
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Applications of Statistics in Machine Learning Problems

Permalink
https://escholarship.org/uc/item/0kf2h3t6

Author
Wei, Lifeng

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0kf2h3t6
https://escholarship.org
http://www.cdlib.org/

Applications of Statistics in Machine Learning Problems

By

LIFENG WEI
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

STATISTICS

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

James Sharpnach, Co-Chair

Cho-Jui Hsieh, Co-Chair

Alexander Aue

Committee in Charge

2021

i

c© Lifeng Wei, 2021. All rights reserved.

To my beloved wife, for how unique you are and how lucky you make me.

ii

Contents

Abstract v

Acknowledgments vi

Chapter 1. Introduction 1

Chapter 2. Search to Compress: Layer-wise Compression of Deep Neural Networks by Monte

Carlo Tree Search 3

2.1. Abstract 3

2.2. Introduction 3

2.3. Related Work 4

2.4. Our approach 6

2.5. Experiments 11

2.6. Conclusion 16

Chapter 3. Unsupervised Object Segmentation with Explicit Localization Module 17

3.1. Abstract 17

3.2. Introduction 17

3.3. Models 18

3.4. Related Work 25

3.5. Experiments 26

3.6. Further Smoothing on Multinomial Segmentation 28

3.7. Discussion and future work 31

Chapter 4. A Graph-Based Dataset Similarity Metric 32

4.1. abstract 32

4.2. Introduction 32

iii

4.3. Related Work 33

4.4. Methodology 34

4.5. Detailed Explanation for Equation 4.3 38

4.6. Experiments 51

4.7. Discussion 58

4.8. Conclusion 59

Chapter 5. COVID-19 Prediction Efforts at Health Davis Together 60

5.1. Abstract 60

5.2. Introduction 60

5.3. Back-testing Framework 61

5.4. Mobility Variable 64

5.5. Wastewater Processing 68

5.6. Summary 71

Appendix A. Appendix 73

A.1. Appendix for Chapter 2 73

A.2. Appendix for Chapter 3 77

A.3. Appendix for Chapter 4 79

A.4. Appendix for Chapter 5 89

Bibliography 92

iv

Applications of Statistics in Machine Learning Problems

Abstract

Recent improvements in machine learning methods have significantly advanced many fields in-

cluding computer vision and natural language processing. While the models have become increasingly

complex, they have also become harder to interpret and be trusted.

In my thesis, the focus is to improve or solve machine learning problems with clear guidance

from statistics and design algorithms which can be supported or explained by statistics. We show

statistics can be applied from various aspects and play different roles.

In the first project, I use a heuristic search method to design a simply but effective neural

network compression method, with a theoretical understanding of how the search works. In the

second project, optimization based on Kullback-Leibler divergence is applied to fine-tune the output

distribution of an image segmentation module to improve quality of segmentation. In the third

project you will see how hypothesis testing can help measure the similarity between datasets, which

is a crucial question for a better understanding for maching learning.

Besides these applications on machine learning algorithms, there are also engineering challenges

in real-life projects. For the fourth project, I summarized my contribution to Healthy Davis Together

project, including the systems I built with full details, the logic behind those systems and a mobility

variable I designed.

v

Acknowledgments

First, I would like to say thank you to my family. Without my parents’ guidance and support

from the first day of school, there is no chance for me to walk out of a small town and pursue my

Ph.D. in a new country. They’ve made themselves the excellent examples for me to follow. Without

my wife’s company and love, there would be much less happiness but more anxious along that path

I’ve taken. Her encouragements and unique suggestions helped me overcome several challenging

tasks.

Besides my family members, I would like to express my sincere gratitude to my advisors, Prof.

Sharpnack and Prof. Hsieh, for continuous support of my Ph.D. studies and researches. Their

trust and patience allowed me to explore and dive into different areas and study questions that are

intriguing as well as exciting. I could not have imagined having better advisors and mentorships.

I would like to thank the rest of my thesis committee: Prof. Aue, Prof. Ethan and Prof. Li, for

their insightful comments on the thesis, and also the encouragement on my research path.

I have also received so many help from staffs in the statistics department, Pete, Nehad, Sarah

and Andi. Their capable hands saved me from technique issues and administrative problems through

the entire five years, allowing me to focus on my studies and researches.

My sincere thanks also go to Dr. Yi-min Jiang, Dr. Aitzaz Ahmad and Mr. Stephen Lau. The

internship opportunities and mentorships you provided to me are great lessons in my career path.

The hand on experiences allow me to feel the difference between academia and industry and inspired

me to focus on my researches, dive deeper and think harder.

Last but not least, I feel also extremely lucky to meet other PhDs and masters at Davis. I wish

our friendship would last forever. The card games we played, the festivals we celebrated and the

helps I received from you are an important part of these five years.

vi

CHAPTER 1

Introduction

In recent years, machine learning is rapidly developing and applying to many scenarios. In

computer vision, new structures are being brought up as backbones and downstream tasks like object

detection and image segmentation [4,6,27,28,36,38,69,82]. For natural language processing, the

appearance of Transformer structure [85] and large-scale pretraining tasks totally changed how people

process text information [21,68]. Reinforcement learning has also made progress in both theory

and applications. New learning algorithms enable stable and diverse learning [23,24,26,33,50,59],

and applications like OpenAI Five [64], AlphaStar1 show promising applications of control with

reinforcement learning.

However, concerns rise with improvements. Most developments, especially in computer vision

and natural language processing, are excellent implementations of simple but important ideas. For

example, Focal Loss [53] in object detection, attention mechanism in Transformer [85], pretraining

tasks for BERT [21] and all its successors [17, 47, 49, 75, 90], and the hidden but important

engineering details in reinforcement learning [22]. They address important issues for different tasks

and proposed efficient solutions but we still only have empirical but not theoretical understanding

of them. This makes machine learning sometimes hard to be explained, trusted, or fixed when a

problem appears.

In this dissertation, we focus on solving machine learning problems with clear guidance from

statistics. You can see different roles played by statistics. From an intuitive modification, to the very

basic of the design of the whole algorithm. Our results will show that with a clear understanding of

the changes we make, simple ideas can also lead to stable and significant improvements in machine

learning problems.

In Chapter 2, we applied a simple heuristic search algorithm, Monte Carlo Tree Search, to

improve network compression quality, i.e. compress more weights while maintaining performance.

1https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

1

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

We analyze how it works in a one-layer condition to understand the relationships for hyper-parameter

tuning.

In Chapter 3, we use unsupervised fashion to train a multi-stage image segmentation module,

which tries to segment out one object for each stage. The output from each stage is fine-tuned

to optimize some Kullback-Leibler divergence. We achieved a good balance between extra time

consumption and improvement for segmentation.

In Chapter 4, we address an important question in machine learning: how similar two datasets

are. The question is important for better understanding of machine learning problems such as

domain adaptation and evaluating generative models. We designed a novel and flexible framework

to calculate similarity between datasets with graph structure and hypothesis testing.

Last but not least, we come back to real-life problems in Chapter 5. Full details of my contribution

in Healthy Davis Together project are described, as well as the logic and challenges behind. We built

a back-testing framework for fast model evaluation and iteration. We designed a mobility variable to

better reflect the spread speed of virus locally. And there is also a system to connect two sources of

data, which are collected on different geo resolutions.

2

CHAPTER 2

Search to Compress: Layer-wise Compression of Deep Neural

Networks by Monte Carlo Tree Search

2.1. Abstract

Deep neural networks typically have millions of parameters in order to achieve good performance.

The huge model size prevents a wider use of deep neural networks, especially on mobile devices. It is

thus important to study how to compress the models without sacrificing efficiency. Previous methods

like parameter pruning and quantization have been successfully used to reduce the memory cost,

but they were usually applied uniformly to all the layers. To achieve a better compression rate, one

has to select different compression strategies for different layers, which requires manual parameter

setup (e.g., choosing different compression strategies for convolution versus fully connected layers).

In this paper, we pose model compression as a search problem, and apply Monte Carlo Tree Search

to obtain the best configuration. Our method can be applied to all kinds of models without human

interference, and can be used to boost the performance of most existing compression algorithms. We

tested our method to VGG and ResNet networks on ImageNet dataset, and observed significant

improvements over uniform pruning and quantization approaches.

2.2. Introduction

In this paper we study model compression for deep neural networks. Although this topic has

been studied extensively in the past few years and many methods including quantization [39,52,84],

pruning [34,35,56,58,71], and low-rank approximation [20,40,74,93] have been developed, previous

approaches either uniformly applied to each layer or require human knowledge to decide different

strategies for different layers. For example, it is common to treat convolutional layers and fully

connected layers differently in order to get the best compression rate. This tuning process is quite

3

slow and often requires domain knowledge, which may not be available when it comes to networks

that we have less knowledge about.

To resolve this difficulty, we propose an algorithm to find the best configuration for compressing

a given network without human interference. Assume each layer has a few “actions” that can be

selected, such as pruning 80% of the parameters, pruning 90% of the parameters, or quantizing every

weight to 4 bits. Model compression can then be posed as a search problem—finding the best overall

configuration to maximize the “compression objective”, defined as a weighted average of validation

accuracy and compression rate.

Unfortunately, when there are T layers and each layer has n actions to try, there will be nT

configurations in total and a brute-force search will not be feasible. To make this process faster,

we rethink the compression procedure as a game, where at each layer the player wants to find

the best action to maximize the final reward, which is defined to be the compression objective in

our case. This motivates a Monte Carlo Tree Search approach (used in AlphaGo [77]) to find the

best configuration. We modify this algorithm to fit the model compression task, and prove some

interesting properties about the decisions for the simplified case.

The experimental results on ImageNet demonstrate two interesting findings. First, our method

can be used to find layer-wise pruning and quantization parameters that outperform uniform prun-

ing/quantization. This verified that our method can sucessfully find a better per-layer configuration

and boost the performance of existing methods. Second, if we give the options for both quantization

and pruning for each layer, our method can find even better compression configuration outperforming

pure pruning or pure quantization. This indicates it is important to mix several strategies for

compression, and our method can successfully find a good configuration for that.

2.3. Related Work

Here we briefly review previous work on neural network compression. The strategies can be

roughly categorized into pruning, quantization, low-rank approximation, and some other mixed

strategies to combine two or more structures.

Compression by Pruning. It has been observed that deep neural networks usually have many

unimportant weights with small magnitude, and often removing those weights won’t hurt the

4

performance. Based on this idea, [35] used pruning method with L1 and L2 norm and retrain to

maintain accuracy. These two steps are done iteratively. [58] designed an elegant function so that the

pruning process can be performed during backpropagation. [34] showed that a simple thresholding

approach surprisingly works well in practice, and demonstrate superior performance on several

state-of-the-art networks. Besides pruning weights, some recent approaches including [56,71] aim to

remove neurons in the trained network.

Compression by Quantization. Quantization is another effective way to reduce the model size

of deep networks. [84] first explored an implementation using 8-bit quantization and reduced the

computation cost affordable for CPUs. [39] proposed to quantize the whole network in the training

phase, and show little accuracy lost when presenting each weight with 2–4 bits. [52] further proposed

to solve an optimization problem to identify optimal fixed point bit-width allocation. In addition

to element-wise quantization, some recent approaches also consider quantizing vectors in the given

weight matrix. [88] applied vector quantization on both convolution layers and fully connected

layers to accelerate computation. [14] combined the idea of quantization and codes to improve the

performance of quantization. Both scalar quantization and vector quantization were discussed.

Compression by Low-rank approximation. Low-rank tensor approximation has also been used to

reduce the size of weight matrices. [74] approximated the fully-connected layer using top-k singular

value decomposition. Later on [20,40] proposed to apply tensor decomposition methods to compress

the convolution kernels in CNN. [93] recently showed that low-rank approximation is useful for both

reducing memory cost and improving testing time.

Mixed strategy. To achieve the best compression of state-of-the-art networks, usually multiple

compression strategies have to be used. The deep compression paper in [34] combined all three

methods and improved them with special techniques like retraining, retrain code book or Huffman

coding and got state-of-the-art results. [91] reconstructed the weight matrices by matrix factorization

and a sparse matrix to reduce the size of deep neural networks. A comprehensive survey of deep

neural network compression can be found in [13].

5

2.4. Our approach

In this paper, we propose a new method for compression of neural networks based mainly on

Monte Carlo Tree Search(MCTS) and a loss based methods for pruning and quantization. In this

section we will first review MCTS and then propose our loss based compression method. Then the

application of MCTS will be explained.

2.4.1. MCTS. MCTS is a searching method in tree-structured search space. Assume that there

is a multi-layer tree, with several son nodes for each node and only the leaves stores a value, which

further might be random variables. The number of nodes is so large that it is almost impossible to

find the optimal value by visiting all leaves.

Instead of directly doing search in the whole search space, MCTS creates its own smaller search

space, here we just call it ’search tree’. The search process follows this loop:

(1) Starts from current root

(2) As long as we are not in a leaf of search tree, we choose son:

j = argmaxivi + cpuct ∗ pi ∗
√∑

kNk

Ni + 1

Here i is the index of sons. vi is the evaluation result, usually an average of past evaluations.

Ni is the number that this node has been evaluated. pi is a prior belief which can be ignored

when no belief exists. This is similar to UCB [3]

(3) After having reached a leaf in the search tree by some given method, evaluate this leaf. The

value will be stored as an evaluation result for all nodes on the path between root to this

leaf.

(4) Do necessary expansion and cut off redundant nodes if there is any. See details in later

discussion.

If a leaf in search tree is visited for a number of times, it’s sons in the original search space will be

included to the search tree. This is called Expansion. The process of cutting off redundant nodes is

also called pruning but to avoid confusions with the pruning for neural networks we call it cutting

off here. In the original setting once an action from the current root is made, only the subtree under

the chosen action will be kept.

6

2.4.2. Compression method. In the past people have proposed different ideas for prun-

ing/quantization. Here we implement a different but quite simple idea: loss approximation.

Assume w is the parameter, which can be divided into p different groups {w1, w2, . . . , wp}. f is

the model, ŵ is the pruned/quantized parameter. C is the set of values that can be chosen for each

weight. Usually people will choose ŵ purely based on some distance measurement:

min
ŵ

p∑
j=1

‖wj − ŵj‖2 where ŵj ∈ C ∀j = 1, . . . , p

However, this does not take loss function into account. It’s possible that there is a solution that is

closer in distance but leads to much larger loss function. [43] tried to minimize loss function directly:

(2.1) min
ŵ

1

n

n∑
i=1

loss(f(ŵ, xi), yi) where ŵj ∈ C ∀j = 1, . . . , p

However, solving (2.1) is time consuming (even slower than training). Instead, we plan to optimize

the first or second order approximation of the loss function. For example, we can approximate the

loss function by

loss(f(ŵ, xi), yi) ≈ loss(f(w, xi), yi) + (ŵ − w)T∇wloss(f(w, xi), yi) +
λ

2
‖w − ŵ‖2

=

p∑
j=1

(λ
2

(ŵj − wj)2 + (ŵj − wj)∇wj loss(f(w, xi), yi)
)

+ constant

1

n
loss(f(ŵ, xi), yi) ≈

d∑
j=1

(λ
2

(ŵj − wj)2 + (ŵj − wj)(
1

n

n∑
i=1

∇wj loss(f(w, xi), yi))
)

+ constant

Plugging in this approximation into (2.1), the problem can be decomposed into 1 dimensional

problems for each variable ŵj , and each of them will be

(2.2) min
ŵj

λ

2

(
(ŵj − wj) +

1

λ
∇wjL(w)

)2 where ŵj ∈ C

In practice, w is the network weight and we can divide w into {w1, w2, . . . , wp} by different layers.

For pruning, we can simply choose the positions that minimizer the sum of element-wise loss. For

7

quantization, we can first solve this equation in continuous domain, then optimizer must lie between

two values in C. We only need to compare these two values.

One thing to mention, however, is that the suitable hyperparameter λ changes in scale for pruning

and quantization since the loss structures are quite different. To make this approximation work, λ

has to be in a reasonable range. Within this range it’s not sensitive. Details are in the following

section.

2.4.3. Compression of Neural Networks. We formulate the compression task as simulta-

neously finding best compression options for all layers in the network. But we know even if the

options are limited for each layer, the total number of choices still grows exponentially with the

depth of network, which makes the task impossible to solve. We apply MCTS and combine it with

the compression scheme proposed in Section 3.2 to overcome this difficulty. In later experiments we

can see that the overall complexity becomes almost linear to the depth of the network.

To apply MCTS we need to define the following: the meaning of each node, action space,

evaluation method and criterion to make actions as well as cutting off branches. Clearly each layer

in MCTS can correspond to a layer in the network and the action space will be the set of possible

compression options. Each node will correspond to a compression configuration. The design of

evaluation and cutting of branches are nontrivial, as we will discuss below.

2.4.3.1. Different Evaluation. Since we are applying MCTS, a method to evaluate each possible

action is necessary. One direct metric is the accuracy of the compressed network with a penalty for

the remaining size of network:

vi = acci − c× ri

Here i is the index for a node, acci is the accuracy and ri is the relative size of compressed network

compared with original network. c is a coefficient of penalty. This evaluation is directly connected

to our goal: compress the network while maintaining its performance. The parameter c balances the

trade-off between compression and performance.

Although we cannot obtain the exact value of acci, it’s not hard to estimate it with a small

batch of sample. The variance of the estimator would be small as well since it’s an average of some

Bernoulli random variables. The variances cannot be larger than 1
4k , where k is the batch size.

8

We also consider another metric based on the loss function:

vi = −lossi − c× ri

The meaning of i, c and ri are the same as above. lossi is the cross-entropy loss between the true

label and predicted distribution. Namely

lossi = E[H(labelx, distx)] = E[− log(distx[labelx])]

where x is the index for data, labelx is the true label for sample x and distx is the predicted

distribution of labels on sample j, which is the output of a softmax layer. Again this cannot be

obtained accurately so that we have to use estimators from samples. The variance of this estimator

is hard to know since the loss is not bounded. But if we assume that the worst case is uniform

distribution on all classes, the variance is no larger than log2(N)
4k , where k is the batch size and N is

the total number of classes.

2.4.3.2. Cutting off branches. Originally, once an action from the root of search tree is evaluated

over a certain number of times, the actions will be chosen and only the subtree under this action

will be kept. This method is also applicable in our task but it gives us less idea about how many

layers we are searching.

To have a better control of the layers we search at the same time, we choose an alternative

cutting method. In our experiments, we cut off branches when the current deepest node in search

tree is m layers deeper than the current root. For all sons of current root, only the one leading to the

current deepest node will be kept. In this way we can guarantee that there are always m layers of

network being searched. And we stop searching once a node in the final layer is visited for a number

of times. From results in Figure 2.3 we can see a larger m does have positive influence on results.

2.4.4. Full Algorithm. Algorithm 1 describes the full steps to compress a pretrained network

with our method.

2.4.5. Analysis. Now we analyse the performance of MCTS within one layer. We assume each

leaf node is a random variable, and each time we test a node for b times to get the average score.

