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Effects of size polydispersity on random close-packed configurations of spherical particles
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(Received 30 June 2019; published 11 October 2019)

We analyze the packing properties of simulated three-dimensional polydisperse samples of spherical par-
ticles assembled by mechanical compaction with zero interparticle friction, leading to random close-packed
configurations of the highest packing fraction. The particle size distributions are generated from the incomplete
beta distribution with three parameters: A size span and two shape parameters that control the curvature of the
distribution function. For each size distribution, the number of particles is determined by accounting for the
statistical representativity of all particle size classes in terms of both the numbers and volumes of particles.
Remarkably, the packing fraction increases, up to a small variability, with an effective size span, known as
the coefficient of uniformity, that combines the three control parameters of the distribution. The local particle
environments are characterized by the particle connectivities and anisotropies, which unveil the class of particles
with four contact neighbors as the largest class with an increasing population as a function of size span,
indicating the higher stability of particles trapped by four larger particles. As a result of increasing topological
inhomogeneity of the packings, the force distributions get increasingly broader with increasing effective size
span. Finally, we find that larger particles do not always carry stronger average stresses, in particular when the
particle size distribution allows for a sufficiently large number of small particles.

DOI: 10.1103/PhysRevE.100.042906

I. INTRODUCTION

The hard-sphere packings have been a subject of particular
interest in mathematics and physics and as models of granular
materials in soil mechanics and powder technology [1–4].
Under compressive mechanical stress, spherical particles of
the same size do not spontaneously get jammed in the most
compact configurations, which are face-centered cubic and
hexagonal close packing structures with a packing fraction
� = Vp/V � 0.74, where Vp and V are the volume of particles
and the total volume, respectively [5]. The lower packing frac-
tions reached by compaction or other procedures are attributed
to disorder in the sense of particle-positional randomness,
and the resulting packings are known as random close-packed
(RCP) structures with the highest packing fraction �c �
0.64 [6].

The RCP concept was revisited by Torquato et al. [7], who
introduced a mathematically consistent definition of these
states as maximally random jammed states depending on the
order metrics and assembling protocols. In particular, this
definition includes the contact-orientational (in addition to
positional) randomness whose maximum value occurs in the
case of the isotropic contact network. In mechanical exper-
iments or simulations, the relevant assembling procedure is
isotropic compaction under constant pressure P with zero

*pmutabar@mit.edu
†mtaiebat@civil.ubc.ca
‡pellenq@mit.edu
§franck.radjai@umontpellier.fr

friction between particles [8]. In the absence of friction, the
particle rearrangements lead to a well-defined (independent of
the initial state) isotropic equilibrium state with a minimum
value of the energy function � = PV and hence the highest
packing fraction �c allowed by the disorder. As all normal
contact forces are balanced in this state for all particles and
the packing is isostatic, the coordination number is Z = 6 (by
disregarding the rattlers) [9]. This configuration is random
due to the absence of long-range ordering. There is, however,
no formal proof that the resulting randomness is maximal
because of the constraints imposed by force balance and
isostaticity. Hence, this state may also be described as a
“random maximally close-packed state” and we will continue
to refer to it as RCP state.

There is no reason to restrict the RCP state to monodisperse
sphere packings. Broad particle size distributions (PSD) are
very common in nature and industrial applications of gran-
ular materials, and they are crucial for the space-filling and
strength properties of granular materials [1,3,4,10–13]. Nev-
ertheless, packing structures have been mostly investigated in
bidisperse systems, i.e., composed of two different sizes, in
weakly polydisperse systems [14,15], defined as systems with
small size span, or in ideal apollonian or random Apollonian
constructions characterized by the assumption that there is no
lower bound on particle size [4,10,16].

Several geometrical algorithms have been proposed to
generate jammed packings of particles [4,11,12,17–20]. But
to obtain RCP states by mechanical compaction, the discrete
element method (DEM) is the relevant approach. The problem
is that broad PSD’s require a large number of particles that
are not numerically tractable. Hence, the investigation of

2470-0045/2019/100(4)/042906(11) 042906-1 ©2019 American Physical Society

https://orcid.org/0000-0003-4239-8435
https://orcid.org/0000-0003-2067-8161
https://orcid.org/0000-0003-1376-7705
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.042906&domain=pdf&date_stamp=2019-10-11
https://doi.org/10.1103/PhysRevE.100.042906


MUTABARUKA, TAIEBAT, PELLENQ, AND RADJAI PHYSICAL REVIEW E 100, 042906 (2019)

polydisperse granular materials requires an optimized number
of particles so that all particle size classes and their vol-
umes can be well represented. This statistical representativity
of particle size classes is a function of both the size span
and shape of the PSD [20]. The DEM simulations in two-
dimensional (2D) disk packings and 3D sphere packings with
broad size spans have shown that the effective friction coef-
ficient of granular flows is independent of PSD [13,21,22].
Furthermore, Estrada recently showed that disk packings as-
sembled with zero friction and a power-law cumulate volume
distribution (CVD) of exponent 0.5 lead to the highest packing
fraction in the RCP state for a given value of the size span [23].

