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Abstract 
Faults in heating, ventilation and air conditioning systems can lead to increased energy consumption, 
occupant comfort issues, and reduced equipment lifetime. Commercial fault detection and diagnosis 
(FDD) tools has been increasingly deployed in U.S. commercial buildings. While they are helping to 
achieve energy efficiency and operational reliability, there remain gaps in their fault diagnostic 
capabilities. The diagnostic results often contain multiple distinct candidate root causes (CRCs) or offer 
no insight into CRCs. This study developed a novel active rule-based multi-mode data analysis method to 
enhance diagnostic resolution by applying proven rule sets and additional new rules to data from 
multiple known operational modes. The proposed method was demonstrated using enhanced air 
handling unit performance assessment rule sets and validated with the simulated data of two air 
handling units. New metrics, namely, reduced number of CRCs and improvement ratio, were developed 
to quantify the improvement of fault diagnostic resolution. The validation results showed that the 
proposed method effectively reduced the number of CRCs in contrast to analyzing data solely for a single 
mode of operation. It achieved a median improvement ratio of 80% in 19 test cases. 

Keywords: Fault diagnosis, air handling unit, multi-mode data analysis, energy management and 
information system, smart building 
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1.​Introduction 

Heating, ventilation, and air conditioning (HVAC) systems constitute a significant portion of energy 
consumption in commercial buildings. Faults in HVAC systems deteriorate system energy efficiency, 
indoor environment quality, and may lessen the lifespan of HVAC equipment. A study from the 
International Energy Agency [1] suggested that re-commissioning existing HVAC systems, particularly in 
air handling unit (AHU) operations, could potentially save 20–30% of their energy consumption. Hence 
fault detection and diagnostics (FDD) in building HVAC systems has been a prominent area of research 
interest for the last three decades [2–4]. Generally, FDD comprises two primary processes: fault 
detection and fault diagnosis [5]. Fault detection involves identifying fault behaviors within the building, 
i.e., determining that the operation of the system or equipment is incorrect in some respect. Fault 
diagnosis focuses on pinpointing the candidate root causes (CRCs) (i.e. physical fault factors in the 
systems) of these detected faults. In some cases, fault detection and diagnosis are integrated into a 
single step. 

In the past 10–15 years, FDD technology has become one of the fastest growing smart building 
technologies being implemented in U.S. commercial buildings. There are more than 30 commercial FDD 
software products available in the U.S. market that are used by facility managers or engineers to improve 
HVAC system operational performance or used by third-party service providers as a value-add to their 
customers [6]. While commercial FDD tools are helping to achieve cost-effective energy savings, there 
remain gaps in their capabilities, particularly in accurate fault diagnosis. According to Frank et al., existing 
commercial FDD tools provide results using condition-based, behavior-based and outcome-based 
definitions based upon how the faults are presented [7]. Condition-based faults define the presence of 
an improper or undesired physical condition in a system or piece of equipment (e.g., stuck valves, return 
air temperature sensor frozen). Behavior-based faults define improper or undesired behavior during the 
operation of a system or piece of equipment (e.g., simultaneous heating and cooling and supply air 
temperature higher than setpoint). Outcome-based faults define the performance (e.g., energy 
efficiency, energy consumption) deviating from a reference outcome. Crowe et al.’s 2023 fault prevalence 
study examined the faults reported by FDD tools in multiple years for over 60,000 pieces of HVAC 
equipment and indicated that behavior-based faults were prominent in the reported faults of 
commercial FDD tools [8]. Compared with condition-based fault, behavior-based fault presentation has 
limited diagnostic power, as it reports the observed symptom without pinpointing the specific physical 
component. The need to improve fault diagnosis capabilities in commercial FDD tools is also reflected in 
Lin et al.'s 2020 study which evaluated the fault detection and fault diagnosis accuracy of two 
commercial and one academic FDD tools [9]. For each FDD tool tested, when a behavior-based fault was 
identified, the provided diagnostic results in some cases included multiple distinct CRCs and in other 
cases provided no insight into possible reasons for the fault. For example, as shown in Table 1, for the 
detected behavior-based fault “Supply air temperature higher than setpoint”, the diagnosis results 
include six CRCs: simultaneous heating and cooling, undersized coils, stuck or broken dampers, stuck or 
broken valves, broken or uncalibrated sensor, error in control sequences. Given the large volume of 
faults that routinely arise[8], building facility staff will benefit from FDD tools that minimize the need for 
further investigation by offering more pinpointed, actionable root cause diagnoses.  
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Table 1 Example fault detection and diagnosis outputs from FDD offerings [9] 

Detection Output Diagnosis Output 

Supply air temperature higher 
than setpoint 

Simultaneous heating and cooling 
Undersized coils 
Stuck or broken dampers or valves 
Broken or uncalibrated sensor  
Error in control sequences 

Possible simultaneous or 
excess heating and cooling 

Valve is not seating properly and is leaking 
Stuck or broken valve 
Temperature sensor error or sensor installation error is causing improper 
control of the valves or other coils 

Supply static pressure not 
tracking setpoint 

Fan speed control error 
Damper malfunction 
Fan malfunction or failure 
Uncalibrated or malfunctioning pressure sensor 

Leaking heating valve Leaking heating valve 

To inform the development of solutions to improve the fault diagnosis capability in commercial FDD 
tools, we reviewed the literature pertaining to fault diagnosis in HVAC systems. During the last few 
decades, several fault diagnosis methods have been studied for building HVAC systems [4,10,3,11]. Zhao 
et al.’s review [12] classified fault diagnosis methods into data-driven-based or knowledge-driven-based 
methods. Data-driven-based fault diagnosis methods mainly apply machine learning and statistical 
techniques to analyze system sensing data. For example, Ebrahimifakhar et al. [13] applied nine 
well-known classification methods, such as support vector machine, XGBoost, random forests, etc., to 
isolate rooftop unit faults. These classification methods classify the input data samples to determine 
whether they are from the normal class or fault class and to further identify which fault class they belong 
to. A simulated data library of model faults at steady-state operation was used for training and validating 
the classifications methods, as experimental data is rare and difficult to obtain. The overall accuracy rate 
ranges from 76.2% to 96.2%. Montazeri and Kargar [14] used simulated data from HVACSIM+ software to 
train and test principal components analysis (PCA), kernel PCA, and radial basis function neural network 
methods for AHU fault diagnostics. The results show that the overall accuracy rate using PCA and kernel 
PCA analysis is 60% and 62%, while faults are detected and diagnosed with 98.7% accuracy when using 
the neural network approach. Yan et al. [15] utilized generative adversarial network to generate 
synthetic faulty training data with only a limited set of real-world faulty samples, addressing the 
challenge of imbalanced training dataset. Other data-driven-based methods investigated include 
composite neural network [16], k-nearest neighbors [17], deep neural networks [18] and so on.  Fueled 
by advances in artificial intelligence, the number of recent studies about data driven-based diagnosis 
methods has significantly increased. Recently, large language models (LLMs), a specialized branch of 
generative artificial intelligence, have shown impressive human-like capabilities in understanding and 
generating natural language and performing complex problem-solving tasks. The potential of LLMs in 
fault diagnosis lies in their ability in understanding complex patterns in large datasets from various 
sources and enabling intuitive, natural language-based communications with users [19]. Zhang et al. [20] 
developed a fine-tuning method of LLMs supervised by data with fault and fault-free labels to improve 
the fault diagnosis accuracy of LLMs. In the fine-tuning process, the LLM responses were corrected with 
misdiagnosed fault classes. The study showed that the fine-tuned generative pre-trained transformers 
(GPT)-3.5 model increased the fault diagnosis accuracy from 30-40% to nearly 100% in the test cases of 
an AHU, a variable air volume box, and a chiller plant. Although some data driven-based methods have 
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achieved high accuracy rates, there are several shortcomings to prevent them from being deployed in 
commercial FDD tools. Firstly, the data driven-based diagnosis methods rely on labeled data of all fault 
types which is hard to find and collect for real systems. Secondly, they cannot extrapolate beyond the 
boundaries of training data. And it remains uncertain whether machine learning models trained from an 
equipment/system can perform well when applied to different ones. Research on utilizing LLMs for 
building fault diagnosis is still in its early stages. Similar to other data driven-based methods, the main 
challenge of LLMs lies in the requirements for sufficient labeled fault data. The extremely large number 
of parameters of LLMs also reduces its interpretability. 

Knowledge-driven-based fault diagnosis methods employ physical principles or engineering knowledge 
and include diagnostic rule-based and inference-based methods. Diagnostic rule-based methods are the 
norm in commercial FDD tools [21]. An example is fault-tree based method that is based on if-then 
statements, i.e., if certain conditions are met, then a single or multiple CRCs are provided (Table 1). 
Bayesian network (BN) is a popular inference-based method that relies on conditional probability theory 
to predict fault beliefs based on a set of observations. Zhao et al. [22] presented a fault diagnosis 
method that uses BNs to isolate faults in AHUs. It developed a BN model which describes the 
probabilistic conditional relations among fault nodes (root causes), evidence nodes (symptoms of faults), 
and additional information nodes (site investigations, manual tests, maintenance records). The evidence 
nodes used empirical models of coils, fans, and filters, and these models required training data collected 
under fault-free operating conditions. The prior probability parameters of the fault nodes in the BN 
model were estimated by the authors, as there were very few surveys about the frequency of a root 
cause fault that may happen in AHUs. A BN-based fault diagnosis method was also developed for VAV 
terminal units [23], chillers [24,25], heat pumps [26], and HVAC systems [27,28]. The main shortcoming 
of the BN-based method is the need for prior probabilities for all root cause faults. These are normally 
unknown and values are selected based on experience/engineering knowledge. The literature review 
above shows that there is still a lack of simple, transparent, and scalable fault diagnosis solutions to be 
used by commercial FDD tools. 

