therefore analyzes this scenario. Of the 

companies in the sample that are included in the NBER patent database and have 

information to enable a match to the Compustat database, 6 companies have very few 

patent applications and have years with no patent applications. These defense contractors 

have been deleted from the sample, leaving the 1969-1993 patent analysis with 39 firms 

when examining the full sample period. The response functions from the different sample 

periods are illustrated in figure II-10. 2 lags are included in the analysis when considering 

a shorter than full sample period. 

First consider the period from 1969-1983 before the Bayh-Dole Act had relevance 

for the selection of firms. Panel A of figure II-10 illustrates how the rate of patenting 

increases insignificantly after an initial insignificant decrease. However, when 

considering the 1984-1993 period in figure II-10, panel B, patents start to increase right 

after the MPC shock, and for some lag lengths this result is significant (not shown). 

Similar results are seen when considering the full sample period from 1969-1993 in 
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figure II-10, panel C. With the longer time-dimension in this panel, the figure displays a 

long-lasting significant response of patents to an MPC shock. 

In panels B and C of figure II-10 there is some evidence that a patent shock 

results in military prime contract awards a few years after the shock. Importantly, the 

results from the patent analysis correspond to the results from the R&D analysis that an 

MPC shock leads to the development of new technology, although the evidence is 

strongest for the post-1984 period. The fact that both privately expensed R&D and firm 

level patents increase in response to an MPC shock is evidence that military spending not 

only leads to new technology through federal funding but also results in an increase in the 

amount of private resources made available to discovery and innovation. 

As explained above, the firms in the sample that rely mainly on the development 

of new technology may be very important in explaining the results from the patent 

analysis. We therefore perform the analysis using the full time series but excluding the 

technology firms. The results from a bivariate PVAR with the variables PAT and MPC 

for the remaining firms are depicted in figure II-11. The results are robust to leaving out 

the technology firms. 

Additionally, figures II-12 and II-13 display the impulse response functions from 

trivariate PVARs with PAT, LP, and MPC and with SP, PAT, and MPC, respectively. 

The results from the bivariate patent analysis remain in the trivariate systems. However, 

as was the case with the trivariate R&D analysis, the positive response of labor 

productivity to an MPC shock disappears when a technology variable is included. In 

addition, stock prices increase insignificantly over time after a military prime contract 

award. Furthermore, the paper finds that productivity responds significantly positively to 
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a patent shock, indicating that firms with newer technology are more productive. This 

result corresponds to the post-WWII findings of Christiansen (2007) (chapter I of this 

dissertation). 

Figure II-14 depicts the results form a PVAR with R&D, PAT, and MPC 

included. Response functions with both two and three lags are depicted. The impulse 

response functions confirm the results form the bivariate analyses with R&D and patents, 

respectively. That is, a military prime contract award leads to the development of new 

technology. In figure II-14 with three lags, the R&D and PAT responses to an MPC 

shock are insignificantly positive. However, if two lags are included, the response of PAT 

does become significant. Furthermore, the trivariate system supports the information 

inherent in the R&D and patent data: A shock to research and development leads to a 

significantly positive response of patent applications. 

II.G. Examination of subgroups 

As evidenced in table II-1, the military prime contractors specialize in very 

different areas. This section examines if the effect of a military prime contract award 

differs between different types of companies. 

II.G.1 Oil companies 

The sample of companies includes six companies whose main businesses are in 

the oil industry. These companies may be largely affected by periods of oil crises when 

other businesses were facing increasing costs. It is likely that these companies are 

important for the results. As a robustness check, this paper therefore performed the 

analysis, excluding these six companies. The resulting impulse response functions are 
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robust to leaving out these companies, and the impulse response functions are therefore 

not reported. 

II.G.2 Technology firms 

 Although the firms in the present analysis all are big military prime contractors, 

several of these have a large part of their businesses outside the defense industry. Besides 

the oil companies as mentioned above, the sample also includes companies in the field of 

technology and communication. The analysis also tried excluding these firms from the 

analysis. Leaving out seven technology companies9 did not change the conclusions. 

Furthermore, the importance for the results of the AT&T breakup, effective 1984, has 

been examined by re-estimating the impulse response functions, only leaving out AT&T 

from the sample of companies. The overall results were robust to this change. 

II.G.3 Traditional defense conglomerates 

 This paper also tried only including the companies that are traditionally labeled as 

large defense conglomerates. This excludes companies with main focus on subjects such 

as oil, technology, communication, and electricity. The impulse response functions from 

a bivariate PVAR including only defense conglomerates in the sample10 continue to show 

a positive response of labor productivity to an MPC shock. However, with the small 

sample size, these impulse response functions are insignificant for some lag lengths. 

Furthermore, for this selection of companies there is no evidence that a productivity 

shock leads to the award of military prime contracts, indicating that firm productivity is 

                                                 
9 AT&T, Computer Science Corp, Hewlett-Packard, IBM, ITT Industries, Motorola, and Texas 
Instruments. 
10 This reduces the sample size to 22 companies. 
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not the determining factor when military prime contracts are being awarded. The 

response of R&D to an MPC shock is very significant with this selection of companies, 

independently of the ordering of the two variables. Also patents continue to respond 

significantly positively. 

II.G.4 Sample length 

 The analysis so far has contained observations during the period between 1969 

and 1993. However, the Carter-Reagan buildup did not start until the late 1970s. 

Therefore, the paper tried restricting the sample period by changing the sample length. 

The overall results from using observations only between 1974 and 1991, between 1971 

and 1988, and between 1977 and 1993 were unchanged and are therefore not reported. 

 It has been argued in this analysis that contract awards are not allocated at the 

firm level based on the economic performance of the firm. However, one potential 

concern is that firms may be awarded the contracts based on existing ideas for new 

technological inventions that only will be implemented after the contract has been 

awarded. If this is the case, the military shock considered in this paper may contain 

unresolved endogeneity. The analysis so far suggests that this issue is not the main 

driving factor behind the results but examination of this concern is a subject for future 

research. 

II.H. Conclusion 

This paper has argued that military prime contracts are not awarded at the firm 

level based on the level of productivity at any given firm. Using data on military prime 

contract awards at the firm level together with bivariate panel vector autoregressions, this 
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paper found evidence that firm productivity increases over time in response to a military 

prime contract award. This happens as a result of positive responses of both sales and 

employment with sales showing the strongest response. 

Privately expensed research and development increases after a military contract 

shock, indicating that defense contractors supplement federally funded research with own 

financing. Thereby, prime contracts lead to the development of new technology. In 

support of this finding, the results showed that stock prices increase as a result of a 

military shock. Additionally, this fact is evidenced by the positive responses of patent 

applications to a military prime contract shock. Furthermore, most results remain 

significant also when including a third variable in the panel vector autoregression. 