This corresponds to our compression setting, where we test the performance on a mini-batch with b

9

Algorithm 1: Monte Carlo Tree Search for Compressing DNN
1: Create the first Node, name it start, the state is empty
2: while Have not reached the last layer of DNN do
3: Search(start) {See Algorithm 2 for Search function}
4: if Currect tree depth>Chosen tree depth then
5: Cut off branches and change root node
6: end if
7: end while

Algorithm 2: Search function in Algorithm 1

1: i← argmaxaQ(s, a) + cpuct

√∑
aN(s,a)

N(s,a)+1 {This is Selection}
2: if Son i is the last layer of DNN then
3: v ← Score(s+ i) {s+i means add i to the end of state s}
4: {Score is the function used to evaluate}
5: else if Son i corresponds to a node then
6: v ← Search(s+ i)
7: else
8: v ← Score(s+ i)
9: if N(s, a) > threshold then

10: Expand: create a node for ith son. {This node corresponds to s+i}
11: end if
12: end if
13: N(s, a)← N(s, a) + 1
14: V (s, a)← V (s, a) + v

15: Q(s, a)← V (s,a)
N(s,a)

16: return v

validation samples when we reach a leaf node. We have claimed that the next move can be decided

by simply choosing the action which is first tested multiple times. This is supported by the following

theorem.

Theorem 2.1. Consider a MCTS with only one layer. If we now have k choices with expected

values v1, v2, · · · , vk and variances σ2
1, σ

2
2, · · · , σ2

k, σ
2
i ≤ M ∀i. W.l.o.g we can assume v1 ≥ v2 ≥

· · · ≥ vk. Set d = v1 − v2. Each time the selection rule is following (??) with constant cpuct, and

the selected choice is tested by a mini-batch with size b. We make the decision if the test time of a

choice is more than t. Then the probability that we can choose the best choice is approximately lower

10

bounded by 
1− (k − 1)t · exp(− bd2t

4M) if
√
t <

cpuct
d

1− (k − 1)t · exp(− bd2t
16M) if

cpuct
d ≤

√
t ≤ 2cpuct

d

1− (k − 1)t · exp(− bcpuctd
√
t

4M) if
√
t >

2cpuct
d

The full proof is in Appendix A.1. We can see that larger k (more choices) leads to a smaller

probability. But actually (k − 1)t can be replaced by (k − 1)(t−mcpuct,k,t), where mcpuct,k,t is the

smallest possible visit time with given cpuct, k, t. Details about this are in the proof. Clearly mcpuct,k,t

will increase with k so the probability will not always decrease with increasing k.

The above theorem proved that the naive approach to pick the next step is efficient. This is for

the single layer search. In multi-layer search, we can regard each node’s value as a weighted average

of all its children.

Besides, this theorem also provides a guideline for choosing these parameters without knowing

much about the DNN to be compressed. M can be roughly estimated and k is usually pre-determined.

b can be the largest possible number that can be handled by the hardware. So now a suitable t can

be chosen if we want this MCTS method being able to distinguish a difference d. None of these steps

requires knowledge about the neural network.

2.5. Experiments

In this section we present some empirical results to show the influence of some hyperparameters

and the effect of our method. The experiments are conducted on ImageNet2012 [73] dataset. Most

comparisons are done one VGG16 [78] and the compression result are also available for VGG19 [78],

Resnet18 and Resnet34. [36]. All pretrained networks are shared by Pytorch.

2.5.1. Choice of λ. The choice of λ is tricky: If it is too small, the estimated optimal weights

will go too far on gradient’s direction. But if it is too large, any deviance from original weights will

be punished too much and original weights will be the only choice.

We also realized that within a large range the result is not sensitive to the choice of λ. In this

paper we choose λ by quantizing the network to 8-bit or prune out 25% weights and use the smallest

λ whose loss in accuracy before retrain is less than 2%. We searched for λ in a low precision. This

does not guarantee the performance would be the best but our results shows that this is already

11

better than directly prune/quantize the original weights. In Figure 2.1 we can see the clear gap

between using/not using a λ.

One more thing to mention is that for pruning and quantization the choice of λ are quite different.

This comes from the different loss structure. For pruning method some weights directly goes to

0 while others remain unchanged. For quantization method all weights changed in its own small

neighborhood. It turns out pruning method would result in a larger change w.r.t norm and thus a

smaller λ. Below is our choice of λ:

Network VGG16 VGG19 Resnet18 Resnet34
Pruning 15 15 5 5

Quantization 40 45 20 20
Table 2.1. Choice of λ

Figure 2.1. The above pictures are the compression results of different methods tested on
resnet18. The left one uses pruning and the right one uses quantizetion. Three settings are tested:
Uniform pruning of original weights, uniform pruning of adjusted weights and MCTS+pruning for
adjusted weights. We can see a clear improvement for using λ in pruning. For quantization the
performance drops so fast and the gap is hard to find.

2.5.2. Choice of Compression Method. Our experiments show that the compression results

of two methods are almost the same while using loss as evaluation is much faster, which means

takes less steps in MCTS. Details can be found in Figure 2.2. We can see in remainsize size vs top1

accuracy plot there is no significant difference between two criterions but the steps used are quite

distinguishable.

Although the variance of the later metric seems much larger, the actual performance of the later

metric is better with similar results but less exploration steps in MCTS. We think the possible two

reasons are:

12

Figure 2.2. Left: compression result of VGG16 with two methods. Upper curve comes from
quantization and the lower curve comes from pruning. Middle: Steps used in MCTS for VGG16,
pruning only. Right: Steps used in MCTS for VGG16, quantization only. Dots are from accuracy
and squares are from loss. Each color corresponds to one experiment.

• The actual variance is much smaller than the worse case, since we start from a well trained

network.

• The cross-entropy loss is less delusive. The prediction can still be ’accurate’ as long as the

true label has an advantage against the rest, but cross-entropy loss will favor those whose

advantages are larger.

2.5.3. Different Search Space. Here the search space means the search tree created with

MCTS. There are some hyperparameters to choose for MCTS as well. They are:

• Prior belief pi

• Exploration coefficient cpuct

• Maximum depth m allowed for MCTS

• Number of explorations t before expansion

For now we only discuss the later two since m alone determines the search tree and t has a more

direct impact on the computation resources required. From Figure 2.3 we can see with a larger m

the result improves but the same m with a larger t might not.

2.5.4. Comparison of Results. In this section we study the performance we can obtain from

pruning, quantization, and their combination. For now we do not take retraining into consideration.

To have a comprehensive understanding of the performance, we start from small punishment for

remaining size so that the there is almost no loss in accuracy. Then we increase the punishment

until the compressed network can do only random guess (accuracy dropping to 0.001).

13

Figure 2.3. Left: results for pruning VGG16 with different search space. Right: results for
quantizing VGG16 with different search space. We can see that there is a small improvement when
m increases from 1 to 2 in pruning but the change of t does not have a clear impact. For quantization
again there is no clear difference since the result is already good enough.

Basically we are interested in two questions: To what extend can our method improve the results

of unifrom pruning/quantization. And what can we get by combine pruning with quantization. In

Figure 2.4 we can see after applying MCTS the accuracy is much higher that the uniform method

and In Figure 2.5, we can see using quantization alone is better than using pruning alone, which is

also true in Figure 2.4. We also notice that they almost share the same compression limit and by

combining two methods together, we are able to bypass that original limit without much further loss

in accuracy.

Figure 2.4. Accuracy with/without MCTS. Upper Left: Pruning results of VGG16. Upper
Right: Quantization results of VGG16. Bottom Left: Pruning results of Resnet18. Bottom Right:
Quuntization results of Resnet18.

14

Figure 2.5. Accuracy vs Remainning size for different methods. Left: Results of three methods
of VGG16. Right: Results of three methods of Resnet18.

2.5.5. Retraining. After compression we always retrain our models to reduce the loss in

accuracy. In the previous sections we have shown that our methods can bring a huge improvement

before retraining process. In this session we will show that the result we can get after retraining is

still better than the uniform methods.

Our retrain schedule is to train the compressed network on training set for 3 epoches. The initial

learning rate is 10−5 and after each epoch the learning rate will be divided by 10. We apply this

learning schedule to all retraining process. Retraining for pruned layers is to reset the pruned weights

to be 0 again after each step. Retraining for quantized layers is to quantize back every 10 steps.

In Table 2.2 we compare the accuracy after retraining for our method and uniform method. We

can see in most cases our method outperforms the uniform method instead of the smallest pruning

case. We also noticed that 20% is also the compression limit of our method, which means any more

compression will make the compressed network give random guess. So we guess that to achieve more

compression, some layers are pruned out too much that although it does not affect it’s performance

during compression, it harms the capability of the network.

Network Pruning Quantization Original
Size Remain 20% 40% 5 bits 7 bits Accuracy

Resnet18 Uniform 65.67% 68.58% 68.69% 69.57%
69.76%MCTS 64.10% 69.06% 69.27% 69.67%

Resnet34 Uniform 69.95% 72.33% 72.26% 72.87%
73.30%MCTS 69.14% 72.94% 72.39% 72.94%

Table 2.2. Retraining results for Resnet

One last question of our interest is whether a compressed network would have better performance

than another after retraining if the performance before retraining is better. To study this we retrained

15

several compressed network of Resnet18 and the result is in Figure 2.6. We can see that for each

method there is a positive correlation, almost linear relationship, between accuracy before/after

retraining.

Figure 2.6. Accuracy before/after retraining of Resnet18 of three compression methods

In the end we list the performance of most compressed networks using our methods. Again we

can see the loss in pruning is much larger than the other two methods. We think the reason is the

same as we have discussed, some layers are pruned out too much for the extreme compression.

Pruning Quantization Combined Original
Network Size Remain Accuracy Size Remain Accuracy Size Remain Accuracy Accuracy
VGG16 10.17% 69.10% 10.23% 70.67% 6.59% 70.06% 71.59%
VGG19 9.40% 68.67% 7.58% 70.55% 6.93% 70.63% 72.38%
Resnet18 20.04% 64.10% 13.30% 68.57% 11.76% 66.93% 69.76%
Resnet34 19.98% 69.14% 14.00% 72.27% 13.03% 72.25% 73.30%

Table 2.3. Retraining results for maximum compression

2.6. Conclusion

In this paper we proposed two novel ideas for network compression. The approximation of loss

help us quickly find a better pruning/quantization than the naive methods and MCTS shows a way

to find a good compression configuration without searching an exponentially large space. Besides,

this methods can still make improvements like the choice of λ and avoiding too much pruning. These

are also future questions to study.

16

CHAPTER 3

Unsupervised Object Segmentation with Explicit Localization

Module

3.1. Abstract

In this paper, we propose a novel architecture that iteratively discovers and segments out the

objects of a scene based on the image reconstruction quality. Different from other approaches, our

model uses an explicit localization module that localizes objects of the scene based on the pixel-level

reconstruction qualities at each iteration, where simpler objects tend to be reconstructed better at

earlier iterations and thus are segmented out first. We show that our localization module improves

the quality of the segmentation, especially on a challenging background.

3.2. Introduction

A crucial part of human intelligence is scene understanding, which means decomposing the scene

into objects and discovering their relationships. Here we mainly focus on object segmentation, an

important method for scene decomposition. In a supervised learning scheme, recent methods [55,63]

mainly rely on convolution neural network (CNN) or its variant to minimize the deviance between

generated object masks and the ground truth. In an unsupervised learning scheme, traditional

pixel clustering methods [19] lead to more sophisticated image clustering methods and loss with

CNN [42]. Other models achieve state-of-the-art performances by learning object masks and imagine

reconstruction [9] through one network [29] or two separate networks. Inspired by the observation

that typical unsupervised models learn to reconstruct relatively simple backgrounds in early epochs

and then more complicated details in later epochs, we believe that different parts of images have a

different level of reconstruction difficulty. We argue that those higher-level details are the objects,

which usually should not share characters with background and thus harder to be reconstructed

during the first few epochs.

17

We approach this problem from pixel-level clustering and iterative object segmentation, similar

to MONet [9]. We propose a network that removes MONet’s attention network and segments objects

one-by-one through the reconstruction quality mask. Since MONet’s attention network does not rely

on a reconstruction image before updating the network parameters, which may lead to inconsistencies

between the reconstruction image and attention mask, our model utilizes a reconstruction image that

decides which area to focus, which instead leads to a consistent approach that “where the network

reconstructs is where it focuses.” In our method, the first step segments the background and then

later steps “fill in” the image details missing from the “first impression.” Objects are considered

higher-level details of the scenes that cannot be easily reconstructed by the “first impression” of the

scene , i.e. the background. Moreover, a group of pixels should be considered as an object only if its

parts move as a whole (except for deformative objects). Thus, objects should be considered through

a clear and explicit localization mask.

Our contributions are as follows. We propose a new algorithm that localizes the areas needed for

object segmentation by directly measuring reconstruction quality. This coarse-grained estimate of the

focused area is then fine-tuned by a Gaussian Mixture Model with very few components that cluster

the pixels in that area to obtain a detailed boundary for the object. More importantly, compared

with models that rely on network output attention masks, our model has an explicit localization

module that guarantees masks of objects are localized. We show that this explicit localization module

is necessary for more complicated datasets, such as Montezuma’s Revenge, where some objects share

similar color but have different modeling difficulties.

3.3. Models

Review of MONet is in Section 3.3.1 and our motivation of model design is in Section 3.3.2.

Section 3.3.3 discusses how we measure the quality of reconstruction and Section 3.3.4 explains

how we conduct the local clustering through GMM. We observe that the reconstruction quality

between the background and the objects are adversarial with each other, so we propose a method

that mitigates this effect in Section 3.3.5. The overview of our model and algorithm is Section 3.3.6.

3.3.1. MONet Overview. As a recent work of unsupervised scene decomposition, MONet

is an important framework on which our model is based. The main idea of MONet is to learn to

18

reconstruct the input image by identifying one object at a time. To achieve this goal, an attention

model is trained and outputs an attention mask, which claims to focus on one single object in a given

image. A VAE is trained to reconstruct the object covered by this attention mask. Furthermore,

VAE also tries to recover the attention mask obtained by the attention model to stabilize the training.

The network is tuned so that the “background” is always given attention in the first step.

To be specific, if we use s(k) to represent the “unexplained ratio” of each pixel after the k-th step,

the “explained ratio” at k-th step as m(k), and the original image input as x, the idea of MONet can

be written as:

s(0) = 1

s(k) = s(k−1)(1− αφ(x; s(k−1))) 1 ≤ k < K

m(k) = s(k−1)αφ(x; s(k−1)) 1 ≤ k < K

m(K) = 1−
K−1∑
k=1

m(k)

where the αφ is a trainable attention network parameterized by φ and K is the total number of

segmentation steps. We adopt this framework but use a different method, which we detail in later

sub-sections, to find the mask at each step.

3.3.2. Model Motivation. The idea of MONet, which is basically to use attention as masks

and cover the image step by step, is natural. But in practice, we found that it is very hard to

tune the hyperparameters to learn a good attention model. Specifically, it’s hard to make sure

that the CNN-based attention model finds masks for objects. This motivates us to propose a new

method with an explicit nonparametric localization module that helps find objects. To produce

better object boundaries, we considered simpler clustering methods like GMM or KNN and used

traditional features like color or location. Besides, instead of finding an accurate attention mask

for the objects directly, we choose to find a larger area that contains the object inside and split the

object from the local area in the second step. The smaller area makes it possible to use a simple

clustering algorithm to detect the object in different remaining not-yet-covered parts.

19

3.3.3. Reconstruction Quality Estimates and Coarse Grained Attention. We first

measure the quality of the reconstruction by the pixel-wise square error between the reconstruction

and the input images. The pixel-wise reconstruction quality, Qi,j , is measured by

Qi,j = exp(−
s||xi,j − xrei,j ||2

2σ2
),

where xre is the reconstruction image and x is the original image. xi,j and xrei,j are RGB vectors

at the corresponding pixels determined by {i, j}. σ is a hyperparameter for variance. In order to

locate an object roughly by reconstruction quality, both the pixel reconstruction and its neighbor

pixels’ reconstruction matter. To evaluate that, we used a non-trainable convolution kernel with

weights = 1, stride = 1, and SAME padding on Q. Relying on non-trainable kernels, we can avoid

trivial solutions found by neural networks. The output of this convolution indicates how well the

network reconstructs at each local region; partially overlapping regions are allowed. We then find

the location with the highest output value, denoted by (ic, jc). This pair of coordinates indicates the

center of the region with the best reconstruction quality, and our model generates a rough attention

G based on (ic, jc). Given our rough assumption that attention has peak 1 in the center and decays

gradually, we choose a Butterworth filter [10] to model attention in a region. Mathematically, a

Butterworth filter is

G(r, n, f) =
1√

1 + (rf)2n
.

Here r is the distance from a point to the center and n, f are hyperparameters. With the center

point determined by Q, we can easily obtain the local mask by this filter.

In practice we treated the horizontal and veritcal coordinates independently and the Butterworth

filter attention G on pixel (i, j) is

G = G(|i− ic|, n, f) ·G(|j − jc|, n, f).

3.3.4. GMM. A Gaussian mixture model (GMM) is capable of finding components when we

have samples from a mixture of separate Gaussian distributions. In this segmentation task, it is

possible to approximate the distribution of pixels if we treat them as 5-d Gaussian random variables.

20

The 5 dimensions are RGB channels and two coordinates, denoted as

yi,j = (xi,j , i, j).

For a general GMM, if we know there are k groups and we somehow initialized their means as

µ(1), µ(2), · · · , µ(k) and let

zi,j,k = P (yi,j in class k), zi ∈ Rk,

we can easily obtain the update rule for GMM:

µ(k) =

∑
i,j zi,j,kyi,j∑
i,j zi,j,k

k ∈ {1, 2, . . . }

zi,j,k =
K(yi,j , µ

(k))∑
k K(yi,j , µ(k))

Here K(·, ·) is a kernel function. In GMM, since we assume each group is a Gaussian distribution,

we choose the multi-variate Gaussian density function as our kernel.

For our problem, the pixels in which we are interested might have been partially/totally explained

by previous steps. So they should have less/no impact on the clustering process in later steps. Thus

we give each pixel a “weight” that indicates its importance. The weight is easy to find: simply use

the Butterworth filter weight G(k):

µ(k) =

∑
i,j zi,j,kwi,jyi,j∑

i,j zi,j,k
wi,j k ∈ {1, 2, . . . }

zi,j,k =
K(yi,j , µ

(k))∑
k K(yi,j , µ(k))

And in practice we found that giving a hard threshold gives clearer segmentation, so we use

w = 1G(k)>0.5

3.3.5. Adversary Between background and object reconstruction. A problem we ob-

serve while using reconstruction quality as masks is that the more details the background could

obtain through training, the worse the segmentation result will be, because it leaves less room for

perfect reconstruction of objects in later iterations. In order to mitigate this problem, we generate a

21

Algorithm 3: LGMM

Result: Image reconstruction and segmentation masks
1 Initialize zi,j,k = 0.5 for k = 1, 2;
2 Initialize µ1 = 0, µ2 ∼ Unif(0, 1);
3 Input vectors yi,j ;
4 Calculate G(k) based on the Butterworth filter;
5 Initialize weights by w = 1 if G(k) > 0.5;
6 for L iterations do
7 Update µ(k) =

∑
i,j zi,j,kwi,jyi,j∑
i,j zi,kwi,j

, k = 1, 2;

8 Update variance for each coordinate for each group;

9 Update zi,j,k =
K(yi,j ,µ

(k))∑2
k=1K(yi,j ,µ(k))

10 end
11 Ii,j = zi,j,2;
12 return I

mask for the background by subtracting all the intermediate objects’ attention masks. The portion

of the image that should be captured by the background at the first iteration is derived from the

input image masked by this background mask. In other words, m(1) for background is computed by

m(1) = 1−
K∑
k=2

m(k).