In this paper, we investigate the packing properties of
frictionless RCP packings of spherical particles using DEM
simulations for CVD’s generated from the incomplete β dis-
tribution, as in 2D studies of Voivret et al. [20]. This CVD
has three parameters: Size span and two shape parameters.
A pending issue that we address in this paper is how the
packing fraction depends on the CVD shape parameters and
coefficient of uniformity, which is a well-known parameter
measured in soil mechanics to characterize the CVD. We also
analyze particle connectivities and stress transmission. As we
shall see, while the coordination number is weakly dependent
on the CVD due to the quasi-isostaticity of the packings, the
proportions of particles of different sizes with a given number
of contact neighbors are sensitive to the CVD parameters.

In the following, we first introduce the numerical proce-
dures used to generate the CVD’s and sphere packings. Then
we focus on the influence of the PSD parameters on the pack-
ing fraction, particle connectivities, and force distributions.
We conclude with the salient results of this work and future
directions of research on polydisperse granular materials.

II. NUMERICAL PROCEDURES

A. Particle size distributions

We assume that the particle diameters are randomly dis-
tributed between dmin and dmax. The size span is characterized
by the ratio

α = dmax

dmin
. (1)

The particle diameters can be rescaled over this range:

dr = d − dmin

dmax − dmin
= d/dmin − 1

α − 1
. (2)

This reduced size dr varies from 0 to 1. The PSD over this
interval can be equivalently described by one of the following
forms: (1) probability distribution P(d ) of particle diameters
d , (2) its cumulative form F (d ) = ∫ d

dmin
P(x)dx, (3) probability

distribution of particle volumes Pv (d ), and (4) its cumulative
form h(d ) = ∫ d

dmin
Pv (x)dx. The latter represents the cumulate

volume distribution (CVD), which corresponds to the mass
fraction of particles passing a sieve of mesh diameter d and
usually called grading curve measured in soil mechanics
to describe different soil types [24]. We will use here the
CVD for its clear experimental meaning and its relevance,
as we shall see below. It can be alternatively written in the
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FIG. 1. Cumulate volume distributions of reduced diameters dr

for several values of the shape parameters a and b considered in this
paper.

following form:

h(d ) =
∫ d

dmin
V (x)P(x)dx∫ dmax

dmin
V (x)P(x)dx

, (3)

where V (x) is the volume of a particle of diameter x.
As in Ref. [20], we use in this work the incomplete

cumulative β distribution to model the CVD:

β(x) = 1

B(a, b)

∫ x

0
t a(1 − t )b−1dt, (4)

where a > 0 and b > 0 are the two parameters of the distribu-
tion and

B(a, b) = �(a)�(b)/�(a + b), (5)

where � is the Gamma function. This distribution is defined
and normalized over the interval [0,1], so that β(0) = 0 and
β(1) = 1. The CVD is defined by

h(d ) = β[dr (d ); a, b]. (6)

With this definition of the CVD, the span and shapes of the
size distributions are controlled by three parameters: α, a, and
b.

Figure 1 displays the graphs of the distributions and their
parameter values that will be considered below. The case a =
b = 1 is a uniform distribution by volume fractions (straight
line in Fig. 1). All size classes have the same volume, so that
h = dr . The CVD is double curved if a > 1 and b > 1. A
power-law distribution is obtained if either a or b is set to 1. If
a > 1 and b = 1, then the CVD is convex, whereas for a = 1
and b > 1 the CVD is concave. The special case of a = 3
and b = 1 is a uniform distribution in particle diameters.
For large values of a and b, the distribution becomes nearly
monodisperse. For a < 1 and b < 1, the distribution is nearly
bidisperse with increasing concentration of particles around
dmax and dmin for decreasing values of a and b.

For DEM simulations, the CVD must be discretized by
dividing the range [0, 1] of reduced diameters into Nc size
classes. Each class i contains a number Np/c(i) of particles
and has a volume Vp(i). The total number of particles is Np =∑

i Np/c(i) and the total particle volume is Vp = ∑
i Vp(i).