Overall, the paper concludes that military spending leads to the development of 

new technology. Thereby, positive effects on productivity can arise also at the aggregate 

level at the long horizon. If the new technologies are profitable, an implication for the 

neoclassical model is that the labor demand schedule is affected by military spending, 

leading to comovement of output, hours, and the real wage. 

 

Acknowledgement: I thank Bryan D. Goudie for co-authoring this chapter. The 

dissertation author is a primary author of this chapter. 
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II.I. Tables and figures 

Table II-1: Companies included in the full sample, continued on next page 

COMPANY NAME PRIMARY OUTPUT: COMPUSTAT 

ALLIEDSIGNAL (now Honeywell) AIRCRAFT PARTS, AUX EQ, NEC 

AMERADA HESS CORP PETROLEUM REFINING 

AMOCO CORP PETROLEUM REFINING 

AT&T TELECOMUNICATIONS 

ATLANTIC RICHFIELD CO PETROLEUM REFINING 

AUTOMATION INDUSTRIES INC ENGR,ACC,RESH,MGMT,REL SVCS 

BENDIX CORP MOTOR VEHICLE PART,ACCESSORY 

BOEING CO AIRCRAFT 

CHEVRON CORP PETROLEUM REFINING 

COMPUTER SCIENCES CORP CMP PROGRAMMING,DATA PROCESS 

EATON CORP MOTOR VEHICLE PART,ACCESSORY 

EMERSON ELECTRIC CO ELECTR, OTH ELEC EQ, EX CMP 

E-SYSTEMS INC SRCH,DET,NAV,GUID,AERO SYS 

EXXON MOBIL CORP PETROLEUM REFINING 

FMC CORP CHEMICALS & ALLIED PRODS 

FORD MOTOR CO MOTOR VEHICLES & CAR BODIES 

GENCORP INC GUIDED MISSILES & SPACE VEHC 

GENERAL DYNAMICS CORP SHIP & BOAT BLDG & REPAIRING 

GENERAL ELECTRIC CO CONGLOMERATES 

GENERAL MOTORS CORP MOTOR VEHICLES & CAR BODIES 

GRUMMAN CORP AIRCRAFT 

GTE CORP PHONE COMM EX RADIOTELEPHONE 

HARRIS CORP SRCH,DET,NAV,GUID,AERO SYS 

HERCULES INC MISC CHEMICAL PRODUCTS 
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Table II-1 (continued): Companies included in the full sample 

COMPANY NAME PRIMARY OUTPUT: COMPUSTAT 

HEWLETT-PACKARD CO COMPUTER & OFFICE EQUIPMENT 

HONEYWELL INC (pre 1999) AUTOMATIC REGULATNG CONTROLS 

INTL BUSINESS MACHINES CORP CMP PROGRAMMING,DATA PROCESS 

ITT INDUSTRIES INC PUMPS AND PUMPING EQUIPMENT 

LEAR SIEGLER INC SRCH,DET,NAV,GUID,AERO SYS 

LITTON INDUSTRIES INC SHIP & BOAT BLDG & REPAIRING 

LOCKHEED MARTIN CORP GUIDED MISSILES & SPACE VEHC 

LORAL CORP SRCH,DET,NAV,GUID,AERO SYS 

LTV CORP STEEL WORKS & BLAST FURNACES 

MARTIN MARIETTA CORP GUIDED MISSILES & SPACE VEHC 

MCDONNELL DOUGLAS CORP AIRCRAFT 

MOBIL CORP PETROLEUM REFINING 

MOTOROLA INC RADIO,TV BROADCAST, COMM EQ 

NORTHROP GRUMMAN CORP SRCH,DET,NAV,GUID,AERO SYS 

RAYTHEON CO SRCH,DET,NAV,GUID,AERO SYS 

ROCKWELL AUTOMATION ELECTRICAL INDL APPARATUS 

TEXAS INSTRUMENTS INC SEMICONDUCTOR,RELATED DEVICE 

TEXTRON INC AIRCRAFT 

TODD SHIPYARDS CORP SHIP & BOAT BLDG & REPAIRING 

TRW INC MOTOR VEHICLE PART,ACCESSORY 

UNITED TECHNOLOGIES CORP AIRCRAFT AND PARTS 
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Table II-2: Competitiveness of military prime contract awards, 1998-2003, continued on next pages 

Panel A. Type of contracts Awarded, % 

 Fixed Price Cost-Plus Time and 
Materials Other No 

Information 

Lockheed Martin 46.77 49.68 2.43 0.91 0.21 

Boeing 70.25 27.42 2.08 0.19 0.06 

Raytheon Co 57.94 37.53 2.98 1.21 0.35 

Northrop Grumman 49.55 42.48 2.13 2.18 3.66 

General Dynamics 60.02 38.87 0.44 0.44 0.24 

United Technologies 77.25 22.14 0.36 0.25 0 

General Electric 87.82 10.46 0.34 0.45 0.93 

TRW Inc 23.24 70.86 2.45 0.44 3.01 

Honeywell Inc-
AlliedSignal 72.44 21.52 2.69 3.02 0.34 

Textron 47.77 50.97 0.91 0.27 0.08 

Litton 55.96 35.73 2.11 1.62 4.58 

IBM 42.42 8.6 12.33 3.31 33.34 

GTE Corporation 61.36 33.04 3.21 1.3 1.09 

Source: Center for Public Integrity, “Outsourcing the Pentagon”. http://www.publicintegrity.org/pns/ 
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Table II-2 (continued): Competition of military prime contract awards, 1998-2003 

Panel B. Competition: How contractors won the contracts 
B1. Competition categories 

 Full and 
Open 

Not Full 
and Open Set-Aside Architect

-Engr Other No 
Information 

Lockheed Martin 24.95 74.11 0.03 0.00 0.56 0.35 

Boeing 39.91 59.55 0.01 0.05 0.34 0.14 

Raytheon Co 31.19 66.52 0.02 0.01 1.38 0.88 

Northrop Grumman 33.31 59.03 0.08 0.01 1.5 6.07 

General Dynamics 30.1 69.21 0.02 0.01 0.29 0.38 

United Technologies 2.67 95.28 0 0 1.69 0.36 

General Electric 8.77 88.44 0.17  1.09 1.53 

TRW Inc 70.37 24.44 0.02 0 1.85 3.33 

Honeywell Inc-
AlliedSignal 30.62 62.5 0.02 0.02 4.08 2.77 

Textron 4.67 94.62 0.05  0.36 0.3 

Litton 37.7 55.53 0.02  1.18 5.57 

IBM 34.86 15.5   2.06 47.57 

GTE Corporation 70.72 21.35 0.2  5.37 2.37 

Center for Public Integrity states that: “Full and open competition generally indicates that the contracts 
went out to competitive bid. Not full and open generally don't go out to bid. Set-aside contracts are 
competitive, but only certified small businesses can bid on them. Most of the contracts with no 
information were awarded on the "federal schedule." Contractors pre-qualify to supply specific goods and 
services, and federal employees can order them without going through the bidding process.” 
Source: Center for Public Integrity, “Outsourcing the Pentagon”. http://www.publicintegrity.org/pns/ 
 