3.3.6. Model Overview. Our model utilizes VAE [44] for simple datasets or an auto-encoder

with skip-connection for complicated datasets. We assume there are K objects, including background

and our model keeps track of the not-yet-explained areas by a remaining-mask s ∈ [0, 1]h×w. As an

alternative, we can use stick-breaking process to find just the right number of K. In every iteration,

our model tries to reconstruct the unexplained part. We evaluate the reconstruction quality and

denote the quality by Q ∈ [0, 1]h×w. A basic observation is that VAEs and auto-encoders will learn

the representation of often observed items so the reconstruction quality of these objects will get

better faster than other areas. Thus, except for the first iteration where the background is found, we

can locate the object roughly by finding the area where reconstruction quality is high. Then we look

into the area and tell whether each pixel belongs to the object. As for the first iteration, we directly

use the quality of reconstruction of each pixel as its explained ratio by the background.

For the following iterations, the image- and remaining-mask are input to the network again for

reconstruction. Different from the first iteration, a location-sensitive mask, denoted by L ∈ [0, 1], is

22

derived from the location where the reconstruction quality is the best. Then the remaining-mask is

updated again and the next iteration starts. The remaining-mask s and object component mask

m ∈ [0, 1] are updated by the formula:

s(k) = s(k−1)(1−Q(k)L(k))

m(k) = s(k−1)Q(k)L(k),

where k ∈ {1, 2, · · · ,K} denotes the kth iteration. Moreover, when k is 0, L1 is 1 to indicate no

location-sensitive mask is applied to the background.

Denote c as input image’s channel, θ as the trainable weights for encoder-decoder, φ as the

constant weights for a convolution layer that evaluates the area reconstruction quality from pixel-wise

reconstruction quality mask Q, σ1 as the constant variance for pixel-wise reconstruction quality

mask, and σ2 as the constant variance for location mask L. The algorithm we use is summarized in

Algorithm 4 and its flowchart is in Figure 3.1.

Algorithm 4: Background and Object Segmentation
Result: Image reconstruction and segmentation masks

1 Initialize a remaining-mask s(0) as 1.;
2 for K iterations do
3 xre,(k) = gθ(x, s

(k−1)) ; // decode

4 Q(k) = exp(− s(k−1)
∑
c(x

re,(k)
c −xc)2

2σ1
) c ∈ {0, 1, 2}; // decode quality mask

5 with no-gradient:
6 Q′(k) = Qφ=1(s(k−1)Q(k)); // area decode quality
7 i, j = arg max(Q(k));
8 L(k) = LGMM (x, i, j;σ2); // location mask 3
9 s(k) = s(k−1)(1−Q(k)L(k));

10 m(k) = s(k−1)Q(k)L(k);
11 end

23

Figure 3.1. Our model structure and how model m and s are computed.

The only trainable parameter θ is updated through the following equation:

Loss =
K∑
k=1

m(k)(xre,(k) − xgt,(k))2

+ β
K∑
k=1

(1−m(k))(xre,(k) − ζ)2

+ γ

K∑
k=1

DKL(p(z̃(k)|x, s(k−1))||p(z̃))

(3.1)

where ζ is a constant prior for pixels that are masked out by m, β is a hyperparameter that

controls the weight of prior loss, and γ is the hyperparameter that controls the weight of KL-div for

the VAE prior. For auto-encoder γ = 0, z̃ is the prior for enbedding of VAE and z̃(k) is the embedding

in the kth step. Lastly, if we use m(k) as the object mask, then redefining xre,(k) := m(k)xre,(k) for

Equ. 3.1 helps, since the reconstruction at this time focuses more on the region found by m(k). This

allows mask Q to contribute to the loss, but L is strictly constant.

24

3.4. Related Work

A lot of the recent progress has been made as a result of convolutional neural networks (CNN)

and their variants. Many of the progress on object segmentation has been based on supervised

learning, where people label the images given their prior knowledge and train the network accordingly.

Fully Convolutional Networks [55] is a paradigm network architecture for semantic segmentation

and more advanced results are achieved by recently with a semi-convolutional operator [63].

People also work on unsupervised object segmentation through neural network. Unsupervised

object discovery [37] with a pre-trained model, such as VGG, is proposed, but it is highly based

on the performance of the pre-trained model; the model is not end-to-end unsupervised. An object

segmentation method characterizes pixel similarities based on CNN. Recently, a generative adversarial

network (GAN) for object segmentation [12] is successfully applied to real world dataset. However,

this model is based on the network itself to find attention masks, which are good in datasets where

the objects are salient and big enough.

The most related work is MONet [9], which segments objects iteratively through a scope mask.

Its performance relies on the interactions between the attention mask and VAE for reconstruction.

A similar idea is also used in IODINE [29], where each independent embedding tries to recover an

object and its mask for the object. Then all recovered objects are combined with a normalized mask

to reconstruct the original image. It uses special techniques to learn the joint posterior embedding

to overcome the shortage of VAE, which is only able to learn independent posterior embedding

given the input. In practice, tuning the parameters such that the CNN-based attention model masks

exactly over objects is very difficult: there is no feedback loop between the reconstruction image and

the attention module for every scene-decomposing step in MONet. Therefore, what to decomposed in

every step is purely determined by the attention model; it is difficult to guarantee that the attention

model masks over a localized region and that region happens to contain an object. Compared to

MONet, our model directly computes an attention mask from reconstructed images, and we have an

explicit localized module that makes sure our model focuses on local regions.

Lastly, in terms of object discovery through a sequence of frames, a network [67] that is based

on optical flow can learn moving objects. Neural Expectation Maximization [30] proposes to learn

embeddings of objects through a sequence of frames through EM and learn the transformation

25

from frames to embeddings through training. Based on NEM, Relational NEM [83] where object

relationships are extracted through the embedding and R-NEM achieves better performance than

NEM. Object discovery through a sequence of frames provides more information than independent

frames. Since our model currently only focuses on object segmentation on images, this direction is

interesting future work.

3.5. Experiments

We test our model on three different datasets. We mainly focus on the performance on object

segmentation.

Multi-dSprites [41] This dataset has a colored background and a random number of objects.

We use 60 000 training samples and 10 000 testing samples. We use the ARI score provided. We

conduct an ablation study on this dataset.

The Category Flower Dataset [62] This dataset is a real-world flower dataset. We use the

same data split as provided. We use the sumScoreIoU [12].

Montezuma’s Revenge Montezuma’s Revenge OpenAI Gym [8] is a game where object

discovery plays an important role in hierarchical deep reinforcement learning proposed [45] and

goal-driven/symbolic planning for reinforcement learning [57]. We use 10 000 training samples with

a random policy. For testing sets, we use a pre-trained policy where the agent successfully solve

the first stage. We manually label 100 samples of nine objects, including the agent, the skull, the

rope, the key (may be missing as the agent obtains it), two doors, and three ladders. Since current

GAN-based segmentation [12] supports segmenting simple scene (one foreground object only), and

official implementations of MONet or IODINE are not available online, we only report our AMI

score on Montezuma’s Revenge as a benchmark result. The AMI score is calculated as in NEM [30].

3.5.1. Results and Discussion. We summarize our results in Table 3.1. We also analyze the

results by different datasets in the following paragraphs.

Multi-dSprites Our model so far is not able to achieve as good results as MONet, because

this dataset has samples in which objects are partially covered by another object, a situation that

GMM cannot handle easily. For ablation study, where the whole location mask L is removed and

only the reconstruction quality Q remains, we found that the segmentation metric provided [41]

26

Figure 3.2. Sample ground truth images (top) and segmentation masks (bottom) for
Multi-dSprites (left), Category Flower Dataset (middle), and Montezuma’s Revenge
(right).

Table 3.1. Benchmark results for different dataset and models. The higher the
better for all measurements.

Dataset Multi-dSprites Category Flower Dataset Montezuma’s Revenge

MONet 0.904±0.008 — —
IODINE 0.767±0.056 — —
ReDO — 0.764±0.012 —
Ours 0.621±0.004 0.632±0.001 0.375±0.002

does not apply to our case, because images with one object leads to NAN as our model incorrectly

decomposes that object to different object slots. We see similar poor performance when we leave the

GMM module and L only without training the network.

Category Flower Dataset This is a real world dataset where the background is more compli-

cated and thus requires more sophisticated background removal techniques. Similar to the results

achieved when IODONE [29] applies their model to a real-world dataset, we observe a noticeable

gap between our model and the benchmark, because the assumption of 5D vector in GMM module,

RGB and x-y coordinates, is too simple for real world dataset.

Montezuma’s Revenge Our model can achieve an AMI score of 0.375. Figure 3.3 is a

reconstruction of the objects in a typical frame. Figure A.1 in Appendix A.2 provides more

reconstruction results. Most of the important objects that can serve as goals are found by our

model, including the three ladders, skull, the doors, and even the keys. More strikingly, our model

successfully finds objects, such as the ladders at the bottom, that share the same color as the walls.

Since the wall is easier to reconstruct, it is captured by the background, whereas the ladders, with

their more complicated details, are left to be captured by later object slots. Through this experiment,

27

Figure 3.3. Randomly picked sample of reconstructed image by objects for Mon-
tezuma’s Revenge, where objects locations are provided. The first figure is input
image. Each important object has been found by our model, and its location visually
matches with our provided, showing that our GMM module does find the objects.

we confirm our argument that objects can be extracted iteratively with different reconstruction

difficulties, which we believe can be a new method for object discovery.

Table 3.2. Location found by objects and their corresponding location.Matching
between objects visual position with the x-y coordinates provided shows that our
model successfully find the objects.

Objects y-axis x-axis

back ground — —
middle Ladder 0.365 0.497
skull 0.798 0.489
bottom right ladder 0.595 0.827
bottom left ladder 0.595 0.180
agent 0.231 0.531
right door 0.282 0.880
left door 0.090 0.137
key 0.378 0.067
— 0.026 0.887

3.5.2. Object Location Extractor. One of the benefits of our model is that the objects’

location is automatically extracted. We train our model in only 9 epochs and extract the locations of

the objects through the coordinate means calculated with the GMM. A random reconstructed frame

is provided as Figure 3.3 and the corresponding objects and their location is provided in Table 3.2.

The location is shown as scaled from 0–1 in y (vertical axis) and x (horizontal axis). (0, 0) is the top

left of the image. Most of the objects are found by our model, visually near the locations provided.

3.6. Further Smoothing on Multinomial Segmentation

3.6.1. Optimization Problem Setup. TestSuppose that Q is a K-channel image that is

a multinomial distribution,
∑

kQijk = 1, Qijk ≥ 0. Then we would like to search for another

28

multinomial distribution, X that is similar to Q but is segmented in the sense that it is piece-wise

constant over different regions. The similarity measure we will use is the KL divergence,

D(Q||X) = −
∑
i,j,k

Qijk log
Xijk

Qijk
.

and then we would like to force regions of the image to have the same X values, so we introduce the

following grouped total variation penalty,

ρ(X) = λ

∑
i,j

√∑
k

(Xijk −Xi+1,jk)2 +

√∑
k

(Xijk −Xi,j+1,k)2


Define the following operators,

(∇1X)ijk = Xijk −Xi+1,jk,

(∇2X)ijk = Xijk −Xi,j+1,k.

Define the following mixed norm,

‖Z‖ρ =
∑
ij

‖Zij.‖2

so that

ρ(X) = λ(‖∇1X‖ρ + ‖∇2X‖ρ),

where X> indicates the transpose in the j coordinate. Introduce the auxiliary parameters Z1 =

∇X,Z2 = ∇X>. Then we introduce the augmented Lagrangian with dual parameters U1, U2,

L(X,Z,U) = D(Q||X) + ρ(Z) +
ρ

2

(
‖∇1X − Z1 − ρ−1U1‖2 + ‖∇2X − Z2 − ρ−1U2‖2

)
,

where ρ(Z) = λ(‖Z1‖ρ + ‖Z2‖ρ) is an abuse of notation.

U andX are updated with gradient steps, withX being projected onto the simplex by I-projection,

which is simply

Xijk ←
(Xijk)+∑
k(Xijk)+

,

where x+ = max{x, 0}.

29

The solution to Z is a grouped soft thresholding, but we can also replace it with a hard

thresholding (this is the flexibility of the ADMM approach),

Z1ij. ← Aij. · 1{‖Aij.‖2 > λ/ρ},

where A = ∇1X − ρ−1U1, and similarly for Z2.

3.6.2. Application on Image Segmentation. In our scenario, Q is the direct output from

our algorithm and X would be a further smoothed segmentation. As a segmentation, we would

expect that a single pixel should mainly belong to one class instead of evenly distributed over several

classes. In order to force X away from uniform distribution, we shall add

λ2

∑
i,j,k

1

K
log(K ·Xijk)

into the loss. This is the negetive KL-Divergence between X and uniform distribution. By minimizing

loss we are somehow make this KL-Divergence large. This only changes how the gradient of X is

calculated. Now the new Lagrangian is

L(X,Z,U) = D(Q||X) + ρ(Z) + λ2

∑
i,j,k

1

K
log(K ·Xijk)

+
ρ

2

(
‖∇1X − Z1 − ρ−1U1‖2 + ‖∇2X − Z2 − ρ−1U2‖2

)
,

However, with this optimization objective, the previous mentioned ADMM approach gets unstable

in the update of X. A more stable and basic method is to optimize another set of variables L which

satisfies

softmax(Lij·) = Xij·

This would require one more layer of backpropobation. But There is no interaction between Li1j1·

and Li2j2· unless i1 = i2 and j1 = j2. So we can backpropobate the gradient only channel-wise.

For clarity we ignore the old notations and only consider X = softmax(L), L = (L1, L2, · · · , LK)

and assume we know ∂L
∂Xj

for all j ∈ {1, 2, · · ·K}

30

∂L
∂Li

=
K∑
j=1

∂L
∂Xj

· ∂Xj

∂Li

=
K∑
j=1

∂L
∂Xj

·
∂

exp(Lj)∑
exp(L)

∂Li

=

K∑
j=1

∂L
∂Xj

· exp(Lj) · 1(i = j) ·
∑

(exp(L))− exp(Li) · exp(Lj)

(
∑

exp(L))2

=
K∑
j=1

∂L
∂Xj

· (1(i = j) ·Xi −
exp(Li) · exp(Lj)

(
∑

exp(L))2
)

= Xi(
∂L
∂Xi

−
K∑
j=1

Xj ·
∂L
∂Xj

)

In practice within 10 iterations X will be smooth enough. We found that the segmentation

metrics improved by 2 ∼ 5% and time comsumption increased by around 8 ∼ 10%

3.7. Discussion and future work

In this paper, we propose a new unsupervised object segmentation algorithm with an explicit

localization module. The localization module serves as an attention mask derived from the recon-

struction quality. By iteratively segmenting the objects, our method finds objects one-by-one, filling

in the details of the image missing from previous iterations. We empirically confirm our beliefs that

those details correspond to objects.

As for future work, it is promising to extend this work in a sequence of frames, a context where

objects are mostly consistent between frames. We also notice that GMM does not always lead to good

results and more sophisticated (local) segmentation algorithms could possibly lead to better results.

Lastly, our model still has a decent amount of prior knowledge injected through hyperparameters.

Making the model simpler should be helpful in future work.

31

CHAPTER 4

A Graph-Based Dataset Similarity Metric

4.1. abstract

A number of metrics are available for computing similarity and distance between a pair of

samples from same or different datasets. However, finding a notion of how similar two datasets

are in distribution remains an open question. This paper presents a novel framework to evaluate

the similarity between datasets based on a graph structure and statistical hypothesis testing. We

also provide theoretical guarantees to explain the behavior of our proposed similarity metric. The

proposed framework provides great flexibility for modeling similarity between datasets as it is agnostic

to data type, model and task. Application to a specific data type, model, or task only requires an

appropriate sample-level similarity metric provided by domain experts. Through various experiments,

we show that our framework is sensitive to perturbations in data, and is able to tell datasets apart

based on their semantic similarity. Our results also suggest a strong correlation between our metric

and domain adaptation hardness across different datasets. Further improvements to the framework

are also discussed and left as future directions.

4.2. Introduction

Finding a notion of similarity or distance between datasets is important for better understanding

of domain adaptation, model generalization, evaluating the quality of generative models, and

other aspects of machine learning. This work focuses on similarity in the context of Natural

Language Processing (NLP). Various sample-level similarity metrics have been developed in the

NLP space. These include basic n-gram overlap scores like ROUGE [51] and BLEU [66], as well as

distance metrics based on word embeddings, like Word Mover’s Distance [46] and Sentence Mover’s

Similarity [16]. More recently, with the introduction of powerful BERT models [21], the quality of

sentence embeddings has considerably improved. These embeddings have been used to calculate

32

similarity scores, such as BERTScore [92], Sentence BERT [70] and BLEURT [76]. However, these

similarity scores have not been generalized to establish similarity between datasets.

It is important to distinguish between sample-level and dataset-level similarity measures. Similar

datasets do not necessarily have highly similar samples. For similarity between datasets, a more

reasonable criterion is to check whether elements of the datasets have similar support and density in

the space of samples. The similarity between samples would naturally be correlated to the metric in

this space. This criterion would sometimes find similar datasets without having similar samples, for

example, two datasets with uniform but sparse distribution over a large support. Establishing a

notion of similarity between two datasets are in distribution remains an open problem.

In this paper, we propose a novel similarity framework for datasets. It combines a graph structure

and statistical hypothesis testing, and makes no assumption on the feature space, like Euclidean

or isotropic. We provide theoretical justifications for why our metric provides a similarity measure

between datasets. We perform multiple experiments on various tasks and several standard NLP

datasets to show the sensitivity of our similarity metric to different modifications of datasets and

their usage. We also discuss further improvements that can be made to our proposed framework.

4.3. Related Work

Prior work in establishing similarity between datasets has addressed this problem from different

aspects. Traditional methods have relied on first or second order statistics for similarity measures.

Samples are first represented as embeddings and these embeddings are then used to calculate various

statistics to obtain their distance in Euclidean space. The main drawback of these methods is the

heavy reliance on assumptions of the underlying distributions. We study some of these methods in

the context of domain adaptation and provide those results in A.3.2 in Supplementary Material.