042906-2
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FIG. 2. Domains of statistically accessible shape parameters a
and b for various size ratios of (a) α = 2, (b) α = 3, (c) α = 4,
and (d) α = 5 for Nc = 10 and Nmin

p/c = 50. The numbers on the
contour lines show log10(Nmin

p ), where Nmin
p is the minimum number

of particles needed for the statistical representativity of samples
generated according to a size distribution.

Since the system is polydisperse, for a given number Np of
particles, the number Nc of size classes and the values of
Np/c(i) must be such that in each class both particle volumes
and their numbers are correctly represented. This requires a
sufficiently large number Nmin

p/c of largest particles and a suf-
ficiently large volume V min

p of smallest particles. If these two
conditions are satisfied, then both the numbers and volumes of
particles in all size classes will lie within the prescribed range,
i.e., Nmin

p/c < Np/c(i) and V min
p < Vp(i), ∀i. The values of Nmin

p/c

and V min
p depend on the number Nc of size classes. For a given

distribution h(d ), they determine also the minimum number
Nmin

p of particles needed for the representativity of the samples
and it should be set according to the computation power and
memory.

To give an idea of the necessary number of particles to
achieve statistically representative discrete distributions of
particle sizes, we calculated the number of particles Nmin

p by
setting Nmin

p/c = 50, Nc = 10, and V min
p = Nmin

p/c Vp(dmax). For
our spherical particles, we have Vp(dmax) = πd3

max/6. Figure 2
shows the isovalues of Nmin

p for several values α = [2, 3, 4, 5]
that were used to construct our samples. The numbers on the
contour lines show log10(Nmin

p ). We see that the minimum
number of particles is a rapidly increasing function of α but
also of shape parameters a and b. These data show that with
a total number of particles Np = 25 000 and Nc = 10, it is
possible to vary α in the range [1,5] and the shape parameters
in the range [1,3].

TABLE I. Simulated samples.

ID Dispersity α a b Nmin
p

a

S1 Mono 1 — — —

S2 Poly 2 1 1 1581
S3 Poly 3 1 1 3467
S4 Poly 4 1 1 6376
S5 Poly 5 1 1 10 548
S6 Poly 5 1.5 1 3581
S7 Poly 5 2 1 1592
S8 Poly 5 3 1 1200
S9 Poly 5 1 1.2 19 355
S10 Poly 5 2 2 21 707

S21 Poly 2 3 1 10 001
S31 Poly 3 3 1 3902
S41 Poly 4 3 1 2006

aMinimum number of particles needed for satisfying Nmin
p/c = 50 and

Nc = 10.

The choice of 10 size classes (Nc = 10) is motivated by
the observation that for lower number of classes the number
of particles of the same size in each class will increase, and
thus clustered domains of particles of the same size may occur
inside the packing. This is not desirable as the “typical” local
environments should be composed of particles of different
sizes (and not particles of the same size). Another method
that can be used for a smaller number of classes consists
of introducing size variability of the particles in each class.
But such an intraclass distribution can override the general
interclass size distribution when large populations of particles
are considered in each class. For this reason, it seems more
reasonable to increase the number of size classes at the
expense of decreasing the numbers of particles in each class.

The choice of Nmin
p/c = 50 was guided, on one hand, by

the fact that for α = 5 the ratio of the volumes between the
largest and smallest particles is quite high (53) so that larger
values of Nmin

p/c would require a much higher number of smaller
particles and thus a much larger number of all particles. On the
other hand, the local environments (first neighboring shells)
of 50 large particles leads to a statistically fair estimation of
the packing state as a whole. All the simulated combinations
of a, b, and α used in our simulations are given in Table I
and identified with a symbol that will be used to refer to
our samples below. The table includes also a monodisperse
system that we simulated for the sake of comparison with the
polydisperse systems.

B. Sample preparation protocol

Once the particles with their sizes are generated, they
are placed at random positions inside a cell and subjected

TABLE II. DEM parameters.

Description Value

Normal contact stiffness 106 N/m
Normal damping coefficient 1500 kg/ms
Density 2500 kg/m3
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FIG. 3. Snapshots of the packings S1–S5 (a)–(e), corresponding
to α = [1, 2, 3, 4, 5]. Color intensities are proportional to the relative
particle size d/dmin.

to uniaxial compression by applying a constant pressure σzz

on the top wall, the bottom wall being frozen, and using
periodic boundary conditions along the x and y directions. The
particles are given a zero coefficient of friction (μ = 0) with
other particles and with the top and bottom walls. In our DEM
algorithm, we use a linear viscoelastic contact law. Hence, the
energy is dissipated only by normal viscous damping between
particles and with the top and bottom walls. The compaction
is fairly fast at the beginning but considerably slows down as
the RCP state is approached. During compaction, we monitor
the total kinetic energy, the contact network, and the packing
fraction �. When the kinetic energy is a small fraction of
σzzV , which represents the potential energy due to the applied
load, and the packing fraction and contact network are stable,
we stop the simulation.