In contrast to previous works, this paper presents a new active rule-based fault diagnosis method to 
improve root cause isolation and enhance diagnostic resolution by obtaining and combining evidence of 
both faulty and fault-free behaviors from multiple operational modes. By utilizing data from multiple 
operating modes, symptoms of a fault that are masked in one mode become evident in another, and 
evidence of correct operation in one mode can be used to exclude a fault from consideration in another 
mode. In each case, the effect is to reduce the number of possible condition-based faults that could be 
producing the observed behavior, thereby improving the diagnosis. The systematic way in which the 
evidence is combined makes the method extensible to different rule sets and different physical systems, 
and the simplicity and transparency of the method will help facilitate its adoption by the industry and 
incorporation into commercial products. The paper demonstrates the effectiveness of the method 
through two case studies of AHUs.  

In summary, this paper provides three novel contributions: (1) A new generalized procedure for 
combining evidence of both faulty and fault-free behavior from multiple operational modes to facilitate 
root cause diagnosis. The procedure identifies shared and excluded CRCs by applying proven rule sets 
and additional new rules to data from multiple known operational modes, and presents the remaining 
CRCs as the final CRCs. This new method is expected to significantly reduce the number of CRCs in the 
final diagnosis results, improving the fault diagnostic resolution.  (2) Demonstration of the procedure to 
AHU fault diagnosis using APAR [29,30] - a proven fault detection rule set for assessing AHU operation, 
and simulation data for two types of AHUs; and refinement of the APAR symptom/fault table and 
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extension of the APAR rule set; and (3) A proposal for new metrics to evaluate the improvement of fault 
diagnostic resolution. 

The remainder of this paper is structured as follows: Section 2 proposes our novel active multi-mode 
data analysis approach to enhance diagnostic resolution in AHUs. Section 3 presents two case studies 
using the simulated FDD datasets of an AHU with a heating coil and an AHU without a heating coil, 
respectively, to demonstrate and evaluate the proposed method, and offers a comparison with the 
existing single-mode data analysis method. Section 4 presents the discussion. Finally, Section 5 provides 
the conclusions of the study. 

2. Method 
HVAC systems operate in various modes such as heating, mechanical cooling, and cooling with outdoor 
air. These modes change based on external weather conditions and internal building thermal loads. In 
rule-based fault diagnostic methods used in commercial FDD tools, the HVAC system operational data 
are collected and analyzed in real time. As a result, only the data from a single operating mode is 
analyzed, which leads to limited diagnostic insights. The new diagnostic method developed in this paper 
(Section 2.3) combines the use of multi-operation-mode data from active system testing with proven 
rule sets and additional auxiliary rules. By complementing the base rule sets with additional engineering 
logic, and applying them to data from multiple known operational modes, diagnostic resolution can be 
increased. The new method is described in this section by applying APAR, a well proven AHU FDD rule 
set, to multi-mode operational data of - single duct variable-air-volume (VAV) or constant-air-volume 
AHUs; however, the method itself is general and can be extended to other HVAC system types or 
configurations and other base rule sets. Section 2.1 describes the AHU system configuration and 
operating sequences. Section 2.2 provides an overview of APAR rule sets. And Section 2.3 illustrates the 
proposed active multi-mode data analysis method to improve fault diagnosis. 

2.1 System description 

A schematic diagram showing the components of a typical single duct AHU as well as common 
measurement and control points is shown in Figure 1. 
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Figure 1 Schematic diagram of a single duct VAV AHU  

The typical operating sequence logic for AHUs consists of four primary modes of operation (Figure 2) 
during occupied hours for maintaining the supply air temperature and ventilation rates at preset levels.  

●​ Mode 1 (heating): the heating coil valve is controlled to maintain the supply air temperature at 
its setpoint. This mode is normally used in cold outdoor conditions and the outdoor air damper 
is positioned to enable the minimum amount of outdoor air that will satisfy ventilation 
requirements. As the outdoor air temperature warms, the heating coil valve will modulate 
toward the closed position. When the valve is completely closed, the AHU transitions to Mode 2.  

●​ Mode 2 (cooling with outdoor air): the mixing box dampers (outdoor air damper and 
recirculation damper) modulate and adjust the fraction of outdoor air and return air in the mixed 
air stream to maintain the supply air temperature at setpoint. As the outdoor air temperature 
warms, the dampers modulate to allow a higher fraction of outdoor air in the mixed air stream. 
When the outdoor air damper is fully open, the AHU transitions to Mode 3. If the outdoor air 
temperature cools, the dampers will modulate to provide a smaller outdoor air fraction. 

●​ Mode 3 (mechanical cooling with maximum outdoor air): the mixing box dampers are 
controlled for maximum (or 100%) outdoor air and the cooling coil valve is controlled to 
maintain the supply air temperature at its setpoint. If the outdoor conditions exceed the 
economizer high limit shutoff, the AHU transitions to Mode 4. 

●​ Mode 4 (mechanical cooling): the mixing box dampers are controlled for minimum outdoor air 
and the cooling coil valve is controlled to maintain the supply air temperature at setpoint. 
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Figure 2 Single-duct AHU operating modes 

2.2 Air handling unit performance assessment rules (APAR) 

In this section, we introduce APAR, a commonly used rule-based FDD method for single-duct AHUs. It is 
used to support the description and understanding of the fault diagnostics enhancement approach 
proposed in this paper (described in Section 2.3). We chose APAR as the proven FDD rules for AHU to 
demonstrate our generalized procedure because it is widely known in the HVAC FDD community, cited 
and used in the literature in over 300 publications, and has been implemented in many FDD tools [31, 
32, 33]. 

APAR is a set of expert rules derived from mass and energy balances to detect faults in AHUs [26,27]. 
Control signals for the heating coil valve, cooling coil valve, and mixing box dampers are used to 
determine the mode of operation of the AHU in accordance with Eq. (1) - (4).  is the normalized 𝑢

ℎ𝑐
heating coil valve control signal [0 - 1] where 0 = closed and 1 = open;   is the normalized cooling coil 𝑢

𝑐𝑐
valve control signal [0 - 1] where 0 = closed and 1 = open;  is the normalized mixing box damper 𝑢

𝑑𝑚
control signal [0 - 1] where 0 = outdoor air damper at its closed position and 1 = outdoor air damper is 
100% open. The tolerances ,  and  are user/developer defined and Mode 5 is an unknown mode ε

ℎ𝑐
ε

𝑐𝑐
ε

𝑑𝑚
of operation for which the control signals are inconsistent with operation in Modes 1-4. APAR consists of 
28 rules which are provided in Table 2. Each of the four AHU operating modes has a subset of rules that 
apply only in that mode. Other rules apply across all four operating modes. The values of the thresholds 
associated with the rules used in this paper are summarized in Table 3. The setting of thresholds would 
impact the accuracy of fault detection. Setting the thresholds too low may increase the sensitivity, 
leading to more false alarms. Setting the thresholds too high can reduce sensitivity, increasing the risk of 
mis-detection. Among the parameters in Table 3, (Qoa/Qsa)min is the design minimum outdoor air fraction. 
Its value is 0.3 and 0.1 respectively in the two case studies. In the case studies, the other user-defined 
parameter values were set to the default values provided in House’s 2001 APAR study with the exception 
of ,  and . These parameters were set to 0.05 instead of the default value of 0.02 to minimize ε

𝑐𝑐
ε

𝑑𝑚
ε

ℎ𝑐
false alarms. When used for other AHU systems, the value of (Qoa/Qsa)min should be derived from the 
control sequence of the test AHU. The settings of other parameters are expected to be appropriate for 
most circumstances, but it may benefit from tuning the values based on field measurement and 
operational experience to minimize the false alarms, as excessive false alarms will erode user confidence 
and responsiveness.  

7 



 

 

APAR also presents one or more possible candidate root causes (CRCs) for why each of the 28 rules might 
be triggered, such as a stuck cooling coil valve or a mixed air temperature sensor error. Table 4 tabulates 
21 CRCs for the ARAR rules adapted from House’s 2001 study [29]. Periodically, a subset of the expert 
rules applicable to the data from a single operating mode (the current mode of operation) are evaluated 
to determine if a fault exists. Then the CRCs of the triggered rules are presented as the diagnostics 
results. This fault diagnosis method is called single-mode data analysis method and used as the reference 
case for comparison in the case studies. 

Mode 1:       𝑢
ℎ𝑐

> ε
ℎ𝑐

 𝑎𝑛𝑑 𝑢
𝑐𝑐

≤ε
𝑐𝑐

 𝑎𝑛𝑑 𝑢
𝑑𝑚

≤ε
𝑑𝑚

(1) 

Mode 2:       𝑢
ℎ𝑐

≤ε
ℎ𝑐

 𝑎𝑛𝑑 𝑢
𝑐𝑐

≤ε
𝑐𝑐

 𝑎𝑛𝑑 ε
𝑑𝑚

< 𝑢
𝑑𝑚

< 1 − ε
𝑑𝑚

(2) 

Mode 3:   𝑢
ℎ𝑐

≤ε
ℎ𝑐

 𝑎𝑛𝑑 𝑢
𝑐𝑐

> ε
𝑐𝑐

 𝑎𝑛𝑑 𝑢
𝑑𝑚

≥1 − ε
𝑑𝑚

(3) 

Mode 4:      𝑢
ℎ𝑐

≤ε
ℎ𝑐

 𝑎𝑛𝑑 𝑢
𝑐𝑐

> ε
𝑐𝑐

 𝑎𝑛𝑑 𝑢
𝑑𝑚

≤ ε
𝑑𝑚

(4) 

Mode 5: , , and  are inconsistent with Modes 1-4     𝑢
ℎ𝑐

𝑢
𝑐𝑐

𝑢
𝑑𝑚

 

             ​   

Table 2 APAR rules from Schein’s 2006 study [30] 

Mode Rule 
ID 

Rule Expression (faults are signaled 
by true expressions) 

Description 

Mode 1 
(Heating 
with Min 

OA) 

1  𝑇
𝑠𝑎

< 𝑇
𝑚𝑎

+ ∆𝑇
𝑠𝑓

− ε
𝑡

 is too low relative to . 𝑇
𝑠𝑎

𝑇
𝑚𝑎

2 For  𝑇
𝑟𝑎

− 𝑇
𝑜𝑎| |≥∆𝑇

𝑟𝑎,𝑜𝑎,𝑚𝑖𝑛
,  

 𝑄
𝑜𝑎

/𝑄
𝑠𝑎

− (𝑄
𝑜𝑎

/𝑄
𝑠𝑎

)
𝑚𝑖𝑛

|
|
|

|
|
|

> ε
𝑓

OA fraction is too low or too high; should equal 
minimum OA fraction. 