Another metric for similarity is Maximum Mean Discrepancy(MMD), which maximizes the

difference in expectation of a function over two distributions, where the function is also maximized

over a certain class of functions. More details of this metric can be found in [79,80]. Optimal

transport (OT) between two datasets has also been proposed as a similarity measure. This method

estimates the OT distance of the distribution of embedded datasets. Various approximation methods

33

of distributions, embedding algorithms and Wasserstein-type distances have been studied in this

space. More details of this line of work can be found in [2,18,25,61].

Recently, [1] proposed to use two separate metrics, Pα and Rβ , to understand how two distribu-

tions, especially their central areas, overlap with each other. The method trains an encoder to fit

one dataset so that its encoding, D1, falls into a sphere S1 with a pre-selected center c1. The same

encoder encodes the other dataset for its encoding D2 with calculated center c2 =
∑n2
i=1 x2i
n2

. Then, it

defines

Pα = P(x ∈ Sα1 |x ∈ D2), Rβ = P(x ∈ Sβ2 |x ∈ D1), IPα =

∫ 1

α=0
Pαdα, IRβ =

∫ 1

β=0
Rβdβ

Here Sα1 means the smallest sphere centered at c1 that covers at least α of D1, and Sβ2 is the smallest

sphere centered at c2 that covers at least β of D2. In their paper, D1 is a real dataset and D2 is a

generated dataset with a generator. These two metrics are used to evaluate the quality of generation.

That paper also developed a simple rule to distinguish between authentic and unauthentic generated

samples. For any generation x ∈ D2, find

xi∗ = argminx1i∈D1
||x1i − x||

xj∗ = argminxij∈D1/{x1i∗}||x1j − x1i∗ ||

Generation x will be classified as authentic if and only if ||x1i∗ − x1j∗ || < ||x− x1i∗ ||. However, some

implicit assumptions required to justify the methods may be violated in practice. The simple rule

used to examine the quality of generation is based on two contradicting assumptions. More details

of these contradicting assumptions are provided in Supplementary material A.3.3 and A.3.4.

4.4. Methodology

4.4.1. Graphbased Framework. We start with some basic notations. Define X as the space of

all possible samples of interest, or the feature space, which is not necessarily parametric. The first and

second dataset are denoted by D1 = {x11, x12, · · · , x1N1} ⊆ X and D2 = {x21, x22, · · · , x2N2} ⊆ X ,

respectively. Here N1 and N2 are the size of two datasets. In order to measure similarity, we need a

tractable similarity function s : (X × X) 7→ [0, 1] to measure the probability that two samples are

found similar. The function can also be an indicator function: s : (X × X) 7→ {0, 1}.
34

Next, define a graph G = (E ,V) where each vertex corresponds to a sample V = D1 ∪ D2. Note

that this is not a strict union of sets. There is one unique vertex for each of the samples that are

identical in D1 and D2. For any two vertices xi, xj , there will be an edge connecting them with

probability s(xi, xj). Therefore, E = {(xi, xj) | pij ≤ s(xi, xj), 1 ≤ i, j ≤ N1 +N2, pij
i.i.d.∼ U(0, 1)}.

We can now calculate the similarity score for two datasets based on the neighborhood for all

vertices with the following steps.

(1) For vertex xi, define the neighborhoods as vertices that are directly connected with it,

Nxi = {x|x ∈ V, (xi, x) ∈ E}, and further define n1 = |{x ∈ Nxi |x ∈ D1}| and n2 = |{x ∈

Nxi |x ∈ D2}|.

(2) Define p = P(x ∈ D1|x ∈ Nxi) and let p̂ = n1
n1+n2

be its estimate. Calculate the p-value for

the following hypothesis test for every vertex xi This will give us two sets of p-values for

two datasets: {p11, p12, · · · , p1N1} for D1 and {p21, p22, · · · , p2N2} for D2.

(4.1) H0 : p =
N1

N1 +N2
←→ H1 : p 6= N1

N1 +N2

The p-values can be calculated as follows

(4.2) p-value = P

(
|N (0, 1)| >

√
n1 + n2|p̂− p0|√
p0(1− p0)

)
, p0 =

N1

N1 +N2

However, when n1 +n2 is very large, p-value will be almost 0 with a small difference between

p̂ and p0. This property is harmful as it will give a zero similarity score to any two large

enough datasets. To prevent our method from being too sensitive, we set an upper bound c

for n1 + n2 and set c = 100 in simulation studies and experiments on real datasets. Now

the p-values are calculated as

(4.3) p-value = P

(
|N (0, 1)| >

√
min(c, n1 + n2)|p̂− p0|√

p0(1− p0)

)
, p0 =

N1

N1 +N2

Note that with Equation 4.3, it’s no longer a ‘p-value’, but we keep calling it p-value for

convenience. Clearly we cannot do any inference with these p-values. But it does not hurt

as we are not interested in the real p-values, or the conclusions of the hypothesis tests in

35

Equation 4.1. Our goal is to find a measure of the similarity of datasets and Equation 4.3

serves as a non-linear transformation that maps p̂ into [0, 1].

(3) Calculate average p-value, p̄1 and p̄2, for both datasets and calculate their harmonic average

as the final similarity score for these two datasets. We use harmonic average because two

datasets can be considered ‘similar’ only if both p̄1 and p̄2 are high.

(4.4) p̄1 =

∑N1
i=1 p1i

N1
, p̄2 =

∑N2
i=1 p2i

N2
, similarity score p̄ =

2
1
p̄1

+ 1
p̄2

4.4.2. Theoretical Guarantees.

Lemma 4.1. For hypothesis test in equation 4.1, under H0, the p-value distribution converges to

U(0, 1).

Lemma 4.2. For random variables X ∼ Binom(N, p) and Y ∼ Binom(M,p), X and Y are

independent. Further we define n = X + Y . Then for any fixed value of n we have

limN→+∞,M→+∞
P (X = k|X + Y = n)

b(k, n, N
M+N)

⇒ 1

Theorem 4.1. For any specific sample x ∈ X , build its neighborhood Nx as described in 4.4.1.

If for any sample x′ ∈ D1 ∪ D2, it has probability p of being in Nx, then for any fixed neighborhood

size, the expectation of p-value will converge to 0.5.

Corollary 4.1. With the same settings as in Theorem 4.1 and the probability no longer being a

constant but following a prior distribution F , i.e., P(x′ ∈ Nx|x′ ∈ D1 ∪ D2) ∼ F , the conclusion of

Theorem 4.1 still holds.

Theorem 4.1 states that for samples with a small neighborhood, its p-value will converge to

U(0, 1) and an expected value of 0.5 if the distributions of two datasets are the same. Besides, for

different samples in D1∪D2, they do not share a common probability p of becoming x’s neighborhood

but we can still apply Theorem 4.1. To better understand this, we can treat samples in D1 or D2 as

i.i.d. samples from two priors. Corollary 4.1 then explains why they still converge. Theorem 4.1 and

Corollary 4.1 together show convergence for n1 + n2 ≤ c. For large neighborhoods, we have

36

Theorem 4.2. For any specific sample x ∈ X , build its neighborhood Nx as described in 4.4.1,

if there exists ε0 ∈ (0, 1] s.t.N2
N1
∈ [ε0,

1
ε0

], we have n1
n1+n2

· N1p1+N2p2
N1p1

a.s.→ 1.

Like Theorem 4.1, Theorem 4.2 can also be generalized to priors.

Corollary 4.2. With the same settings as in Theorem 4.2, and p1 and p2 now distributed as

priors F1 and F2, respectively, the conclusion of Theorem 4.2 still holds. All we have to do is to

replace p1 and p2 with E[F1] and E[F2].

Theorem 4.3. For any sample x ∈ X , build its neighborhoods with the steps described in 4.4.1,

and calculate their p-values for the hypothesis test described in 4.4.1. If the two datasets D1 and D2

have a bounded size ratio and have the same distribution over X , then with large enough datasets

and a pre-selected similarity function s(x1, x2), all p-values will converge to 1 in probability.

All proofs are provided in A.3.1 in Supplementary Material.

Theorems 4.2 and 4.3 show that for large neighbors, p̂ = n1
n1+n2

will be arbitrarily close to
N1p1

N1p1+N2p2
. This value will further degenerate to the probability in our null hypothesis N1

N1+N2
when

D1 and D2 share the same distribution over X . Therefore, similar distributions of datasets will lead

to higher p-values, and thus a higher similarity score.

However, there is some randomness in our metric, as n1 and n2 are themselves random. Although

as our later experiments show that the variance is small, it does make two identical datasets have

a similarity score smaller than 1. This is not a limitation as it also reflects how confident we are

in saying that the two datasets are similar. While identical datasets may come from identical

distribution, they may also be produced by pure chance. When the number of samples is small, two

different distributions may have similar or even identical samples. This scenario is less likely as the

number of samples increases. This is the main difference between Theorem 4.1, and Theorems 4.2

and 4.3. Theorem 4.1 states that the p-value follows a uniform distribution when neighborhood size

is small. Theorems 4.2 and 4.3 establish that the p-value would converge to 1 for large neighbors.

It is also straightforward to circumvent this issue by replacing n1 and n2 with E[n1] and E[n2] in

equation 4.3.

The most important benefit is that our metric does not require any properties of feature space

X . Existing methods like [2] and [1] require some notion of ‘distance’ on the sample space, and

37

treat it as Euclidean space. We have found that this assumption may be unreliable (see A.3.3 in

Supplementary Material for more details). Our method, however, does not make any assumptions

of the sample space. We only require different distributions on X remain different after they are

mapped by s(x1, x2).

4.5. Detailed Explanation for Equation 4.3

4.5.1. What our adjustment does. The upper bound of n1 + n2 in equation 4.3 might look

unnatural and here we would explain what problems it can solve and how it is beneficial.

From Theorem 4.2 we know that p̂ = n1
n1+n2

can be arbitrarily close to N1p1
N1p1+N2p2

, where

p1 = P(x′ ∈ Nx|x′ ∈ D1) and p2 = P(x′ ∈ Nx|x′ ∈ D2). When two datasets do come from the same

distribution, we should have p1 = p2 whatever our choice of x is and the null hypothesis would also

be true as we always have

p = P(x′ ∈ D1|x′ ∈ Nx)

=
P(x′ ∈ D1, x

′ ∈ Nx)

P(x′ ∈ D1, x′ ∈ Nx) + P(x′ ∈ D2, x′ ∈ Nx)

=
P(x′ ∈ Nx|x′ ∈ D1)P(x′ ∈ D1)

P(x′ ∈ Nx|x′ ∈ D1)P(x′ ∈ D1) + P(x′ ∈ Nx|x′ ∈ D2)P(x′ ∈ D2)

=
p1 · N1

N1+N2

p1 · N1
N1+N2

+ p2 · N1
N2+N2

=
N1p1

N1p1 +N2p2

This value equals to N1
N1+N2

when p1 = p2

When two datasets come from the same distribution, p-value from equation 4.2 will approximately

follow N (0, 1) with large n1 and n2, and the variance of p̂, p0(1−p0)√
n1+n2

, decreases to almost 0.

But when two datasets come from different distributions, for at least some samples x ∈ D1 ∪ D2,

we will have p1 6= p2 and N1p1
N1p1+N2p2

6= N1
N1+N2

. Now with large n1 and n2, p-value from equation

4.2 will quickly degenerate to a point mass at 0 and become meaningless when comparing different

datasets. Furthermore, the similarity score will decrease as dataset size increases, which is not a

good property for a similarity metric as you can make two datasets less similar by simply increasing

their size.

38

With our modification in equation 4.3, once n1 + n2 > c, the similarity score only depends on p1

and p2, which is determined by the distribution of datasets. This modification makes the similarity

score change only when the distribution of datasets change and be robust to other irrelevant factors

such as number of samples in datasets. From simulation results, we can have a better understanding

of the effect.

4.5.2. Simulation. Another method to deal with vanishing p-values is to take log of p-values.

The log of the p-value was used to construct a grouped p-value for false discovery rate control

in sequential selection procedures in [31]. In simulation, we found the problem of log p-value is

underflow: when p-value lower than some threshold, we cannot find its exact value computational

and it will become 0. So we can still change the similarity value by only changing the dataset sizes.

In the following simulations, we will show how three methods behave under different situations.

4.5.2.1. Distribution of p-values. We first calculate similarity scores between several normal

distributions and the standard normal distribution. For each normal distribution N (µ, σ2), we

sample N samples from it, and then another N samples from N (0, 1) and calculate the similarity

score for these two datasets.

Results can be found from Figure 4.1 to 4.28. Three columns means different processing

of p-values. From left to right, ‘No Adjustment’ means the vanilla p-value from Equation

4.2, ‘With Adjustment’ means the p-values are from Equation 4.3, and Log-p-values if they

are log(p − value). You can also find them in the subcaptions as well. We calculated 7 pairs

similarity for each method. The distributions and size of datasets can be found in the

main captions. We can see that only with the adjustments in Equation 4.3, the distributions do

not degenerate to a point mass at 0. When use log p-values or without any adjustment, the bar on 0

is dominant for when two distributions are not close w.r.t KL divergence. . We use p̄ to represent

the similarity scores with no adjustment, p̄′ for similarity scores with adjustment, and log(p) for log

p-values. To avoid calculating log(0), we replace 0 p-values with 1e-20 in simulation.

4.5.2.2. Dataset Size’s Effect. Next, we visualize how similarity score changes for different KL

divergence as well as different dataset sizes. We still use the simulation process above and calculate

the similarity. In Figure 4.29 we can see that without the adjustment, similarity can change with

39

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.1. N (0, 1) and N (0, 1), N1 = N2 = 5000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.2. N (0, 1) and N (0.1, 1), N1 = N2 = 5000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.3. N (0, 1) and N (1, 1), N1 = N2 = 5000

40

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.4. N (0, 1) and N (2, 1), N1 = N2 = 5000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.5. N (0, 1) and N (0, 0.5), N1 = N2 = 5000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.6. N (0, 1) and N (0.5, 0.5), N1 = N2 = 5000

41

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.7. N (0, 1) and N (0.5, 2), N1 = N2 = 5000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.8. N (0, 1) and N (0, 1), N1 = N2 = 10000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.9. N (0, 1) and N (0.1, 1), N1 = N2 = 10000

42

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.10. N (0, 1) and N (1, 1), N1 = N2 = 10000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.11. N (0, 1) and N (2, 1), N1 = N2 = 10000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.12. N (0, 1) and N (0, 0.5), N1 = N2 = 10000

43

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.13. N (0, 1) and N (0.5, 0.5), N1 = N2 = 10000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.14. N (0, 1) and N (0.5, 2), N1 = N2 = 10000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.15. N (0, 1) and N (0, 1), N1 = N2 = 15000

44

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.16. N (0, 1) and N (0.1, 1), N1 = N2 = 15000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.17. N (0, 1) and N (1, 1), N1 = N2 = 15000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.18. N (0, 1) and N (2, 1), N1 = N2 = 15000

45

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.19. N (0, 1) and N (0, 0.5), N1 = N2 = 15000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.20. N (0, 1) and N (0.5, 0.5), N1 = N2 = 15000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.21. N (0, 1) and N (0.5, 2), N1 = N2 = 15000

46

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.22. N (0, 1) and N (0, 1), N1 = N2 = 20000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.23. N (0, 1) and N (0.1, 1), N1 = N2 = 20000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.24. N (0, 1) and N (1, 1), N1 = N2 = 20000

47

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.25. N (0, 1) and N (2, 1), N1 = N2 = 20000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.26. N (0, 1) and N (0, 0.5), N1 = N2 = 20000

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.27. N (0, 1) and N (0.5, 0.5), N1 = N2 = 20000

48

(a) No Adjustment (b) With Adjustment (c) Log p-value

Figure 4.28. N (0, 1) and N (0.5, 2), N1 = N2 = 20000

simply change the dataset sizes. And with the adjustment in Equation 4.3, it only changes when KL

Divergence changes, i.e. when the dataset’s distribution changes.

(a) No Adjustment (b) With Adjustment (c) log p-vlaues

Figure 4.29. Change of Similarity Scores w.r.t KL Divergence and Dataset sizes

4.5.3. Distribution of p̂. We are also interested in understanding empirically how the distribu-

tion of p̂ changes. Clearly the distribution are affected by both the distributions of two datasets being

compared, and the sizes of these two datasets. To study this, we randomly generate N1 = 10000

samples from N (0, 1) as D1 and generate D2 with three distributions: N (0, 1),N (0, 0.5) and N (1, 1).

We also test N2 = 10000 and N2 = 20000 for each of them. The results are in Figure 4.30.

49

(a) D2 ∼ N (0, 1), N2 = 10000 (b) D2 ∼ N (0, 0.5), N2 = 10000 (c) D2 ∼ N (1, 1), N2 = 10000

(d) D2 ∼ N (0, 1), N2 = 20000 (e) D2 ∼ N (0, 0.5), N2 = 20000 (f) D2 ∼ N (1, 1), N2 = 20000

Figure 4.30. Distribution of p̂

4.5.4. Other Possible Methods. As we have shown in Lemma 4.2 the conditional distribution

of n1 given n1+n2 is a hyper-geometric distribution. Actually, the data can fit into a 2×2 contingency

table like Table 4.1

Table 4.1. 2× 2 Contingency Table of Nxi

from D1 from D2

in Nxi n1 n2

not in Nxi N1 − n1 N2 − n2

And we should test if two columns are independent with fisher’s exact test, or we can use the χ2

test

If we use fisher’s exact test, there would be two problems: First, how to properly define the

other tail at the opposite direction and calculate the probability of it. Second, fisher’s exact test

will lead to an overall time complexity of O(n3), where O(n2) is required for all pairwise connection

50

probabilities and for each pair, the CDF of hypergeometric distribution takes O(n) in the worse

case (an extremely dense graph). On the other hand if we use χ2 test, we cannot guarantee it’s

assumptions are met, like a large sample size or a somehow balanced distribution over the four

blocks. So we choose not to take these routes.

4.6. Experiments

We conduct several experiments to show how metric captures similarity, its sensitivity to detect

small differences in datasets, and its applications in downstream tasks.

4.6.1. Datasets. We use several publicly available text datasets to study the performance of

our similarity framework. The datasets are:

Imdb Review dataset comprises 50000 reviews of movies from users of Imdb. Reviews are

labeled as positive and negative. The dataset is split into a training set and a test set, each containing

12500 positive reviews and 12500 negative reviews.

OpinRank dataset comprises reviews for cars and hotels. There are 41748 car reviews for 30

models and 254749 hotels reviews for 10 different cities.

SST5 dataset consists of 11855 movie reviews of five classes: very negative, negative, neutral,

positive, and very positive. The dataset also provides a train/dev/test split. A simplified version

of SST5 is SST2, which discards the neutral class and combines the other 4 classes into 2 classes:

positive and negative. SST2 has a total of 9613 reviews.

Airline Comments dataset comprises comments on airlines collected from Twitter, which is

available on Kaggle1. We discard its neutral comments, which leaves 2363 positive comments and

9178 negative ones.

Amazon Product Review dataset is collected by [54] with around 2000 reviews for each of

16 classes of products. This dataset is a subset of [5].