The simulation parameters are given in Table II. An im-
portant parameter is the maximum contact deflection δmax

(overlap between particles). We set the applied pressure σzz

to a value such that δmax ∼ 10−3dmax. This means that the
particles can be considered as nearly undeformable, and
the calculated values of the packing fraction are not influ-
enced by contact deflections. Figure 3 displays several zooms
on the RCP packings obtained for α = [1, 2, 3, 4, 5] with
a = b= 1.

III. PACKING FRACTION

The packing fraction � is calculated by dividing the total
volume of the particles Vp by the volume of the simulation
cell V . Figure 4 shows � as a function of size ratio α for all
our particle size distributions listed in Table I. In agreement
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FIG. 4. Packing fraction � as a function of the size ratio α for all
samples. The dotted lines are approximate borders of the accessible
values of the packing fraction.

with other measured values of the RCP packing fraction
in the monodisperse case (α = 1), we get � = �c � 0.643
[8,9,25,26]. As in 2D simulations of disk packings [20],
the samples (S2–S5) with a uniform distribution by volume
fractions (a = b = 1), have the highest values � = �v (α),
which increase almost linearly with α. For α = 5, �v is as
large as 0.710. Interestingly, the linear fit passes also through
the point S1 (α = 1, � = �c), corresponding to the monodis-
perse packing.

By contrast, the samples S21, S31, S41, and S8 with a
uniform distribution in particle diameters (a = 3, b = 1) have
low packing fractions, increasing from �c = 0.643 for α = 1
to 0.665 for α = 5. The size distribution in these samples
(the same number of particles in all size classes) is such that
small particles are too deficient in volume to fill efficiently
the pore space between larger particles, and this leads to high
porosity. Between these two limits, we see that for α = 5
the packing fraction increases substantially when a declines
(tending to the packing fraction for a uniform distribution
by particle fractions) and increases when b declines (tending
to the packing fraction of uniform distribution by particle
diameters). We expect even lower values of � as compared
to that of uniform distributions by particle diameters if a is
further increased (beyond a = 3). But obviously, the resulting
packing fractions cannot be below �c. Hence, the lower limit
in Fig. 4 is a horizontal line for which all samples have a
packing fraction practically equal to �c. By increasing b, �

will increase to reach a value �v (α) depending on α at the
higher limit line.

Hence, in the space (α, �), we can define three border
lines:

(1) the high-� line, defined by the function � = �v (α)
and joining all data points with a = b = 1,

(2) the low-� line, defined by � = �c, and
(3) the vertical line α = 5 (in Fig. 4).
These lines are sketched in Fig. 4. The packing fraction

varies for any given value of α between the two limits �c and
�v (α) as a function of a and b. We conjecture that for the β

distribution of particle sizes, the packing fraction will always
belong to the triangular space defined by the above three lines.
The samples S21, S31, and S41 are inside this space. The
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variability of �, and thus the effect of shape parameters on
the packing fraction, increases with α. Note that the linear
relationship �v (α) is observed here only for the investigated
values of α. Obviously, it cannot be extended to larger values
of α as the packing fraction cannot exceed 1.

In real materials, the range of particle sizes can be broad,
but all sizes are not statistically well represented. Moreover,
for space-filling properties such as the packing fraction, the
relevant parameter is not the number of particles but the total
volume of particles of a given size. Many particles of small
size can fill the same volume as do a few particles of large
size. However, the number of particles is important for larger
particles. A few large particles in a sample should not be
considered on the same basis as size classes which are well
represented in number and volume. Hence, to deal with a
sample, it is easier to work with the quantiles of the volume
distribution. As the largest particle size is not well defined
(this is a single particle), we need to consider a size interval
for which we have a large number of particles. In the same
way, for small particles, we need to consider an interval for
which we have a significant volume.