3  𝑢
ℎ𝑐

− 1| | ≤ ε
ℎ𝑐

 𝑎𝑛𝑑  

 𝑇
𝑠𝑎,𝑠𝑒𝑡

−  𝑇
𝑠𝑎

≥ ε
𝑡

The system is out of control (i.e., the control 
component is saturated fully open and  is 𝑇

𝑠𝑎
unable to meet the setpoint). 

4  𝑢
ℎ𝑐

− 1| | ≤ ε
ℎ𝑐

A full heating warning indicating that the system 
is out of control. If rule 3 is true, rule 4 is 
suppressed. 

Mode 2 
(Cooling 

with 
Outdoor 

Air) 

5  𝑇
𝑜𝑎

> 𝑇
𝑠𝑎,𝑠𝑒𝑡

− ∆𝑇
𝑠𝑓

+ ε
𝑡

  is too high for free cooling without additional 𝑇
𝑜𝑎

mechanical cooling. 
6  𝑇

𝑠𝑎
> 𝑇

𝑟𝑎
− ∆𝑇

𝑠𝑓
+ ε

𝑡
 is too high relative to . 𝑇

𝑠𝑎
𝑇

𝑟𝑎

7  𝑇
𝑠𝑎

− ∆𝑇
𝑠𝑓

− 𝑇
𝑚𝑎| | > ε

𝑡
 and  should be approximately equal. 𝑇

𝑠𝑎
𝑇

𝑚𝑎

Mode 3 
(Mechanical 
Cooling with 

100% 

8  𝑇
𝑜𝑎

< 𝑇
𝑠𝑎,𝑠𝑒𝑡

− ∆𝑇
𝑠𝑓

− ε
𝑡

 is low enough that mechanical cooling is not 𝑇
𝑜𝑎

needed. 
9  𝑇

𝑜𝑎
> 𝑇

𝑒𝑐𝑜𝑛,𝑠𝑒𝑡
+ ε

𝑡
 is too high for mode 3. 𝑇

𝑜𝑎
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Outdoor 
Air) 

10  𝑇
𝑜𝑎

− 𝑇
𝑚𝑎| | > ε

𝑡
 and  should be approximately equal. 𝑇

𝑜𝑎
𝑇

𝑚𝑎

11  𝑇
𝑠𝑎

> 𝑇
𝑚𝑎

+ ∆𝑇
𝑠𝑓

+ ε
𝑡

 is too high relative to . 𝑇
𝑠𝑎

𝑇
𝑚𝑎

12  𝑇
𝑠𝑎

> 𝑇
𝑟𝑎

− ∆𝑇
𝑟𝑓

+ ε
𝑡

 is too high relative to . 𝑇
𝑠𝑎

𝑇
𝑟𝑎

13  𝑢
𝑐𝑐

− 1| | ≤ ε
𝑐𝑐

 𝑎𝑛𝑑  

 𝑇
𝑠𝑎

−  𝑇
𝑠𝑎,𝑠𝑒𝑡

≥ ε
𝑡

The system is out of control (i.e., the control 
component is saturated fully open and  is 𝑇

𝑠𝑎
unable to meet the setpoint). 

14  𝑢
𝑐𝑐

− 1| | ≤ ε
𝑐𝑐

A full cooling warning indicating that the system 
is out of control. If rule 13 is true, rule 14 is 
suppressed. 

Mode 4 
(Mechanical 
Cooling with 

Minimum 
Outdoor 

Air) 

15  𝑇
𝑜𝑎

< 𝑇
𝑒𝑐𝑜𝑛,𝑠𝑒𝑡

− ε
𝑡

 is too low for mechanical cooling with 𝑇
𝑜𝑎

minimum outdoor air. 
16  𝑇

𝑠𝑎
> 𝑇

𝑚𝑎
+ ∆𝑇

𝑠𝑓
+ ε

𝑡
 is too high relative to . 𝑇

𝑠𝑎
𝑇

𝑚𝑎

17  𝑇
𝑠𝑎

> 𝑇
𝑟𝑎

− ∆𝑇
𝑟𝑓

+ ε
𝑡

 is too high relative to . 𝑇
𝑠𝑎

𝑇
𝑟𝑎

18 For  𝑇
𝑟𝑎

− 𝑇
𝑜𝑎| |≥∆𝑇

𝑟𝑎,𝑜𝑎,𝑚𝑖𝑛
,  

 𝑄
𝑜𝑎

/𝑄
𝑠𝑎

− (𝑄
𝑜𝑎

/𝑄
𝑠𝑎

)
𝑚𝑖𝑛

|
|
|

|
|
|

> ε
𝑓

OA fraction is too low or too high; should equal 
minimum OA fraction 

19  𝑢
𝑐𝑐

− 1| | ≤ ε
𝑐𝑐

 𝑎𝑛𝑑  

 𝑇
𝑠𝑎

−  𝑇
𝑠𝑎,𝑠𝑒𝑡

≥ ε
𝑡

The system is out of control (i.e., the control 
component is saturated fully open and  is 𝑇

𝑠𝑎
unable to meet the setpoint). 

20  𝑢
𝑐𝑐

− 1| | ≤ ε
𝑐𝑐

A full cooling warning indicating that the system 
is out of control. If rule 19 is true, rule 20 is 
suppressed. 

Mode 5 
(Unknown 

Mode) 

21  and  and 𝑢
𝑐𝑐

> ε
𝑐𝑐

𝑢
ℎ𝑐

> ε
ℎ𝑐

 ε
𝑑𝑚

< 𝑢
𝑑𝑚

< 1 − ε
𝑑𝑚

Cooling coil valve, heating coil valve and mixing 
box dampers are modulating simultaneously. 

22  and  𝑢
ℎ𝑐

> ε
ℎ𝑐

𝑢
𝑐𝑐

> ε
𝑐𝑐

The cooling coil valve and heating coil valve are 
modulating simultaneously. 

23  and  𝑢
ℎ𝑐

> ε
ℎ𝑐

𝑢
𝑑𝑚

> ε
𝑑𝑚

The heating coil valve and mixing box dampers 
are modulating simultaneously. 

24 and ε
𝑑𝑚

< 𝑢
𝑑𝑚

< 1 − ε
𝑑𝑚

 𝑢
𝑐𝑐

> ε
𝑐𝑐

The cooling coil valve and mixing box dampers 
are modulating simultaneously. 

All Modes 
(Modes 1, 2, 
3, 4, and 5) 

25*  𝑇
𝑠𝑎

− 𝑇
𝑠𝑎,𝑠𝑒𝑡| | > ε

𝑡  is not being satisfied 𝑇
𝑠𝑎,𝑠𝑒𝑡

26  𝑇
𝑚𝑎

< 𝑇
𝑟𝑎

, 𝑇
𝑜𝑎( ) − ε

𝑡  is too low; should be between  and . 𝑇
𝑚𝑎

𝑇
𝑜𝑎

𝑇
𝑟𝑎

27  𝑇
𝑚𝑎

> 𝑇
𝑟𝑎

, 𝑇
𝑜𝑎( ) + ε

𝑡  is too high; should be between  and .. 𝑇
𝑚𝑎

𝑇
𝑜𝑎

𝑇
𝑟𝑎

28 Number of mode transitions per 
hour > MTmax 

Too many changes in Operating Mode 

*Rule 25 was suppressed whenever rule 3, 13, or 19 is true. 

Table 3 User-defined parameter values (e.g., thresholds) used in APAR rules adapted from House’s 2001 study [29] 
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Parameter Value 

MTmax 6 transitions 
 (𝑄

𝑜𝑎
/𝑄

𝑠𝑎
)

𝑚𝑖𝑛
0.3 [-] （multiple-zone VAV AHU with heating coil case;  
0.1 [-] （multiple-zone VAV AHU without heating coil case 

 ∆𝑇
𝑟𝑎,𝑜𝑎,𝑚𝑖𝑛

5.5°C 

 ∆𝑇
𝑟𝑓

1.1°C 

 ∆𝑇
𝑠𝑓

1.1° C 

 ε
𝑐𝑐

0.05 [-] 

 ε
𝑑𝑚

0.05 [-] 

 ε
𝑓

0.3 [-] 

 ε
ℎ𝑐

0.05 [-] 

 ε
𝑡

1.6°C 

Table 4 Updated table of CRCs for APAR rules from House’s 2001 study [29] 

APAR 
Rule 
ID 

Candidate root cause 

1 
- 
S
u
p
pl
y 
ai
r 
t
e
m
p
e
r
a
t
u
r
e 
s
e
n
s
o
r 
e
rr
o
r 

2 
- 
R
e
t
u
r
n 
ai
r 
t
e
m
p
e
r
a
t
u
r
e 
s
e
n
s
o
r 
e
rr
o
r 

3 
- 
M
ix
e
d 
ai
r 
t
e
m
p
e
r
a
t
u
r
e 
s
e
n
s
o
r 
e
rr
o
r 

4 
- 
O
u
t
d
o
o
r 
ai
r 
t
e
m
p
e
r
a
t
u
r
e 
s
e
n
s
o
r 
e
rr
o
r 

5 
- 
L
e
a
ki
n
g 
c
o
ol
in
g 
c
oi
l 
v
al
v
e 

6 
- 
St
u
c
k 
c
o
ol
in
g 
c
oi
l 
v
al
v
e 

7 
- 
U
n
d
e
rs
iz
e
d 
c
o
ol
in
g 
c
oi
l 

8 
- 
F
o
ul
e
d 
c
o
ol
in
g 
c
oi
l 

9 
- 
C
hi
ll
e
d 
w
a
t
e
r 
s
u
p
pl
y 
t
e
m
p
e
r
a
t
u
r
e 
t
o
o 
hi
g
h 

1
0 
- 
C
hi
ll
e
d 
w
a
t
e
r 
ci
rc
ul
a
ti
n
g 
p
u
m
p 
fa
ul
t 

1
1 
- 
C
hi
ll
e
d 
w
a
t
e
r 
n
o
t 
a
v
ai
la
bl
e 

1
2 
- 
L
e
a
ki
n
g 
h
e
a
ti
n
g 
c
oi
l 
v
al
v
e 

1
3 
- 
St
u
c
k 
h
e
a
ti
n
g 
c
oi
l 
v
al
v
e 

1
4 
- 
U
n
d
e
rs
iz
e
d 
h
e
a
ti
n
g 
c
oi
l 

1
5 
- 
F
o
ul
e
d 
h
e
a
ti
n
g 
c
oi
l 

1
6 
- 
H
e
a
ti
n
g 
w
a
t
e
r 
s
u
p
pl
y 
t
e
m
p
e
r
a
t
u
r
e 
t
o
o 
lo
w 

1
7 
- 
H
e
a
ti
n
g 
w
a
t
e
r 
ci
rc
ul
a
ti
n
g 
p
u
m
p 
fa
ul
t 

1
8 
- 
L
e
a
ki
n
g 
m
ix
in
g 
b
o
x 
d
a
m
p
e
r(
s) 