Noisy Imdb dataset is another version of Imdb Review dataset available on Kaggle 2. This

dataset is cleaned and tokenized by Kaggle and is therefore, slightly different from the original

dataset.

1https://www.kaggle.com/crowdflower/twitter-airline-sentiment
2https://www.kaggle.com/c/word2vec-nlp-tutorial

51

https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://www.kaggle.com/c/word2vec-nlp-tutorial

4.6.2. Our Choices of Sample-Level Similarity. As mentioned earlier, our framework

works for any similarity function s. We have used two different similarity functions to study the

effectiveness and robustness of our proposed framework.

• Embeddings: For each sample we get its BERT encoding on [CLS] token, with pretrained

BERT weights provided by huggingface [87]. We then define

s(xi, xj) =
u−max(min(d, u), l)

u− l
, d = ||xi − xj ||

Here u > l are pre-selected hyperparameters to make sure that different pairs have different

probabilities of similarity. In all our experiments, we use l = 5, u = 14.

• Local Sensitive Hashing (LSH): LSH first finds all n-grams from the dataset, and

randomly permutes them r · b times to generate integer codes with length r · b for each

sample. Then every r digits of code are used as hashing keys to create buckets. Samples

that share common buckets will be neighborhoods [48]. For LSH, we have

sn(xi, xj) = 1− (1− (jaccardn(xi, xj))
r)b

Here n denotes the corresponding n-gram and jaccardn(xi, xj) denotes the Jaccard similarity

between xi and xj . In the following experiments, unless specified, we use n = 2, r = 1, b =

150 for Imdb, use n = 2, r = 1, b = 50 for OpinRank and SST5.

• The hyper-parameters are chosen such that most sample pairs have a moderate (0.1 to

0.9) probability of being neighbors. This would help the final ratio and p-value to reflect

the difference. We manually verified the Jaccard similarity or L2 distance distribution for

several random samples against two datasets. It is observed in our experiments that the

distributions are always stable and it is straightforward to find suitable hyper-parameters.

Note that embedding-based method requires O(n2) time complexity to compute all pair-wise

distances. In contrast, LSH-based method only requiresO(n) by completing a single round of mapping

from samples to buckets. We have only used LSH-based similarity score in some experiments due to

this complexity. Besides, similarity scores based on different sample-level similarity functions are not

comparable.

52

4.6.3. Sensitivity.

4.6.3.1. Impact of Dataset Composition. We focus on hotel reviews of four cities: London, New

York, San Francisco and Las Vegas. We split the data into training and test set by randomly selecting

20000 reviews out of each city to create a test set with 80000 reviews. Table 4.2 shows the size of

the training set for the four cities.

Table 4.2. Training Set Composition

City London New York San Francisco Las Vegas
of Hotel Reviews 59349 35143 10401 6682

We randomly sample 10000 or 20000 reviews from the test set with specific proportions for

each city, and calculate its LSH similarity with the entire training set. Since different cities have

dissimilar distributions of reviews (See Figure 4.31a), the similarity between the sampled reviews and

reviews in the training set is mainly determined by the difference of their distributions over cities.

Similar distributions over cities will lead to higher similarity, and vice-versa. Figure 4.31b shows the

relationship between our similarity metric and KL divergence between distributions over cities. It

can be observed that our metric can capture changes in the dataset’s distribution. Similarity scores

are higher when the sampled set contains 10000 samples instead of 20000. As described earlier, a

smaller dataset leads to smaller neighborhoods, which, in turn, results in larger p-values, and thus a

larger similarity score.

4.6.3.2. Semantic Clustering. We study if our metric can find semantically similar datasets by

using the Imdb dataset. For notational convenience, we call the four subsets in Imdb as pos1, pos2,

neg1 and neg2, where ‘pos’ and ‘neg’ denote ‘positive’ and ‘negative’, and 1 and 2 denote training

and test set, respectively. We calculate all pair-wise similarity scores for four subsets with different

sample-level similarity scores. Results in Figure 4.32 show that our metric consistently gives a higher

similarity score to subsets with similar semantic meaning. The increased similarity between positive

subsets and negative subsets are due to the small size of neighborhoods as the graph gets sparse.

4.6.3.3. Metric Behavior under Noisy Datasets. Next, we check if our metric is sensitive to

small noise in datasets. In order to do so, we create a noisy dataset and check its similarity with

the original dataset. We randomly drop words in Imdb dataset, randomly mask out tokens and

replace them with BERT or Condition-BERT [89] (CBERT) in SST5. For the Imdb dataset, we

53

(a) Heatmap of Similarity among Cities (b) KL Divergence and Similarity Score

Figure 4.31. Metric behavior as dataset composition changes. Left: Reviews for
different cities are not similar. Right: Relationship between similarity score and KL
divergence.

Figure 4.32. Heatmaps for subsets pair-wise similarity scores. From left to right:
LSH-based, (n, r, b) = (2, 1, 150), LSH-based, (n, r, b) = (2, 2, 150), LSH-based,
(n, r, b) = (3, 1, 150), embedding-based

test with various values of p, the probability with which words are dropped. We randomly drop

words from sentences in the test set’s positive subset and calculate its similarity with the training

set’s positive subset. For each probability, we conduct 10 independent runs and in each run, every

word will independently be dropped with probability p. For SST5 dataset, we start with the original

dataset, tokenize it, randomly mask out one token from each sentence and predict the token with the

prediction model. This tokenize, random mask, predict loop is repeated 100 times for each model.

The dataset becomes more and more noisy with every iteration. We tested top-1, top-5, top-10 and

54

top-20 sampling strategies to create a total of 800 noisy SST5 datasets. CBERT model is fine-tuned

for 20 epochs with default hyper-parameters from the author’s code3.

(a) LSH n = 2, r = 1, b = 150 (b) LSH n = 3, r = 1, b = 150 (c) LSH n = 4, r = 1, b = 150

Figure 4.33. Log LSH similarity for Noisy Imdb Datasets. Similarity is calculated
between the subsets of noisy test set positives and original training set positives.

(a) LSH n = 2, r = 1, b = 50 (b) Embedding-based

Figure 4.34. Similarity for Noisy SST5 Datasets. (a) LSH-based similarity score.
(b) Embedding-based similarity score. Similarity is calculated between the noisy
dataset and the original dataset.

Figures 4.33 and 4.34 show that our metric is sensitive to small noise in data. When p reaches

0.1, or ten rounds after BERT or CBERT replacement, the similarity scores have a clear decrease

as the dataset becomes more and more noisy. Our metric can also detect the difference between

BERT and CBERT by finding CBERT more similar with the original dataset. Besides, different

sampling methods matter in case of CBERT only. This makes sense as CBERT is fine-tuned with

both context and label to predict masked tokens more accurately.

3https://github.com/1024er/cbert_aug

55

https://github.com/1024er/cbert_aug

One interesting observation from Figure 4.34 is that embedding-based similarity score detects a

significant difference between BERT and CBERT. However, LSH-based similarity score does not

detect such a difference. This is because of decreasing neighborhood sizes in the process of LSH. In

Figure 4.35, we can see that the 2.5%, 5%, 10% and 20% percentiles of neighborhood sizes decreases

by 2 to 3 times for in case of BERT but does not happen for CBERT. Smaller neighborhood sizes

lead to larger p-values and ultimately makes BERT and CBERT performance similar.

(a) 2.5% percentile (b) 5% percentile (c) 10% percentile (d) 20% percentile

Figure 4.35. Change of Different Percentiles of Neighborhood Size: How the 2.5%,
5%, 10% and 20% quantile of neighborhood size changes as round of compromise
increases. All have a huge decrease, suggesting they are likely to create large p-values.
Y-axis values are not shared among figures.

4.6.4. Applications : Domain Adaptation Performance. Absence of rich labeled data is

a common challenge faced by many downstream machine learning applications. A popular solution

is domain adaptation where a model pre-trained on a much larger dataset in one domain is then

adapted to a desired domain. One application of our similarity metric is in domain adaptation.

We argue that similarity between two datasets could work as a good indicator of how suitable the

pre-trained model in source domain is for the target domain.

To justify this idea, we test all pairs of domain adaptation for dataset Imdb Review, SST2,

Ariline Comments, Amazon Product Review and Noisy Imdb. All these datasets have two

labels: positive and negative. For each dataset, we obtain their embeddings on [CLS] token with a

pre-trained BERT model, and then train a two-layer fully connected network on the top of it with

ReLU activation. We train the classifier for 5 epochs (except for Airline Comments, where we only

trained 1 epoch) with a learning rate 0.001 and directly test the pre-trained model on all datasets for

evaluation, with and without fine-tuning. When fine-tuned, we randomly sample 1024 reviews from

56

the target domain and fine-tune with batch size 32, learning rate 0.001 for 3 epochs. All experiments

are done with 10 different seeds.

To evaluate how the performance of domain adaptation, we analyze the loss in accuracy when

compared with directly training on target domain.

(4.5) T (DS → DT) = 100× accucary(DT)− accuracy(DS → DT)

accuracy(DT)

where DS is the source domain on which the model is trained, DT is the target domain for which

the model is to be tested, and accuracy (DT) is calculated as accuracy(DT → DT). The benefit of

this metric is that it can separate the difficulty of learning each task.

(a) Ours p̄1, r =
−0.784, ρ = −0.805

(b) Ours p̄, r =
−0.685, ρ = −0.615

(c) IPα in [1], r =
−0.301, ρ = −0.359

(d) OTDD in [2], r =
0.666, ρ = 0.634

Figure 4.36. Drop in accuracy with finetuning. Orange dots are mean values and
error bars are obtained through 10 runs. Solid line is the fitted regression line with
95% confidence interval.

We compare our methods with the recent methods in [1,2], and check if methods have strong

rank correlations (i.e. Spearman’s correlation) with the model performance. In Figure 4.36, it can be

observed that while all methods except for IPα exhibit a strong correlation between the adaptation

performance and the respective metric, our metric is clearly more closely correlated.

We also compared with more distance metrics and full results are available in Supplementary

Material A.3.2. We have three interesting findings: (1) Without fine-tuning, the separation defined

in Linear Fisher Discriminant is the best and our metrics p̄ closely follows. (2) With fine-tuning,

another metric of ours, p̄1, the average p-value for the source domain, outperforms all others by a

large margin. (3) Traditional methods work well practically.

However, there is a subtle clarification here. Although our experiment results show a strong

correlation between similarity and adaptation performance, effective domain adaptation does not

57

only require very similar datasets over sample space X . It also requires that the relationship between

samples and labels, p(y|x) remains similar. If machine learning training methodology could deal

with long-tail distribution and edge cases well, we would only need the support of DS to cover the

support of DT for effective domain adaptation between source and target domains.

4.7. Discussion

The aforementioned experiments help to establish that our metric provides a similarity measure

to compare datasets from different aspects. In the discussion below, we briefly point out the future

directions to further improve this framework.

Independence Analysis. For all theoretical properties, we assume that the edges are totally

independent. However, this might not be the case. LSH is one situation where the edges are

correlated. Measuring the quantitative influence of this correlation is essential for more reliable

similarity scores.

Efficiency. In our experiments, embedding based similarity between two 10K-ish datasets with

768-dimension embedding takes around 1 hour and similarity between two 25K datasets takes over 4

hours for each run. LSH methods include more randomness than necessary to increase speed. A

faster processing method without introducing too much randomness will be desirable.

Difference between p̄1 and p̄2. In our experiments, p̄1 and p̄2 can be quite different. We also

found p̄1 is closely related to domain transfer performance but p̄2 does not. A deeper understanding

of these one-side average p-values should provide us a better understanding of complex datasets.

Sparse Connections. As shown in Section 4.6.3.3, a relatively small neighborhood size leads

to a larger p-value. This will make the framework less sensitive when datasets are sparse or dealing

with outliers. Handling this situation remains an open question.

Label Similarity. In this paper, we only focus on the similarity in feature space but not on the

labels. Extending this framework to include the labels is a promising direction of future research. [2]

directly takes the distance between labels as an additional composition of the total distance but this

cannot be simply applied here if we don’t assume that the space is Euclidean.

58

Sample Level Inference. [1] proposed a method to check authentic generations versus unau-

thentic ones, but we found it neither theoretically sound nor accurate in practice (see Supplementary

Material A.3.4). This direction is also crucial for a deeper understanding of generative models.

4.8. Conclusion

In this paper, we have proposed a novel dataset-level similarity score framework. This framework

is based on a graph structure and statistical hypothesis testing, and can work with any sample-level

similarity score. We only require a sample-level similarity score that is appropriately defined for

the data, model or task at hand. This makes our framework very flexible to establish similarity

between datasets. We provide theoretical guarantees to explain why the framework would work in

practice. Empirical experiments on several publicly available datasets and common NLP tasks show

the effectiveness and sensitivity of our metric to changes in data. Since this is the first step toward

establishing a dataset-level similarity framework, there remain some open questions and potential

improvements. We point out those questions as directions for future research.

59

CHAPTER 5

COVID-19 Prediction Efforts at Health Davis Together

5.1. Abstract

COVID-19 has changed people’s lives from almost every aspect. To stop the spread of COVID-19

and save people’s lives, governments have put tremendous effect into fighting against the pandemic.

In order to most efficiently stop the spread of this virus, we must have a deeper understanding of its

pattern. For this purpose, researches in Healthy Davis Together project are collaborating on several

studies to make sure the restrictions are effective and people are getting protected. In this paper, we

describe the engineering efforts, including model evaluation framework, data preprocessing details,

mobility variable design, and also connecting different systems for comprehensive data analysis.

5.2. Introduction

Since the outbreak of COVID-19, or SARS-CoV-2, in Jan 2020, the way people live has been

changed. In order to stop the further spread of the virus and get people’s live back to normal,

governments around the word are taking actions, such as face mask orders, shutting down of business

and schools and vaccines. To better react to this pandemic and save more people’s lives, a deeper

understanding of COVID’s pattern and effect of different restrictions is needed.

For this purpose, we have Healthy Davis Together (HDT), A joint project between the City of

Davis and UC Davis with a goal to prevent the spread of COVID-19 and facilitate a coordinated

and gradual return to regular city activities and reintegration of UC Davis students back into the

Davis community. As a member of the forecasting team, I worked with other excellent people in the

group and tried to understand more of COVID-19 through various methods. My involvement in

HDT project can be grouped into mainly three parts. A back-testing framework to fast iterate and

evaluate predictive models, constructed a mobility variable to facilitate other aspects of research,

and also connected wastewater data with HDT testing data.

60

5.3. Back-testing Framework

A predictive model of daily increase in infection or death is most likely to provide us with a

better understanding of how the virus develops, spreads and how we should stop it. It’s natural to

model the infection or death count as a time series. To find the most suitable model, or understand

how different models are performing in a given period of time, a framework that can easily choose

model, time range, geographical range, data source and evaluation metric is needed.

5.3.1. Overview. To evaluate a predictive model within a given time period, the best practice

is to choose multiple train/test split and conduct the train test loop multiple times to get an estimate

of prediction accuracy with less noise and randomness. Besides, there are also some noise and

periodicity in the reported data, some smoothing and pooling may also be helpful. To build a

framework that support light code testing and the required flexibility, the Algorithm 5 is designed:

Algorithm 5: Initial Back-testing Framework
Result: Back-testing Framework for Predictive Models

1 Input modelM, start date t1, end date t2, smoothing interval ∆t, minimum required
training data tmin, maximum prediction length L, data D = {X ,Y} between t1 and t2,
evaluation metric s(y, ŷ)

2 Calculate total available number splits N = b t2−t1∆t c − 1

3 for i from 0 to N-1 do
4 Smooth data from date tstart = t2 − (i+ 1) ·∆t to date tend = t2 − i ·∆t, and obtain

smoothed training signals XN−i and prediction target yN−i
5 end
6 for i from tmin to N do
7 Train modelM with X1:i, y1:i;
8 Make predictions for up to next L steps, ŷi+1:min(i+L,N);
9 Calculate evaluation scores vi,1:min(L,N−i) = s(yi+1:min(i+L,N), ŷi+1:min(i+L,N));

10 end
11 for i from 1 to L do
12 Calculate average evaluation score v̄i = v̄·,i
13 end

5.3.2. Data Source. The framework mainly uses the data available from Delphi’s covidcast

API 1. Supported sources includes jhu-csse, usa-facts and indicator-combination . Both confirmed

cases and death cases are supported as prediction target. Note that these data sources usually have

1https://cmu-delphi.github.io/delphi-epidata/api/covidcast.html

61

https://cmu-delphi.github.io/delphi-epidata/api/covidcast.html

3 to 21 days behind actual date, depending on the choice of state. The framework will automatically

adjust t2 according to the detected delay.

Besides, each date’s data will also be updated after the first time it’s released as there are

corrections. Here we call this factor ‘as-of date’, meaning which date’s version of data we choose

to use. One feature of COVID-19 indicators is that there will be back corrections and records in

the past may change after its first release. To best simulate what would happen when we apply a

trained predictive model, we adjust the way to obtain training and testing data in evaluation. For

both and training and testing data, we choose the earliest as-of dates when the data is available to

us. For example, if the training data is from April 1st to May 1st, and testing data is from May 2nd

to May 11th and the delay is 3 days, then training data’s as-of date will be May 4th (3 days after

May 1st) and testing data’s as-of date will be May 14th (3 days after May 11th). This inevitably

will change the back-testing framework slightly: the training data D = {X ,Y} will no longer be

provided in the beginning, but queried for each train test split separately. The modified back-testing

framework is in Algorithm 6

Algorithm 6: Modified Back-testing Framework
Result: Back-testing Framework for Predictive Models

1 Input modelM, start date t1, end date t2, smoothing interval ∆t, minimum required
training data tmin, maximum prediction length L, evaluation metric s(y, ŷ)

2 Calculate total available number splits N = b t2−t1∆t c − 1

3 for i from 0 to N-1 do
4 Find training start time tstart = t2 − (i+ 1) ·∆t, training end time tend = t2 − i ·∆t and

prediction end time t0 = min(t2, t2 + (L− i) ·∆) Get correct as-of dates for tend and t0,
note as t′end and t′0;

5 Query data from t1 to tend with as-of date t′end, smooth date between tstart and tend for
training data Xi,train, yi,train;

6 Query data from tend + 1 to t0 with as of date t′0, smooth them for testing data yi,test;
7 Train modelM with Xi,train, yi,train;
8 Make predictions for up to next L steps, ŷi,pred;
9 Calculate evaluation scores vi,1:min(L,N−i) = s(yi,test, ŷi,pred);

10 end
11 for i from 1 to L do
12 Calculate average evaluation score v̄i = v̄·,i
13 end

62

5.3.3. Data Imputation. We also realized that data from all sources suffers from the same

problem: missing data for many dates without a clear pattern. Our understanding is that for some

states or counties, the data is not reported or updated for those dates. If the missing appears in

training data, we impute them with B-spline [65] implemented by Scipy [86].