It is common in soil mechanics to consider the small-size
interval as the interval representing 10% of the total volume. A
particle diameter d10 is defined as the quantile of this interval,
i.e., the diameter such that the total volume of all smaller
particles (d < d10) represents 10% of the total volume. In this
sense, d10 can be considered as the (conventional) size of the
smallest class of particles. Statistically, it is more relevant than
the size of very small particles that can be found in the sample
and which are not significant in volume or number. The choice
of 10% as the first limit is arbitrary and may be changed for
unusual size distributions. In a similar construction, the large-
size interval is the cumulative volume of particles, starting
from the largest particle down to particles of a size d60, such
that the total volume of larger particles (d > d60) is 40% of the
total volume. In other words, the total volume of particles of
size d < d60 represents 60% of the total volume. The choice of
40% for the volume fraction of the large-size interval (instead
of 10% for small particles) is a way of ensuring that the
number of particles in this interval is large. Hence, d60 may
be considered as the (conventional) size of the class of largest
particles. Formally, from the definition of h(d ) in Eq. (3), the
two quantiles defined above are given by

d10 = h−1(0.1)

d60 = h−1(0.6). (7)

In soil mechanics, the CVD is characterized by the coeffi-
cient of uniformity Cu, defined as

Cu = d60

d10
. (8)

The “uniformity” refers to particle volume fractions. This
coefficient measures in fact the degree of uniformity of the
distribution in particle volumes. Depending on the shape of
the distribution, d60 can be close to d10. This is the case
when the amount of small particles is not enough to add
up to 10% of the total volume unless extended to particle
sizes close to d60. This is also the case when the number of
particles larger than d10 or their volumes is enough to reach

TABLE III. Coefficient of uniformity Cu of the samples.

Sample S1 S2 S3 S4 S5 S6 S7
Cu 1.00 1.45 1.83 2.15 2.43 2.12 1.88

Sample S8 S9 S10 S21 S31 S41
Cu 1.58 2.61 1.90 1.41 1.53 1.55

60% of the total volume for a value of d60 close to d10. In
these cases, Cu is close to 1. Cu increases, by definition, when
the intermediate populations of particles are such that the
volumes are evenly distributed. Considering that d10 and d60

are effective diameters of the smallest and largest particles in
the packing (instead of dmin and dmax as the discrete extreme
values), Cu can be thought of as an effective size span of the
distribution, and it is expected to play the same role as α for
arbitrary distributions, including those for which the extreme
particle sizes are statistically ill defined. This is precisely the
advantage of using Cu as a descriptor of CVD.

Let us calculate Cu for the two uniform distributions re-
spectively in terms of volume fractions and particle diameters.
The uniform CVD in volume fractions is given by

h(d ) = d − dmin

dmax − dmin
= dr . (9)

Using Eq. (7), we get

d10 = 0.1(dmax − dmin) + dmin
(10)

d60 = 0.6(dmax − dmin) + dmin

so that

Cu = 0.6(α − 1) + 1

0.1(α − 1) + 1
. (11)

This equation implies that Cu does not depend only on the
shape parameters but increases also with the size ratio α.
For a uniform distribution by volume fractions, Cu tends
asymptotically to 6 with increasing value of α.

In the uniform distribution in particle diameters, P(d ) is
independent of d . From Eq. (3), given that V (d ) = πd3/6,
we get

h(d ) = d4 − d4
min

d4
max − d4

min

, (12)

which yields the following expression for the coefficient of
uniformity:

Cu =
{

0.6(α4 − 1) + 1

0.1(α4 − 1) + 1

}1/4

. (13)

The asymptotic value as α → ∞ is 61/4 � 1.565, which is the
highest value of the coefficient of uniformity for a uniform
distribution by particle diameters. The values of Cu for all our
samples are given in Table III.

Note that the uniform distributions by particle diame-
ters and volumes can be extended to a general power-law
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FIG. 5. Packing fraction � as a function of the coefficient of
uniformity Cu for all samples.

CVD,

h(d ) = dq − dq
min

dq
max − dq

min

, (14)

with exponent q and a coefficient of uniformity given by

Cu =
{

0.6(αq − 1) + 1

0.1(αq − 1) + 1

}1/q

. (15)

Hence, the asymptotic value of Cu varies as 61/q and tends to
1 with increasing q.

Figure 5 shows the packing fraction as a function of the
coefficient of uniformity for all our samples. We observe a
strong correlation between Cu and �. This is quite remarkable
given the dispersion of the values of � observed in Fig. 4
as a function of α. This means that, independently of the
values of the three parameters of the distribution up to small
fluctuations, the packing fraction is a roughly linear function
of Cu. This correlation is consistent with the interpretation of
Cu as an effective size span that accounts for both the extent
of particle sizes and the shape of their size distribution. It
implies that particle size distributions with higher value of Cu

can assemble into higher values of the packing fraction. The
difference between the two uniform distributions by particle
volumes and particle diameters can thus be attributed to the
systematically very different values of their respective coeffi-
cients of uniformity. Below, we consider other attributes of the
isostatic packings, such as connectivity and force transmis-
sion, and analyze their dependence on the CVD parameters
and coefficient of uniformity.