1
9 
- 
St
u
c
k 
m
ix
in
g 
b
o
x 
d
a
m
p
e
r(
s) 

2
0 
- 
C
o
n
tr
ol
le
r 
t
u
ni
n
g 
e
rr
o
r 

2
1 
- 
C
o
n
tr
ol
le
r 
lo
gi
c 
e
rr
o
r 

1 x   x   x x             x x   x x         

2   x x x               x    

3 x    x x       x x x x x  x x   

10 



 

 

4 x    x x       x x x x x  x x   

5 x   x x x                 

6 x x                     

7 x  x  x x      x x          

8 x   x        x x     x x    

9                      x 

10    x x              x x    

11 x  x   x x  x x  x x          

12 x x    x x x x x x x x       x   

13 x     x x x x x x x x       x   

14 x     x x x x x x x x       x   

15                      x 

16 x  x   x x  x x  x x          

17 x x    x x x x x x x x       x   

18   x x x               x    

19 x     x x x x x x x x      x x   

20 x     x x x x x x x x      x x   

21                      x 

22                      x 

23                      x 

24                      x 

25                     x   

26   x x x                   

27   x x x                   

28                                       x   
Note：The following are updates to the original table in House’s 2001 study [29]：Removed Explanations - For Rule #2 and Rule #18, leaking 
mixing box damper(s) is no longer considered a possible explanation for these rules being triggered. Since the dampers are partially open when 
these rules are evaluated, it is unlikely that leakage would explain any discrepancy between the actual and expected outdoor air fractions. 
Added Explanations - For Rule #3, Rule #4, Rule #19, and Rule #20, stuck mixing box damper(s) is added as a possible explanation. It could result 
in excessive amounts of very cold or very warm outdoor air entering the AHU, creating loads on the heating and cooling coils that exceed their 
capacities. As a result, Rule #3 and/or Rule #4 could be triggered in Mode 1, and Rule #19 and/or Rule #20 could be triggered in Mode 4.  For 
Rule #5, stuck or leaking cooling coil valve are added as possible explanations because they could cause Rule #5 to be triggered in Mode 2. 

2.3 Active multi-mode data analysis method to improve fault diagnosis 

Figure 3 shows the process flow diagram of the proposed active multi-mode data analysis method for 
enhancing the fault diagnostic resolution of the single-duct AHU. Each step of the process is illustrated in 
Sections 2.3.1 to 2.3.5.  The process is built upon the APAR rule set described in Section 2.2 and extends 
APAR through the introduction of new rules and the analysis of data from multiple modes of operation. 
This method is extendable to other HVAC system and equipment.  
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Figure 3 Process flow diagram of multi-mode fault diagnostics method  

2.3.1 Collect data from all operating modes 

The first step is to conduct proactive tests to cause the AHU sequencing logic to force the unit into each 
of its normal operating modes. Specifically, change the supply air temperature setpoint ( ) and the 𝑇

𝑠𝑎,𝑠𝑒𝑡
economizer dry-bulb high limit shutoff setpoint ( ) to trigger different operating modes. The 𝑇

𝑒𝑐𝑜𝑛,𝑠𝑒𝑡
values of and  are determined from the values of  and  . To force operation in Mode 𝑇

𝑠𝑎,𝑠𝑒𝑡
𝑇

𝑒𝑐𝑜𝑛,𝑠𝑒𝑡
𝑇

𝑜𝑎
𝑇

𝑟𝑎
1, is set to a value sufficiently greater than the return air temperature. By changing to a value 𝑇

𝑠𝑎,𝑠𝑒𝑡
𝑇

𝑠𝑎,𝑠𝑒𝑡
between the outdoor and return air temperatures and less than , the AHU will then transition to 𝑇

𝑒𝑐𝑜𝑛,𝑠𝑒𝑡
Mode 2. Next, is changed to a value less than the outdoor air temperature and sufficiently above 𝑇

𝑠𝑎,𝑠𝑒𝑡
the chilled water supply temperature, which will force the AHU into Mode 3. Finally, by adjusting 𝑇

𝑒𝑐𝑜𝑛,𝑠𝑒𝑡
to a value significantly less than the outdoor air temperature, the AHU will transition to Mode 4. The 
proactive tests can be performed when 10°C ≤  ≤  – 5.5°C and heating water and chilled water are 𝑇

𝑜𝑎
𝑇

𝑟𝑎
both available. 

●​ Mode1:  𝑇
𝑠𝑎,𝑠𝑒𝑡

=  𝑇
𝑟𝑎

+ 2. 8℃,   𝑇
𝑒𝑐𝑜𝑛,𝑠𝑒𝑡

=  23. 9℃
●​ Mode2:  𝑇

𝑠𝑎,𝑠𝑒𝑡
= (𝑇

𝑜𝑎
+ 𝑇

𝑟𝑎
)/2,   𝑇

𝑒𝑐𝑜𝑛,𝑠𝑒𝑡
=  23. 9℃

●​ Mode3:  𝑇
𝑠𝑎,𝑠𝑒𝑡

= 𝑇
𝑜𝑎

− 2. 8℃, 10℃( ) ,   𝑇
𝑒𝑐𝑜𝑛,𝑠𝑒𝑡

=  23. 9℃
●​ Mode4:  𝑇

𝑠𝑎,𝑠𝑒𝑡
= 𝑇

𝑜𝑎
− 2. 8℃, 10℃( ) ,   𝑇

𝑒𝑐𝑜𝑛,𝑠𝑒𝑡
=  𝑇

𝑟𝑎
− 5. 5℃

Collect AHU operating data , , , , , , ,  and store them at a fixed sampling 𝑇
𝑠𝑎

𝑇
𝑟𝑎

𝑇
𝑜𝑎

𝑇
𝑚𝑎

𝑇
𝑠𝑎,𝑠𝑒𝑡

𝑢
𝑐𝑐

𝑢
𝑑𝑚

𝑢
ℎ𝑐

rate in each operating mode.  

2.3.2 Identify shared CRCs from triggered rules 

The collected data from all operating modes are divided according to operating mode using Eq. (1) - (4), 
then the APAR rules (Table 2) are applied to identify if any rules are triggered. If none of the APAR rules 
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are triggered, it is concluded that no fault exists. If one or more of the APAR rules are triggered, there 
should be a fault. Find the candidate root causes of each triggered rule in Table 4. If there is only one 
fault present in the AHU, the triggered rules must share at least one condition-based fault among their 
CRCs. Stated another way, each triggered rule has a set of condition-based faults as CRCs and the 
intersection of these sets should contain the actual condition-based fault. Therefore, in this step of the 
process, the knowledge of which APAR rules are triggered is used to find the shared candidate root 
causes  with Eq. (5). 𝐶𝑅𝐶

_𝑠ℎ𝑎𝑟𝑒

   (5) 𝐶𝑅𝐶
𝑠ℎ𝑎𝑟𝑒

= 𝐶𝑅𝐶
1

∩ 𝐶𝑅𝐶
2
∩…∩𝐶𝑅𝐶

𝑖

Where i is the ith rule in Table 4 that is triggered. 

2.3.3 Identify excluded CRCs from non-triggered rules 

In this step, APAR rules that were evaluated and not triggered are used to identify CRCs that can be 
excluded for the detected fault. As we assume that at most there is one root cause present, specific 
APAR rules that are evaluated and not triggered can be used to remove one or more condition-based 
faults as possible explanations. Therefore, the knowledge of which APAR rules are not triggered is used 
to identify excluded faults. Table 5 lists rules that can be used in this way. Also listed for each rule is the 
condition-based fault that can be removed if the rule is evaluated and not triggered.  

For exclusion rule I, if the AHU maintains  at  during the heating mode (Mode 1 - APAR Rule #3 𝑇
𝑠𝑎

𝑇
𝑠𝑎,𝑠𝑒𝑡

AND Rule #4 are not triggered), it can be concluded that the heating coil valve cannot be stuck and that 
the heating water circulating pump is operational (i.e., is delivering a sufficient flow of hot water to the 
heating coil). Thus, stuck heating coil valve and heating water circulating pump fault can be removed as 
CRCs if APAR Rule #3 AND Rule #4 are evaluated and not triggered. In the same way, exclusion rules IV 
and V apply to Mode 3 and Mode 4, respectively. For exclusion rule IV, if the AHU maintains  at 𝑇

𝑠𝑎
𝑇

𝑠𝑎,𝑠𝑒𝑡
 

during Mode 3 (i.e., APAR Rule #13 and Rule #14 are evaluated and not triggered), it can be concluded 
that the cooling coil valve is not stuck, the chilled water circulating pump is operational, and chilled 
water is available. The same faults can be excluded in Mode 4 by exclusion rule V.  

For exclusion rule II, when operating in Mode 2, if Rule #7 is evaluated and not triggered, we can 
conclude that the sensors used in this rule (  and ) are not faulty and that the heating coil valve 𝑇

𝑠𝑎
𝑇

𝑚𝑎
and cooling coil valve are not leaking. If any of these faults were present, it would mean that there was 
one or more additional faults compensating for it and this analysis is built from the assumption that 
there is at most one fault present at any time. Similarly, for exclusion rule III in Mode 3, if Rule #10 is 
evaluated and not triggered, we can conclude that the sensors used in this rule ( )  and ) are not 𝑇

𝑜𝑎
(𝑇

𝑚𝑎
faulty. 