 

 

106

Table II-2 (continued): Competition of military prime contract awards, 1998-2003 

Panel B (continued). Competition: How contractors won the contracts 
B2. Number of bidders in contracts won with full and open competition, % 

 One Two Three to 
Five Six to Ten Eleven or 

More 

Lockheed Martin 8.20 54.81 24.17 11.63 1.18 

Boeing 6.74 77.63 11.89 2.90 0.84 

Raytheon Co 10.95 37.78 34.96 13.59 2.72 

Northrop Grumman 10.45 65.63 17.42 5.32 1.19 

General Dynamics 9.93 40.54 31.77 7.81 9.95 

United Technologies 21.2 27.89 45.23 2.78 2.9 

General Electric 14.61 34.16 30.48 11.3 9.45 

TRW Inc 4.26 57.32 25.15 12.92 0.36 

Honeywell Inc-
AlliedSignal 16.96 30.53 37.19 14.82 0.51 

Textron 20.94 58.36 11.55 6.33 2.81 

Litton 5.89 82.81 7.49 3.76 0.04 

IBM 33.47 14.19 30.6 5.41 16.33 

GTE Corporation 25.52 65.55 6.71 1.09 1.12 

Source: Center for Public Integrity. “Outsourcing the Pentagon”. http://www.publicintegrity.org/pns/ 
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Table II-3: Average annual number of patents for a selection of firms, continued on next page 

COMPANY NAME 1969-1983 1984-1993 1969-1993 

ALLIEDSIGNAL (now Honeywell) 150.6 254.6 192.2 

AMERADA HESS CORP 0.1 0.5 0.3 

AMOCO CORP 100.9 139.6 116.4 

AT&T CORP 491.1 446.6 473.3 

ATLANTIC RICHFIELD CO 86.3 104.6 93.6 

AUTOMATION INDUSTRIES INC 9.4   

BENDIX CORP 151.5   

BOEING CO 93.1 146.6 114.5 

CHEVRON CORP 213.1 85.9 162.2 

EATON CORP 106.1 131.7 116.3 

EMERSON ELECTRIC CO 67.3 81.1 72.8 

E-SYSTEMS INC 10.5 10.4 10.5 

EXXON MOBIL CORP 249.8 232.5 242.9 

FMC CORP 124.3 75.2 104.7 

FORD MOTOR CO 168.7 236.1 195.7 

GENCORP INC 44.6 22.0 35.6 

GENERAL DYNAMICS CORP 34.5 29.9 32.6 

GENERAL ELECTRIC CO 821.9 855.9 835.5 

GENERAL MOTORS CORP 491.9 691.0 571.6 

GRUMMAN CORP 14.4 48.9 28.2 

GTE CORP 221.3 199.9 212.7 

HARRIS CORP 44.5 64.7 52.6 

HERCULES INC 52.5 43.0 48.7 

HEWLETT-PACKARD CO 54.3 268.2 139.8 

HONEYWELL INC (pre 1999) 183.4 183.8 183.6 

Note: All Companies Excl. Tech is an average over all companies in the sample, excluding the following: 
AT&T, Computer Science Corp, Hewlett-Packard, IBM, ITT Industries, Motorola, and Texas Instruments. 
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Table II-3 (continued): Average annual number of patents for a selection of firms 

COMPANY NAME 1969-1983 1984-1993 1969-1993 

INTL BUSINESS MACHINES CORP 517.3 824.1 640.0 

ITT INDUSTRIES INC 34.9 10.8 25.2 

LEAR SIEGLER INC 21.9 9.3 19.8 

LITTON INDUSTRIES INC 52.7 62.6 56.6 

LOCKHEED MARTIN CORP 31.5 30.1 30.9 

LORAL CORP 1.3 12.3 5.7 

LTV CORP 8.9 8.5 8.8 

MARTIN MARIETTA CORP 15.9 38.3 24.9 

MCDONNELL DOUGLAS CORP 43.1 32.5 38.8 

MOBIL CORP 242.1 307.2 278.3 

MOTOROLA INC 197.5 549.7 338.4 

NORTHROP GRUMMAN CORP 15.5 24.4 19.1 

RAYTHEON CO 82.8 70.9 78.0 

ROCKWELL AUTOMATION 177.7 128.1 157.8 

TEXAS INSTRUMENTS INC 166.5 339.2 235.6 

TEXTRON INC 73.5 34.7 58.0 

TRW INC 89.3 85.2 87.6 

UNITED TECHNOLOGIES CORP 171.4 264.3 208.6 

    

ALL COMPANIES 138.0 178.1 153.6 

ALL COMPANIES EXCL. TECH 120.4 138.2 168.2 

Note: All Companies Excl. Tech is an average over all companies in the sample, excluding the following: 
AT&T, Computer Science Corp, Hewlett-Packard, IBM, ITT Industries, Motorola, and Texas Instruments. 
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Figure II-1: Aggregate military prime contract awards 
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Panel A. LP and MPC 
2 lags: 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. Year 1 is the time of the shock. 
 
Figure II-2: Bivariate PVAR with LP and MPC, both orderings, continued on next page 
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Panel B. MPC and LP 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 45 firms are included, and 3 lags are included. 
 
Figure II-2 (continued): Bivariate PVAR with LP and MPC, both orderings 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals.3 lags are included. 
 
Figure II-3: Bivariate PVAR with SALE and MPC 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 3 lags are included. 
 
Figure II-4: Bivariate PVAR with EMP and MPC 
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Panel A. MPC and SP 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 3 lags are included. 
 
Panel B. SP and MPC 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 3 lags are included. 
 
Figure II-5: Bivariate PVAR with SP and MPC, both orderings 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 43 firms are included. 3 lags are included. 
 
Figure II-6: Bivariate PVAR with RD and MPC 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 3 lags are included. 
 
Figure II-7: Trivariate PVAR with RD, LP, and MPC 
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2 lags: 
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3 lags: 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 
 
Figure II-8: Trivariate PVAR with SP, RD, and MPC 
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2lags: 
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3 lags: 
 

Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 
 
Figure II-9: Trivariate PVAR with SP, LP, and MPC 
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Panel A. 1969-1983 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 2 lags are included. 
 
Panel B. 1984-1993 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 2 lags are included. 
 
Figure II-10: Bivariate PVAR with PAT and MPC, varying sample period, continued on next page 
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Panel C. 1969-1993 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 39 firms are included. 3 lags are included. 
 
Figure II-10 (continued): Bivariate PVAR with PAT and MPC, varying sample period 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 34 firms included. 3 lags are included. Technology firms not included in the sample. 
 
Figure II-11: Bivariate PVAR with PAT and MPC, 1969-1993. Excluding tech. firms 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 39 firms are included. 3 lags are included. 
 
Figure II-12: Trivariate PVAR with PAT, LP, and MPC, 1969-1993 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 3 lags are included. 
 