5.3.4. Predictive Models. We applied two models to predict the daily death counts. The

first model is called Armadillo, proposed in [7], which relies on a mobility variable and historical

death counts. The Armadillo model predicts death counts as a proportion of the infection rates with

a known delay distribution, while the infection rates follow a discretized epidemic renewal equation

with the effective reproduction number depending on mobility variables. The second model is called

ARLIC model, which is developed by another member, Stephen Sheng. The model relies on a leading

indicator L, a delay distribution D and the historical death counts C. The model is trained with

the following steps:

(1) Deconvolve leading indicator L with delay distribution D, obtain L̃.

(2) Fit an AR kernel fL on L̃, fitted values for L̃ is L̂

(3) Fit another AR kernel fC , which first calculates It with L̂, then convolve It with D for the

estimate of death counts Ĉ. This kernel is trained to minimize the difference between C

and Ĉ

(4) When trying to predict future daily death counts, the model first predict future L̂, then

obtain It and calculate Ĉ with convolution between It and D

5.3.5. Evaluation Metrics. We apply two evaluation metrics for understanding the perfor-

mance of trained models. Mean Absolute Error (MAE) and Wasserstein-1 distance (W1). Imple-

mentation of MAE is straightforward so we skip the details here. Since W1 is a distance between

distribution CDFs, it takes relative weights instead of absolute counts. A naive implementation

of W1 will ignore the prediction error in total death counts but only capture the relative death

counts. Our implementation adds a ‘fake’ last day into both real death counts and prediction to

balance the total death counts. Denote y1:t as real death counts and ŷ1:t is our prediction, define

δ =
∑
y1:t −

∑
ŷ1:t. We define

y′ = concatenate(y1:t,max(0,−δ)), ŷ′ = concatenate(y1:t,max(0, δ))

63

This would balance the sum of y′ and ŷ′

5.4. Mobility Variable

While testing our models with the back-testing framework, we found Armadillo model performs

consistently worse than ARLIC model. We realized Armadillo model heavily relies on the quality of

mobility variable and the mobility variables we can obtain from Delphi’s API are too noisy with not

enough information. To discover the full potential of Armadillo model, as well as to fuel other aspects

of studies, such as the change in people’s mobility pattern, the influence of different restriction

orders, we decided to construct our own mobility variable with SafeGraph data 2.

5.4.1. Overview. Our goal is to construct an interpretable Census Block Group (CBG) level

mobility variable. Ideal mobility variable should be proportional to the potential infection risk at

that CBG for a given time period. One existing work [11] checks the visits from different CBGs to

Points Of Interests (POI). It assumes when infected people visits POIs, it will interact with and

potentially infect susceptible people in the CBG where that POI is located. And the new infection

rate would be proportional to the expected number of infected people visiting a certain CBG at the

same time. They model the new infection as a Poisson process whose rate is calculated based on the

assumption.

Our mobility variable made an extra assumption and a simplified fitting procedure. We assume

that new infection happens not only because infected people visits other CBGs, but they meet other

susceptible people in the POIs they are visiting. So the new infections can happen not only in the

CBGs where that POIs are located but also other CBGs whose susceptible people are visiting the

same POIs as the infected people.

With this basic assumption, we analyse and construct our own mobility variable.

5.4.2. Notations. Table 5.1 summarizes the symbols we use to construct the mobility variable.

5.4.3. Sources of Infection. Now we can formularize the sources of new infections. The

basic idea is when infected people visit a POI, healthy, susceptible people in the same POI have a

2https://www.safegraph.com/

64

https://www.safegraph.com/

Table 5.1. Symbols

Symbol Meaning
ci CBG with index i
pj POI number j
Iij indicator of POI pj being in CBG ci
Ni Population size of ci
ri Proportion of population infected in ci
Wijt number of visitors who live in ci and visit POI pj at time t
τjt infection transfer coefficient for POI pj at time t
λit infection transfer coefficient for CBG ci at time t

probability of being infected, depending on how many infected people are there in the same POI at

the same time. The expectation of new infections should be proportional to three values: susceptible

population size, infected population size and the infection transfer coefficient. So the new infection

at time t for each CBG ci should be:

(5.1) λit
∑
i′

∑
j

Iij ·Wi′jt · ri′(1− ri) ·Ni

and

(5.2)
∑
j

τjt
∑
i′

WijtWi′jtri′(1− ri)

Equation 5.1 means the contribution of infected people visited CBG ci and Equation 5.2 means

the contribution of healthy people of CBG ci get infected while visiting other POIs.

5.4.4. Time Resolution. The Poisson process in [11] is estimated hourly. Visits data from

SafeGraph is on a weekly level. To estimate the mobility variable on hourly level, they fit the

required unknown parameters through a procedure called iterative proportional fitting procedure

(IPFP). This procedure, as they mentioned in their paper, may not guarantee convergence as there

are two marginal distributions to fit.

To avoid the complexity and the potential failure of the fitting procedure, we choose to use a

lower resolution, which is day, instead of hour. We do this not only to avoid the potential failure of

IPFP but also because we found that the number of devices tracked by SafeGraph is significantly

65

changing from day to day, suggesting that the visit data is noisy by nature. So a simpler but robust

model should be more reliable.

5.4.5. Estimate of Wijt. We only have Wijt on a weekly basis and we would like to estimate

the values on a daily basis. Since there is noise in the SafeGraph data, we deployed a Bayesian

model and use that to smooth the effect of observation noise. Note the distribution of visitors to a

POI in a week is a joint distribution F over CBGs and 7 days of a week. We further assume

F = Fday · FCBG

that is the distribution over CBGs and weekdays are independent. Now we only need to estimate

the prior of Fday and FCBG. For convenience, as the observation follows a multinomial distribution,

we choose the prior as its conjugate prior, Dirichlet distribution. Here we explain how we estimate

the prior for Fday in details.

Assume the prior is

Dir(α1, α2, · · · , α7)

with observation n1, n2, · · · , n7, the marginal distribution is

L(n1, n2, · · · , n7) =

∫
∑7
i=1 pi=1,pi≥0

Γ(
∑7

i=1 αi)∏7
i=1 Γ(αi)

7∏
i=1

pαi−1
i · n!

n1!n2! · · ·n7!

7∏
i=1

pnii dp1dp2 · · · dp7

=
n!

n1!n2! · · ·n7!

Γ(
∑7

i=1 αi)∏7
i=1 Γ(αi)

∫
∑7
i=1 pi=1,pi≥0

7∏
i=1

pαi+ni−1
i

=
n!

n1!n2! · · ·n7!

Γ(
∑7

i=1 αi)∏7
i=1 Γ(αi)

·
∏7
i=1 Γ(αi + ni)

Γ(n+
∑7

i=1 αi)

=
n!Γ(

∑7
i=1 αi)

Γ(n+
∑7

i=1 αi)
·

7∏
i=1

Γ(αi + ni)

ni!Γ(αi)

=

n∏
k=1

k

k − 1 +
∑7

i=1 αi
·

7∏
i=1

ni∏
k=1

αi + k − 1

k

l(n1, n2, · · · , n7) = logL(n1, n2, · · · , n7)

=
n∑
k=1

log(k)− log(k − 1 +
7∑
i=1

αi) +
7∑
i=1

ni∑
k=1

log(αi + k − 1)− log(k)

66

All we have to do is to maximize the log-likelihood for all observations. This is done in the

gradient ascent fashion. We also choose only to estimate the priors for a POI only if it has appeared

at least 3 times in the dataset to avoid naive overfitting. For all POIs that have no more than 2

records, they share a common prior distribution.

When doing inference, we count the total number of visitors to each POI for a given week, and

re-distribute them to all CBGs and 7 days of that week. This procedure will create non-integer

number of visitors but we don’t think this is a problem as long as the values get closer to the true

distribution of visitors. Our ultimate goal is only to create a mobility variable proportional to the

increase of infection.

5.4.6. Estimate Other Parameters. For all the parameters required in equation 5.1 and 5.2,

Ni is directly available from SafeGraph data, ri can be estimated with a given model, like SEIR, or

other available sources. In our case, as we have the saliva test results from HDT3 so we estimate ri

for all CBGs in Yolo County. As for τjt and λit, we optimize them to maximize the cosine correlation

of our mobility variable and the daily new infected cases.

Another factor that would clear affect the value of λit and τjt is the real-time condition of those

POIs, such as the density of visitors in that POI and how long they stay for average. These factors

are also considered in [11]. The density can be obtained by the number of visitors divided by the

area of POI and we choose the median time people stay in the POI in that week.

5.4.7. Empirical Comparison. For comparison, we choose the rate of Poisson distribution

in [11] as baseline mobility variable. We tune the order of area of POI, the order of people’s median

stay time to see how two mobility variables behave. Further more, as the number of POIs is too

large, we simplify τjt = τt for all POIs.

As for λit, we use experiments to check if they can also be simplified to a common value among

different CBGs, λt. We use cosine similarity of mobility variable and new infection counts in a given

range of days to evaluate the quality of mobility variable. The cosine similarity is calculated for

each CBG separately. Testing data is from Nov 18th, 2020 to March 6th, 2021 within Davis (CBGs

start with ‘06113’). Empirical results are available in Figure 5.1. We call the results ‘overall cosine’

when we do not distinguish λits and ‘row wise cosine’ when we do. Results show the impact of order

3https://healthydavistogether.org/testing/

67

https://healthydavistogether.org/testing/

of POI area and time of people’s stay, as well as the necessity of distinguishing transfer coefficient

for different CBGs.

5.5. Wastewater Processing

One concern of using HDT’s saliva test result is that people who suspect of being infected will

be more likely to get tested, especially for CBGs that are distant to the main campus area. To have

a better understanding of this potential positive bias, and also a more accurate estimate of infection

severity of different areas, we decide to combine wastewater data. People try to estimate the density

of two specific genes of COVID-19 virus from wastewater. However, we only know the connection

map and the collection point locations, so a convenient tool for each analysis is needed. In this

section, the process of data cleaning, analysing and processing is described.

There is another potential benefit from wastewater analysis. We know that people react differently

after infected by the virus: some has no symptoms at all, some behaves like catching usually cold,

while some quickly find it hard to breath. It’s also possible that different people will spread different

amount of the virus. So only the number of infected patients may not be enough to describe the

potential risk in an area. Wastewater can help by viral shedding in fecal matter.

5.5.1. Build Connection Graph. Raw data mainly consists of two parts:

• A table of maintenance hole information, including names and coordinates. And

• A table of pipes connecting maintenance holes, including names of starting and ending

maintenance hole, with coordinates for all points along the road.

Looking into the two tables, we realized that the naming system in two tables is not exactly the same,

but maintenance holes that share the same name will always share the same coordinates. So we

decide to use coordinates as identifier for different maintenance holes. With coordinates as identifier,

we build a directed graph with pipes’ information in the second table. After investigation, only the

initial and last pair of coordinates, which correspond to the starting and ending maintenance holes,

are meaningful. All coordinates in the middle are only used to guide the direction but does not

correspond to any existing maintenance holes and pipes sharing same middle points do not intersect

at all. With all these clarified, the directed graph that comprises pipes connecting maintenance holes

becomes acyclic.

68

Figure 5.1. Comparsion of different mobility variables. Left column is the boxplot
for two mobility models, middle column compares different choices of the order of t,
right column compares different choices of the order of area of POIs. The first two
rows simplify λit = λ for all CBGs and the last two rows do not. Clearly, we can see
that after optimizing the infection transfer coefficient for each CBG independently,
our mobility variable improved significantly and gets better than the baseline method.

69

5.5.2. Find Upstream/Downstream. The upstream of a maintenance hole is the sources of

wastewater collected of the maintenance hole, and the downstream of a maintenance hole is where

you can collect it. Finding upstream/downstream is not difficult given the graph we have built.

To help people better understand the system, we created a visualization tool, which takes in the

coordinate of a point, and visualize the upstream or downstream of the maintenance hole that is

closest to the given coordinate. See Figure 5.2 and 5.3 as examples. We also checked the upstream

for all collection points. Collection points are maintenance holes from where wastewater samples are

collected. See Figure A.5a to A.7j in Appendix A.4

Figure 5.2. Upstream for a maintenance hole

Figure 5.3. Downstream for a maintenance hole

70

5.5.3. Analysis of Wastewater Composition. From the visualization of collection points,

it’s clear that different collection points cover different sizes of areas and these areas are overlapping.

So it is important to understand the composition of wastewater at each collection point quantitatively.

To do this analysis, we need to know

• How wastewater from confirmed cases are collected

• How wastewater from healtht people are collected

Now we assume that each person, healthy or not, produces the same among of wastewater per

day and we call this amount a ‘unit’. The same procedure can answer the two questions above: first

determine how many units of wastewater go into the system through each maintenance hole, then

pass the number of units of wastewater from upstream maintenance holes to downstream ones. If

a certain maintenance hole can go to downstream maintenance holes through multiple pipes, the

wastewater is evenly split to each of the pipes. Further more, we track not only the total amount of

wastewater but also each census block’s contribution. We choose to monitor census blocks because

for test results from HDT saliva test, each testee’s living census block is the best geo resolution we

have.

We also detected some potential problems with the current collecting system. For most census

blocks, a single collection point can fully collect their wastewater, or two separate collection points.

But there are also census blocks that are only partially collected by the current collection system.

5.5.4. Applications. With this system connecting the saliva test results and wastewater test

results on different geo resolutions, we can now use regression methods to analysis the relationship

between infection rates and potential infection dangers and perhaps other factors for a clearer picture

of the infection in different neighbors at Davis.

5.6. Summary

COVID-19 hit us unprepared. In the journey to understand its spread pattern, to find effective

prevention strategies, and to evaluate how ready we are prepared, we explored multiple resources for

comprehensive and detailed data, employed various models to understand what’s happening around

us, and built systems from scratch to facilitate different area of researches. Now we are almost in

the fully reopen stage but the researches should still continue. A better understanding is in need to

71

make sure we have taken enough actions to protect people from the virus, and also prepare us for

potentially another hit from other kinds of virus. We hope this analysis will show people possible

directions for further studies, and the tools we build make it easier for accessing necessary data.

72

APPENDIX A

Appendix

A.1. Appendix for Chapter 2

A.1.1. Proofs.

Theorem A.1. Consider a MCTS with only one layer. If we now have k choices with expected

values v1, v2, · · · , vk. W.l.o.g we can assume v1 ≥ v2 ≥ · · · ≥ vk. their variances areσ2
1, σ

2
2, · · · , σ2

k.

σ2
i ≤M ∀i. Set d = v1 − v2. Probability is estimated by a mini-batch with size b. The constant we

use is cpuct.We make the decision if the test time of a choice is more than t. Then the probability

that we can choose the best choice is approximately lower bounded by
1− (k − 1)texp(− bd2t

4M) if
√
t <

cpuct
d

1− (k − 1)texp(− bd2t
16M) if

cpuct
d ≤

√
t ≤ 2cpuct

d

1− (k − 1)texp(− bcpuctd
√
t

4M) if
√
t >

2cpuct
d

To prove this theorem we need to use the following lemma.

Lemma A.1. If X ∼ N(µ, σ2), then we have

P (X − µ ≥ t) ≤ e−
t2

2σ2 ∀ t ≥ 0

Proof. For any random variable X, E[X] = µ, we can define another random variable Y =

eλ(X−µ). By Markov’s inequality we have

P (X − µ ≥ t) = P (eλ(X−µ) ≥ eλt) ≤ E(eλ(X−µ))

eλt

When X ∼ N(µ, σ2), the moment generating function is

E[eλX] = eµλ+σ2λ2

2 , ∀ λ
73

And we have

P (X − µ ≥ t) ≤ E(eλ(X−µ))

eλt
=
e
σ2λ2

2

eλt
= e

σ2λ2

2
−λt

When λ = t
σ2 the right side get its minimum. We have

P (X − µ ≥ t) ≤ e−
t2

2σ2 ∀ t ≥ 0

�

Now we can prove the theorem

Proof. We use N1, N2, ...Nk to represent the tested time of each choice when the decision is

going to be made. v̂1, v̂2...v̂k are the estimated values. Consider the probability that the ith choice is

the one we finally pick. If we want to pick the ith choice we need

Ni = t, i = argmaxav̂a + cpuct

√∑
Nj

Na + 1

So

P (Choose the ith choice)

≤ P (v̂i + cpuct

√∑
Nj

Ni + 1
> v̂1 + cpuct

√∑
Nj

N1 + 1
|Ni = t,N1 ≤ t)

=
t∑

n=1

P (v̂i + cpuct

√∑
Nj

Ni + 1
> v̂1 + cpuct

√∑
Nj

N1 + 1
|Ni = t,N1 = n)P (N1 = n|Ni = t,N1 ≤ t)

≤ t×max
n

P (v̂i + cpuct

√∑
Nj

Ni + 1
> v̂1 + cpuct

√∑
Nj

N1 + 1
|Ni = t,N1 = n)

Notice that the t comes from
∑

n = 1t. If we know the lower bound of Nn, which is mcpuct,k,t

mentioned before, t can be replaced by t−mcpuct,k,t.

74

And for any n ≤ t we have

P (v̂i + cpuct

√∑
Nj

Ni + 1
> v̂1 + cpuct

√∑
Nj

N1 + 1
|Ni = t,N1 = n)

= P (v̂i − v̂1 > cpuct

√∑
j

Nj
t− n

(t+ 1)(n+ 1)
|Ni = t,N1 = n)

= P (v̂i − v̂1 + v1 − vi > cpuct

√∑
j

Nj
t− n

(t+ 1)(n+ 1)
+ v1 − vi|Ni = t,N1 = n)

Remember that

v̂i − v̂1 + v1 − vi|Ni = t,N1 = n ∼ N(0,
σ2

1

nb
+
σ2
i

tb
)

Apply the lemma we have

P (v̂i + cpuct

√∑
Nj

Ni + 1
> v̂1 + cpuct

√∑
Nj

N1 + 1
|Ni = t,N1 = n)

≤ exp(−1

2

c2
puct(

∑
j Nj)

(t−n)2

(n+1)2(t+1)2
+ (v1 − vi)2 + 2cpuct

√∑
j Nj

t−n
(n+1)(t+1)(v1 − vi)

σ2
1
nb +

σ2
i
tb

)

Consider the exponent and remember σ2
1 ≤M,σ2

i ≤M

−1

2

c2
puct(

∑
j Nj)

(t−n)2

(n+1)2(t+1)2
+ (v1 − vi)2 + 2cpuct

√∑
j Nj

t−n
(n+1)(t+1)(v1 − vi)

σ2
1
nb +

σ2
i
tb

≤ −1

2

c2
puct(

∑
j Nj)

(t−n)2

(n+1)2(t+1)2
+ (v1 − vi)2 + 2cpuct

√∑
j Nj

t−n
(n+1)(t+1)(v1 − vi)

M
b
n+t
nt

= − b

2M

1

n+ t
[c2
puct(

∑
j

Nj)
(t− n)2nt

(n+ 1)2(t+ 1)2
+ nt(v1 − vi)2 + 2cpuct

√∑
j

Nj
(t− n)nt

(n+ 1)(t+ 1)
(v1 − vi)]

We have
nt

(n+ 1)(t+ 1)
≥ t

2(t+ 1)
,

nt

(n+ 1)2(t+ 1)2
≥ t2

(t+ 1)4
,

1

t+ n
≥ 1

2t

∑
j

Nj ≥ t

≤ − b

2M

1

2t
[c2
puctt

t2

(t+ 1)4
(t− n)2 + nt(v1 − vi)2 + 2cpuct

√
t
v1 − vi

2

t

t+ 1
(t− n)]

75

Also remember that v1 − vi ≥ d, we get

≤ − b

4M
[c2
puct

t2

(t+ 1)4
(t− n)2 + nd2 + cpuctd

√
t

t+ 1
(t− n)]

= − b

4M
[
c2
puctt

2

(t+ 1)4
n2 + (d2 − cpuctd

√
t

t+ 1
−

2c2
puctt

3

(t+ 1)4
)n+

c2
puctt

4

(t+ 1)4
+
cpuctdt

√
t

t+ 1
]

Now we want to find the largest upper bound w.r.t n. So we need to minimize the quartic form in []

If n can be any real number, it is minimized when

n = n∗ =
d2 − cpuctd

√
t

t+1 −
2c2puctt

3

(t+1)4

−2c2puctt
2

(t+1)4

= t+
d(t+ 1)3

2cpuctt3/2
− d2

2c2
puct

(t+ 1)4

t2

1© If n∗ > t, which is
d(t+ 1)3

2cpuctt3/2
− d2

2c2
puct

(t+ 1)4

t2
> 0

This could happen if and only if c2
puct − 4d2 > 0. And we get

cpuct −
√
c2
puct − 4d2

2d
<
√
t <

cpuct +
√
c2
puct − 4d2

2d
.