Table 5 CRCs that can be removed based on APAR rules that are evaluated in the test and not triggered. 

Exclusion rule ID APAR Rule Evaluated and not Triggered CRC(s) Removed * 

Ⅰ #3:  𝑢
ℎ𝑐

− 1| | ≤ ε
ℎ𝑐

 𝑎𝑛𝑑
>0 𝑇

𝑠𝑎,𝑠𝑒𝑡
−  𝑇

𝑠𝑎
≥ ε

𝑡
 𝑎𝑛𝑑 𝑢

ℎ𝑐

Stuck heating coil valve [13] 
Heating water circulating pump fault [17] 
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Ⅱ #7:  𝑇
𝑠𝑎

− ∆𝑇
𝑠𝑓

− 𝑇
𝑚𝑎| | > ε

𝑡
 sensor error [1] 𝑇

𝑠𝑎
sensor error [3] 𝑇

𝑚𝑎
Leaking cooling coil valve [5] 
Leaking heating coil valve [12] 

Ⅲ #10:   𝑇
𝑜𝑎

− 𝑇
𝑚𝑎| | > ε

𝑡
 sensor error [3] 𝑇

𝑚𝑎
  sensor error [4] 𝑇

𝑜𝑎

Ⅳ #13:  𝑢
𝑐𝑐

− 1| | ≤ ε
𝑐𝑐 

𝑎𝑛𝑑
 𝑇

𝑠𝑎
−  𝑇

𝑠𝑎,𝑠𝑒𝑡
≥ ε

𝑡
 𝑎𝑛𝑑 𝑢

𝑐𝑐
> 0

 

Stuck cooling coil valve [6] 
Chilled water circulating pump fault [10] 

Chilled water not available [11] 

Ⅴ #19:  𝑢
𝑐𝑐

− 1| | ≤ ε
𝑐𝑐 

𝑎𝑛𝑑
 𝑇

𝑠𝑎
−  𝑇

𝑠𝑎,𝑠𝑒𝑡
≥ ε

𝑡
 𝑎𝑛𝑑 𝑢

𝑐𝑐
> 0

 

Stuck cooling coil valve [6] 
Chilled water circulating pump fault [10] 

Chilled water not available [11] 

* The number in italic brackets in the last column corresponds to the explanation number for the CRC from Table 4. For the sake of convenience, 
these five lines of exclusion rules are referred to by the Roman numerals Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ in order.  

2.3.4 Identify excluded CRCs from auxiliary rules 

The idea of removing possible causes or explanations can be extended by adding rules to the existing 28 
APAR rules. In this step, we present five auxiliary rules as shown in Table 6. Individual auxiliary rules that 
are triggered are combined to identify all the CRCs that can be excluded. 

Table 6 CRCs that can be removed that can be removed based on auxiliary rules that are evaluated in the test and 
triggered. 

ID Rule Expression  CRC(s) Removed * 

A1 APAR Rule #7 == True and  
 in Mode 2 𝑇

𝑚𝑎
< 𝑇

𝑠𝑎
− ∆𝑇

𝑠𝑓
− ε

𝑡

Leaking cooling coil valve [5] 
Stuck cooling coil valve [6] 

A2 APAR Rule #7 == True AND  
 𝑇

𝑚𝑎
> 𝑇

𝑠𝑎
− ∆𝑇

𝑠𝑓
+ ε

𝑡

in Mode 2 

Leaking heating coil valve [12] 
Stuck heating coil valve [13] 

A3  for i = 1 to 3 in 𝑇
𝑠𝑎

− 𝑇
𝑧𝑑𝑎,𝑖| | ≤ ε

𝑧𝑑𝑎𝑡
any Mode  

 sensor error [1]  𝑇
𝑠𝑎

A4  𝑇
𝑟𝑎

− 𝑚𝑒𝑑𝑖𝑎𝑛(𝑇
𝑧𝑎,𝑖

)| | ≤ ε
𝑧𝑎𝑡

for i = 1 to Nz in any Mode 

 sensor error [2]  𝑇
𝑟𝑎

A5  𝑇
𝑜𝑎

− 𝑇
𝑜𝑎,𝑤𝑠| | ≤ ε

𝑜𝑎𝑡

in any Mode 

 sensor error [4]  𝑇
𝑜𝑎

* The number in italic brackets in the last column corresponds to the explanation number for the condition-based fault from Table 4.  is a ε
𝑧𝑑𝑎𝑡

user-selected threshold for the zone discharge air temperature.  is the air temperature of zone i,   is a user-selected threshold for the 𝑇
𝑧𝑎,𝑖

ε
𝑧𝑎𝑡

zone air temperature, and  is the number of zones considered when determining the median.   is a user-selected threshold for the 𝑁
𝑧

ε
𝑜𝑎𝑡

outdoor air temperature.  is the ambient air temperature measured by a local weather station. 𝑇
𝑜𝑎,𝑤𝑠
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The first two auxiliary rules apply in Mode 2 and are derived from APAR Rule #7 (see Table 2). In Mode 2, 
the heating coil valve and cooling coil valve are commanded closed. Under these conditions,  and  𝑇

𝑠𝑎
𝑇

𝑚𝑎
should differ only by the temperature rise across the fan and any tolerances associated with normal 
sensor error. Auxiliary Rule #1 indicates that  is sufficiently low compared to  that there could not 𝑇

𝑚𝑎
𝑇

𝑠𝑎
be a leaking cooling coil valve fault or a stuck cooling coil valve fault present. Similarly, Auxiliary Rule #2 
indicates  is sufficiently high compared to  that there could not be a leaking heating coil valve 𝑇

𝑚𝑎
𝑇

𝑠𝑎
fault or a stuck heating valve fault present. 

Auxiliary Rule #3 compares  to the discharge air temperature ( ) from several VAV boxes to 𝑇
𝑠𝑎

𝑇
𝑧𝑑𝑎

determine if there is a supply air temperature sensor error. The rule applies in any of the four AHU 
operating modes, provided the VAV boxes used in the comparison are operating in the cooling or 
deadband mode (i.e., the valve for the reheat coil must be commanded closed). Auxiliary Rule #3 
indicates that if there is agreement between  and  for any of the three VAV boxes used in the 𝑇

𝑠𝑎
𝑇

𝑧𝑑𝑎,𝑖
comparison, it can be concluded that there is no supply air temperature sensor error. This conclusion 
holds if Auxiliary Rule #3 is triggered (i.e., satisfied) under any of the four AHU operating modes. Ideally 
the VAV boxes selected for the comparison should be in close proximity to the AHU. This will help 
minimize any temperature change due to heat transfer through the supply air ductwork. 

Auxiliary Rule #4 compares  to the median zone air temperature from a sample of zones served by 𝑇
𝑟𝑎

the AHU. It is recommended that the median be calculated from the temperatures of all zones served by 
the AHU. If there is agreement between  and the median value of the sampled zone temperatures, it 𝑇

𝑟𝑎
can be concluded that there is no return air temperature sensor error. This conclusion holds if Auxiliary 
Rule #4 is triggered under any of the four AHU operating modes. It should be noted that the threshold ​

 may need to account for a temperature rise across the return fan as well as normal sensor ε
𝑧𝑎𝑡

tolerances. 

Auxiliary Rule #5 compares  to the ambient air temperature measured by a local weather station (𝑇
𝑜𝑎

). Alternatively, for a campus setting, the outdoor air temperature measured at another building 𝑇
𝑜𝑎,𝑤𝑠

could be used. Auxiliary Rule #5 indicates that if there is agreement between  and , it can be 𝑇
𝑜𝑎

𝑇
𝑜𝑎,𝑤𝑠

concluded that there is no outdoor air temperature sensor error. 

2.3.5. Remove excluded CRCs from shared CRCs 

In this step, the procedure removes any CRCs identified in Section 2.3.3 (Identify excluded CRCs from 
non-triggered APAR rules) and Section 2.3.4 (Identify excluded CRCs from auxiliary rules) from the shared 
CRCs identified in Section 2.3.2 (Identify shared CRCs from triggered APAR rules). The results after 
screening are the smallest set of condition-based faults that are identified as the final CRCs. 

3. Evaluation case studies 
To the best of the authors’ knowledge, there are no publicly available experimental datasets that have 
labeled information on the presence and absence of faults and contain the faulty data with the required 
ARAR data points across all AHU operational modes. ASHRAE 1312 experimental datasets [34, 35] 
include a few damper or valve stuck fault cases covering all operation modes, but do not provide damper 
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or valve control signal measurements which are essential in APAR for determining operation mode and 
triggering rules. Therefore, we used simulated data sets representing the operation of two types of AHUs 
under faulted conditions to demonstrate the effectiveness of the proposed multi-mode fault diagnostics 
method. Specifically, we evaluated the new diagnostics method for a multiple-zone VAV AHU with a 
heating coil and a multiple-zone VAV AHU without a heating coil. For each fault case, the datasets 
contain the faulty data under all possible operation modes, which means they have the same 
characteristics with the data obtained from proactive tests. The fault diagnostics results with the 
multi-mode data analysis method are compared with those of the single-mode data analysis method. In 
this section, we elaborate on the two simulated FDD datasets, the evaluation metrics, and the fault 
diagnostics results. 

3.1 Evaluation cases 

3.1.1 Simulated FDD datasets of multiple-zone VAV AHU with heating coil 

The simulation data used for this part of the evaluation were generated using an HVACSIM+ [36] model 
of a single duct VAV AHU created from component models in a standard simulation testbed [37-39]. The 
AHU model includes a chilled water cooling coil and valve, a hot water heating coil and valve, a mixing 
box with outdoor, recirculation, and exhaust air dampers, and a supply and return fan, as shown in Figure 
1. The overall system model includes the AHU and six zones, each equipped with a VAV terminal unit. 
The model does not account for pressure in the system, instead relying on idealized relationships to 
determine the flow rate at any point in the system. The AHU operates according to the control sequence 
presented in Figure 2. 

The model was used to simulate the 13 faults listed in Table 7 through modifications of component offset 
parameters for sensor offset faults, leakage parameters for valve and damper leakage faults, and 
actuator final control positions for stuck valves and dampers. 