IV. PACKING CONNECTIVITY

The contact network can be analyzed using various math-
ematical descriptors. We consider here the connectivity of
the particles defined as the proportions Pdc(dr, c) of parti-
cles of reduced size dr and having exactly c contacts. The
connectivity of particles independently of their sizes is Pc =∑

dr
Pdc(dr, c), which is the proportion of particles with c

contacts. The coordination number is given by Z = ∑
c cPc.

Figure 6 shows Z as a function of Cu for all samples. We
see that Z declines slightly as Cu increases, and all the data
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FIG. 6. Coordination number Z as a function of the coefficient of
uniformity Cu for all samples.

points are, up to small variability, well aligned on a single
nearly linear curve. These values of Z above 6 indicate that
the packing is overconstrained as a result of small elastic de-
flections at the contact points between particles. The decrease
of Z toward 6 as Cu increases is consistent with the fact that
for a fixed confining stress σzz, the average contact force, and
hence the average elastic deflection, declines as polydispersity
increases.

Figure 7 shows Pc for different values of c. Pc is negli-
gibly small for c � 3. Indeed, for c = 3, the force balance
is possible only if the three normal force vectors are on the
same plane, which is quite improbable. In the same way,
force balance for c = 2 implies equal forces on diametrically
opposite contact points, which is a metastable configuration
of practically no chance to occur without friction. Finally, for
c = 1 the contact force is necessarily zero. In the monodis-
perse case (Cu = 1), we observe a peak value for c = 6,
which is consistent with Z � 6, i.e., the values are distributed
around the peak value. For Cu = 1.41 and Cu = 1.45 (both
corresponding to α = 2), the peak occurs at c = 5. For all
larger values of Cu, Pc is peaked on c = 4 with a value that
increases with Cu. For Cu = 2.43, nearly 45% of particles have
four contacts whereas only 12% of particles have six contacts.

0 5 10 15
c

0.0

0.1

0.2

0.3

0.4

0.5

P
c

C
u
 = 1.00

C
u
 = 1.41

C
u
 = 1.45

C
u
 = 1.53

C
u
 = 1.55

C
u
 = 1.58

C
u
 = 1.83

C
u
 = 1.88

C
u
 = 1.90

C
u
 = 2.12

C
u
 = 2.15

C
u
 = 2.43

C
u
 = 2.61

FIG. 7. The fraction Pc of particles with c contacts for different
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The same data are shown in Fig. 8 by plotting Pc as a
function of Cu for different values of c. We see that P4 is
the only class that increases with Cu, whereas P5 is nearly
independent of Cu. For all other values of c, Pc declines as Cu

increases. The large value of P4 indicates that the configura-
tions in which a particle is equilibrated by four neighboring
contact particles are more stable than other configurations.
They can be considered as minimally locally jammed particles
[5]. Since the peak value increases with Cu, it is expected that
all such particles are of small size. This is indeed the case, as
seen in Fig. 9 where we have plotted the distributions Pdc and
Pdc/Pc as a function of dr for different values of c in the case
Cu = 2.43. We see that 75% of particles with c = 4 contacts
(corresponding to �34% of all particles) are in the class of the
smallest particles (dr = 0). Almost 40% of particles with each
value of c belong to a specific size class. In Fig. 9(b), these are
the peaks shifting to the larger values of dr as c increases. The
remaining 50% are distributed in the neighboring size classes.
The particles with c = 4 have a much higher peak value in the
size class dr = 0 and only 25% of them belong to the classes
of larger particle sizes.

The above picture of particle connectivities and the effect
of PSD can be pushed farther by considering the contact
anisotropies ac of the samples. The anisotropy is generally
calculated from the second-order fabric tensor Fαβ defined by

Fαβ = 1

Nc

∑
i

ni
αni

β = 〈nαnβ〉, (16)

where ni
α is the α component of the unit normal vector 	ni of

the contact i and Nc is the number of contacts. By definition,
we have tr(F ) = 1, and thus the anisotropy of the contact
orientations can be characterized by the differences F1 − F2,
F2 − F3, and F1 − F3 between the principal values F1 � F2 �
F3 of the fabric tensor. Here, we take the largest difference:

ac = F1 − F3. (17)

The major principal direction of F represents the privileged
orientation of contacts.