When d is relative small compared to cpuct, it is approximately 0 <
√
t <

cpuct
d

P (v̂i + cpuct

√∑
Nj

Ni + 1
> v̂1 + cpuct

√∑
Nj

N1 + 1
|Ni = t,N1 = n)

≤ exp(−btd
2

4M
)

2© If n∗ < 0, which is t+
d(t+ 1)3

2cpuctt3/2
− d2

2c2
puct

(t+ 1)4

t2
< 0

76

This requires t to be large and for convenience we can use t
t+1 ≈ 1. This gives us.

√
t >

2cpuct
d

and n∗ = 1

P (v̂i + cpuct

√∑
Nj

Ni + 1
> v̂1 + cpuct

√∑
Nj

N1 + 1
|Ni = t,N1 = n)

≤ exp(− b

4M
(c2
puct + cpuctd

√
t))

3© Otherwise
cpuct
d

<
√
t <

2cpuct
d

and n∗ = t+
d(t+ 1)3

2cpuctt3/2
− d2

2c2
puct

(t+ 1)4

t2

P (v̂i + cpuct

√∑
Nj

Ni + 1
> v̂1 + cpuct

√∑
Nj

N1 + 1
|Ni = t,N1 = n)

≤ exp(− b

4M
(−d

4(t+ 1)4

4c2
puctt

2
− d2(t+ 1)2

4t
+
d3(t+ 1)3

2cpuctt3/2
+ d2t))

Use
d

2c
<

1√
t
<
d

c

≤ exp(− b

4m
(−d2 (t+ 1)4

t3
− d2

4

(t+ 1)2

t
+
d

2

(t+ 1)3

t2
) + d2t)

= exp(− bd2

16Mt3
(t4 − 12t3 − 19t2 − 14t− 4))

≈ exp(− bd
2t

16M
)

Finally we just have to notice that

P (Choose the 1st choice)

= 1−
k∑
i=2

P (Choose the ist choice)

≥ 1− (k − 1)t×max
n

P (v̂i + cpuct

√∑
Nj

Ni + 1
> v̂1 + cpuct

√∑
Nj

N1 + 1
|Ni = t,N1 = n)

The last probability is constrained by the above three conditions. So combining all above we finished

the proof for the theorem. �

A.2. Appendix for Chapter 3

Here we have more detalied results for our stage-wise segmentation and reconstruction.

77

Figure A.1. Randomly picked samples of reconstructed image by objects for Mon-
tezuma’s Revenge. Last row is input/ground truth image. These sample reconstruc-
tion images demonstrate that our model almost decomposes the scene perfectly into
different objects.

78

A.3. Appendix for Chapter 4

A.3.1. Theorems and Proofs.

Lemma A.1. For hypothesis test in equation 4.1, under H0, the distribution p-value converges to

U(0, 1)

Proof. See [60] �

Lemma A.2. For random variables X ∼ Binom(N, p) and Y ∼ Binom(M,p), X and Y are

independent. Further we define n = X + Y . Then for any fixed value of n we have

lim
N→+∞,M→+∞

P (X = k|X + Y = n)

b(k, n, N
M+N)

⇒ 1

Proof.

P(X = k|X + Y = n) =
P(X = k)P(Y = n− k)

P(X + Y = n)

=

(
N
k

)(
M
n−k
)(

M+N
n

)
=

N !

k! (N − k)!
· M !

(n− k)! (M − n+ k)!
· n! (M +N − n)!

(M +N)!

=
N !

(N − k)!
· M !

(M − n+ k)!
· (M +N − n)!

(M +N)!
·
(
n

k

)
b(k, n,

N

M +N
) =

(
n

k

)
(

N

M +N
)k(

M

N +M
)n−k

P(X = k|X + Y = n)

b(k, n, N
M+N)

=
N !

Nk(N − k)!
· M !

Mn−k(M − n+ k)!
· (M +N)n(M +N − n)!

(M +N)!

All three fractions on the right side will uniformly converges to 1. Here we only prove the last one.

Clear we have
(M +N)n(M +N − n)!

(M +N)!
≥ 1

79

Then we have

lim
M,N→+∞

(M +N)n(M +N − n)!

(M +N)!
≤ lim

M,N→+∞

(M +N)n

(M +N − n+ 1)n

= lim
M,N→+∞

(1 +
n− 1

M +N − n+ 1
)n

= lim
M,N→+∞

(1 +
1

M+N
n−1 + 1

)n

= lim
M,N→+∞

(1 +
1

M+N
n−1

)
M+N
n−1

·n(n−1)
M+N

= e0 = 1

�

Theorem A.1. For any specific sample x ∈ X , build its neighborhood Nx as described in 4.4.1.

If for any sample x′ ∈ D1 ∪D2, it has probability p of being in Nx, then for any fixed size of neighbor,

the expectation of p-value will converge to 0.5.

Proof. Define

n1 = |{x′ ∈ Nx|x′ ∈ D1}|, N1 = |D1|, N2 = |D2|

we can apply Lemma A.2 and conclude that the distribution of, n1 will converge to binomial

distribution with probability N1
N1+N2

. So we know the test statistics will also converge to the

distribution when H0 is ture, which is U(0, 1) according to Lemma A.1. So the expectation of p-value

will converge to 0.5 �

Corollary A.1. Still use the settings in Theorem A.1, but now the probability is no longer a

constant, but follows a prior distribution F , i.e.

P(x′ ∈ Nx|x′ ∈ D1 ∪ D2) ∼ F

the conclusion still stands.

Proof. Have a prior over p does not change the fact that all samples have the same probability

of being in the neighborhood of x. Now the probability is just E[F]. So we can apply Theorem A.1

and finish the proof. �

80

Theorem A.2. For any specific sample x ∈ X , build its neighborhood Nx as described in 4.4.1,

keep the notation of n1, n2, N1 and N2. If ∃ε0 ∈ (0, 1]s.t.N2
N1
∈ [ε0,

1
ε0

], We have n1
n1+n2

· N1p1+N2p2
N1p1

a.s.→ 1

Proof. If p1 = 0 or p2 = 0, the conclusion is straight froward. We only proof for p1 6= 0 and

p2 6= 0

n1

n1 + n2
· N1p1 +N2p2

N1p1
=

n1

N1p1
· N1p1 +N2p2

n1 + n2
=

n1

N1p1
·
p1 + p2 · N2

N1

n1
N1

+ n2
N2
· N2
N1

According to Law of Large Numbers [15], we have

P(lim
N1→+∞

n1

N1
= p1) = 1 P(lim

N2→+∞

n2

N2
= p2) = 1

So with probability 1, ∀η > 0, when both N1 and N2 are sufficiently large, with probability 1 we

have

| n1

N1
− p1| < η, | n2

N2
− p2| < η

So we have

|(n1

N1
+
n2

N2
· N2

N1
)− (p1 + p2 ·

N2

N1
)| = |(n1

N1
− p1) +

N2

N1
(
n2

N2
− p2)| ≤ (1 +

1

ε0
)η

We also know that 0 < p1 + p2ε0 ≤ p1 + N2
N1
p2 ≤ p1 + p2

ε0
. So with probability equal to 1 we have

lim
N1,N2→+∞

p1 + p2 · N2
N1

n1
N1

+ n2
N2
· N2
N1

= 1

lim
N1→+∞

n1

N1p1
= 1

lim
N1,N2→+∞

n1

n1 + n2
· N1p1 +N2p2

N1p1
= 1

�

Corollary A.2. Still use the settings of Theorem A.2, but now p1 and p2 follows prior

distribution F1 and F2 separately, the conclusion still stands. All we have to do is to replace p1 and

p2 with E[F1] and E[F2]

Proof. Have a prior over p1 and p2 does not change the fact that each sample will be selected

randomly and independently. Now in D1 the samples will be selected with probability E[F1] and in

D2 it’s E[F2]. So we can apply Theorem A.2 and finish the proof. �

81

Theorem A.3. For any sample x ∈ X , build its neighborhoods with the steps described in 4.4.1

and calculate their p-values for the hypothesis test described in 4.4.1. If the two datasets D1 and D2

have a bounded size ratio and have the same distribution over X , then with large enough datasets

and a pre-selected similarity function s(x1, x2), all these p-values will converge to 1 in probability.

Proof. Consider we have one specific sample x. For another sample x′ that is randomly selected

from D1, it has a probability p = s(x, x′) of being in Nx, the neighborhood of x. Clear this probability

is also random and its distribution relies the choice of s and the distribution of D1 over X . With

both specified, it’s a fixed prior. Now if the random sample comes from D2, the distribution for

p = s(x, x′) is still the same because D1 and D2 has the same distribution over X . So we can apply

Corollary A.2 with F1 and F2 being identical. So we have

n1

n1 + n2
· N1p1 +N2p2

N1p1

a.s.→ 1

This means ∀δ > 0 when N1 and N2 are sufficiently large, with probability 1

| n1

n1 + n2
− N1p1

N1p1 +N2p2
| ≤ δ| N1p1

N1p1 +N2p2
|

Since N1
N2

and N2
N1

are bounded, we further know that this different can be arbitrarily small. So

∀δ > 0 when N1 and N2 are sufficiently large, with probability 1

| n1

n1 + n2
− N1p1

N1p1 +N2p2
| ≤ δ

Now for any ε > 0, ∃δ > 0 such that when the test statistics |T | < δ, we will have |p-value−1| < ε.

And now |T | < δ only needs n1
n1+n2

be very close to N1
N1+N2

, since all other components in equation

4.3 are bounded. So ∀ε > 0, with probability 1, we have

lim
N1,N2→+∞

P(|p-value− 1| < ε) = 1

So the p-value of sample x converges to 1 in probability. Thus this is also correct for any finite

number of samples. �

A.3.2. Full Results for Domain Adaptation.

82

A.3.2.1. Other Distance Metrics. We compared various distance and similarity measures to

analyze if they are good indicators of the domain adaptation transfer effect. In addition to our

framework of similarity, IPα in [1] and OTDD in [2], we also compared several traditional metrics

as listed in Section 3 in [32]. These metrics are defined as follows.

• Mean Based Metrics: These methods are based on mean of sample embeddings. L2

Distance finds the mean vector for both datasets, µ̂1 =
∑n1
i=1 d1i
n1

and µ̂2 =
∑n2
i=1 d2i
n2

and

calculates ||µ̂1 − µ̂2||2 as the distance. Cosine Similarity defines similarity as µ̂1·µ̂2
||µ̂1||·||µ̂2|| .

These metrics are unreliable for two reasons: average calculation will ignore all shape

information of the distribution, and also assumes the embedding space to be Euclidean and

isotropic.

• Covariance Based Metric: Another method uses covariance information, CORAL, corre-

lation alignment [81]. It defines the distance based on the distance between covariance

matrices.

d(C1, C2) =
1

4d
||S1 − S2||2F

Here, S1 and S2 are covariance matrices for two datasets and d is the dimension of

embedding. || · ||2F is Frobenius norm for matrix. Like the previous two metrics, CORAL

also relies on some geometric assumptions of the embedding space.

• Fisher Linear Discriminant: Fisher Linear Discriminant (FLD) attempts to find a

projection that will maximize the distance between groups while preventing within group

distance from becoming too large. Mathematically, it maximizes w>SBw
w>SWw

, where SB is the

between-dataset covariance matrix SB = (µ̂1 − µ̂2)>(µ̂1 − µ̂2) and SW is within-dataset

covariance matrix SW =
∑n1

i=1(x1i − µ̂1)>(x1i − µ̂1) +
∑n2

i=1(x2i − µ̂2)>(x2i − µ̂2). This

method has good statistical properties but the maximization might be sensitive to noise

when two datasets are similar.

• Maximum Mean Discrepancy: Maximum Mean Discrepency(MMD) is a common

solution. For any class of function F , MMD is defined as

MMDF [D1,D2] = sup
f∈F

Ex[f(x)]− Ex[f(x)]

83

The optimization is not trivial but a closed form solution exists when F is the unit ball

in a reproducing kernel Hilbert space, introduced in the 1907 work of Stanislaw Zaremba.

The closed form solution has an unbiased estimation with its characteristic kernel k.

MMD2
F [D1,D2] =

1

n2
1

n1∑
i=1

n1∑
i′=1

k(x1i, x1i′)−
2

n1n2

n1∑
i=1

n2∑
j=1

k(x1i, x2j)

+
1

n2
2

n2∑
j=1

n2∑
j′=1

k(x2j , x2j′)

This method is sound in theory but would have to calculate all pairwise output through

the kernel function, which is not desirable. Besides, the distance requires proper choice of

the right class of function, which cannot be guaranteed.

A.3.2.2. Experiment Results. Full results are available in Table A.3, Table A.4 and Figure A.3.

We highlight the two best correlations. We can see that FLD is consistently the best under all

settings. Our method is the second best w.r.t. Spearman’s correlation. We prefer Spearman’s

correlation as it is more robust and we have no specific reason to believe a linear relationship exists.

Without Fine-tuning

Table A.1. Absolute values of Correlation with Drop in Accuracy without fine-tuning

Metric Ours p̄1 Ours p̄ IPα OTDD L2 cosine MMD FLD CORAL
Pearson r 0.678 0.646 0.539 0.680 0.667 0.697 0.691 0.789 0.521
Spearman ρ 0.867 0.862 0.671 0.827 0.830 0.830 0.830 0.886 0.685

Table A.2. Absolute values of Correlation with Increase in Loss without fine-tuning

Metric Ours p̄1 Ours p̄ IPα OTDD L2 cosine MMD FLD CORAL
Pearson r 0.596 0.572 0.504 0.610 0.598 0.646 0.640 0.757 0.447
Spearman ρ 0.817 0.862 0.727 0.816 0.819 0.819 0.819 0.920 0.659

With Fine-tuning

Table A.3. Absolute values of Correlation with Drop in Accuracy with finetuning

Metric Ours p̄1 Ours p̄ IPα OTDD L2 cosine MMD FLD CORAL
Pearson r 0.784 0.685 0.301 0.666 0.658 0.565 0.563 0.404 0669
Spearman ρ 0.805 0.615 0.359 0.634 0.637 0.637 0.637 0.600 0.634

84

(a) Ours p̂1 (b) Ours p̂ (c) IPα in [1]

(d) OTDD in [2] (e) L2 (f) cosine

(g) MMD (h) FLD (i) CORAL

Figure A.2. Full results for Domain Adaptation without fine-tuning

Table A.4. Absolute values of Correlation with Increase in Loss with finetuning

Metric Ours p̄1 Ours p̄ IPα OTDD L2 cosine MMD FLD CORAL
Pearson r 0.825 0.766 0.435 0.741 0.734 0.631 0.629 0.481 0.732658
Spearman ρ 0.794 0.649 0.425 0.661 0.663 0.663 0.663 0.635 0.659

A.3.3. Problems with Pα and Rβ. The work in [1], that proposed Pα and Rβ, ignores the

distributions for samples’ angles in the sphere. To examine if angles can be ignored, we trained a

Deep One Class SVM [72] encoder and used hyper-parameters in [1]: µ = 0.01, c = 1, dz = 32. The

85

(a) Ours p̂1 (b) Ours p̂ (c) IPα in [1]

(d) OTDD in [2] (e) L2 (f) cosine

(g) MMD (h) FLD (i) CORAL

Figure A.3. Full results for Domain Adaptation with fine-tuning

network structure is a frozen BERT model followed by a two-layer feed forward network without

bias terms. The hidden layer has 128 neurons and BERT’s output embedding on [CLS] is the input

to the feed forward network.

The encoder is trained on a training set with 69349 hotel reviews of London from OpinRank

dataset. Two test sets contains the remaining10000 reviews of London, and 11834 reviews of Dubai,

respectively. We obtained their embeddings and then calculate their polar system coordinates to get

their 31-dimensional angles. For each dataset, we calculate two sets of angles. One is obtained with

86

(a) normalized w.r.t. length of domain (b) normalized w.r.t. effective range

Figure A.4. Mean and max of W1 distance over 31 angle dimensions with different
normalization, for all 15 possible pairs of set of angles

1 used as center of sphere, and the other with a fitted center from embeddings. So we have 6 sets of

angles in total.

Then, we calculate the average and max Wasserstein-1 distance (W1) over 31 dimensions. We

chose W1 because it has a straight forward geometric meaning: the smallest average distance each

sample has to be moved in order to make two distributions the same. Since different angle dimensions

have different ranges, we normalize W1 distance fo each dimension w.r.t their length of domain (π or

2π), or the effective range, which is defined as the length of their 95% confidence intervals as many

dimensions take only a small proportion of their domain.

The results are available in Figure A.4. One disturbing finding is that it is not that the pair of

datasets has a major impact on W1 distance, but that how the centers are chosen for them. We can

see the distance is almost 0 when two datasets use the same way to obtain their center, i.e. both use

1 or both fitted with the embeddings. But when only one of them uses 1 and the other is fitted, the

distance is multiple times larger and cannot be ignored. In the paper that proposed Pα and Rβ,

D1 uses 1 while D2 uses fitted center, which means there is likely to be a significant shift in angle

distribution, which is ignored in their metrics.