Figure II-13: Trivariate PVAR with SP, PAT, and MPC, 1969-1993 
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Note: The solid line indicates the impulse response function. The dashed lines are 90% confidence 
intervals. 
 
Figure II-14: Trivariate PVAR with RD, PAT, and MPC, 1969-1993 
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Chapter III  

 

Defense Spending, Productivity, and Technological Change: 

A Regional Approach 
 

Abstract 

 Do changes in military spending affect regional productivity? Data on Gross 

Domestic Product by state from the regional economic accounts are used to answer this 

question. In addition, data on the number of utility patents, sorted by application date, in 

each state in the U.S. are employed in order to assess whether military spending 

contributes to technological change. Through panel vector autoregressions with the 50 

states and the District of Columbia, the paper finds that output and employment increase 

following a military spending shock, but that labor productivity only increases 

insignificantly. Results from the patent data show that military spending leads to the 

development of new technology. However, the 50 states and the district are not all 

affected similarly. States with relatively few military prime contract dollars per person 

tend to be more positively affected than traditionally large military states. 

 

 
I thank Bryan D. Goudie for co-authoring this chapter. 
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III.A. Introduction 

 During the post-WWII period, military spending has experienced large 

fluctuations with buildups during the Korean War, the Vietnam War, the Carter-Reagan 

period, and most recently after September 11, 2001 and during the Iraqi War. The recent 

buildup has created renewed interest in examining the economic effects of defense 

spending. Furthermore, the demand for defense products is not evenly distributed across 

the United States, and aggregate economic findings occur as a result of variations at the 

regional level. In 1986 during the Carter-Reagan military buildup, California received 

$27.7 billion in military prime contracts, while Idaho received merely $62.9 million. And 

even when taking into account population, California continues to outperform most states 

when considering the dollar amount received as a result of military prime contracting. 

These spatial differences are important to take into consideration when exploring the 

effects of military spending. 

 This paper examines the economic consequences of military prime contracts for 

labor productivity and the development of new technology at the regional level. Data on 

Gross Domestic Product by State1, starting in 1963, have recently become available from 

the Bureau of Economic Analysis Regional Economic Accounts. Together with regional 

employment data, this enables the paper to compute labor productivity data at the state 

level. Furthermore, patent data from the NBER patent database can be sorted by the state 

of the first inventor, making it possible to perform an empirical and statistical analysis of 

                                                 
1 Gross domestic product by state is formerly known as gross state product. In this paper both names will 
be used. 
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the regional effects of military spending and how military prime contracts may lead to the 

development of new technology. 

 The time dimension in this paper is limited to focus on the years around and 

during the Carter-Reagan military buildup. During this period, the paper can employ data 

on both productivity and patent applications for each of the 50 states and the District of 

Columbia. The Carter-Reagan military buildup happened as a result of factors unrelated 

to the economic conditions in the U.S. as it was initiated after the Soviet invasion of 

Afghanistan in the end of 1979. Ramey and Shapiro (1998) make a careful description of 

this event. 

 Through panel vector autoregressions this paper finds that a typical state 

experiences an increase in gross state product and employment with only insignificant 

effects on labor productivity. However, the number of patents increase following a 

military prime contract shock, indicating that new technology is being developed as a 

result of the military spending. In addition, the paper finds that states respond differently 

depending on the importance of the defense sector in the given state. Areas which 

generally receive few prime contracts respond positively to an increase in contract awards 

while large military states are less significantly affected. 

In section III.B which follows, the paper briefly reviews the related literature on 

the U.S. and state levels of aggregation. Section III.C describes the data in detail and 

explores the differences in military spending across the 50 states and the District of 

Columbia. Section III.D describes the panel vector autoregression that is used to compute 

the empirical results which are presented in section III.E. Section III.F examines 

subgroups of individual states in order to explore how historically small and large 
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military states may respond differently to an increase in military prime contracts. Section 

III.G concludes. 

III.B. Related literature 

At the regional level, spatial studies have examined the effects of military 

spending on regional economic activity. Given data limitations, these papers have mainly 

relied on employment and personal income data. Of these, Mehay and Solnick (1990) and 

Hooker and Knetter (1997) find positive effects on regional employment after an increase 

in military spending, and Hooker and Knetter argue for the exogeneity of military prime 

contracts to regional economic activity. Markusen, Hall, Campbell, and Deitrick (1991) 

and Crump (1989) explore the spatial distribution of military expenditures in the United 

States. 

Other papers of interest include Blanchard and Katz (1992) and Davis, Loungani, 

and Mahidhara (1997). Blanchard and Katz examine how U.S. states have adjusted after 

being affected by an adverse shock to employment and examine the effect on wages. 

Davis, Loungani, and Mahidhara (1997) examine how movements in employment growth 

and unemployment rates are being affected by various driving forces. They consider 

changes in military expenditures and fluctuations in the price of oil and find that 

employment falls and the unemployment rate increases in response to a fall in military 

expenditures. Corresponding to the findings of Blanchard and Katz (1992), they conclude 

that migration of workers between states help dampen the effect on state unemployment 

rates after regional shocks. Additionally, Cullen and Fishback (2006) examine the 
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implications of government spending for local economic activity during World War II. 

They find that World War II spending did not affect consumption growth rates. 

At the macroeconomic level, some existing literature has tried to examine the 

effects of military spending on productivity. However, various conclusions have been 

reached. Edelberg, Eichenbaum, and Fisher (1999) and Ramey and Shapiro (1998) find 

that wages and labor productivity may decrease following a military buildup. On the 

contrary, Rotemberg and Woodford (1992) find evidence of positive effects on the real 

wage. More evidence is therefore needed within this area of research. 

As a result of the recent availability of data on gross state product, this paper can 

examine the effect of military spending on regional output and compute average labor 

productivity series as gross state product per employed worker. As the existing literature 

has found conflicting evidence on the response of productivity to government 

expenditures, this analysis can provide important insight on this topic. In addition, by 

estimating a panel vector autoregression the paper is able to take into account the 

dynamic interactions between the economic variables across time. See also Christiansen 

and Goudie (2007) (chapter II of this dissertation) for a corresponding analysis using 

firm-level data on large military prime contractors. 

On the subject of technological development, Acs, Anselin, and Varga (2002) 

have examined patent counts at the regional level in order to measure the production of 

knowledge and the validity of patent counts as a measure of innovative activity. They 

compare the innovation output indicator developed by the U.S. Small Business 

Administration to patent data from the United States Patent and Trademark Office and 
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find that patents and the innovation indicator provide similar results. Their findings 

therefore support the use of patent counts in studies examining technological change. 