Table 7 List of faults of AHU with heating coil chosen to be studied 

 

Fault type Fault intensity 

 sensor offset 𝑇
𝑠𝑎

2 °C, −2 °C 

  sensor offset 𝑇
𝑚𝑎

2 °C, −2 °C 

  sensor offset 𝑇
𝑜𝑎

2 °C, −2 °C 

Stuck recirculation air damper 0%, 50%, 100% 

Cooling coil valve (CCV) stuck Valve stuck 20% open 

Heating coil valve (HCV) stuck Valve stuck 20% open 

CCV leaking Causes the temperature of air flowing across the coil to decrease 
approximately 2-4°C when the valve is closed 

HCV leaking Causes the temperature of air flowing across the coil to increase 
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approximately 2-3°C when the valve is closed 

The simulations of each fault were performed using Chicago weather data (any climate could have been 
used so long as it results in all operational modes for the time periods simulated). Further details of the 
simulation model are provided in [40]. The data of each of the four operating modes of the AHU were 
used to test the analysis method described in this paper.  

3.1.2 Simulated FDD datasets of multiple-zone VAV AHU without heating coil 

The studied system is a single-duct VAV AHU providing cooling to the middle floor of a three-story DOE 
large office reference building. The conditioned floor space consists of a single interior zone and four 
perimeter zones. The AHU distributes conditioned air to each zone via one of five VAV boxes. The main 
components are the same as shown in Figure 1 except there is no hot water heating coil and valve. This 
AHU only provides cooling and doesn't provide heating. Thus, it only operates under Modes 2, 3, and 4 
as illustrated in Section 2.1. Further details of the datasets are provided in [41]. Table 8 lists the fault 
types, fault intensity and how each fault was imposed in the simulation.  
 
Table 8 List of faults of AHU without heating coil chosen to be studied 

 

Fault type Fault intensity Method of fault imposition 

 sensor offset 𝑇
𝑜𝑎

4 °C, −4 °C Add a bias value to the sensor output 

Stuck OA damper  Minimum position 10%, 75%  Override the OA damper position to indicate that the OA 
damper is stuck 

CCV stuck 10% and 75% Override of the coil valve position to indicate that the 
valve is stuck 

 

3.2 Evaluation metrics 

Fault diagnosis focuses on identifying the CRC of a detected fault. In many studies, the correct diagnosis 
rate is used to evaluate diagnosis accuracy [9, 20], which is defined as the proportion of cases where the 
CRC reported by the method matches the true root cause. However, this metric is not suitable for our 
evaluation as our evaluation focuses on the improvement of diagnosis quality.  

In our evaluation, the fault diagnostics results of the new multi-mode method are compared against 
those of the reference method. When employing the reference method (single-mode fault diagnosis 
method) as depicted in Table 4, multiple CRCs (including the true root cause) are identified for each 
satisfied APAR rule. The operators must manually check every possibility to know the true root cause, 
which is time-consuming and inefficient. Our proposed new method aims to narrow down the range of 
potential root causes, improving the quality of the diagnosis. In the context of multiple CRCs, the correct 
diagnosis is defined as one where at least one of the CRCs matches the true root cause, regardless of 
how many CRCs are returned. This metric does not fully capture the quality of diagnosis and is 
insufficient for our evaluation. To more effectively quantify the improvement in fault diagnostic 
resolution and gauge how well the proposed new method narrows down potential root causes, we 
introduce two metrics, namely the reduced number of CRCs (RN) and the improvement ratio (IR). RN 
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captures the absolute benefits of the multi-mode method, whereas IR reflects a relative or normalized 
benefit, showing how much the method improves diagnosis quality in comparison to the reference case. 

The RN under each evaluation case is calculated as given in Eq. (6). 

 𝑅𝑁 = 𝑁𝐶𝑅𝐶𝑠
𝑠𝑖𝑛𝑔𝑙𝑒−𝑚𝑜𝑑𝑒

 −  𝑁𝐶𝑅𝐶𝑠
𝑚𝑢𝑙𝑡𝑖−𝑚𝑜𝑑𝑒 

 (6) 

Where  is the number of CRCs inferred from the reference method and 𝑁𝐶𝑅𝐶𝑠
𝑠𝑖𝑛𝑔𝑙𝑒−𝑚𝑜𝑑𝑒

 is the number of CRCs inferred from the multi-mode method. 𝑁𝐶𝑅𝐶𝑠
𝑚𝑢𝑙𝑡𝑖−𝑚𝑜𝑑𝑒 

 
The IR under each evaluation case is calculated as given in Eq. (7). 

 when >1 𝐼𝑅 =  
（𝑁𝐶𝑅𝐶𝑠

𝑠𝑖𝑛𝑔𝑙𝑒−𝑚𝑜𝑑𝑒
−1) − (𝑁𝐶𝑅𝐶𝑠

𝑚𝑢𝑙𝑡𝑖−𝑚𝑜𝑑𝑒 
−1) 

（𝑁𝐶𝑅𝐶𝑠
𝑠𝑖𝑛𝑔𝑙𝑒−𝑚𝑜𝑑𝑒

−1) 𝑁𝐶𝑅𝐶𝑠
𝑠𝑖𝑛𝑔𝑙𝑒−𝑚𝑜𝑑𝑒

 0 when = 1 𝐼𝑅 = 𝑁𝐶𝑅𝐶𝑠
𝑠𝑖𝑛𝑔𝑙𝑒−𝑚𝑜𝑑𝑒

(7) 

If the multi-mode method performs better, RN and IR should be positive values. Notedly, a single root 
cause is the ideal result of a fault diagnostics process. Thus, if the single-mode method identifies more 
than one CRCs, achieving a single CRC conclusion with the multi-mode method results in a 100% 
improvement, i.e. IR = 100%. If the single-mode method identifies only one CRC, indicating no potential 
for improvement, we would report an IR of zero. 

3.3 Evaluation Results  

3.3.1 Results of multiple-zone VAV AHU with heating coil cases 
 
Both the single-mode method and multi-mode method were applied to the collected data from four 
operating modes. Table 9 summarizes the fault diagnostics results of the single-mode method under 
each operating mode, including the rules that were triggered and the CRCs (listed by number based on 
Table 4) that could have caused those rules to be triggered. Note that if more than one rule is triggered 
in an operating mode, the list of CRCs in the table is limited to those that are shared by all triggered rules 
in that mode. “--” means that no rules were satisfied in that mode. The last column summarizes the 
number of CRCs inferred from the single-mode method. For example, in the case “  sensor offset 𝑇

𝑚𝑎
(-2°C)”, no rule is activated in Mode 1; rule 7 is satisfied in Mode 2 as the difference between  and 𝑇

𝑠𝑎

 is greater than the threshold 1.7°C; rule 10 is satisfied in Mode 3 as   is less than Toa by 2°C which 𝑇
𝑚𝑎

𝑇
𝑚𝑎

is larger than the threshold 1.7°C; rule 26 is satisfied in Mode 3 and Mode 4 as   is less than the 𝑇
𝑚𝑎

minimum of  and    in both modes. Recall from Table 4, if use the reference method and only 𝑇
𝑜𝑎

𝑇
𝑟𝑎

analyzing Mode 4 data, there would be three CRCs presented in the diagnostics results, specifically,  𝑇
𝑟𝑎

sensor error,   sensor error, and    sensor error (CRC 2, 3,4 in Table 4). Similarly, if only analyzing 𝑇
𝑚𝑎

𝑇
𝑜𝑎

Mode 2 or 3 data, there would be six or two CRCs. Table 9 shows that when analyzing only the data of 
one operation mode for the different faults, the diagnostic results include many CRCs. In more than half 
of the cases, the operator needs to investigate at least six CRCs to determine the ground truth. In the 
worst cases, the number of CRCs is as high as 11 when analyzing the Mode 4 data in the case “  sensor 𝑇

𝑠𝑎
offset (+2°C)” and analyzing the Mode 4 data in the case “CCV Stuck (20% open)”. 
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Table 10 presents the intermediate and final fault diagnostic results of the proposed multi-mode 
method. The intermediate results include the analysis of triggered APAR rules, the non-triggered APAR 
rules, and the auxiliary rules. Compared with the results of the single-mode reference method, the 
proposed multi-mode method results in significantly fewer CRCs.  It identifies one CRC in four fault cases, 
two CRCs in six fault cases, and three to five CRCs in three fault cases.  For example, in the case “  𝑇

𝑠𝑎
sensor offset (+2°C)”, the shared CRCs identified from triggered rule 7 in Mode 2 and rule 20 in Mode 4 
include   sensor error, stuck cooling coil valve, leaking heating coil valve, and stuck heating coil valve 𝑇

𝑠𝑎
(CRC 1,6,12,13 in Table 4). Then the analysis of non-triggered APAR rules and the auxiliary rules indicate 
exclusion rules I, III, IV, V and A1 are satisfied. This means that among the four CRCs identified previously, 
the stuck cooling coil valve fault and stuck heating coil valve fault (CRC 6 and 13 in Table 4) are not 
possible and could be removed. As a result,  sensor error and leaking heating coil valve are the two 𝑇

𝑠𝑎
CRCs left in the final diagnostic results. In contrast, the analysis of the same data for a single mode of 
operation presents six or 11 CRCs. The multi-mode method provides a more precise diagnostic result. 
 
Figures 4 and 5 demonstrate how the proposed multi-mode method effectively decreases the number of 
CRCs in contrast to analyzing data solely for a single mode of operation. Figure 4 lists the reduced 
number (RN). The bar chart reveals that the multi-mode analysis reduced the number of CRCs by at least 
three in nine of the 13 fault cases and by at least four in seven of the 13 cases. This represents a 
potentially significant reduction in the diagnostic effort an operator would need to expend to ultimately 
find the root cause fault for these cases. Figure 5 lists the improvement ratio (IR). This bar chart shows 
that an improvement ratio of 80% or greater is achieved in 10 of the 13 fault cases using the multi-mode 
analysis. Note an improvement ratio of 100% indicates that the root cause fault has been successfully 
identified as the only CRC. The three faults with the lowest IR values also have the most remaining CRCs 
following the multi-mode analysis; however, in the case of the “Stuck recirculation air damper (50% 
open)”, the multi-mode analysis did result in a reduction of CRCs by six (i.e., RN = 6). 
 