Due to the absence of friction between particles, we expect
a very low anisotropy of the samples, which builds up only if
stable chains of contacts can be formed along the compaction
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FIG. 9. (a) The connectivity Pdc as a function of reduced particle
diameter dr and different values of c for Cu = 2.43, and (b) the same
data normalized by the fraction Pc of particles with c contacts (b).

axis. Figure 10 shows the calculated anisotropies of all our
samples as a function of Cu. We see that the fabric anisotropy
is quite weak in all samples. It increases from 0.005 in the
monodisperse sample to 0.025 in the samples S5 and S9.

The same definition of the fabric tensor can be applied to
each particle by restricting the summation in Eq. (16) to its
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FIG. 10. Overall anisotropy ac of the samples as a function of
their coefficient of uniformity cu.
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FIG. 11. Particle contact anisotropy ac as a function of reduced
particle size dr for all samples with different values of the coefficient
of uniformity.

contacts. The average anisotropy of particles is displayed in
Fig. 11 as a function of reduced particle size dr for different
values of Cu. Here we find far larger values of the anisotropy
than the overall anisotropies. The particle anisotropies can be
large, but they do not sum up to large values as a result of the
random orientations of particle fabric tensors. For those values
of Cu corresponding to uniform size distributions by volume
fractions, ac decreases as dr is increases. This decrease is a
consequence of the increase in the number of contacts of par-
ticles of increasing size. Indeed, the larger number of contacts
has a randomizing effect on the contact orientations, leading to
lower anisotropy [27]. For those values of Cu corresponding to
the PSD with a low number of small particles (such as uniform
distributions by particle size), ac increases before decreasing
again as dr tends to 1. This behavior reflects the role of small
particles, as discussed previously. For example, the small P4

particles have a low anisotropy as their contact neighbors have
larger diameters and hence well-distributed orientations as a
result of their steric exclusions. The peak value of anisotropy
occurs in the range 0.2 < dr < 0.3.

V. STRESS TRANSMISSION

A feature worth investigating in polydisperse RCP pack-
ings is the force transmission. As the porosity declines with
increasing size polydispersity, one might expect that the forces
get more homogeneously distributed [28]. Instead, we observe
that the force distributions are increasingly more inhomoge-
neous when Cu increases, as shown in Fig. 12. The probability
distribution function (PDF) of normal forces f has a marked
exponential shape in the range of forces above the mean force
〈 f 〉. Its width increases with Cu, and at the same time, the
proportion of weak forces (below the mean) increases. The
force peak centered on f � 0.5〈 f 〉, disappears for Cu > 1.53.
This enhanced force inhomogeneity can be attributed to the
higher topological inhomogeneity of the contact network, as
suggested by the increasingly broader shape of Pc (Fig. 8) with
increasing Cu.

Figure 13 displays the contact force networks for Cu =
2.43 (S5) and Cu = 1.58 (S8). It is seen that, although the
coordination number and size polydispersity are nearly the
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FIG. 12. Probability density function of normal contact forces f
normalized by the mean force 〈 f 〉 for different gradation Cu.

same in both samples, the force structures are quite different.
In S5 (uniform distribution by volume fractions) there are
many more small forces, and the network has a hierarchical
structure, whereas in S8 (uniform distribution by particle
diameters) the network is similar to that in monodisperse
packings due to the presence of larger voids between large
particles, only partially filled by smaller particles.

It is interesting to see how the forces are distributed among
different size classes. The interclass forces fic(α, β ) are the

FIG. 13. Contact force networks for Cu = 2.43 (a) and Cu = 1.58
(b). Line thickness and color are proportional to contact force.
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FIG. 14. Multiclass gray-level map of the mean interclass forces
〈 fic〉 normalized by mean packing force 〈 f 〉 for the samples S5 (Cu =
2.43) (a) and S8 (Cu = 1.58) (b).

forces between two particles belonging to the classes of
reduced sizes dr = α and dr = β, respectively. We consider
its average value 〈 fic〉(α, β ) for all such particles. Figure 14
shows a gray-level map of 〈 fic〉 normalized by the mean force
〈 f 〉 for two samples. For a particle of a given size (belonging
to a size class), 〈 fic〉 increases with the size of its partner. Its
largest value occurs when two particles are in the largest class.
This clearly shows that the strong force chains are captured by
the larger particles. This trend is much more pronounced for
packings of higher Cu. In Fig. 15 we have plotted 〈 fic〉(dr, dr )
for dr = 0, 0.5, and 1. The mean force 〈 fic〉 in the smallest
class is practically independent of Cu with a value �0.5〈 f 〉. In
contrast, in the two other classes of larger and largest particles
sizes, 〈 fic〉 increases almost linearly with Cu up to fluctuations
that reflect the CVD parameters.