III.C. Data 

The military prime contract data are from the Department of Defense Directorate 

for Information Operations and Reports. These data give information about the dollar 

value of military prime contracts2 awarded to businesses in the 50 states and the District 

of Columbia in fiscal years from 1962 to 2006. These contracts cover a variety of 

products and are not limited to F-16 fighter jets. Examples of products include 

rechargeable batteries, packing equipment, footwear, food services, jet engines, 

pharmaceutical drugs, and software.3 When an action report is filed for a contract, the 

prime contractor assigns the fiscal obligation to the region that is allocated the largest 

dollar portion of the contract. This region is referred to as the contract’s principal place of 

performance. Using this information, the contracts were sorted at the state level. This 

reveals how states differ in the level of annual contract dollars received. Indeed, some 

states receive on average contracts of more than $5 billion annually, while other states 

have contracts of less than $100 million on average.4 It should be mentioned that these 

                                                 
2 The military prime contract data are Department of Defense 350 individual contract action reports in 
excess of $25,000. Contracts in excess of $10,000 were reported prior to 1983. However, these contracts 
make up a very small fraction of the total. Therefore, following Hooker and Knetter (1997), the time 
inconsistent censoring point is ignored. 
3 Other examples include missile components, underwater sound equipment, trash collection, architect 
services, highway maintenance, hotel services, ammunition, data analysis, tires, office space, and air 
conditioning equipment. 
4 In the State of Montana, the years 1974 and 1975 enter in the original data with a negative contract value. 
According to the Department of Defense no state should have a year with negative contracts. The raw data 
indicates a canceled contract for the firm Kiewit Morrison Fischbach. However, the positive corresponding 
value does not enter in these years which indicates a misreporting in the data. This paper therefore used 
linear interpolation for these two years to estimate the actual contract value. As a robustness check, the 
analysis also tried excluding Montana from the estimations. This did not affect the overall results. 
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data do not take into account subcontracting outside the principal place of performance. 

Therefore, military prime contract data at the state level as used in this paper may over- 

or underestimate the actual expenditure level in a given state. As such, this is a potential 

source of measurement error. When included in this study, military prime contract dollar 

values per state have been converted into real terms by deflating with the GDP deflator, 

and the natural logarithm was then taken of the series. 

The average real dollar values of military prime contracts in millions of dollars in 

each state are described in table III-1, and figure III-1 plots these numbers graphically 

after normalizing with state population. Figure III-1 shows that states with more than 

$734 per state capita in contract value (black shaded areas) include California, Texas, 

Washington, Alaska, and Virginia. Contrary, Montana, Nebraska, Oregon, and South 

Dakota are among areas with relatively few military dollars per person (white shaded 

areas). As a result of this large difference in military prime contract values in different 

states there may be important differences in the economic responses to a military prime 

contract shock. This topic will therefore be further analyzed. 

Labor productivity data have been computed by taking the natural logarithm of 

real gross domestic product by state which was first divided by state employment. Gross 

domestic product by state is from the Bureau of Economic Analysis Regional Economic 

Accounts, and employment numbers are total non-farm employment by state from the 

Bureau of Labor Statistics Current Employment Statistics survey. The aggregate GDP 

deflator was used to convert nominal variables into real terms. Census estimates of state 

population, downloaded from the Bureau of Economic Analysis’ website, are used when 

the data are normalized by population in some graphs. Patent data are from the NBER 



 

 

133

patent database. Hall, Jaffe, and Trajtenberg (2001) contain a description of this data set. 

These data contain all utility patents granted between 1963 and 1999. This paper chooses 

to sort the patent data by application year in order to use the date most closely associated 

with the date of invention. Using the application date is superior to using the date of grant 

since budgetary resources fluctuate across time at the United States Patent and Trademark 

Office (USPTO) which leads to budgetary variations in the application-grant lag. 

However, the application year is only reported for patents granted since 1967. This 

thereby limits the time dimension of the analysis. 

Patents that have been applied for before 1999 but which have not been granted 

until after 1999 are not included in the NBER patent database. This can lead to potential 

truncation problems in the data. According to Hall, Jaffe, and Trajtenberg (2001), in most 

sub-periods, 95% of the patents in the database have been granted within 3 years of the 

application. To account for potential truncation problems, the sample period for this 

analysis is therefore limited to end in 1995. As such, the paper chooses to focus on the 

sample period 1967-1995 which includes the Carter-Reagan military buildup. All series 

enter in log-levels. In the analysis, the following notation is used as abbreviations: 

Military prime contracts are denoted by MPC, real gross domestic product by state is 

abbreviated to RGSP, and EMP denotes employment. In addition, LP denotes labor 

productivity, while PAT denotes patent applications. 

The following analysis examines the economic effects of an increase in military 

prime contract awards at the state level. This is preferred to analyzing military base 

closures which may not be exogenous to the economic conditions at the state level. On 

the contrary, several papers have argued that the allocation of military prime contract 
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awards at the state level of spatial disaggregation is uncorrelated with regional economic 

activity. Mayer (1991), Blanchard and Katz (1992), and Hooker and Knetter (1997) argue 

that state procurement spending is not distributed based on the local economic conditions. 

Mayer (1991) concludes on the politics of distribution of defense contracts by the 

Congress that “There is little systematic evidence that members vote against their policy 

preferences on weapon programs because of local economic impact; the Pentagon does 

not, indeed cannot, distribute defense contracts (as opposed to bases) for political 

purposes.”5 Furthermore, Hooker and Knetter (1997) perform Granger causality tests and 

find evidence supporting the exogeneity hypothesis. 

III.D. Methodology 

The estimated system is a balanced panel vector autoregression (PVAR) with p 

lags and m variables. The system of equations can be written as follows. 

 nt
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lntlnt ewcw +⋅Φ+= ∑

=
−
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 ntntnte εαλ ++= , where ε  ~ ( )Ω,0N  
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,
0

'εε  for t = 1,…, T and n = 1,…, N. 

wnt is an m × 1 vector of variables for state n at time t. Φl is an m × m matrix of 

coefficients and c is a constant term. λt is a constant term that is common across states 

but varies across time. This variable takes into account that all states may be influenced 

by aggregate macroeconomic factors that vary over the business cycle. αn is a state-

                                                 
5 Mayer (1991) page 210. 
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specific effect which is constant across time but varies across regions. This allows for 

individual effects that influence the states differently. Lastly, εnt is a vector of errors. The 

variance-covariance matrix, Ω, is common for all states across time, corresponding to the 

assumption of homogeneity across regions. Both αn and εnt have zero means and are 

independent among themselves and with each other. 

To estimate the system, we remove the aggregate time effect and the constant 

term by subtracting the mean across states from all observations. This yields the 

following equation: 

 ( ) tntn

p

l
ltlntltnt wwww ••

=
−•−• −+−+−⋅Φ=− ∑ εεαα

1
. 

Let ynt = wnt - w•t, cn = •−ααn , and unt = tnt •− εε , then the equation can be written as 

 ntn

p

l
lntlnt ucyy ++⋅Φ= ∑

=
−

1
. 