The sparsity of the results in Figures 4 and 5 is also noteworthy. For a given fault, the improvement 
achieved with the multi-mode analysis is charted in only one or perhaps two modes. This should not be 
interpreted as meaning there was no improvement with the multi-mode analysis compared to 
single-mode analysis for the modes lacking results. Instead, this is indicative that the multi-mode analysis 
identified one or more CRCs for that fault, whereas the single-mode analysis frequently did not trigger 
any rules within a particular mode due to masking of the fault symptoms.  In another way, in the places 
where the improvements are not charted, the single mode analysis led you to the conclusion that the 
AHU is fault free, whereas the multi-mode analysis can reveal the presence of the fault.    
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Table 9 Fault diagnostics results based on single-mode analysis method (reference method) of the cases “multiple-zone VAV AHU with heating coil”* 

 

 
Fault 

Triggered APAR Rules & [CRCs] 

NCRCssingle-mode 
Mode 1 Heating Mode 2 Cooling 

with OA 
Mode 3 Mech. 

Cooling with Max 
OA 

Mode 4 Mech. Cooling  

 sensor offset (-2°C) 𝑇
𝑠𝑎

-- 7 & [1,3,5,6,12,13] -- -- 6 

 sensor offset (+2°C) 𝑇
𝑠𝑎

-- 7 & [1,3,5,6,12,13] -- 20 & [1,6,7,8,9,10,11,12,13, 
19,20] 

6 or 11  

 sensor offset (-2°C) 𝑇
𝑚𝑎

-- 7 & [1,3,5,6,12,13] 10,26 & [3,4] 26 & [2,3,4] 6 or 2 or 3 

 sensor offset (+2°C) 𝑇
𝑚𝑎

-- 7 & [1,3,5,6,12,13] 10 & [3,4,18,19] -- 4 or 6 

  sensor offset (-2°C) 𝑇
𝑜𝑎

-- -- 10 & [3,4,18,19] -- 4 

  sensor offset (+2°C) 𝑇
𝑜𝑎

-- -- 10,26 & [3,4] -- 2 

Stuck recirculation air damper(100% open) -- -- 10 & [3,4,18,19] -- 4 

Stuck recirculation air damper(0% open) 2 & [2,3,4,19] -- -- 18,19,20,25 & [19] 1 or 4 

Stuck recirculation air damper(50% open) -- -- -- 20 & [1,6,7,8,9,10,11,12,13, 
19, 20] 

11 

CCV Stuck (20% open) 1 & [1,3,5,6,13, 
14,16,17] 

7 & [1,3,5,6,12,13] 13,14,25 & [1,6,7,8, 
9, 10, 11,12,13,20] 

19,20,25 & [1,6,7,8,9,10,11, 
12, 13, 19,20] 

8 or 6 or 10 or 
11 

CCV leaking (3% leakage) -- 7 & [1,3,5,6,12,13] -- -- 6 

HCV stuck (10% open) 4 & [1,5,6,13, 
14,15,16,17, 20] 

7 & [1,3,5,6,12,13] -- -- 9 or 6 
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HCV leaking (3% leakage) -- 7 & [1,3,5,6,12,13] -- -- 6 

*The ground truth CRC is bold and italicized 

Table 10 Fault diagnostics results based on multi-mode analysis method of the cases “multiple-zone VAV AHU with heating coil”* 

 

 
Fault 

Intermediate diagnostic results Final diagnostic results 

Triggered APAR Rules 
& [Shared CRCs] 

Non-triggered APAR rules & [excluded 
CRCs] 

Auxiliary rules & 
[excluded CRCs] 

[Final CRCs] NCRCsmulti-mode 

  sensor offset (-2°C) 𝑇
𝑠𝑎

7 & [1,3,5,6,12,13] I,III,IV,V &[3,4,6,10,11,13,17] A2 & [12,13] [1, 5] 2 

  sensor offset (+2°C) 𝑇
𝑠𝑎

7,20 & [1,6,12,13] I,III,IV,V &[3,4,6,10,11,13,17] A1 & [5,6] [1, 12] 2 

 sensor offset (-2°C) 𝑇
𝑚𝑎

7,10,26 & [3] I,IV,V & [6,10,11,13,17] A1 & [5,6] [3] 1 

 sensor offset (+2°C) 𝑇
𝑚𝑎

7,10 & [3] I,IV,V & [6,10,11,13,17] A2 & [12,13] [3] 1 

  sensor offset (-2°C) 𝑇
𝑜𝑎

10 & [3,4,18,19] I,II,IV,V & [1, 3, 5, 6, 10, 11,12,13, 17] - - [4,18,19] 3 

  sensor offset (+2°C) 𝑇
𝑜𝑎

10, 26 & [3,4] I,II,IV,V & [1, 3, 5, 6, 10, 11,12,13,17] - - [4] 1 

Stuck recirculation air 
damper(100% open) 

10& [3,4,18,19] I,II,IV,V & [1, 3, 5, 6, 10, 11,12,13,17] - - [4, 18, 19] 
 

3 

Stuck recirculation air 
damper(0% open) 

2,18,19 & [19] I,II,III,IV & [1, 3, 5, 4, 6, 10, 11,12,13, 17 ] - - [19] 
 

1 

Stuck recirculation air 
damper(50% open) 

20 &[ 1, 6, 7, 8, 9, 10, 
11, 12, 13, 19, 20] 

I,II,III,IV & [1, 3, 5, 4, 6, 10, 11,12,13, 17 ] - - [7, 8, 9, 19, 20] 5 

CCV Stuck (20% open) 1, 7, 13, 19 & [1,6,13] I,III & [3,4,13,17] A2 & [12,13] [1, 6] 2 

CCV leaking (3% leakage) 7 &[1,3,5,6,12,13] I,III,IV,V &[3,4,6,10,11,13,17] A2 & [12,13] [1, 5] 2 
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HCV stuck (10% open) 4, 7 & [1, 5, 6, 13] III,IV,V &[3,4,6,10,11] A1 & [5,6] [1, 13] 2 

HCV leaking (3% leakage) 7 & [1, 3, 5, 6, 12, 13] I,III,IV,V &[3,4,6,10,11,13,17] A1 & [5,6] [1, 12] 2 

*The ground truth CRC is bold and italicize 
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Figure 4 Reduced number of CRCs when implementing multi-mode method in the 13 fault cases of “multiple-zone 
VAV AHU with heating coil” 
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Figure 5 Improvement ratio (IR) when implementing multi-mode method in the 13 fault cases of “multiple-zone 
VAV AHU with heating coil”  

3.3.2 Results of multiple-zone VAV AHU without heating coil 
 
As the multiple-zone VAV AHU without heating coil doesn't provide heating to the space, it only operates 
under three cooling modes - Modes 2, 3, and 4. Both the single-mode method and multi-mode method 
were applied to the collected data from three operating modes in the six fault cases as listed in Table 8. It 
is noted that all the heating coil related CRCs (CRC 12,13,14,15,16,17 in Table 4) are excluded from the 
analysis, as there is no heating coil in this AHU.  
 
Table 11 and Table 12 summarize the fault diagnostics results of single-mode method and multi-mode 
method, respectively.  Figures 6 and 7 show the capability of the proposed multi-mode method to 
reduce the number of CRCs compared to the analysis of data for the single mode of operation. As shown 
in the column “NCRCssingle-mode” of Table 11, in five of the six fault cases, the operator needs to examine a 
minimum of six CRCs to determine the real root cause. For example, in one of the most extreme 
scenarios, nine CRCs must be inspected when analyzing only the Mode 4 data in the case of “  sensor 𝑇

𝑠𝑎
offset (+4°C)”. These nine CRCs cover the faults of the  sensor, cooling coil, chilled water pumps, 𝑇

𝑠𝑎
mixed box damper, etc. It would be time consuming and labor intensive for the operator to further 
investigate so many components. In contrast, Table 12 shows that the proposed multi-mode method can 
lead to a moderate reduced number of CRCs. In the fault case “  sensor offset (+4°C)”, the multi-mode 𝑇

𝑠𝑎
method listed  sensor error as the sole CRC, achieving an IR of 100%. In the fault case “  sensor 𝑇

𝑠𝑎
𝑇

𝑠𝑎
offset (-4°C)”, the multi-mode method decreased the number of CRCs from four to two. Figure 6 and 
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Figure 7 show that the multi-mode method reduced the number of CRCs by at least one and at most 
eight, and achieved an IR ranging from 14% to 100%.  
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Table 11 Fault diagnostics results based on single-mode analysis method (reference method) of the cases “multiple-zone VAV AHU without heating coil” * 

 
Fault 

Triggered APAR Rules & [CRCs] 
NCRCssingle-mode 

Mode 2 Cooling with OA Mode 3 Mech. Cooling with Max OA Mode 4 Mech. Cooling  

Tsa sensor offset (-4°C) 7 & [1,3,5,6] -- -- 4 

Tsa sensor offset (+4°C) 7 & [1,3,5,6] -- 20 & [1,6,7,8,9,10,11,19,20] 4 or 9  

Stuck OA damper(minimum 10%) 8,10& [4,18,19] 10 & [3,4,18,19] -- 3 or 4 

Stuck OA damper(75%) -- 10 & [3,4,18,19] 18&[2,3,4,19] 4 or 4  

CCV stuck(10%) -- 14 & [1,6,7,8,9,10,11,20] -- 8 

CCV stuck(75%) 7 & [1,3,5,6] -- 19,20&[1,6,7,8,9,10,11,20] 4 or 9 

*The ground truth CRC is bold and italicized 

 
Table 12 Fault diagnostics results based on multi-mode analysis method of the cases “multiple-zone VAV AHU without heating coil” * 

 
Fault 

Intermediate diagnostic results Final diagnostic results 

Triggered APAR Rules & 
[Shared CRCs] 

Non-triggered APAR rules & 
[excluded CRCs] 

Auxiliary rules & 
[excluded CRCs] 