A.3.4. Problem with Authentic Check. In order to check authenticity of a generated

sample, the authors made an assumption that generated unauthentic sample’s embedding should lie

within a small neighborhood of the original real sample because it is only a slight variation of the

original sample.

xunauthentic ∼ N (xoriginal, ε)

87

Ideally ε could be small enough that we will find

||x1i∗ − x1j∗ || ≥ ||xunauthentic − x1i∗ ||

for unauthentic samples. While for authentic samples, if the original dataset have enough samples

and becomes ’dense’ enough, ||x1i∗ − x1j∗ || will be small enough such that

||x1i∗ − x1j∗ || < ||xauthentic − x1i∗ ||

The contradiction here is, both ’small ε’ assumption and ’dense’ dataset assumption are to make one

of the two distances arbitrary small. But they cannot be both arbitrary small. So this method can

at most be good at one thing: high recall for unauthentic samples, or high precision for authentic

samples.

To further validate their idea, we tested this method on Imdb Review dataset and Noisy

Imdb dataset. We only compare the training set, which contains 25000 samples. We already know

that Noisy Imdb differs from Imdb Review only by some data cleaning process, so no sample

should be authentic if we take it as generated samples.

We train a encoder with the same structure as described above with the same hyper-parameters.

As the order of two datasets are not the same, we use edit distance. For each sample in Noisy

Imdb, we take its first 30 characters and find the sample in Imdb Review whose first 30 characters

has the shortest edit distance. Then for this selected sample in Imdb Review, we check the edit

distance between the whole string with the sample in Noisy Imdb. We consider it a success pair if

the edit distance between whole strings are less than 10. Using this strategy, we find the original

sample for 21497 samples out of 25000. And for the 25000 samples in Noisy Imdb, we encode them

and find the nearest neighborhood in embedded space Imdb Review using Frobenius norm and

also check if they are authentic using method in [1].

It turns out that 17105, about 68.4% samples in Noisy Imdb are considered as authentic. For

samples that we have matched an original sample with high confidence, only 6700 are the same

as their nearest neighborhood found in embedding space. We also have more results for different

threshold of edit distance (see Table A.5). This simply shows that their method needs to be used

with great caution.

88

Table A.5. Number of matched Nearest neighborhood for different values of thresh-
old for edit distance

Threshold for Edit Distance 5 10 20 30 50 100
Number of matched Nearest neighborhood 6005 6700 6843 6857 6857 6857

A.4. Appendix for Chapter 5

(a) Collection Point 1 (b) Collection Point 2

(c) Collection Point 3 (d) Collection Point 4

89

(a) Collection Point 5 (b) Collection Point 6

(c) Collection Point 7 (d) Collection Point 8

(e) Collection Point 9 (f) Collection Point 10

(g) Collection Point 11 (h) Collection Point 12

(i) Collection Point 13 (j) Collection Point 14
90

(a) Collection Point 15 (b) Collection Point 16

(c) Collection Point 17 (d) Collection Point 18

(e) Collection Point 19 (f) Collection Point 20

(g) Collection Point 21 (h) Collection Point 22

(i) Collection Point 23 (j) Collection Point 24
91

Bibliography

[1] A. M. Alaa, B. van Breugel, E. Saveliev, and M. van der Schaar, How faithful is your synthetic data?

sample-level metrics for evaluating and auditing generative models, 2021.

[2] D. Alvarez-Melis and N. Fusi, Geometric dataset distances via optimal transport, in Advances in Neural

Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds., vol. 33,

Curran Associates, Inc., 2020, pp. 21428–21439.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer, Finite-time analysis of the multiarmed bandit problem, Machine

Learning, 47 (2002), pp. 235–256.

[4] G. Avarikioti, R. Brunner, A. Kiayias, R. Wattenhofer, and D. Zindros, Structure and content of the

visible darknet, 2018.

[5] J. Blitzer, M. Dredze, and F. Pereira, Biographies, Bollywood, boom-boxes and blenders: Domain adaptation

for sentiment classification, in Proceedings of the 45th Annual Meeting of the Association of Computational

Linguistics, Prague, Czech Republic, June 2007, Association for Computational Linguistics, pp. 440–447.

[6] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, Yolov4: Optimal speed and accuracy of object detection,

2020.

[7] M. Bonvini, E. Kennedy, V. Ventura, and L. Wasserman, Causal inference in the time of covid-19, 2021.

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,

Openai gym, 2016.

[9] C. P. Burgess, L. Matthey, N. Watters, R. Kabra, I. Higgins, M. Botvinick, and A. Lerchner,

Monet: Unsupervised scene decomposition and representation, arXiv preprint arXiv:1901.11390, (2019).

[10] S. Butterworth, On the theory of filter amplifiers, Experimental Wireless and the Wireless Engineer, 7 (1930),

pp. 536,541.

[11] S. Chang, E. Pierson, P. Koh, J. Gerardin, B. Redbird, D. Grusky, and J. Leskovec, Mobility network

models of covid-19 explain inequities and inform reopening, Nature, 589 (2021), pp. 82–87. Funding Information:

Acknowledgements We thank Y.-Y. Ahn, R. Appel, C. Chen, J. Feng, N. Fishman, S. Fullerton, T. Hashimoto,

M. Kraemer, P. Liang, M. Lipsitch, K. Loh, D. Ouyang, R. Rosenfeld, S. Sagawa, J. Steinhardt, R. Tibshirani,

J. Ugander, D. Vrabac, seminar participants and Stanford’s Computer Science and Civil Society for support

and comments; and N. Singh, R. F. Squire, J. Williams-Holt, J. Wolf, R. Yang and others at SafeGraph for

mobile phone mobility data and feedback. This research was supported by US National Science Foundation under

92

OAC-1835598 (CINES), OAC-1934578 (HDR), CCF-1918940 (Expeditions), IIS-2030477 (RAPID), Stanford

Data Science Initiative, Wu Tsai Neurosciences Institute and Chan Zuckerberg Biohub. S.C. was supported by an

NSF Fellowship. E.P. was supported by a Hertz Fellowship. P.W.K. was supported by the Facebook Fellowship

Program. J.L. is a Chan Zuckerberg Biohub investigator. Publisher Copyright: c© 2020, The Author(s), under

exclusive licence to Springer Nature Limited.

[12] M. Chen, T. Artières, and L. Denoyer, Unsupervised object segmentation by redrawing, arXiv preprint

arXiv:1905.13539, (2019).

[13] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, A survey of model compression and acceleration for deep

neural networks, CoRR, abs/1710.09282 (2017).

[14] Y. Choi, M. El-Khamy, and J. Lee, Universal deep neural network compression, CoRR, abs/1802.02271

(2018).

[15] K. L. Chung, Elementary probability theory with stochastic processes, Springer Science & Business Media, 2012.

[16] E. Clark, A. Celikyilmaz, and N. A. Smith, Sentence mover’s similarity: Automatic evaluation for multi-

sentence texts, in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,

Florence, Italy, July 2019, Association for Computational Linguistics, pp. 2748–2760.

[17] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, Electra: Pre-training text encoders as discriminators

rather than generators, 2020.

[18] J. Delon and A. Desolneux, A wasserstein-type distance in the space of gaussian mixture models, 2020.

[19] A. Delong and Y. Boykov, A scalable graph-cut algorithm for nd grids, in 2008 IEEE Conference on Computer

Vision and Pattern Recognition, 2008.

[20] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, Exploiting linear structure within

convolutional networks for efficient evaluation, in Advances in neural information processing systems, 2014,

pp. 1269–1277.

[21] J. Devlin, M. Chang, K. Lee, and K. Toutanova, BERT: pre-training of deep bidirectional transformers for

language understanding, CoRR, abs/1810.04805 (2018).

[22] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry, Implemen-

tation matters in deep policy gradients: A case study on ppo and trpo, 2020.

[23] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,

I. Dunning, S. Legg, and K. Kavukcuoglu, Impala: Scalable distributed deep-rl with importance weighted

actor-learner architectures, 2018.

[24] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, Diversity is all you need: Learning skills without a reward

function, 2018.

[25] C. Frogner, F. Mirzazadeh, and J. Solomon, Learning entropic wasserstein embeddings, in International

Conference on Learning Representations, 2019.

93

[26] S. Fujimoto, H. van Hoof, and D. Meger, Addressing function approximation error in actor-critic methods,

2018.

[27] R. Girshick, Fast r-cnn, 2015.

[28] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object detection

and semantic segmentation, 2014.

[29] K. Greff, R. L. Kaufman, R. Kabra, N. Watters, C. Burgess, D. Zoran, L. Matthey, M. Botvinick,

and A. Lerchner, Multi-object representation learning with iterative variational inference, in Proceedings of

the 36th International Conference on Machine Learning, K. Chaudhuri and R. Salakhutdinov, eds., vol. 97 of

Proceedings of Machine Learning Research, Long Beach, California, USA, 09–15 Jun 2019, PMLR, pp. 2424–2433.

[30] K. Greff, S. van Steenkiste, and J. Schmidhuber, Neural expectation maximization, in Advances in Neural

Information Processing Systems, 2017, pp. 6691–6701.

[31] M. G. G’Sell, S. Wager, A. Chouldechova, and R. Tibshirani, Sequential selection procedures and

false discovery rate control, Journal of the Royal Statistical Society: Series B: Statistical Methodology, (2016),

pp. 423–444.

[32] H. Guo, R. Pasunuru, and M. Bansal, Multi-source domain adaptation for text classification via distancenet-

bandits, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 7830–7838.

[33] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft actor-critic: Off-policy maximum entropy deep

reinforcement learning with a stochastic actor, 2018.

[34] S. Han, H. Mao, and W. J. Dally, Deep compression: Compressing deep neural network with pruning, trained

quantization and huffman coding, CoRR, abs/1510.00149 (2015).

[35] S. Han, J. Pool, J. Tran, and W. J. Dally, Learning both weights and connections for efficient neural

networks, CoRR, abs/1506.02626 (2015).

[36] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, CoRR, abs/1512.03385

(2015).

[37] K.-J. Hsu, Y.-Y. Lin, and Y.-Y. Chuang, Co-attention cnns for unsupervised object co-segmentation, in

Proceedings of the 27th International Joint Conference on Artificial Intelligence, AAAI Press, 2018, pp. 748–756.

[38] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, Densely connected convolutional networks,

2018.

[39] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, Quantized neural networks:

Training neural networks with low precision weights and activations, arXiv preprint arXiv:1609.07061, (2016).

[40] M. Jaderberg, A. Vedaldi, and A. Zisserman, Speeding up convolutional neural networks with low rank

expansions, arXiv preprint arXiv:1405.3866, (2014).

[41] R. Kabra, C. Burgess, L. Matthey, R. L. Kaufman, K. Greff, M. Reynolds, and A. Lerchner,

Multi-object datasets. https://github.com/deepmind/multi-object-datasets/, 2019.

94

[42] A. Kanezaki, Unsupervised image segmentation by backpropagation, in Proceedings of IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2018.

[43] S. Khoram and J. Li, Adaptive quantization of neural networks, in ICLR, 2018.

[44] D. P. Kingma and M. Welling, Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114, (2013).

[45] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, Hierarchical deep reinforcement learning:

Integrating temporal abstraction and intrinsic motivation, in Advances in neural information processing systems,

2016, pp. 3675–3683.

[46] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, From word embeddings to document distances, in

Proceedings of the 32nd International Conference on Machine Learning, F. Bach and D. Blei, eds., vol. 37 of

Proceedings of Machine Learning Research, Lille, France, 07–09 Jul 2015, PMLR, pp. 957–966.

[47] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, Albert: A lite bert for self-

supervised learning of language representations, 2020.

[48] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive Datasets, Cambridge University Press,

USA, 2nd ed., 2014.

[49] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettle-

moyer, Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and

comprehension, 2019.

[50] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,

Continuous control with deep reinforcement learning, 2019.

[51] C.-Y. Lin, ROUGE: A package for automatic evaluation of summaries, in Text Summarization Branches Out,

Barcelona, Spain, July 2004, Association for Computational Linguistics, pp. 74–81.

[52] D. Lin, S. Talathi, and S. Annapureddy, Fixed point quantization of deep convolutional networks, in

International Conference on Machine Learning, 2016, pp. 2849–2858.

[53] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, Focal loss for dense object detection, 2018.

[54] P. Liu, X. Qiu, and X. Huang, Adversarial multi-task learning for text classification, CoRR, abs/1704.05742

(2017).

[55] J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, in The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

[56] J. Luo, J. Wu, and W. Lin, Thinet: A filter level pruning method for deep neural network compression, CoRR,

abs/1707.06342 (2017).

[57] D. Lyu, F. Yang, B. Liu, and S. Gustafson, Sdrl: interpretable and data-efficient deep reinforcement learning

leveraging symbolic planning, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019,

pp. 2970–2977.

95

[58] F. Manessi, A. Rozza, S. Bianco, P. Napoletano, and R. Schettini, Automated pruning for deep neural

network compression, CoRR, abs/1712.01721 (2017).

[59] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,

H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, Human-level control through deep

reinforcement learning, Nature, 518 (2015), pp. 529–533.

[60] D. Murdoch, Y.-L. Tsai, and J. Adcock, P-values are random variables, The American Statistician, 62

(2008), pp. 242 – 245.

[61] B. Muzellec and M. Cuturi, Generalizing point embeddings using the wasserstein space of elliptical distributions,

in Advances in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett, eds., vol. 31, Curran Associates, Inc., 2018.

[62] M.-E. Nilsback and A. Zisserman, Automated flower classification over a large number of classes, in

Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing, Dec 2008.

[63] D. Novotny, S. Albanie, D. Larlus, and A. Vedaldi, Semi-convolutional operators for instance segmentation,

in The European Conference on Computer Vision (ECCV), September 2018.

[64] OpenAI, :, C. Berner, G. Brockman, B. Chan, V. Cheung, P. D?biak, C. Dennison, D. Farhi,

Q. Fischer, S. Hashme, C. Hesse, R. Jozefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P.

d. O. Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang,

F. Wolski, and S. Zhang, Dota 2 with large scale deep reinforcement learning, 2019.

[65] G. Opfer and G. D. Knott, Interpolating cubic splines, J. Approx. Theory, 112 (2001), pp. 319–321.

[66] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, Bleu: a method for automatic evaluation of machine

translation, in Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,

Philadelphia, Pennsylvania, USA, July 2002, Association for Computational Linguistics, pp. 311–318.

[67] D. Pathak, R. Girshick, P. Dollár, T. Darrell, and B. Hariharan, Learning features by watching objects

move, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2701–2710.

[68] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, Language models are unsupervised

multitask learners, (2019).

[69] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection,

2016.

[70] N. Reimers and I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks, CoRR,

abs/1908.10084 (2019).

[71] F. M. Rueda, R. Grzeszick, and G. A. Fink, Neuron pruning for compressing deep networks using maxout

architectures, CoRR, abs/1707.06838 (2017).

96

[72] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. Müller, and

M. Kloft, Deep one-class classification, in Proceedings of the 35th International Conference on Machine

Learning, J. Dy and A. Krause, eds., vol. 80 of Proceedings of Machine Learning Research, PMLR, 10–15 Jul

2018, pp. 4393–4402.

[73] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg, and L. Fei-Fei, ImageNet Large Scale Visual Recognition Challenge, International

Journal of Computer Vision (IJCV), 115 (2015), pp. 211–252.

[74] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran, Low-rank matrix

factorization for deep neural network training with high-dimensional output targets, in Acoustics, Speech and

Signal Processing (ICASSP), 2013 IEEE International Conference on, IEEE, 2013, pp. 6655–6659.

[75] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, Distilbert, a distilled version of bert: smaller, faster,

cheaper and lighter, 2020.

[76] T. Sellam, D. Das, and A. P. Parikh, Bleurt: Learning robust metrics for text generation, arXiv preprint

arXiv:2004.04696, (2020).

[77] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,

I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, Mastering the

game of go with deep neural networks and tree search, Nature, 529 (2016), pp. 484 EP –. Article.

[78] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv

preprint arXiv:1409.1556, (2014).

[79] B. K. Sriperumbudur, K. Fukumizu, and G. R. G. Lanckriet, Universality, characteristic kernels and

rkhs embedding of measures, 2010.

[80] B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Scholkopf, and G. R. G. Lanckriet, Hilbert

space embeddings and metrics on probability measures, 2010.

[81] B. Sun, J. Feng, and K. Saenko, Correlation alignment for unsupervised domain adaptation, CoRR,

abs/1612.01939 (2016).

[82] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the inception architecture for

computer vision, 2015.

[83] S. van Steenkiste, M. Chang, K. Greff, and J. Schmidhuber, Relational neural expectation maximization:

Unsupervised discovery of objects and their interactions, in International Conference on Learning Representations,

2018.

[84] V. Vanhoucke, A. Senior, and M. Z. Mao, Improving the speed of neural networks on cpus, in Deep Learning

and Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

97

[85] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-

sukhin, Attention is all you need, 2017.

[86] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,

P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,

N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,

E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,

C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0

Contributors, SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods, 17

(2020), pp. 261–272.

[87] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,

M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L.

Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush, Transformers: State-of-the-art natural language

processing, in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System

Demonstrations, Online, Oct. 2020, Association for Computational Linguistics, pp. 38–45.

[88] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, Quantized convolutional neural networks for mobile devices,

CoRR, abs/1512.06473 (2015).

[89] X. Wu, S. Lv, L. Zang, J. Han, and S. Hu, Conditional bert contextual augmentation, 2018.

[90] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, Xlnet: Generalized

autoregressive pretraining for language understanding, 2020.

[91] X. Yu, T. Liu, X. Wang, and D. Tao, On compressing deep models by low rank and sparse decomposition,

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), pp. 67–76.

[92] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, Bertscore: Evaluating text generation

with BERT, CoRR, abs/1904.09675 (2019).

[93] X. Zhang, J. Zou, K. He, and J. Sun, Accelerating very deep convolutional networks for classification and

detection, IEEE transactions on pattern analysis and machine intelligence, 38 (2016), pp. 1943–1955.

98

	Abstract
	Acknowledgments
	Chapter 1. Introduction
	Chapter 2. Search to Compress: Layer-wise Compression of Deep Neural Networks by Monte Carlo Tree Search
	2.1. Abstract
	2.2. Introduction
	2.3. Related Work
	2.4. Our approach
	2.5. Experiments
	2.6. Conclusion

	Chapter 3. Unsupervised Object Segmentation with Explicit Localization Module
	3.1. Abstract
	3.2. Introduction
	3.3. Models
	3.4. Related Work
	3.5. Experiments
	3.6. Further Smoothing on Multinomial Segmentation
	3.7. Discussion and future work

	Chapter 4. A Graph-Based Dataset Similarity Metric
	4.1. abstract
	4.2. Introduction
	4.3. Related Work
	4.4. Methodology
	4.5. Detailed Explanation for Equation 4.3
	4.6. Experiments
	4.7. Discussion
	4.8. Conclusion

	Chapter 5. COVID-19 Prediction Efforts at Health Davis Together
	5.1. Abstract
	5.2. Introduction
	5.3. Back-testing Framework
	5.4. Mobility Variable
	5.5. Wastewater Processing
	5.6. Summary

	Appendix A. Appendix
	A.1. Appendix for Chapter 2
	A.2. Appendix for Chapter 3
	A.3. Appendix for Chapter 4
	A.4. Appendix for Chapter 5

	Bibliography