The contact forces can also be used to calculate the average
pressures acting on the particles σp (the sum of normal forces
on each particle divided by its surface area). The mean value
of particle pressures in each size class 〈σp〉 are shown in

1.0 1.5 2.0 2.5 3.0
C

u

0

1

2

3

4

5

<
 f

ic
 >

 / 
<

 f
 >

(d
r
 = 0.0, d

r
 = 0.0)

(d
r
 = 0.5, d

r
 = 0.5)

(d
r
 = 1.0, d

r
 = 1.0)

fit

FIG. 15. Mean interclass force 〈 fic〉(dr, dr ) normalized by the
mean force for dr = 0, 0.5 and 1, as a function of the coefficient
of uniformity Cu.

Fig. 16 as a function of reduced size dr for several values of
Cu. The pressures are normalized by the mean pressure 〈σ 〉
in each sample. We see that, except for S5 and S9, 〈σp〉/〈σ 〉
is an increasing function of dr . Hence, not only the average
force in each class but also the average pressure increase
with particle size. The case of the samples S5 and S9 is,
however, significant since these samples differ from other
samples in their larger proportion of smaller size particles.
In these samples, up to statistical fluctuations, the particle
pressure is independent of particle size. In other words, the
small particles take more active part in stress transmission
than in other samples. These samples are also those that have
the highest packing fraction. Figure 17 shows a snapshot of
particles with a color-level representation of their pressures in
the samples S5 and S8. In S5, the large particles have mostly
high pressures, whereas the small particles carry both low
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reduced diameter dr for different values of Cu. The pressures are
normalized by the mean pressure σ in each sample.
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FIG. 17. Snapshots of samples with particles colored according
to applied total stress σp on each particle normalized by the mean
packing stress σ0 both figures for α = 5. (a) Packing S5 with Cu =
2.43 and (b) packing S8 with Cu = 1.58.

and high stresses depending on their position in the contact
network. In S8, the large particles carry most of the stress.

VI. CONCLUSION

In this paper, we used DEM simulations to build poly-
disperse RCP packings of spherical particles by setting the
interparticle friction coefficient to zero. The cumulate vol-
ume distributions of the particles were generated according
to the incomplete β function with three parameters: A size
span and two shape parameters. The number of particles and
size classes were carefully determined to impose a minimum
number of particles in the largest-size class and a mini-
mum total volume of the particles in the smallest-size class.
The equilibrium state reached after a long relaxation under
load represents the highest packing fraction for each size
distribution.

A central finding of this work is that, despite different
size spans and shapes, the coefficient of uniformity plays
the role of a first-order parameter that scales correctly the

packing fraction, particle connectivity, and stress transmis-
sion. To small variations, the packing fraction, the proportion
of particles with four contacts and mean forces between or
inside different size classes are increasing functions of the
coefficient of uniformity. The coefficient of uniformity may
be viewed as an effective size ratio that takes into account the
particle volumes. Hence, it can bring together very different
data such as those from the uniform size distributions by
volume fractions and diameters of the particles.

The stress transmission properties reveal the important
effects of the PSD shape more specifically in connection with
the class of the smallest particles. These particles may be
more or less in number depending on the PSD shape. For
the shapes in excess of small particles (as compared to the
uniform distribution by volume fractions), the mean force per
size class is nearly independent of particle size. The active
role of small particles in stress transmission depends thus
on their number (and distribution in space, which is quite
homogeneous in our simulations). For other distributions, in
lack of small particles, the mean interclass force increases
with particle size. We also underlined the increasing inhomo-
geneity of force transmission, reflected in the increasing width
of force PDFs, as the coefficient of uniformity increases.
This feature is counterintuitive in the sense that the space is
more homogeneously filled by the particles as the coefficient
of uniformity increases. In fact, force transmission is rather
strongly correlated with particle connectivity, which becomes
more complex and inhomogeneous as the coefficient of uni-
formity increases. Its signature appears also in local particle
environments such as particle pressures and anisotropies.

The packing fraction, microstructure and force transmis-
sion properties investigated in this paper concern RCP pack-
ings prepared by setting the interparticle friction coefficient
to zero. For this reason, they cannot be generalized to sphere
packings prepared with a nonzero friction coefficient. Nev-
ertheless, on some grounds such as the prevailing effect of
particle size distribution compared to dilatancy or anisotropy
induced by deformations, we expect similar trends as a func-
tion of the coefficient of uniformity in steady shear and under
isotropic compaction with nonzero friction [21]. The RCP
configurations that we analyzed in this paper thus can be used
as initial states for long shear tests with different values of
the friction coefficient. We are also interested in the effects
of other size distributions than those considered in this paper
with the idea of further consolidating our results.
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