[Final CRCs] NCRCsmulti-mode 

Tsa sensor offset (-4°C) 7 & [1,3,5,6] III,V &[3,4,6,10,11] -- [1, 5] 2 

Tsa sensor offset (+4°C) 7,20 & [1,6] III,IV,V &[3,4,6,10,11] A1 & [5,6] [1] 1 

Stuck OA damper(minimum 10%) 8,10 & [4,18,19] IV,V & [6,10,11] -- [4,18,19] 3 

Stuck OA damper(75%) 10,18 & [3,4,19] I,IV,V & [6,10,11,13,17] -- [3,4,19] 3 

CCV stuck(10%) 14 &[1,6,7,8,9,10,11,20] II,III [1,3,4,5,12] -- [6,7,8,9,10,11,20] 7 

CCV stuck(75%) 7,19,20 & [1,3,5,6] III & [3,4] - - [1,5,6] 3 

*The ground truth CRC is bold and italicized 
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Figure 6 Reduced number of CRCs when implementing multi-mode method in the six fault cases of “multiple-zone 
VAV AHU without heating coil”  

 

Figure 7 Improvement ratio when implementing multi-mode method in the six fault cases of “multiple-zone VAV 
AHU without heating coil”   

4. Discussion  

The proposed rule-based multi-mode data analysis method demonstrated good capability to enhance 
diagnostic resolution in AHUs, compared with the conventional rule-based single-mode analysis method. 
For the dataset from the AHU with a heating coil, an improvement ratio of 80% or greater was achieved 
in 10 of the 13 simulated fault cases. For the AHU without a heating coil, the improvement ratio is 100% 
in one simulated fault case and ranges from 14% to 75% in the other five cases. The median 
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improvement ratio is 80% in all 19 fault cases. This section provides several points of discussion which 
navigate the potential improvement of the proposed method in the future. 

Firstly, the assessment of the proposed method was conducted with simulated faulty data under all 
possible operation modes, not with experimental data collected from proactive tests. Although the 
simulated data used here have many of the same characteristics as data from proactive tests, field 
testing of the proposed method is needed in future study.  A previous study showed that FDD tools have 
the capability to implement the proactive approach and obtain data for four modes of operation by 
overriding setpoints [42,43]. As part of our future work, we plan to expand the study to real buildings. 
We will examine the fault diagnosis resolution improvements, the data collection feasibility, the impact 
of rule threshold settings and sensor measurement uncertainty, and the effort required for FDD tool 
integration, to assess the robustness and generalizability of the proposed method. 

Secondly, additional proactive functional tests can be developed for further diagnosis. In the fault cases 
for the AHU with a heating coil, the multi-mode data analysis method has successfully revealed the root 
cause fault as the only CRC in four fault cases “  sensor offset (-2°C)”, “  sensor offset (+2°C)”, “Toa 𝑇

𝑚𝑎
𝑇

𝑚𝑎
sensor offset (+2°C)”, and “Stuck recirculation air damper (0% open)”.  The method narrowed down the 
possibility to two CRCs in six cases, three CRCs in two cases, and five CRCs in one case. For the cases 
where more than one CRCs are identified, additional proactive functional tests can be developed in the 
future to further screen out the true root cause fault. For example, if “stuck mixing box damper” 
appeared as one of the remaining CRCs and the return and mixed air temperature sensors are not in the 
list of CRCs, an open-loop functional test can be conducted to confirm the fault. In this open-loop test, 
the mixing box dampers can be commanded to 100% recirculation air position (outdoor air damper 
should be closed) and the heating and coil valves can be commanded to the closed position. If the 
difference between  and  is larger than the user-defined temperature threshold  , it can be 𝑇

𝑟𝑎
𝑇

𝑚𝑎
ε

𝑡
concluded that a stuck mixing box damper is the correct fault. 

Lastly, this study used APAR and auxiliary rules to demonstrate the AHU fault diagnostics enhancement 
process using the multi-mode analysis method. We believe the generalized procedure presented in the 
paper can be used and will be effective for other HVAC equipment with multiple modes of operation to 
facilitate their fault diagnosis. When doing so, we need to collect data from all operation modes and use 
a rule set with corresponding CRCs. For example, for VAV terminal units, by adjusting the cooling 
setpoint and heating setpoint respectively, the VAV terminal unit can be forced to operate in heating, 
cooling, and deadband operational modes respectively. The data recorded under three operational 
modes can be analyzed with various rules. Then the shared CRCs can be identified from triggered rules 
and the excluded CRCs can be found from non-triggered rules across three operation modes. 

5. Conclusions 
Identifying or localizing the root cause of a fault or anomaly is typically more challenging than detecting 
it, since different root causes can lead to the same fault symptom. However, building facility staff need 
reliable root causes in order to effectively take action based on FDD software outputs, and therefore to 
resolve energy and equipment performance problems. Today’s commercial FDD tools often fall short of 
this goal of identifying a root cause fault and instead commonly report behavioral-based faults that offer 
little diagnostic power. In some instances, the diagnostic results contain multiple distinct CRCs and other 
cases they offer no insight into possible reasons for the fault. Thus, there is a compelling need to 
advance the diagnostic capabilities of commercial FDD tools, and the simple and transparent method 
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described in this paper provides one pathway for doing so. That pathway has been opened by two-way 
communication capabilities between FDD tools and building automation systems, which have been 
recently validated in real buildings [42,43]. This read and write capability opens the door for FDD tools to 
perform fault correction, supervisory control, and active testing for improving fault diagnosis.  

This study developed a novel active rule-based multi-mode data analysis method to enhance diagnostic 
resolution by obtaining and combining evidence of both faulty and fault-free behaviors from multiple 
operational modes. The method is clear and straightforward, enabling its addition to the mainstream 
rule-based FDD methods which were adopted by most of the commercial FDD tools. In this study, the 
method was demonstrated using enhanced air handling unit performance assessment rules and 
validated with the simulated data of two types of AHUs. Two new metrics, namely, reduced number of 
CRCs and improvement ratio, were proposed to assess the improvement of fault diagnostic resolution. 
The validation results show that the proposed method achieved a median improvement ratio of 80% in 
19 test cases - an improvement ratio of 80% or greater in 10 of the 13 cases of AHU with a heating coil 
and an improvement ratio ranging from 14% to 100% in the six cases of AHU without a heating coil.  

Future work will focus on testing the method under more cases, developing additional proactive 
functional tests for further diagnosis, and developing proactive tests and auxiliary rules for additional 
HVAC equipment/systems, building from existing rule sets analogous to APAR. 

Nomenclature  

Term Description 

 𝑢
ℎ𝑐

Normalized heating coil valve control signal where 0 = closed and 1 = open [0 - 1] 

 ε
ℎ𝑐

Normalized heating coil valve control signal threshold used in APAR 

 𝑢
𝑐𝑐

Normalized cooling coil valve control signal where 0 = closed and 1 = open [0 - 1] 

 ε
𝑐𝑐

Normalized cooling coil valve control signal threshold used in APAR 

 𝑢
𝑑𝑚

Normalized mixing box damper control signal where 0 = outdoor air damper is fully 

closed and 1 = outdoor air damper is 100% open [0 - 1] 

 ε
𝑑𝑚

Normalized mixing box damper control signal threshold used in APAR 

 ε
𝑡

Temperature threshold used in APAR and auxiliary rules 

 ε
𝑓

Outdoor airflow fraction threshold used in APAR 

 ε
𝑧𝑑𝑎𝑡

A user-selected threshold for the zone discharge air temperature 

 ε
𝑧𝑎𝑡

A user-selected threshold for the zone air temperature 

 ε
𝑜𝑎𝑡

A user-selected threshold for the outdoor air temperature 
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 𝐶𝑅𝐶
𝑠ℎ𝑎𝑟𝑒

Shared candidate root causes 

 𝑇
𝑧𝑑𝑎

The discharge air temperature from a VAV box 

 𝑇
𝑧𝑎,𝑖

Zone air temperature of the ith zone [°C] 

 𝑇
𝑠𝑎

Supply air temperature [°C] 

 𝑇
𝑠𝑎,𝑠𝑒𝑡

Supply air temperature setpoint [°C] 

 𝑇
𝑚𝑎

Mixed air temperature [°C] 

 𝑇
𝑟𝑎

Return air temperature [°C] 

 𝑇
𝑜𝑎

Outdoor air temperature [°C] 

 𝑇
𝑜𝑎,𝑤𝑠

The ambient air temperature measured by a local weather station 

 𝑇
𝑒𝑐𝑜𝑛,𝑠𝑒𝑡

Dry bulb economizer setpoint [°C] 

 ∆𝑇
𝑟𝑓

Temperature rise across the return fan used in APAR and auxiliary rules [°C] 

 ∆𝑇
𝑠𝑓

Temperature rise across the supply fan used in APAR [°C] 

 ∆𝑇
𝑟𝑎,𝑜𝑎,𝑚𝑖𝑛

Minimum temperature difference between the return and outdoor air streams used 

in APAR [°C] 

 𝑄
𝑜𝑎

/𝑄
𝑠𝑎

Outdoor airflow fraction = (Tma - Tra) / (Toa - Tra) used in APAR 

 (𝑄
𝑜𝑎

/𝑄
𝑠𝑎

)
𝑚𝑖𝑛

Design minimum outdoor air fraction used in APAR 

MTmax Threshold for maximum allowable number of mode transitions per hour 

Nz The number of zones considered when determining the median 

RN The reduced number of CRCs 

IR The improvement ratio of CRCs 

 𝑁𝐶𝑅𝐶𝑠
𝑠𝑖𝑛𝑔𝑙𝑒−𝑚𝑜𝑑𝑒

The number of CRCs inferred from the single-mode method 

 𝑁𝐶𝑅𝐶𝑠
𝑚𝑢𝑙𝑡𝑖−𝑚𝑜𝑑𝑒 

Number of CRCs inferred from the multi-mode method 

 

Acronyms  
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Term Description 

APAR Air-handling unit Performance Assessment Rules 

BN Bayesian Network 

CCV Cooling Coil Valve 

CRC(s) Candidate Root Cause(s) 

FDD Fault Detection and Diagnosis 

HCV Heating Coil Valve 

HVAC Heating, Ventilation, and Air Conditioning 

PCA Principal Components Analysis 

OA Outdoor Air 

VAV Variable-Air-Volume 
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