The paper estimates this system by OLS. In general, under the assumption of a 

fixed T and N → ∞, the OLS estimator is inconsistent. Under this assumption the first 

difference of the system can be estimated by GMM with Anderson-Hsiao (or Arellano 

and Bond) instruments. However, if we assume big T then the model can be consistently 

estimated by OLS. With a sample length of 29 time periods, T is assumed sufficiently 

large to not cause problems with OLS inconsistency or with narrow standard error bands 

as discussed in Cao and Sun (2006). As such, the system of equations is estimated with 

50 states and the District of Columbia and observations from 1967 to 1995, adding up to 

a total of 1479 observations. Next, the paper estimates the effect of a military prime 
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contract shock on various economic indicators and on patents which are a measure of the 

development of new technological advances. 

In order to estimate a panel vector autoregression, the appropriate lag length must 

be chosen. Some contracts last two or three years and including only one lag in the 

regressions may therefore introduce omitted variable bias. Therefore, the benchmark 

estimations include p = 3 lags. However, the impulse response functions are generally 

robust to changing the lag length and many results are shown also when including only 

two lags. 

To estimate the impulse response functions, an orthogonal shock must be 

identified. This is obtained through a short-run Cholesky decomposition. The recursive 

ordering with the MPC variable placed last in the ordering allows changes in military 

prime contracts of each region to be affected by contemporaneous changes in economic 

and technological indicators such as gross state product, employment, or the 

technological advances made in the given area. Standard errors are estimated by Monte 

Carlo with 2000 simulations. 

III.E. Empirical results 

The paper now presents impulse response functions from bivariate PVARs. In the 

impulse response figures, the horizontal axes correspond to the forecast horizon in years, 

with year 1 denoting the time of the shock. The responses are depicted together with 90 

percent confidence intervals. 
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III.E.1 Bivariate panel vector autoregressions 

Figure III-2 uses the newly available data on real gross state product, RGSP, to 

find that an MPC shock leads to a significant and long-lasting increase in RGSP a few 

years following the shock. This corresponds to the findings of Blanchard and Perotti 

(2002) and Ramey and Shapiro (1998) who at the aggregate macroeconomic level find 

that output is positively affected by a shock to government defense spending. From figure 

III-2, it can also be seen that an increase in RGSP only has a small positive effect on 

MPC awards after several years. This indicates that military prime contracts are not 

primarily awarded to states with good economic conditions. Specifically, there is no 

evidence of military prime contracts being awarded to regions with low economic output 

in order to stimulate that particular region. This result thereby confirms existing findings 

in the literature that military prime contracts are not allocated based on state economic 

activity. 

The response of employment to a military prime contract shock is depicted in 

figure III-3. As was the case with real gross state product, military prime contracts lead to 

a significant increase in employment after a lag of several years. This increase in 

employment is consistent with results found by Hooker and Knetter (1997) and Davis, 

Loungani, and Mahidhara (1997). But the positive effects on both RGSP and EMP are 

similar in the sense that labor productivity, LP, defined as output per employed worker, 

mainly responds insignificantly positive to an MPC shock. This is depicted in figure III-4 

when using both 2 and 3 lags in the PVAR. Figure III-3 indicates that military prime 

contracts may increase in the long run after an increase in employment. However, figure 
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III-4 reinforces the result from RGSP that defense spending is not awarded based on state 

productivity. 

In order to examine if military prime contracts lead to the development of new 

technology, the paper estimates the system with patent application data as a measure of 

technological progress. Figure III-5 illustrates how the development of new technology is 

distributed across the United States by using information on the average annual number 

of patents per thousand people in each state. States with many patents per person include 

California, Minnesota, and several states in the North East area of the U.S., while North 

and South Dakota as well as Arkansas, Mississippi, and Alabama are areas with relatively 

few patents. When comparing this plot of the U.S. with figure III-1, it can be seen that 

there is no clear connection between states with large military prime contracts and states 

with many patent applications. For example, Alaska receives relatively many military 

contract awards when taking into account state population, while Alaska is in the bottom 

quintile in figure III-5, corresponding to a relatively low number of new technologies 

developed. Since the variance of military prime contract awards across the 50 states and 

the District of Columbia is high, it is of interest to separately examine states with many or 

few military contracts. Therefore, section III.F below examines the empirical results 

when only certain subgroups are considered. 

To estimate the effect on the development of new technology of a military 

expenditure shock, the patent variable, PAT, is ordered first in the system as it is 

expected to take time to develop a new technology. This also allows for military prime 

contracts to be awarded to areas with technologically advanced production. Figure III-6 

depicts the results from this estimation, using both 2 and 3 lags. Indeed, the paper finds 
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that military spending leads to a significant increase in the arrival of new inventions, 

corresponding to the results found in chapter II at the firm level. Furthermore, there is 

only weak evidence of contract awards being allocated to areas that have developed a 

new technology. Specifically, a patent shock only leads to small positive effects on MPC 

awards at the long horizon and this response is insignificant if estimated with two lags. 

In the mid-1980s the U.S. experienced a surge in the annual number of patent 

applications. This surge could potentially be associated with changes in the U.S. patent 

laws. Specifically, in 1980 the Bayh-Dole Act allowed universities and small businesses 

to retain title to patents on inventions that had been made as a result of federally funded 

research. This was made possible as long as the patent holder granted a non-exclusive, 

non-transferable license to the federal government to practice the invention. Furthermore, 

in 1983 this patent policy change was extended to include also large businesses. The 

surge in patenting in the mid-1980s could therefore be a result of the change in patent law 

and of an increase in the incentives to invent and innovate. However, Kortum and Lerner 

(1998) have examined this issue. They found that the surge in patenting can be 

interpreted as a surge in overall U.S. scientific development. The working hypothesis in 

this paper is therefore that the surge in patenting is not a result of patent law changes. 

To account for possible confounding effects of patent policy changes, this paper 

also estimated the patent impulse responses separately for the pre- and post-1984 periods. 

These response functions are depicted in panels A and B of figure III-7. Two lags are 

included as a result of the shorter sample length. The impulse responses show that the 

patent law change is not the cause for the increase in patenting after a military prime 

contract shock. Both in the pre- and post-1984 periods, patents respond significantly 
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positively to an MPC shock, and the positive response is longer-lasting in the early part 

of the sample compared to the post-1984 results. In addition, figure III-7 confirms that 

military prime contracts are not awarded to states based on the development of new 

technology as the lower left graphs of panels A and B do not show significant responses 

of MPC awards to a patent shock. 

III.E.2 Trivariate panel vector autoregressions 

To take into account possible omitted variable bias, the impulse response 

functions were also computed when including three variables in the PVAR. Figure III-8 

displays the responses to an MPC shock in a PVAR with PAT, RGSP, and MPC. When 

controlling for real gross state product, the positive response of patents to an MPC shock 

remains significant. Also the response of RGSP to an MPC shock is significantly positive 

with long-lasting effects. 

Figure III-9 reports the results from a PVAR with PAT, EMP, and MPC, using 

both 2 and 3 lags. As was the case in the bivariate systems, an MPC shock leads to an 

increase in both patent applications and employment. However, the shape of the patent 

impulse response function is somewhat sensitive to the number of lags included in the 

system as the response of PAT estimated with three lags becomes significant shortly after 

the shock while the corresponding response function estimated with two lags tends to 

increase over time. The corresponding results from a PVAR with PAT, LP, and MPC are 

shown in figure III-10. Patents continue to respond positively and the result is robust to 

changing the lag length. Additionally, as was the case in the bivariate systems, the 

response of labor productivity is insignificantly positive. When three lags are included, 
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the lower left panel of figure III-10 indicates some evidence that MPC awards at the long 

horizon may be channeled to areas with new, effective technology. However, the 

response is only significant at the long horizon and is not present when the PVAR is 

estimated with 2 lags. 

III.F. Subgroups of states 

As seen from figure III-1, the 51 regions receive very different amounts in 

military prime contracts per person. Panels A and B of figure III-11 display graphically 

the distribution of military spending which has been sorted based on average annual real 

military spending and divided into quintiles. Figure III-11, panel A, displays the 

distribution when sorted based on real military prime contract awards by state population 

and panel B reports the corresponding graph without normalizing by population. The 

number printed on each state in the figure corresponds to the state ranking of average 

annual real MPC. In panel A of figure III-11, Idaho is marked number 1 and the District 

of Columbia number 51, corresponding to the areas with the lowest and highest MPC 

amount per person, respectively. The two figures show very similar patterns with Alaska 

and Hawaii as a few exceptions. 

In order to examine subgroups of states, this paper follows the grouping method 

used by Hooker and Knetter (1994) and sorts the areas based on military prime contract 

awards normalized by state population. This grouping is shown in table III-2, and table 

III-3 provides the average annual real MPC dollar values and standard deviations within 

each quintile both with and without normalizing by state population. As described in 

table III-3, the average annual contract amount per person varies considerably between 
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quintiles as quintile 5 on average receives contract amounts of an order of magnitude 

larger than the corresponding contract awards in quintile 1. The standard deviation of 

average annual MPCs within quintile 5 is large compared to the mean value. This is a 

result of not normalizing with population as California on average receives more than 

$27 billion per year in military prime contracts, while Maryland, being the state in 

quintile 5 with the lowest dollar value of contracts, receives around $4 billion in an 

average year. As mentioned, the grouping for the following analysis is based on 

normalizations with state population. 

Figures III-12 through III-15 display the responses of RGSP, EMP, LP, and PAT 

to an MPC shock in bivariate PVARs for each quintile. With the smaller sample size 

some responses now become insignificant. However, important information can still be 

drawn from this analysis. Figure III-12 shows how the 20 states in quintiles 1 and 2 are 

positively affected by an MPC shock, while the remaining groups are not significantly 

affected at any horizon. Furthermore, the states in quintiles 1 and 2 tend to depict very 

long-lasting effects. This figure therefore shows how aggregate effects found in figure 

III-2 mainly occurred as a result of economic consequences for the small military states 

of an increase in military spending. However, figure III-13 plots how employment is not 

significantly affected at any horizon for any of the subgroups. This indicates that any 

effects on labor productivity are mainly a result of adjustments in output and not through 

changes in the number of workers employed. However, the response of employment in 

quintile 2 does become significant in the long run if 1, 4, or 5 lags are included in the 

PVAR (not shown). This supports the finding that the economic conditions in states with 

relatively small amounts of spending per state capita may to a greater extent be positively 
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affected by a military shock than large military states. However, these results run counter 

to the findings of Hooker and Knetter (1994) who find that small military states 

experience an insignificant decline in unemployment rates after a decrease in military 

spending. 

Although output and employment only experience small adjustments, labor 

productivity defined as output per employed worker may be significantly affected. Figure 

III-14 shows this to be the case. Labor productivity in quintile 1 increases significantly 

shortly after the MPC shock, and quintile 2 increases over time. Surprisingly, the large 

military areas tend to experience only small or negative effects on productivity of a 

military prime contract award, again clearly indicating how subgroups within the U.S. are 

affected differently. 

Figure III-15 reports the results from bivariate patent analyses for each quintile. 

Quintiles 1 and 2 are again positively affected, indicating that new technology is being 

developed as a result of the prime contracts. Interestingly, the states that experience 

increased labor productivity after an increase in military prime contracts are therefore 

also states that develop more new technology. Comparing figures III-1 and III-5, there is 

no clear connection between the amount of military spending received and the intensity 

of patenting. Both North and South Carolina are contained within MPC quintiles 1 and 2 

and perform relatively little patenting. However, Kansas, Mississippi, and Maine have 

correspondingly few patents, while receiving military prime contract awards per person 

equivalent to being in MPC quintiles 4, 5, and 4, respectively. Among the larger military 

states, quintile 3 and 5 tend to do less patenting after an MPC shock, while quintile 4 
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responds insignificantly positively. If 1 or 4 lags are included in the PVAR (not shown), 

then quintile 4 does respond significantly positively. 

The results in this section point toward important differences in economic 

responses to increased military spending across the United States. Specifically, it is of 

interest that states which develop a significantly increased amount of new technology, 

evidenced through a significant increase in patenting, also experience a positive effect on 

labor productivity. Together with the result that employment is only insignificantly 

affected, and that the main adjustment therefore happens through positive effects on the 

production of goods, these response functions indicate that the new technology indeed 

has been introduced in the affected states. However, more evidence is needed on this area 

of research. 

The results found in this paper help to understand how aggregate U.S. economic 

effects occur as a result of underlying regional fluctuations. Existing studies that have 

focused on the U.S. as an aggregate have reported different economic effects of defense 

spending. On the contrary, this present paper with more degrees of freedom has found 

that not only is output positively affected by military spending, but the average state has 

also been shown to develop more new technology as a result of defense contracting. This 

may partly be a result of the research and development contracts that are inherent in the 

aggregate military prime contract numbers. Furthermore, these findings correspond to the 

results found in the previous chapter. Chapter II showed that large military prime 

contractors increase company sponsored research and development after a military prime 

contract award, indicating that indeed new technology is being developed. 
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III.G. Conclusion 

This paper examined the consequences for regional productivity and 

technological progress of an increase in military spending. The data for this study 

covered the Carter-Reagan military buildup which therefore provided variation in the 

data series. Furthermore, the dollar amount of military prime contract awards varies 

considerably across states as does the annual amount of patenting. 

Using U.S. data on military prime contract awards, gross state product, 

employment, and patenting from 1967 to 1995 for the 50 states and the District of 

Columbia, the paper estimated a panel vector autoregression. From an analysis with all 

50 states and the district, the study found that output and employment increase following 

a military prime contract shock. However, these positive responses are close in 

magnitude, leading to insignificant effects on state labor productivity. Patents increase 

strongly after increased military spending, providing evidence that new technology is 

being developed as a result of the increased expenditure. 

Next, the paper divided the states and the district into quintiles in order to 

examine how states with different amounts of prime contracts responded to a military 

spending shock. Interestingly, the analysis found that states with relatively few contract 

dollars per person responded more positively to an expenditure shock than did relatively 

large military states. These results add to the existing literature by showing how U.S. 

macroeconomic results are not found evenly across the country. 

 

Acknowledgement: I thank Bryan D. Goudie for co-authoring this chapter. The 
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III.H. Tables and figures 

Table III-1: Average annual dollar value of real MPC by state 

State Name MPC  State Name MPC 

Alabama 1,578  Montana 130 

Alaska 507  Nebraska 271 

Arizona 2,157  Nevada 163 

Arkansas 473  New Hampshire 556 

California 27,381  New Jersey 3,869 

Colorado 1,809  New Mexico 580 

Connecticut 6,172  New York 10,331 

Delaware 211  North Carolina 1,420 

District of Columbia 1,432  North Dakota 211 

Florida 4,936  Ohio 4,415 

Georgia 2,997  Oklahoma 741 

Hawaii 662  Oregon 290 

Idaho 64  Pennsylvania 4,307 

Illinois 2,030  Rhode Island 455 

Indiana 2,671  South Carolina 666 

Iowa 638  South Dakota 76 

Kansas 1,400  Tennessee 1,362 

Kentucky 505  Texas 10,655 

Louisiana 1,752  Utah 750 

Maine 710  Vermont 214 

Maryland 4,031  Virginia 6,393 

Massachusetts 7,271  Washington 3,339 

Michigan 2,445  West Virginia 211 

Minnesota 2,068  Wisconsin 1,105 

Mississippi 2,003  Wyoming 93 

Missouri 6,487      
Note: MPC denotes the average annual dollar value of military prime contracts from 1967 to 1995 in 
millions of 2000 dollars. 
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Table III-2: Grouping of states 

Quintiles by average real MPC per person Quintiles by average real MPC 
Idaho Idaho 
South Dakota South Dakota 
West Virginia Wyoming 
Oregon Montana 
Kentucky Nevada 
Montana Delaware 
Nebraska West Virginia 
Nevada North Dakota 
Illinois Vermont 

Quintile 1 

South Carolina 

Quintile 1 

Nebraska 
Arkansas Oregon 
Wyoming Rhode Island 
Iowa Arkansas 
Wisconsin Kentucky 
North Carolina Alaska 
Oklahoma New Hampshire 
Michigan New Mexico 
Tennessee Iowa 
North Dakota Hawaii 

Quintile 2 
 

Delaware 

Quintile 2 

South Carolina 
Pennsylvania Maine 
Alabama Oklahoma 
Ohio Utah 
Louisiana Wisconsin 
New Mexico Tennessee 
Vermont Kansas 
Rhode Island North Carolina 
Florida District of Columbia 
Indiana Alabama 

Quintile 3 

Minnesota 

Quintile 3 

Louisiana 
Utah Colorado 
New Jersey Mississippi 
Georgia Illinois 
New York Minnesota 
Colorado Arizona 
Kansas Michigan 
New Hampshire Indiana 
Maine Georgia 
Hawaii Washington 

Quintile 4 

Arizona 

Quintile 4 

New Jersey 
Texas Maryland 
Mississippi Pennsylvania 
Washington Ohio 
Maryland Florida 
California Connecticut 
Virginia Virginia 
Alaska Missouri 
Massachusetts Massachusetts 
Missouri New York 
Connecticut Texas 

Quintile 5 

District of Columbia 

Quintile 5 

California 
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Table III-3: Average dollar value of MPC 

 Average MPC per person Average MPC, millions 

Quintile Mean Standard deviation Mean Standard deviation 

1 146 43 164 70 

2 263 48 533 115 

3 440 45 1,225 376 

4 592 70 2,539 674 

5 1,213 466 8,398 6,684 

Note: Quintile 1 contains states with the lowest average dollar value of contracts, and quintile 5 contains 
states and the District of Columbia which receive the highest average dollar value of contracts. The large 
standard deviation for average MPC within quintile 5 is a result of the large contract volume in California 
as seen in table III-1. 
The left hand columns are normalized by state population, and means and standard deviations are denoted 
in 2000 dollars. 
The right hand columns are not normalized by population, and means and standard deviations are here 
denoted in millions of 2000 dollars. 
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Note: The grouping is based on average annual real MPC per thousand people, using data from 1967 to 
1995. 10 states are included in each of the first 4 groups, while 10 states and the District of Columbia enter 
in the group, indicated with black. 
 
Figure III-1: Regional military prime contract awards per person 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 3 lags are included. 
 
Figure III-2: Bivariate PVAR with RGSP and MPC 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 3 lags are included. 
 
Figure III-3: Bivariate PVAR with EMP and MPC 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 
 
Figure III-4: Bivariate PVAR with LP and MPC 
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Note: The grouping is based on average annual number of patents, sorted by application year, per thousand 
people in the given state or district, using data from 1967 to 1995. 10 states are included in each of the first 
4 groups, while 11 states enter in the group indicated with black. 
 
Figure III-5: Regional patenting 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 
 
Figure III-6: Bivariate PVAR with PAT and MPC 
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Panel A. 1967-1983 
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Panel B. 1984-1995 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 2 lags are included. 
 
Figure III-7: Bivariate PVAR with PAT and MPC 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 
 
Figure III-8: Trivariate PVAR with PAT, RGSP, and MPC 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 
 
Figure III-9: Trivariate PVAR with PAT, EMP, and MPC 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 
 
Figure III-10: Trivariate PVAR with PAT, LP, and MPC 
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Panel A. Military prime contract awards per person 

 
Note: The grouping is based on average annual real MPC per thousand people, using data from 1967 to 
1995. 10 states are included in each of the first 4 groups, while 10 states and the District of Columbia enter 
in the group indicated with black. 
 
Figure III-11: Regional military prime contract awards, quintiles, continued on next page 



 

 

159

Panel B. Military prime contract awards, not normalized by population 

 
Note: The grouping is based on average annual real MPC, using data from 1967 to 1995. 10 states are 
included in each of the first 4 groups, while 11 states enter in the group indicated with black. 
 
Figure III-11 (continued): Regional military prime contract awards, quintiles 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 3 lags are included. 
 
Figure III-12: Bivariate PVARs with RGSP and MPC for the five subgroups 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 3 lags are included. 
 
Figure III-13: Bivariate PVARs with EMP and MPC for the five subgroups 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 3 lags are included. 
 
Figure III-14: Bivariate PVARs with LP and MPC for the five subgroups 
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Note: The horizontal axis denotes the forecast horizon in years. Year 1 is the time of the shock. The dashed 
lines are 90 percent confidence intervals. 3 lags are included. 
 
Figure III-15: Bivariate PVARs with PAT and MPC for the five subgroups 
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